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Abstract. This paper studies the limiting behavior of weighted infeasible central paths for
semidefinite programming (SDP) obtained from centrality equations of the form X1/2SX1/2 = νW ,
where W is a fixed positive definite matrix and ν > 0 is a parameter, under the assumption that
the problem has a strictly complementary primal-dual optimal solution. It is shown that a weighted
central path as a function of

√
ν can be extended analytically beyond 0 and hence that the path

converges as ν ↓ 0. Characterization of the limit points of the path and its normalized first-order
derivatives are also provided. As a consequence, it is shown that a weighted central path can have
two types of behavior: it converges either as Θ(ν) or as Θ(

√
ν) depending on whether the matrix

W on a certain scaled space is block diagonal or not, respectively. We also derive an error bound
on the distance between a point lying in a certain neighborhood of the central path and the set of
primal-dual optimal solutions. Finally, in light of the results of this paper, we give a characterization
of a sufficient condition proposed by Potra and Sheng which guarantees the superlinear convergence
of a class of primal-dual interior-point SDP algorithms.
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1. Introduction. Let Sn denote the space of n × n real symmetric matrices.
We consider the semidefinite programming (SDP) problem

(P )

minimize C • X

subject to AX = b,

X � 0,

(1)

and its associated dual SDP problem

(D)

maximize bT y

subject to A∗ y + S = C,

S � 0,

(2)

where the data consists of C ∈ Sn, b ∈ �m, and a linear operator A : Sn → �m, the
primal variable is X ∈ Sn, and the dual variable consists of (S, y) ∈ Sn × �m. For a
matrix V ∈ Sn, the notation V � 0 means that V is positive semidefinite. Given a
fixed positive definite matrix W ∈ Sn, ∆b ∈ �m, and ∆C ∈ Sn, our interest in this
paper is to study the set of solutions of the following system of nonlinear equations
parametrized by the parameter ν > 0:

AX = b + ν∆b, X � 0,(3)
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A∗ y + S = C + ν∆C, S � 0,(4)

X1/2SX1/2 = νW.(5)

Under suitable conditions on (W,∆C,∆b), it has been shown in Monteiro and
Zanjácomo [31] that the above system has a unique solution, denoted by p(ν) ≡
(X(ν), S(ν), y(ν)) for every ν ∈ (0, 1]. We refer to the path ν ∈ (0, 1] → p(ν) as the
(W,∆C,∆b)-weighted central path associated with (P ) and (D). The main objective
of this paper is to analyze the limiting behavior of this path as ν ↓ 0.

When (W,∆C,∆b) = (I, 0, 0), the path ν ∈ (0, 1] → p(ν) is a part of the cen-
tral path associated with (P ) and (D). Properties of the central path have been
extensively studied in several papers due to the important role it plays in the devel-
opment of interior-point algorithms for cone programming, nonlinear programming,
and complementarity problems. Early works dealing with the well-definedness, dif-
ferentiability, and limiting behavior of weighted central paths in the context of the
linear programming and monotone complementarity problems include [1, 2, 3, 8, 9,
10, 11, 16, 22, 23, 24, 26, 27, 29, 32, 36, 37, 38, 39, 40].

Using the fact that every real algebraic variety has a triangulation, Kojima et al.
[15] showed that the central path associated with a monotone linear complementarity
problem converges to a solution. In [19], Kojima, Shindoh, and Hara claim that similar
arguments as the ones used in [15] can also be used to show that the central path of a
monotone linear semidefinite complementarity problem (which is equivalent to SDP)
converges to a solution of the problem. More generally, Drummond and Peterzil
[8] established convergence of the central path for analytic convex nonlinear SDP
problems. An alternative proof based on a deep result from algebraic geometry (see,
for example, Lemma 3.1 of Milnor [25]) of the convergence of the central path for an
SDP problem was given by Halická, de Klerk, and Roos [14]. Characterization of the
limit point of the central path has been obtained by De Klerk, Roos, and Terlaky [6]
and Luo, Sturm, and Zhang [21] for SDP problems possessing strictly complementary
primal-dual optimal solutions. Using an approach based on the implicit function
theorem described in Stoer and Wechs [37, 38], Halická [12] showed that the central
path of an SDP problem possessing a strictly complementary primal-dual optimal
solution can be extended analytically as a function of ν > 0 to ν = 0. For more
general SDP problems, the above issues regarding the central path still remain open
but some advances have been made in a few papers. These include De Klerk, Roos, and
Terlaky [5] and Goldfarb and Scheinberg [7] who proved that any cluster point of the
central path must be a maximally complementary optimal solution. Also, Halická, de
Klerk, and Roos [13] and Sporre and Forsgren [36] provided partial characterizations
of the limit point of the central path as being the analytic center of some convex
subset of the optimal solution set and the unique solution of a perturbed log barrier
problem over the optimal solution set, respectively. Finally, the recent paper by Cruz
Neto, Ferreira, and Monteiro [4], which appeared after the release of the first version
of the present work, establishes the convergence of the central path for a special class
of SDPs which do not satisfy the strict complementarity condition.

Generalization of the notion of weighted central paths from linear programming
to SDP problems is a delicate issue. While for linear programming a weighted central
path can be characterized as optimal solutions of certain weighted logarithmic barrier
problems, this characterization does not seem to be a good source for obtaining a
suitable notion of weighted central paths for SDP. Instead, Monteiro and Zanjácomo
[31] (see also Monteiro and Pang [28]) work directly with a system consisting of (3),
(4), and an equation of the form Φ(X,S) = νW for some suitable map Φ : D ⊆
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Sn × Sn → Sn and show that this system has a unique solution for every ν ∈ (0, 1].
Special instances of the map Φ for which the above result applies include the maps
(X,S) → (XS + SX)/2 and (X,S) → X1/2SX1/2.

Independently of the present work, Preiß and Stoer [35] have proved that the
weighted central paths associated with the map (X,S) → (XS + SX)/2 are analyti-
cally extendible as functions of ν ∈ (0, 1] to ν = 0 (see also Lu and Monteiro [20] for
another proof of this result). In this paper, we will be interested only in the second
map and its corresponding weighted central paths, i.e., the path of solutions of systems
of the form (3)–(5). More specifically, we will investigate the asymptotic properties of
the weighted central paths ν ∈ (0, 1] → p(ν) and their derivatives for the special class
of SDPs possessing strictly complementary primal-dual optimal solutions. Using a
suitable change of variables together with the technique described in [37, 38] based on
the implicit function theorem, we prove in section 3 that the path t ∈ (0, 1] → p(t2)
can be extended analytically to t = 0, and we also characterize the limit point of
p(ν) as ν ↓ 0. In section 4, we characterize the limit of the normalized derivative
p′(ν)/‖p(ν)‖ as ν ↓ 0. As a consequence, we show that a weighted central path can
have two types of behavior: it converges either as Θ(ν) or as Θ(

√
ν), depending on

whether the matrix W on a certain scaled space is block diagonal or not, respectively.
Using these results, we derive in section 5 an error bound on the distance between a
point lying in a certain neighborhood of the central path and the set of primal-dual
optimal solutions. Finally, we consider in section 6 a sufficient condition proposed by
Potra and Sheng [33], which guarantees the superlinear convergence of a large class
of primal-dual interior-point SDP algorithms, and we obtain a characterization of it
in terms of the results obtained in this paper.

The organization of this paper is as follows. Section 2 introduces the assump-
tions made throughout the paper and discusses some preliminary known results about
weighted central paths. Sections 3–6 establish the results mentioned in the previous
paragraph. Finally, we end the paper by providing some concluding remarks in section
7.

1.1. Notation. The space of symmetric n× n matrices will be denoted by Sn.
Given matrices X and Y in �p×q, the standard inner product is defined by X • Y ≡
tr(XTY ), where tr(·) denotes the trace of a matrix. The Euclidean norm and its
associated operator norm, i.e., the spectral norm, are both denoted by ‖ · ‖. The
Frobenius norm of a p × q matrix X is defined as ‖X‖F ≡

√
X • X. Given a point

f and a set F in a finite dimensional normed vector space, the distance from f to
F is defined as dist(f, F ) ≡ inf f̃∈F ‖f − f̃‖. If X ∈ Sn is positive semidefinite
(resp., definite), we write X � 0 (resp., X � 0). The cone of positive semidefinite
(resp., definite) matrices is denoted by Sn

+ (resp., Sn
++). Either the identity matrix

or operator will be denoted by I. The image (or range) space of a linear operator A
will be denoted by Im(A); the dimension of the subspace Im(A), referred to as the
rank of A, will be denoted by rank(A). Given a linear operator F : E → F between
two finite dimensional inner product spaces (E, 〈·, ·〉E) and (F, 〈·, ·〉F ), its adjoint is
the unique operator F∗ : F → E satisfying 〈F(u), v〉F = 〈u,F∗(v)〉E for all u ∈ E
and v ∈ F .

Given functions f : Ω → E and g : Ω → �++, where Ω is an arbitrary set and
E is a normed vector space, and a subset Ω̃ ⊂ Ω, we write f(w) = O(g(w)) for all
w ∈ Ω̃ to mean that there exists M ≥ 0 such that ‖f(w)‖ ≤ Mg(w) for all w ∈ Ω̃;
moreover, for a function U : Ω → Sn

++, we write U(w) = Θ(g(w)) for all w ∈ Ω̃ if

U(w) = O(g(w)) and U(w)−1 = O(1/g(w)) for all w ∈ Ω̃. The latter condition is
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equivalent to the existence of a constant M > 0 such that

1

M
I � 1

g(w)
U(w) � MI ∀w ∈ Ω.

2. Preliminaries. In this section, we describe the assumptions that will be used
in our presentation. We also describe the weighted central path that will be the subject
of our study in this paper. Some preliminary results about this path are also stated
including conditions for its well-definedness.

Throughout this paper we will be dealing with the pair of dual SDPs (P ) and (D)
(see (1) and (2), respectively). Denote the feasible sets of (P ) and (D) by FP and
FD, respectively. Throughout our presentation we make the following assumptions
on the pair of problems (P ) and (D).

A.1. A : Sn → �m is an onto linear operator.
A.2. There exists a pair of strictly complementary primal-dual optimal solutions

for (P ) and (D), that is, a triple (X∗, S∗, y∗) ∈ FP ×FD satisfying X∗S∗ = 0
and X∗ + S∗ � 0.

We will assume that assumptions A.1 and A.2 are in force throughout our pre-
sentation. Hence, we will state our results without explicitly mentioning them.

Assumption A.1 is not really crucial for our analysis, but it is convenient to ensure
that the variables S and y are in one-to-one correspondence. We will see that the dual
weighted central path can always be defined in the S-space. The goal of assumption
A.1 is just to ensure that this path can also be extended to the y-space.

Assumption A.2 is the one that is commonly used in the analysis of superlinear
convergence of interior-point algorithms, and it plays an important role in our analysis.
In fact, it is a very challenging problem to generalize the analysis of this paper to the
case where assumption A.2 is dropped or simply relaxed.

By assumption A.2, since X∗S∗ = S∗X∗ = 0, we can diagonalize X∗ and S∗

simultaneously, i.e., find an orthonormal P ∈ �n×n such that PTX∗P and PTS∗P
are both diagonal. Performing the change of variables X̂ = PTXP and (Ŝ, ŷ) =
(PTSP, y) on problems (P ) and (D) yields another pair of primal and dual SDPs
which has a primal-dual optimal solution (X̂∗, Ŝ∗, ŷ∗) such that X̂∗ and Ŝ∗ are both
diagonal. To simplify our notation, we will assume without loss of generality that the
original (P ) and (D) already have a primal-dual optimal solution (X∗, S∗, y∗) such
that

X∗ =

[
ΛB 0
0 0

]
, S∗ =

[
0 0
0 ΛN

]
,(6)

where ΛB ≡ diag(λ1, . . . , λK), ΛN ≡ diag(λK+1, . . . , λn) for some integer 0 ≤ K ≤ n
and some scalars λi > 0, i = 1, 2, . . . , n. Here the subscripts B and N signify the
“basic” and “nonbasic” subspaces (following the terminology of linear programming).
Throughout this paper, the decomposition of any n×n matrix V is always made with
respect to the above partition B and N , namely,

V =

[
VB VBN

VNB VN

]
,

so that VBN and VNB denote the off-diagonal block of V . If VBN = 0 and VNB = 0,
V is called block diagonal; otherwise, it is called non–block diagonal.

Notice that X ∈ FP is an optimal solution of (P ) if and only if XS∗ = 0. Hence,
by assumption A.2, the primal optimal solution set F∗

P is given by

F∗
P ≡ {X ∈ FP : XBN = 0, XNB = 0, and XN = 0}.
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Analogously, the dual optimal solution set F∗
D is given by

F∗
D ≡ {(S, y) ∈ FD : SBN = 0, SNB = 0, and SB = 0}.

Define the linear map G : Sn × Sn ×�m → Sn ×�m by

G(X,S, y) ≡ (A∗ y + S − C, AX − b)(7)

and the sets G++ and W by

G++ ≡ G(Sn
++ × Sn

++ ×�m),(8)

W ≡
{
W ∈ Sn

++ : ‖W − νI‖ < ν/
√

2 for some ν > 0
}
.(9)

Given (W,∆C,∆b) ∈ Sn × Sn × �m, in this paper we are interested in the solutions
of the system of nonlinear equations (3)–(5) parametrized by the parameter ν > 0.
The following result gives a condition on (W,∆C,∆b) for system (3)–(5) to have a
unique solution for each ν ∈ (0, 1].

Proposition 2.1. Assume that (W,∆C,∆b) ∈ W × G++. Then, for any ν ∈
(0, 1], system (3)–(5) has a unique solution, denoted by (X(ν), S(ν), y(ν)). Moreover,
the path ν ∈ (0, 1] → (X(ν), S(ν), y(ν)) is analytic.

Proof. By A.2 and the assumption that (W,∆C,∆b) ∈ W × G++, we easily see
that ν(W,∆C,∆b) ∈ W×G++ for all ν ∈ (0, 1]. The first conclusion of the proposition
now follows from Theorem 1(b) of Monteiro and Zanjácomo [31] by letting F , Φ, and V
in that theorem be defined as F = G, Φ(X,S) = X1/2SX1/2 for all (X,S) ∈ Sn

+×Sn
+,

and V = W. The second conclusion follows by applying the analytic version of the
implicit function theorem to system (3)–(5) viewed as a function of (X,S, y, ν) and
using the fact that the assumption (W,∆C,∆b) ∈ W×G++ implies that the Jacobian
of this system with respect to (X,S, y) is nonsingular at (X(ν), S(ν), y(ν), ν) for every
ν ∈ (0, 1]. (See Theorem 2.4 of [30] and the paragraph following it.)

For a given (W,∆C,∆b) ∈ W × G++, the path ν ∈ (0, 1] → (X(ν), S(ν), y(ν))
will be referred to as the (W,∆C,∆b)-weighted central path. In view of the above
proposition, we will assume throughout sections 2–4 that the following condition is
true, without explicitly mentioning it in the statements of the results.

A.3. (W,∆C,∆b) ∈ W × G++.
The next result gives some estimates on the size of the blocks of X(ν) and S(ν).
Lemma 2.2. For all ν > 0 sufficiently small, we have

XB(ν) = O(1), SN (ν) = O(1),(10)

XN (ν) = O(ν), SB(ν) = O(ν),(11)

XBN (ν) = O(
√
ν), SBN (ν) = O(

√
ν).(12)

Proof. Assume that ν > 0 is sufficiently small and, for notational convenience,
let X ≡ X(ν) and S ≡ S(ν). Also, let (X∗, S∗, y∗) be as in condition A.2. Since
(∆C,∆b) ∈ G++, we have (∆C,∆b) = G(X0, S0, y0) for some (X0, S0, y0) ∈ Sn

++ ×
Sn

++×�m. It is easy to see that A(X−νX0−(1−ν)X∗) = 0 and S−νS0−(1−ν)S∗ ∈
Im(A∗) and hence that

(X − νX0 − (1 − ν)X∗) • (S − νS0 − (1 − ν)S∗) = 0.(13)

This equality together with (6) and the facts that X∗ •S∗ = 0, X •S = ν tr(W ), and
all the quantities X,X0, X∗, S, S0, S∗ are in Sn

+ implies that

X • S0 + X0 • S ≤ tr(W ) + ξ(ν)(14)
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and

XN • S∗
N + X∗

B • SB = X • S∗ + X∗ • S ≤ ν(tr(W ) + ξ(ν))

1 − ν
,(15)

where ξ(ν) ≡ ν(X0 • S0) + (1 − ν)(X0 • S∗ + X∗ • S0). The above two inequali-
ties together with the fact that the matrices X0, S0, X∗

B , S
∗
N , XN , SB are all positive

definite clearly imply that (10) and (11) hold. Using the fact that X(ν) � 0 and
S(ν) � 0, we obtain that X2

ij(ν) ≤ Xii(ν)Xjj(ν) and S2
ij(ν) ≤ Sii(ν)Sjj(ν) for all i, j.

These inequalities together with (10) and (11) imply (12).
The next result gives estimates on the size of the blocks of the matrix X1/2(ν) ≡

[X(ν)]1/2.
Lemma 2.3. Let U(ν) ≡ X1/2(ν) for all ν ∈ (0, 1]. Then, for all ν > 0 sufficiently

small, we have

U(ν) =

(
UB(ν) UBN (ν)
UNB(ν) UN (ν)

)
=

(
O (1) O(

√
ν)

O(
√
ν) O (

√
ν)

)
.

Proof. For notational convenience, let U = U(ν). Since X = UU , we have
XB = UBUB + UBNUT

BN and XN = UNUN + UNBU
T
NB . Hence,

n‖XB‖ ≥ trXB = tr
(
UBUB + UBNUT

BN

)
= ‖UB‖2

F + ‖UBN‖2
F ≥ max{‖UB‖2 , ‖UBN‖2},

n‖XN‖ ≥ trXN = tr
(
UNUN + UNBU

T
NB

)
= ‖UN‖2

F + ‖UNB‖2
F ≥ max{‖UN‖2 , ‖UNB‖2},

from which the result follows in view of (10) and (11).
We end this section by stating a convergence result of the (W,∆C,∆b)-weighted

central path to a primal-dual optimal solution of (1) and (2). We do not provide a
proof for it since it is similar to the one given in the appendix of Halická, de Klerk,
and Roos [14].

Proposition 2.4. There exist some ε > 0 and an analytic function ν : [0, ε) →
(0, 1) such that ν(0) = 0 and the path t ∈ (0, ε) → (X(ν(t)), S(ν(t)), y(ν(t))) is
analytic at t = 0. In particular, (X(ν(t)), S(ν(t)), y(ν(t))) converges to some primal-
dual optimal solution (X∗, S∗, y∗) as t ↓ 0.

We observe that Proposition 2.4 holds even without requiring assumption A.2.
As a consequence, its main advantage is that it holds for any SDP problem. Its main
drawbacks are that it neither gives a characterization of the limit point (X∗, S∗, y∗)
nor describes how fast ν(t) converges to 0. These issues and others will be addressed
in the remaining sections of this paper in the context of SDPs satisfying assumption
A.2.

3. Analyticity of the weighted central path. In the parametrization in-
troduced in the previous section, the weighted central path in general cannot be
extended analytically to an interval of the form (−ε,∞) for some ε > 0 (see Corollary
4.3). However, in this section we will show that the reparametrized weighted central
path t → p(t2) can be extended analytically to an interval as above.

For the sake of brevity, it is convenient to introduce the following definition.
Definition 3.1. Let w : (0, δ) → E be a given function where δ > 0 and E is a

finite dimensional normed vector space. The function w is said to be analytic at 0 if
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there exist ε > 0 and an analytic function ψ : (−ε, ε) → E such that w(t) = ψ(t) for
all t ∈ (0, ε).

The basic result that we use to establish that a function w : (0, δ) → E is analytic
at 0 is the following corollary of the analytic version of the implicit function theorem.

Proposition 3.2. Let w : (0, δ) → E be a given function where δ > 0 and E is a
finite dimensional normed vector space. Assume that there exists an analytic function
H : O × (−ε, ε) → E, where ε > 0 and O is an open subset of E, such that w = w(t)
is the unique solution of H(w, t) = 0 in O for every t ∈ (0, ε). Assume also there
exists w̄ ∈ O such that H(w̄, 0) = 0 and H ′

w(w̄, 0) is nonsingular. Then,
(i) w = w̄ is the unique solution of the system H(w, 0) = 0;
(ii) w is analytic at 0 and, as a consequence, limt↓0 w(t) = w̄, and the limits of

all the derivatives of w(t) as t ↓ 0 exist.
The following theorem is one of the main results of this section. Its proof will be

given at the end of this section.
Theorem 3.3. The reparametrized (W,∆C,∆b)-weighted central path t ∈ (0, 1] →

(X(t2), S(t2), y(t2)) is analytic and also analytic at t = 0. As a consequence, the
(W,∆C,∆b)-weighted central path ν ∈ (0, 1] → (X(ν), S(ν), y(ν)) converges.

A key step toward showing the above result is a reformulation of the weighted
central path system (3)–(5) as we now discuss. First, observe that (3), (4), and the
equations

USU = t2W,(16)

UU = X(17)

have (U,X, S, y) = (U(t2), X(t2), S(t2), y(t2)) as their unique solution in Sn
++×Sn

++×
Sn

++ ×�m, where U(t2) ≡ [X(t2)]1/2. Letting

DB(t) ≡
[

I/t 0
0 I

]
, DN (t) ≡

[
I 0
0 I/t

]
,(18)

and noting that DB(t)DN (t) = I/t for every t ∈ (0, 1], we easily see that U,X, S ∈
Sn

++ satisfies (16) and (17) if and only if U , X̃ ≡ DN (t)XDN (t), and S̃ ≡ DB(t)SDB(t)
satisfy

[UDN (t)] S̃ [DN (t)U ] = W,(19)

[DN (t)U ] [UDN (t)] = X̃.(20)

Now, let

Un =
{
U ∈ �n×n : UB ∈ S |B|, UN ∈ S |N |, UNB = 0

}
,

Un
++ = {U ∈ Un : UB � 0, UN � 0 } ,

and define L : Un → �n×n as

L(U) =

[
0 0

UT
BN 0

]
∀ U ∈ Un.

It then follows that (U, X̃, S̃) satisfies (19) and (20) if and only if (Ũ , X̃, S̃) with

Ũ ≡
[

UB UBN/t
0 UN/t

]
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satisfies the equations [
Ũ + tL(Ũ)

]
S̃
[
Ũ + tL(Ũ)

]T
= W,(21) [

Ũ + tL(Ũ)
]T [

Ũ + tL(Ũ)
]

= X̃.(22)

Indeed, the above claim follows from the identity

UDN (t) =

[
UB UBN/t
UNB UN/t

]
= Ũ + tL(Ũ).

The above arguments establish the following key result.
Proposition 3.4. Let (X∗, S∗, y∗) ∈ F∗

P × F∗
D be given. Then, for every t ∈

(0, 1], the system defined by (21), (22), and the linear equations

A
(
DN (t)−1X̃DN (t)−1 −X∗

)
= t2∆b,(23)

DB(t)−1S̃ DB(t)−1 − S∗ ∈ t2∆C + Im(A∗)(24)

has a unique solution, denoted by (Ũ(t), X̃(t), S̃(t)), in Un
++ ×Sn

++ ×Sn
++. Moreover,

the path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t)) is analytic and, for every t ∈ (0, 1],

X̃(t) = DN (t)X(t2)DN (t), S̃(t) = DB(t)S(t2)DB(t),(25)

Ũ(t) =

[
UB(t2) UBN (t2)/t

0 UN (t2)/t

]
.(26)

The next result states some basic properties about the accumulation points of the
path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t)) as t approaches 0.

Proposition 3.5. The path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t)) remains bounded as t
approaches 0, and any accumulation point (Ũ∗, X̃∗, S̃∗) of this path as t approaches 0
is in Un

++ × Sn
++ × Sn

++ and satisfies the equations

Ũ S̃ ŨT = W,(27)

ŨT Ũ = X̃.(28)

Proof. By (18) and (25), we have

X̃(t) =

[
XB(t2) XBN (t2)/t

XNB(t2)/t XN (t2)/t2

]
, S̃(t) =

[
SB(t2)/t2 SBN (t2)/t
SNB(t2)/t SN (t2)

]
,(29)

which, together with Lemma 2.2, imply that (X̃(t), S̃(t)) remains bounded as t ap-
proaches 0. Relation (26) and Lemma 2.3 imply that Ũ(t) also remains bounded as t
approaches 0.

Consider now an accumulation point (Ũ∗, X̃∗, S̃∗) of the path t ∈ (0, 1] →
(Ũ(t), X̃(t), S̃(t)) as t approaches 0. By (25) and (26), we see that (Ũ(t), X̃(t), S̃(t)) ∈
Un

++×Sn
++×Sn

++ for all t ∈ (0, 1], and hence we must have Ũ∗ ∈ Un, X̃∗ � 0, S̃∗ � 0,

Ũ∗
B � 0, and Ũ∗

N � 0. Thus, to conclude that (Ũ∗, X̃∗, S̃∗) ∈ Un
++ × Sn

++ × Sn
++, it

suffices to show that Ũ∗, X̃∗, and S̃∗ are all invertible. Indeed, since (Ũ(t), X̃(t), S̃(t))
satisfies (21) and (22), we conclude upon letting t ↓ 0 that (Ũ∗, X̃∗, S̃∗) satisfies (27)
and (28). This conclusion together with the fact that W � 0 implies that Ũ∗, X̃∗,
and S̃∗ are all invertible.



356 ZHAOSONG LU AND RENATO D. C. MONTEIRO

Our next goal is to show that the path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t)) is analytic
at t = 0. The basic tool we use to establish this fact is the implicit function theorem
applied to a specific system of equations parametrized by the parameter t ∈ �. A first
natural candidate for such a system seems to be the one given by (21), (22), (23), and
(24). However, the main drawback of this system is that its Jacobian with respect
to (Ũ , X̃, S̃) is generally singular for t = 0 (even though for t ∈ (0, 1) it is always
nonsingular). The main cause for this phenomenon is that the “rank” of the linear
equations (23) and (24) changes when t becomes 0.

We will now show how the linear equations (23) and (24) can be reformulated into
equivalent linear equations for every t ∈ (0, 1]. Moreover, the new linear equations
have the property that their rank remains constant for every t ∈ �. First note that
the linear operator A : Sn → �m can be expressed as

A(X) = AB(XB) + ABN (XBN ) + AN (XN ) ≡ (AB ABN AN )

⎛⎝ XB

XBN

XN

⎞⎠(30)

for some linear operators AB : S |B| → �m, ABN : �|B|×|N | → �m, and AN : S |N | →
�m.

A well-known result from linear algebra says that any matrix can be put into
row-echelon form after a sequence of elementary row operations. A similar type of
argument allows one to establish the following result.

Lemma 3.6. Let A : Sn → �m be an onto linear operator. Assume that

i1 = rank(AB), i2 = rank(AB ABN ) − i1, i3 = rank(A) − (i1 + i2) = m− (i1 + i2).

Then there exists an isomorphism T : �m → �m such that

(T ◦ A)(X) =

⎛⎝ A11(XB) + A12(XBN ) + A13(XN )
A22(XBN ) + A23(XN )

A33(XN )

⎞⎠
≡

⎛⎝ A11 A12 A13

0 A22 A23

0 0 A33

⎞⎠⎛⎝ XB

XBN

XN

⎞⎠
for some linear operators

A11 : S |B| → �i1 , A12 : �|B|×|N | → �i1 ,

A13 : S |N | → �i1 , A22 : �|B|×|N | → �i2 ,

A23 : S |N | → �i2 , A33 : S |N | → �i3

such that rank(A11) = i1, rank(A22) = i2, rank(A33) = i3.
We can now reformulate the linear system (23) with the use of Lemma 3.6 as

follows. Using the fact that

D−1
N X̃D−1

N −X∗ =

[
X̃B −X∗

B tX̃BN

tX̃NB t2X̃N

]
and Lemma 3.6, we easily see that (23) is equivalent to the linear system⎛⎝ A11 tA12 t2A13

0 tA22 t2A23

0 0 t2A33

⎞⎠⎛⎝ X̃B −X∗
B

X̃BN

X̃N

⎞⎠ = t2

⎛⎜⎝ ∆̃b1
∆̃b2
∆̃b3

⎞⎟⎠ ,



LIMITING BEHAVIOR OF SDP WEIGHTED PATHS 357

where ∆̃b ≡ T (∆b). Dividing the second and third blocks of rows in the above system
by t and t2, respectively, we obtain the system⎛⎝ A11 tA12 t2A13

0 A22 tA23

0 0 A33

⎞⎠⎛⎝ X̃B −X∗
B

X̃BN

X̃N

⎞⎠ =

⎛⎜⎝ t2∆̃b1
t∆̃b2
∆̃b3

⎞⎟⎠ .(31)

Note that the linear system (31) is equivalent to (23) for every t ∈ (0, 1]. Hence, X̃(t)
satisfies (31) for every t ∈ (0, 1]. A nice feature of (31) is that the operator on its
left-hand side does not lose full rankness as t becomes 0. We state this fact in the
following proposition.

Proposition 3.7. Let At : Sn → �m be the operator such that At(X̃) is defined
by the left-hand side of (31). Then, t ∈ � → At is a continuous map such that
rank(At) = m for every t ∈ �.

The linear system (24) can also be reformulated with the aid of Lemma 3.6 as
follows. First note that by Lemma 3.6 we have

Im(A∗) = Im [(T ◦ A)∗] = Im

⎡⎣⎛⎝ A∗
11 0 0

A∗
12 A∗

22 0
A∗

13 A∗
23 A∗

33

⎞⎠⎤⎦
= Im

⎡⎣⎛⎝ t2A∗
11 0 0

t2A∗
12 tA∗

22 0
t2A∗

13 tA∗
23 A∗

33

⎞⎠⎤⎦
for every t ∈ (0, 1]. Hence, for every t ∈ (0, 1], (24) is equivalent to⎛⎝ t2S̃B

tS̃BN

S̃N − S∗
N

⎞⎠ ∈ t2

⎛⎝ ∆CB

∆CBN

∆CN

⎞⎠+ Im

⎡⎣⎛⎝ t2A∗
11 0 0

t2A∗
12 tA∗

22 0
t2A∗

13 tA∗
23 A∗

33

⎞⎠⎤⎦ .

Dividing the first and second block of rows in the above system by t2 and t, respec-
tively, we obtain the system⎛⎝ S̃B

S̃BN

S̃N − S∗
N

⎞⎠ ∈

⎛⎝ ∆CB

t∆CBN

t2∆CN

⎞⎠+ Im

⎡⎣⎛⎝ A∗
11 0 0

tA∗
12 A∗

22 0
t2A∗

13 tA∗
23 A∗

33

⎞⎠⎤⎦ ,(32)

which is equivalent to (24) and hence is satisfied by S̃(t), for all t ∈ (0, 1].
Using the definition of At and the fact that X̃(t) and S̃(t) satisfy (31) and (32),

respectively, for every t ∈ (0, 1], we conclude that there exists a function ỹ : (0, 1] →
�m such that (X̃(t), S̃(t), ỹ(t)) satisfies

At(X̃ −X∗) =

⎛⎜⎝ t2∆̃b1
t∆̃b2
∆̃b3

⎞⎟⎠ , A∗
t ỹ + (S̃ − S∗) =

⎛⎝ ∆CB

t∆CBN

t2∆CN

⎞⎠(33)

for every t ∈ (0, 1]. Moreover, using Proposition 3.7 and the fact that {S̃(t) : t ∈ (0, 1]}
is bounded, we easily see that {ỹ(t) : t ∈ (0, 1]} is also bounded. We have thus
established the following result.
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Proposition 3.8. There exists a curve ỹ : �++ → �m such that (Ũ(t), X̃(t), S̃(t),
ỹ(t)) is the unique solution of (21), (22), and (33) in Un

++×Sn
++×Sn

++×�m for every

t ∈ (0, 1]. Moreover, the path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t), ỹ(t)) remains bounded as
t approaches 0 and any of its accumulation points are in Un

++ × Sn
++ × Sn

++ ×�m.
The system formed by (21), (22), and (33) is the one which we will use to establish

that the path t ∈ (0, 1] → (Ũ(t), X̃(t), S̃(t), ỹ(t)) is analytic at t = 0. This will follow
by Proposition 3.2 if we can establish that the Jacobian of this system with t = 0 with
respect to (Ũ , X̃, S̃, ỹ) is nonsingular as long as (Ũ , X̃, S̃) is well centered in the sense
that ‖ŨSŨ − νI‖ < ν/

√
2 for some ν ∈ (0, 1]. The nonsingularity of this Jacobian

can be easily seen to be equivalent to showing that (∆̃U, ∆̃X, ∆̃S, ∆̃y) = (0, 0, 0, 0) ∈
Un × Sn × Sn ×�m is the only solution of the following linear system:

∆̃US̃ ŨT + Ũ∆̃S ŨT + Ũ S̃∆̃U
T

= 0,

∆̃U
T
Ũ + ŨT ∆̃U = ∆̃X,

A0 ∆̃X = 0,

A∗
0 ∆̃y + ∆̃S = 0.

(34)

Before establishing the above fact, we state and prove two technical results.
Lemma 3.9. For any U ∈ Un

++ and H ∈ Sn, there exists a unique matrix V ∈ Un

such that

H = UTV + V TU.(35)

Moreover,

‖V U−1‖F ≤ ‖U−THU−1‖F√
2

.(36)

Proof. The first part of the lemma follows from the fact that the linear map
ΨU : Un → Sn defined by ΨU (V ) = UTV + V TU for all V ∈ Un is an isomorphism.
Indeed, since its domain and codomain have the same dimension, it suffices to show
that ΨU is one-to-one or, equivalently, that UTV + V TU = 0 implies V = 0. In
turn, this last implication follows from the fact that any solution V of (35) satisfies
(36) (simply set H = 0 in (36) to conclude that V = 0). To show the last claim, we
multiply both sides of (35) on the left by U−T and on the right by U−1 to obtain

U−THU−1 = V U−1 + (V U−1)T .(37)

Letting Ũ ≡ V U−1 and squaring both sides of the above equation, we obtain

‖U−THU−1‖2
F = ‖Ũ + ŨT ‖2

F = 2‖Ũ‖2
F + 2tr(Ũ2).(38)

Since

Ũ = V U−1 =

[
VB VBN

0 VN

] [
U−1
B −U−1

B UBNU−1
N

0 U−1
N

]
=

[
VBU

−1
B −VBU

−1
B UBNU−1

N + VBNU−1
N

0 VNU−1
N

]
,

we have

tr(Ũ2) = tr((VBU
−1
B )2) + tr((VNU−1

N )2),

= ‖U−1/2
B VBU

−1/2
B ‖2

F + ‖U−1/2
N VNU

−1/2
N ‖2

F ≥ 0.(39)
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Hence, by (38) and (39), we see that (36) holds.
Lemma 3.10. Suppose that γ ∈ [0, 1/

√
2) and that (U, S) ∈ Un

++×Sn is such that
‖USUT − νI‖ ≤ γν for some ν > 0. For some H ∈ Sn, if (∆U,∆X,∆S) satisfies

∆USUT + U∆SUT + US∆UT = H,(40)

∆UTU + UT∆U = ∆X,(41)

∆X • ∆S = 0,(42)

then

max{ν‖U−T∆XU−1‖F , ‖U∆SUT ‖F } ≤ ‖H‖F
(1 −

√
2γ)

.(43)

Proof. Multiply both sides of (41) on the left by U−T and on the right by U−1

to obtain

U−T∆UT + ∆UU−1 = U−T∆XU−1.

By this equality and (40), we have

νU−T∆XU−1+U∆SUT = H−∆UU−1(USUT−νI)−(USUT−νI)U−T∆UT .(44)

Taking the Frobenius norm on both sides of this equality and using (36) and (42), we
obtain

max {ν‖U−T∆XU−1‖F , ‖U∆SUT ‖F }

≤
(
ν2‖U−T∆XU−1‖2

F + ‖U∆SUT ‖2
F

)1/2
=

∥∥H − ∆UU−1(USUT − νI) − (USUT − νI)U−T∆UT
∥∥
F

≤ ‖H‖F + 2‖∆UU−1‖F ‖USUT − νI‖
≤ ‖H‖F +

√
2γν‖U−T∆XU−1‖F ,(45)

which clearly implies that

ν‖U−T∆XU−1‖F ≤ ‖H‖F
(1 −

√
2γ)

.(46)

Using this last inequality to bound the right-hand side of (45), we obtain (43).
As an immediate consequence of the above lemma, we obtain the following corol-

lary.
Corollary 3.11. Assume that (Ũ , S̃) ∈ Un

++ ×Sn is such that ‖USUT − νI‖ <

ν/
√

2 for some ν > 0. Then, system (34) has (∆̃U, ∆̃X, ∆̃S, ∆̃y) = (0, 0, 0, 0) as its
unique solution.

Proof. The last two equations of system (34) imply that ∆̃X • ∆̃S = 0. Using
this identity and the first two equations of (34), by Lemma 3.10 we easily obtain that

∆̃X = 0 and ∆̃S = 0, which together with the second equation of (34) and Lemma

3.9 implies that ∆̃U = 0. Also, ∆̃y = 0 follows from the fact that A∗ is one-to-one
and from the last equation of (34).

We are now ready to establish the analyticity of the path t ∈ (0, 1] → (Ũ(t), X̃(t),
ỹ(t), S̃(t)).

Theorem 3.12. Let (X∗, S∗, y∗) ∈ F∗
P ×F∗

D be given. The following hold:
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(i) the path t ∈ (0, 1] → p̃(t) ≡ (Ũ(t), X̃(t), S̃(t), ỹ(t)), where (Ũ(t), X̃(t), S̃(t), ỹ(t))
is the unique solution of (21), (22), and (33) in Un

++ × Sn
++ × Sn

++ × �m, is
analytic and also analytic at 0; consequently, p̃(t) and all its kth-order deriva-
tives, k ≥ 1, converge as t ↓ 0;

(ii) (Ũ∗, X̃∗, S̃∗, ỹ∗) ≡ limt↓0(Ũ(t), X̃(t), S̃(t), ỹ(t)) is the unique solution of the
system defined by (27), (28), and

A0(X̃ −X∗) =

⎛⎝ 0
0

∆̃b3

⎞⎠ , A∗
0 ỹ + (S̃ − S∗) =

⎛⎝ ∆CB

0
0

⎞⎠ ;(47)

(iii) (δ̃U
∗
, δ̃X

∗
, δ̃S

∗
, δ̃y

∗
) ≡ limt↓0(

˙̃U(t), ˙̃X(t), ˙̃S(t), ˙̃y(t)) is the unique solution of
the linear system defined by

δ̃U S̃∗(Ũ∗)T + Ũ∗S̃∗ δ̃U
T

+ Ũ∗δ̃S (Ũ∗)T(48)

= −
[
L(Ũ∗)S̃∗(Ũ∗)T + Ũ∗S̃∗L(Ũ∗)T

]
,

δ̃U
T
Ũ∗ + (Ũ∗)T δ̃U − δ̃X = −

[
L(Ũ∗)T Ũ∗ + (Ũ∗)TL(Ũ∗)

]
,(49)

A0 δ̃X = −B0X̃
∗ +

⎛⎝ 0

∆̃b2
0

⎞⎠ ,(50)

A∗
0δ̃y + δ̃S = −B∗

0 ỹ
∗ +

⎛⎝ 0
∆CBN

0

⎞⎠ ,

where

B0 ≡

⎛⎝ 0 A12 0
0 0 A23

0 0 0

⎞⎠ .

Proof. The proof of the theorem is based on Proposition 3.2. Indeed, let E =
Un × Sn × Sn × �m, O = Un

++ × Sn
++ × Sn

++ × �m, δ = ε = 1, w : (0, 1) → E

denote the path t ∈ (0, 1) → (Ũ(t), X̃(t), S̃(t), ỹ(t)), and let H(w, t) = H(Ũ , X̃, S̃, ỹ, t)
be the map determined by system (21), (22), (33). By Proposition 3.8, the path
p̃(t) = (Ũ(t), X̃(t), S̃(t), ỹ(t)) has an accumulation point w∗ = (Ũ∗, X̃∗, S̃∗, ỹ∗) in
O and, by Corollary 3.11, it follows that H ′

w(w∗, 0) is nonsingular since (27) with
(Ũ , X̃, S̃) = (Ũ∗, X̃∗, S̃∗) implies that ‖Ũ∗S̃∗(Ũ∗)T − νI‖ = ‖W − νI‖ < ν/

√
2.

Hence, (i) and (ii) follow directly from Proposition 3.2. Differentiating the identity
H(p̃(t), t) = 0 with respect to t and letting t ↓ 0, we conclude that δw = δw∗ ≡
(δ̃U

∗
, δ̃X

∗
, δ̃S

∗
, δ̃y

∗
) satisfies

H ′
w(w∗, 0)δw = −H ′

t(w
∗, 0).

Statement (iii) now follows from the fact that H ′
w(w∗, 0) is nonsingular and the latter

system is equivalent to (48)–(50).
The proof of Theorem 3.3 is now obvious. Indeed, the analyticity of the map

t → (X(t2), S(t2)) follows from (29) and the analyticity of t → (X̃(t), S̃(t)). The
analyticity of t → y(t2) follows from the analyticity of t → S(t2) and assumption A.1.
The last statement of the theorem is obvious.
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In the remainder of this paper, we will let (Ũ∗, X̃∗, S̃∗, ỹ∗) and (δ̃U
∗
, δ̃X

∗
, δ̃S

∗
, δ̃y

∗
)

denote the limits of (Ũ(t), X̃(t), S̃(t), ỹ(t)) and ( ˙̃U(t), ˙̃X(t), ˙̃S(t), ˙̃y(t)), respectively, as
t ↓ 0 (as in Theorem 3.12 above). Observe that Theorem 3.12 provides a characteriza-
tion of (Ũ∗, X̃∗, S̃∗, ỹ∗) as being the unique solution of a certain system of equations
which arises by first performing some transformations to the original weighted central
path system and then setting t = 0 in the resulting system. Hence, it is reasonable
to expect that the linear equations (47) can be entirely described in terms of the
original data (W,A, C,∆C, b,∆b). Indeed, the following result gives this alternative
description of (47).

Theorem 3.13. (Ũ∗, X̃∗, S̃∗) is the unique solution of the system given by (27),
(28) and the linear equations

(51)

AB(X̃B) = b, ABN (X̃BN ) ∈ Im(AB), AN (X̃N ) ∈ ∆b + Im(AB ABN ),

(52)

S̃B ∈ ∆CB + Im(A∗
B),

(
0

S̃BN

)
∈ Im

[(
A∗

B

A∗
BN

)]
,⎛⎝ 0

0

S̃N

⎞⎠ ∈ C + Im

⎡⎣⎛⎝ A∗
B

A∗
BN

A∗
N

⎞⎠⎤⎦ .

Proof. From Theorem 3.12(ii), it suffices to show that (47) is equivalent to (51)
and (52). Since the first equation of (47) is the same as (31) with t = 0, we have that
the first equation of (47) holds if and only if

A11(X̃B) = A11(X
∗
B), A22(X̃BN ) = 0, A33(X̃N ) = ∆̃b3.(53)

By Lemma 3.6, the first identity in (53) can be written as

(T ◦ A)

⎛⎝ X̃B

0
0

⎞⎠ = (T ◦ A)

⎛⎝ X∗
B

0
0

⎞⎠ ,

and hence it is equivalent to AB(X̃B) = AB(X∗
B) = b, in view of relation (30) and

the fact that T is an isomorphism. By Lemma 3.6 and the fact that A11 is onto, the
second identity in (53) holds if and only if

(T ◦ A)

⎛⎝ X̂B

X̃BN

0

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠
for some X̂B ∈ S |B|, and hence it is equivalent to ABN (X̃BN ) ∈ Im(AB), in view of
(30) and the fact that T is an isomorphism. Using Lemma 3.6 again and the fact that
A11 and A22 are onto, we easily see that the last identity in (53) holds if and only if

(T ◦ A)

⎛⎝ X̌B

X̌BN

X̃N

⎞⎠ =

⎛⎜⎝ ∆̃b1
∆̃b2
∆̃b3

⎞⎟⎠ = T (∆b)
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for some (X̌B , X̌BN ) ∈ S |B| × �|B|×|N |, and hence it is equivalent to AN (X̃N ) ∈
∆b + Im(AB ABN ), in view of (30) and the fact that T is an isomorphism. We have
thus shown that the first equation of (47) is equivalent to (51).

The fact that the second equation of (47) holds if and only if (52) holds can be
proved in a similar way as above.

The following result gives an alternative characterization of (δ̃U
∗
, δ̃X

∗
, δ̃S

∗
) in-

volving the original data (W,A, C,∆C, b,∆b).

Theorem 3.14. (δ̃U
∗
, δ̃X

∗
, δ̃S

∗
) is the unique solution of the linear system of

equations (48), (49) and

[
AB ABN

] [ δ̃XB

X̃∗
BN

]
= 0,

[
ABN AN

] [ δ̃XBN

X̃∗
N

]
∈ ∆b + Im(AB),(54)

AN (δ̃XN ) ∈ Im(AB ABN ),

δ̃SB ∈ Im(A∗
B),

(
S̃∗
B

δ̃SBN

)
∈
(

∆CB

∆CBN

)
+ Im

[(
A∗

B

A∗
BN

)]
,(55) ⎛⎝ 0

S̃∗
BN

δ̃SN

⎞⎠ ∈ Im

⎡⎣⎛⎝ A∗
B

A∗
BN

A∗
N

⎞⎠⎤⎦ .

Proof. From Theorem 3.12(iii), it suffices to show that (50) is equivalent to (54)
and (55). Observe that the first equation of (50) can be written as

A11(δ̃XB) + A12(X̃
∗
BN ) = 0,

A22(δ̃XBN ) + A23(X̃
∗
N ) = ∆̃b2,

A33(δ̃XN ) = 0.

(56)

Using Lemma 3.6, the fact that A11 and A22 are onto, and the identities A22X̃
∗
BN = 0

and A33X̃
∗
N = ∆̃b3 which hold in view of Theorem 3.12(ii), we easily see that the above

three equations are, respectively, equivalent to

(T ◦ A)

⎛⎝ δ̃XB

X̃∗
BN

0

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠ , (T ◦ A)

⎛⎝ X̂B

δ̃XBN

X̃∗
N

⎞⎠ =

⎛⎜⎝ ∆̃b1
∆̃b2
∆̃b3

⎞⎟⎠ ,

(T ◦ A)

⎛⎝ X̌B

X̌BN

δ̃XN

⎞⎠ =

⎛⎝ 0
0
0

⎞⎠
for some X̂B , X̌B ∈ S |B| and X̌BN ∈ �|B|×|N |. The latter conditions in turn are

equivalent to (54) in view of (30) and the facts that ∆̃b = T (∆b) and T is an isomor-
phism.

Using similar arguments as to the ones used above, it can be shown that the
second equation of (50) holds if and only if (55) holds.

4. Limiting behavior of the derivative of the weighted central path.
In this section, we will first characterize the limit of the normalized derivatives of a
weighted central path as ν approaches 0. We then show that a weighted central path
can have two types of behavior: it converges either as Θ(ν) or as Θ(

√
ν) depending on

whether the matrix W on a certain scaled space is block diagonal or not, respectively.
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Theorem 4.1. limν↓0
√
ν (Ẋ(ν), Ṡ(ν), ẏ(ν)) exists and satisfies

lim
ν↓0

√
ν Ẋ(ν) =

[
δ̃X

∗
B/2 X̃∗

BN/2

X̃∗
NB/2 0

]
, lim

ν↓0

√
ν Ṡ(ν) =

[
0 S̃∗

BN/2

S̃∗
NB/2 δ̃S

∗
N/2

]
.(57)

Proof. By (29), we have

X(t2) =

[
X̃B(t) tX̃BN (t)

tX̃NB(t) t2X̃N (t)

]
, S(t2) =

[
t2S̃B(t) tS̃BN (t)

tS̃NB(t) S̃N (t)

]
.(58)

Differentiating both sides with respect to t, letting t ↓ 0, and using Theorem 3.12, we
obtain (57) upon letting ν = t2.

We establish one technical lemma as follows, which gives a characterization of
block diagonal weighted matrix W . This lemma will play a crucial role in further
analyzing the limiting behavior of derivatives of the weighted central path.

Lemma 4.2. The following statements hold:
(i) X̃∗

BN • S̃∗
BN = 0;

(ii) X̃∗
BN = S̃∗

BN = 0 if and only if WBN = 0.
Proof. Statement (i) follows from the fact that X̃∗

BN and S̃∗
BN satisfy the second

equations in (51) and (52), respectively, which can be easily seen to determine two
orthogonal complementary subspaces in �|B|×|N |.

We now show (ii). Using the fact that (Ũ∗, X̃∗, S̃∗) satisfies (27) and (28), it is
easy to see that

WBN = Ũ∗
BS̃

∗
BN Ũ∗

N + Ũ∗
BN S̃∗

N Ũ∗
N , X̃∗

B = (Ũ∗
B)2, X̃∗

BN = Ũ∗
BŨ

∗
BN .(59)

By Proposition 3.5, we know that (X̃∗, S̃∗, Ũ∗) ∈ Sn
++ × Sn

++ × Un
++, and hence

X̃∗
B � 0, S̃∗

N � 0, Ũ∗
B � 0, Ũ∗

N � 0. Thus, the last relation in (59) implies that

X̃∗
BN = 0 ⇐⇒ Ũ∗

BN = 0.(60)

Assume first that X̃∗
BN = S̃∗

BN = 0. Then, (60) and the first equation in (59)
immediately imply that WBN = 0. Assume now that WBN = 0. Using (59), we
obtain

X̃∗
BS̃

∗
BN + X̃∗

BN S̃∗
N = (Ũ∗

B)2S̃∗
BN + Ũ∗

BŨ
∗
BN S̃∗

N

= Ũ∗
B

(
Ũ∗
BS̃

∗
BN Ũ∗

N + Ũ∗
BN S̃∗

N Ũ∗
N

)
(Ũ∗

N )−1

= Ũ∗
BWBN (Ũ∗

N )−1 = 0.

Multiplying the above equation on the left by (X̃∗
B)−1/2 and on the right by (S̃∗

N )−1/2,
squaring both sides of the resulting expression, and using (i), we conclude that

‖(X̃∗
B)1/2S̃∗

BN (S̃∗
N )−1/2‖2

F + ‖(X̃∗
B)−1/2X̃∗

BN (S̃∗
N )1/2‖2

F = 0,

from which it follows that X̃∗
BN = S̃∗

BN = 0.
From Lemma 4.2 and Theorem 4.1, the following corollary follows.
Corollary 4.3. If WBN �= 0, then at least one of the limits in (57) is nonzero

and

‖(X(ν), S(ν), y(ν)) − (X∗, S∗, y∗)‖ = Θ(
√
ν).
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Proof. Assume that WBN �= 0. By Lemma 4.2(ii), we have that either X̃∗
BN �= 0

or S̃∗
BN �= 0, which together with (57) implies the first claim of the corollary. The

second claim follows directly from (57) and the equality

lim
ν↓0

(X(ν), S(ν), y(ν)) − (X∗, S∗, y∗)√
ν

= lim
ν↓0

2
√
ν
(
Ẋ(ν), Ṡ(ν), ẏ(ν)

)
,

which holds due to Theorem 3.3.

From Corollary 4.3, we immediately see that the weighted central path as a func-
tion of ν in general cannot be extended analytically to an interval of the form (−ε,∞)
for some ε > 0. Theorem 4.1 and Corollary 4.3 give a precise characterization of how
the primal-dual weighted central path approaches its limit (X∗, S∗, y∗) for the case
when W is non–block diagonal, that is, WBN �= 0. However, it is still possible for one
of the limits in (57) to be equal to zero in this situation. The following result claims
that in this case the corresponding primal or dual weighted central path converges
toward (X∗, S∗, y∗) at a Θ(ν) rate of convergence.

Theorem 4.4. The following statements hold:

(i) If limν↓0
√
ν Ẋ(ν) = 0, then X(ν) −X∗ = Θ(ν) and

lim
ν↓0

Ẋ(ν) =

[ ˜δ(2)X
∗
B/2 δ̃X

∗
BN

(δ̃X
∗
BN )T X̃∗

N

]
,(61)

where ˜δ(2)X∗
B ≡ limt↓0

¨̃
XB(t);

(ii) If limν↓0
√
ν Ṡ(ν) = 0, then ‖(S(ν), y(ν)) − (S∗, y∗)‖ = Θ(ν) and

lim
ν↓0

Ṡ(ν) =

[ ˜δ(2)S
∗
B/2 δ̃S

∗
BN

(δ̃S
∗
BN )T S̃∗

N

]
,(62)

where ˜δ(2)S∗
B ≡ limt↓0

¨̃
SB(t).

Proof. To prove (i), assume that limν↓0
√
ν Ẋ(ν) = 0. By Theorem 4.1, we must

have δ̃X
∗
B = 0 and X̃∗

BN = 0. Differentiating both sides of the first identity in (58)
with respect to t and then dividing the resulting identity by 2t, we obtain that

Ẋ(t2) =

[
˙̃XB(t)/(2t) X̃BN (t)/(2t) + ˙̃XBN (t)/2

X̃BN (t)T /(2t) + ˙̃XBN (t)T /2 X̃N (t) + t ˙̃XN (t)/2

]
.

Using the fact that δ̃X
∗
B = 0 and X̃∗

BN = 0 and using Theorem 3.12, we obtain (61)
upon letting ν = t2 ↓ 0. The conclusion that X(ν) −X∗ = Θ(ν) follows immediately
from (61) and the fact that X̃∗

N � 0. Using the same arguments as above and
assumption A.1, we can similarly show (ii).

The remainder of this section considers the case when W is block diagonal, that is,
WBN = 0. We will show in this case that two limits in (57) are equal to zero and hence
that limν↓0(Ẋ(ν), Ṡ(ν), ẏ(ν)) exists and ‖(X(ν), S(ν), y(ν)) − (X∗, S∗, y∗)‖ = Θ(ν)
due to Theorem 4.4.

Note that to establish the above claim, it suffices to show that δ̃X
∗
B = 0 and

δ̃S
∗
N = 0 in view of Lemma 4.2(ii). Before showing this fact, we state two technical

results from Monteiro and Tsuchiya [30].
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Lemma 4.5 (Lemma 2.1 of [30]). For every A ∈ Sn
++ and H ∈ Sn, the equation

AU + UA = H has a unique solution U ∈ Sn. Moreover, this solution satisfies
‖AU‖F ≤ ‖H‖F /

√
2.

Lemma 4.6 (Lemma 2.3 of [30]). Suppose that γ ∈ [0, 1/
√

2) and that (U, S) ∈
Sn

++ × Sn
++ is such that ‖USU − νI‖ ≤ γν for some ν > 0. If (∆X,∆S,∆U) ∈

Sn × Sn × Sn is a solution of the system

∆USU + US∆U + U∆SU = H,

∆UU + U∆U = ∆X,

∆X • ∆S = 0

and H ∈ Sn, then

max
{
ν‖U−1∆XU−1‖F , ‖U∆SU‖F

}
≤ ‖H‖F

(1 −
√

2γ)
.

We are now ready to show that δ̃X
∗
B = 0 and δ̃S

∗
N = 0.

Lemma 4.7. If WBN = 0, then

δ̃X
∗
B = δ̃S

∗
B = δ̃U

∗
B = 0,

δ̃X
∗
N = δ̃S

∗
N = δ̃U

∗
N = 0.

Proof. From Lemma 4.2(ii), we know that X̃∗
BN = S̃∗

BN = 0. Using this identity

and the fact that (δ̃X
∗
B , δ̃S

∗
B) and (δ̃X

∗
N , δ̃S

∗
N ) satisfy the first and third equations of

(54) and (55), respectively, we obtain that

δ̃X
∗
B • δ̃S

∗
B = 0, δ̃X

∗
N • δ̃S

∗
N = 0.(63)

By (60), X̃∗
BN = 0 implies Ũ∗

BN = 0, and thus L(Ũ∗) = 0. Hence, by (48) and (49),
we have

δ̃U
∗
S̃∗(Ũ∗)T + Ũ∗S̃∗(δ̃U

∗
)T + Ũ∗δ̃S

∗
(Ũ∗)T = 0,

(δ̃U
∗
)T Ũ∗ + (Ũ∗)T δ̃U

∗
= δ̃X

∗
.

These equations together with the fact that S̃∗
BN = 0 and Ũ∗

BN = 0 can be easily seen
to imply that

δ̃U
∗
B S̃∗

B Ũ∗
B + Ũ∗

B S̃∗
B δ̃U

∗
B + Ũ∗

B δ̃S
∗
B Ũ∗

B = 0,(64)

δ̃U
∗
B Ũ∗

B + Ũ∗
B δ̃U

∗
B = δ̃X

∗
B .(65)

Moreover, by (27), (Ũ , X̃, S̃) = (Ũ∗, X̃∗, S̃∗), and the fact that S̃∗
BN = Ũ∗

BN = 0, we
have

Ũ∗
BS̃

∗
BŨ

∗
B = WB ,

which together with the assumption that ‖W − νI‖ < ν/
√

2 for some ν > 0 and the
fact that Ũ∗ ∈ Un

++ implies

‖Ũ∗
BS̃

∗
BŨ

∗
B − νI‖ = ‖WB − νI‖ < ν/

√
2
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and (Ũ∗
B , S̃∗

B) ∈ S |B|
++ × S |B|

++. Using the conclusions above, relations (64) and (65),
the first identity in (63), together with Lemmas 4.5 and 4.6 with H = 0, we conclude

that δ̃X
∗
B = δ̃S

∗
B = δ̃U

∗
B = 0. Using similar arguments, we can also show that

δ̃X
∗
N = δ̃S

∗
N = δ̃U

∗
N = 0.

As a consequence of the results obtained above, we have the following theorem
when WBN = 0.

Theorem 4.8. If WBN = 0, then the primal-dual weighted central path (X(ν), y(ν),
S(ν)) satisfies

(i) limν↓0
√
ν (Ẋ(ν), Ṡ(ν)) = 0;

(ii) ‖(X(ν), S(ν), y(ν)) − (X∗, S∗, y∗)‖ = Θ(ν);
(iii) limν↓0(Ẋ(ν), Ṡ(ν), ẏ(ν)) exists and (61) and (62) hold.
Proof. Using Lemma 4.2(ii), Lemma 4.7, and the condition WBN = 0, we obtain

that X̃∗
BN = S̃∗

BN = 0, δ̃X
∗
B = 0, and δ̃S

∗
N = 0. Consequently, by Theorem 4.1, (i)

immediately follows. Statements (ii) and (iii) follow directly from (i) and Theorem
4.4.

5. Error bound analysis. By strengthening some of the results of the previous
sections, in this section we derive a new error bound on the distance of a point lying
in a certain neighborhood of the central path to the primal-dual optimal set.

For any given nonempty compact set K ⊂ G++ and constants γ, τ > 0, define

N (γ, τ,K) ≡ { (X,S, y) ∈ Sn
++ × Sn

++ ×�m : G(X,S, y) ∈ τK,

‖X1/2SX1/2 − τI‖ ≤ γτ} ,

where the map G and the set G++ are defined in (7) and (8), respectively.
Observe that the set ∪τ>0N (γ, τ,K) forms a neighborhood of the primal-dual

central path. This neighborhood and related ones have been frequently used in the
development of primal-dual interior-point algorithms for SDP.

The following result gives a new error bound on the distance of a point lying in
N (γ, τ,K) to the primal-dual optimal set F∗

P ×F∗
D. Its proof will be given at the end

of this section after we have derived stronger versions of the results of the previous
sections.

Theorem 5.1. Let γ ∈ (0, 1/
√

2) and any nonempty compact set K ⊂ G++ be
given. Then, there exists a constant M = M(γ,K) > 0 such that

dist((X,S, y), F∗
P ×F∗

D) ≤ M(τ +
√
τ‖WBN‖)(66)

for every τ ∈ (0, 1] and (X,S, y) ∈ N (γ, τ,K), where W = W (X,S, τ) ≡ X1/2SX1/2/τ .
In view of Proposition 2.1, for each (ν,W,∆C,∆b) ∈ (0, 1]×W×G++, the system

of nonlinear equations (3)–(5) has a unique solution, which in this section we denote
by (X(ν,W,∆C,∆b), S(ν,W,∆C,∆b), y(ν,W,∆C,∆b)) in order to emphasize and
study its dependence on (W,∆C,∆b). Moreover, in view of Theorem 3.3, the limit

lim
ν↓0

(X(ν,W,∆C,∆b), S(ν,W,∆C,∆b), y(ν,W,∆C,∆b)),

denoted by (X(0,W,∆C,∆b), S(0,W,∆C,∆b), y(0,W,∆C,∆b)), exists for every (W,
∆C,∆b) ∈ W×G++. Hence, the functions X(·, ·, ·, ·), S(·, ·, ·, ·), and y(·, ·, ·, ·) are well
defined in the set of points [0, 1] ×W × G++. In an obvious way, we can also define
the functions X̃(t,W,∆C,∆b), S̃(t,W,∆C,∆b), and ỹ(t,W,∆C,∆b) over the set of
points (t,W,∆C,∆b) ∈ [0, 1] ×W × G++.
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It turns out that reparametrizations of the above functions are analytic according
to the following definition. We say that a function f : Ω ⊆ E → F , where E,F
are two finite dimensional normed vector spaces, is analytic if there exist an open set
O ⊆ E containing Ω and an analytic function f̃ : O → F such that f̃ restricted to Ω
is equal to f .

Theorem 5.2. The following hold:
(i) the map (t,W,∆C,∆b) ∈ [0, 1]×W×G++ → (X̃(t,W,∆C,∆b), S̃(t,W,∆C,∆b),

ỹ(t,W,∆C,∆b)) is analytic;
(ii) the map (t,W,∆C,∆b) ∈ [0, 1]×W×G++ → (X(t2,W,∆C,∆b), S(t2,W,∆C,

∆b), y(t2,W,∆C,∆b)) is analytic.
Proof. The proof of the theorem is identical to the proof of Theorems 3.12

and 3.3, except that when invoking the implicit function theorem, we should view
(t,W,∆C,∆b) as the parameter vector.

Let

Wb ≡ {W ∈ W : WBN = 0} ,

where W is as defined in (9). One important result that we will establish next is that
the function (t,W,∆C,∆b) ∈ [0, 1]×Wb×G++ → (X ′(t2,W,∆C,∆b), S′(t2,W,∆C,∆b))
is analytic. We emphasize that this result holds only over the smaller set [0, 1]×Wb×
G++. Note also that this result does not follow immediately from Theorem 5.2(ii) since
the derivative of the function in Theorem 5.2(ii) is not equal to the above function.

We now state a simple but crucial technical result needed to establish the result
stated in the previous paragraph.

Proposition 5.3. Let f : I × E → F be a given analytic function, where I ⊂ �
is an interval and E,F are two finite dimensional normed vector spaces. Then, for
any t∗ ∈ I, the function g : I × E → F defined as

g(t, u) =

{
f(t,u)−f(t∗,u)

t−t∗ if t �= t∗,

∂f
∂t (t∗, u) if t = t∗,

is analytic.
We are now ready to establish the result alluded to just before Proposition 5.3.
Lemma 5.4. The following hold:
(i) for any (W,∆C,∆b) ∈ Wb × G++, we have

lim
t↓0

(
t
∂X

∂ν
(t2,W,∆C,∆b) , t

∂S

∂ν
(t2,W,∆C,∆b)

)
= 0;

(ii) (t,W,∆C,∆b) ∈ [0, 1]×Wb ×G++ → (X ′(t2,W,∆C,∆b), S′(t2,W,∆C,∆b))
is analytic.

Proof. In view of Theorem 4.8(i), we easily see that (i) holds. Since partial
derivatives of an analytic function are also analytic, it follows from Theorem 5.2(ii)
that the functions

(t,W,∆C,∆b) ∈ [0, 1] ×Wb × G++ →
(
t ∂X

∂ν (t2,W,∆C,∆b) , t ∂S
∂ν (t2,W,∆C,∆b)

)
,

(t,W,∆C,∆b) ∈ [0, 1] ×Wb × G++ →
(
∂X
∂W (t2,W,∆C,∆b) , ∂S

∂W (t2,W,∆C,∆b)
)

are both analytic. Using (i) and Proposition 5.3, we conclude that the first function
above divided by t is also analytic. We have thus shown that (ii) holds.



368 ZHAOSONG LU AND RENATO D. C. MONTEIRO

For γ > 0, let

W(γ) ≡
{
W ∈ Sn

++ : ‖W − I‖ ≤ γ
}
, Wb(γ) ≡ {W ∈ W(γ) : WBN = 0} .

We can easily see that if γ < 1/
√

2, then W(γ) and Wb(γ) are convex compact subsets
of W and Wb, respectively. For the remainder of this section, we let K ⊂ G++ be any
given nonempty compact set.

The next two results provide estimates on the sizes of the blocks of the matrices
X(ν,W,∆C,∆b) and S(ν,W,∆C,∆b) first when (W,∆C,∆b) ∈ Wb(γ)×K and then
for a general (W,∆C,∆b) ∈ W(γ) ×K.

Lemma 5.5. Let γ ∈ (0, 1/
√

2) be given. Then, for all (ν,W,∆C,∆b) ∈ [0, 1] ×
Wb(γ) ×K, there holds

‖(X(ν,W,∆C,∆b), S(ν,W,∆C,∆b)) − (X(0,W,∆C,∆b), S(0,W,∆C,∆b))‖ = O(ν).

Proof. By the mean value theorem, we have

‖(X(ν,W,∆C,∆b), S(ν,W,∆C,∆b)) − (X(0,W,∆C,∆b), S(0,W,∆C,∆b))‖
≤ supθ∈[0,1] ‖(X ′(θν,W,∆C,∆b), S′(θν,W,∆C,∆b))‖ ν.

By Theorem 5.4(ii) and the fact that Wb(γ) × K is compact, there exists a constant
M = M(γ,K) > 0 such that ‖(X ′(θν,W,∆C,∆b), S′(θν,W,∆C,∆b))‖ ≤ M for all
(θ, ν,W,∆C,∆b) ∈ [0, 1] × [0, 1] ×Wb(γ) ×K. Hence, the lemma follows.

Lemma 5.6. For all (ν,W,∆C,∆b) ∈ [0, 1] ×W(γ) ×K, there hold

X(ν,W,∆C,∆b) −X(0,W b,∆C,∆b)(67)

=

(
O(‖WBN‖) O(

√
ν ‖WBN‖)

O(
√
ν ‖WBN‖) O(ν‖WBN‖)

)
+ O(ν),

S(ν,W,∆C,∆b) − S(0,W b,∆C,∆b)(68)

=

(
O(ν‖WBN‖) O(

√
ν ‖WBN‖)

O(
√
ν ‖WBN‖) O(‖WBN‖)

)
+ O(ν),

where

W b ≡
(

WB 0
0 WN

)
.(69)

Proof. By Theorem 5.2(i), we know that (X̃(t,W,∆C,∆b), S̃(t,W,∆C,∆b)) is an-
alytic over [0, 1]×W×K. Hence, its derivative function (X̃ ′(t,W,∆C,∆b), S̃′(t,W,∆C,
∆b)) is analytic, and hence continuous, over [0, 1]×W×K. Since [0, 1]×W(γ)×K is
compact, there exists a constant M = M(γ,K) > 0 such that ‖(X̃ ′(ν,W,∆C,∆b), S̃′(ν,
W,∆C,∆b))‖ ≤ M for all (t,W,∆C,∆b) ∈ [0, 1]×W(γ)×K. This together with (69)
and the mean value theorem implies

‖X̃(t,W,∆C,∆b) − X̃(t,W b,∆C,∆b)‖
= sup

θ∈[0,1]

‖X̃ ′(t, θW + (1 − θ)W b,∆C,∆b)‖ ‖W −W b‖

≤ M‖WBN‖ = O(‖WBN‖)
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for all (t,W,∆C,∆b) ∈ [0, 1]×W(γ)×K. This estimate and the fact that X̃(t,W,∆C,
∆b) = DN (t)X(t2,W,∆C,∆b)DN (t) for all t ∈ (0, 1] and (W,∆C,∆b) ∈ W×K imply

X(t2,W,∆C,∆b) −X(t2,W b,∆C,∆b)

=

(
1 0

0 t

)(
X̃(t,W,∆C,∆b) − X̃(t,W b,∆C,∆b)

)( 1 0

0 t

)

=

(
O(‖WBN‖) O(t‖WBN‖)
O(t‖WBN‖) O(t2‖WBN‖)

)
.

Noting that

X(t2,W,∆C,∆b) −X(0,W b,∆C,∆b)

=
(
X(t2,W,∆C,∆b) −X(t2,W b,∆C,∆b)

)
+
(
X(t2,W b,∆C,∆b) −X(0,W b,∆C,∆b)

)
and using the above estimate together with Lemma 5.5, we immediately obtain (67)
upon letting ν = t2. The estimate (68) can be proved in a similar way.

We are now ready to state and prove the main result of this section.
Theorem 5.7. For all (ν,W,∆C,∆b) ∈ [0, 1] ×W(γ) ×K, there hold

X(ν,W,∆C,∆b) −X(0,W,∆C,∆b)(70)

=

(
O(

√
ν ‖WBN‖) O(

√
ν ‖WBN‖)

O(
√
ν ‖WBN‖) O(ν‖WBN‖)

)
+ O(ν),

S(ν,W,∆C,∆b) − S(0,W,∆C,∆b)(71)

=

(
O(ν‖WBN‖) O(

√
ν ‖WBN‖)

O(
√
ν ‖WBN‖) O(

√
ν ‖WBN‖)

)
+ O(ν).

Proof. We will prove (70) only since the proof of (71) is similar. Since both
X(0,W,∆C,∆b) and X(0,W b,∆C,∆b) are in F∗

P , we have XBN (0,W,∆C,∆b) =
XBN (0,W b,∆C,∆b) = 0 and XN (0,W,∆C,∆b) = XN (0,W b,∆C,∆b) = 0 for any
(W,∆C,∆b) ∈ W × K. Hence, in view of Lemma 5.6, it suffices to show that for all
(ν,W,∆C,∆b) ∈ [0, 1] ×W(γ) ×K, we have

XB(ν,W,∆C,∆b) −XB(0,W,∆C,∆b) = O(
√
ν ‖WBN‖ + ν).(72)

Indeed, using the fact that X̃B(t,W,∆C,∆b) is analytic over the compact set [0, 1]×
W(γ) ×K due to Theorem 5.2(i), we conclude that

XB(t2,W,∆C,∆b) −XB(0,W,∆C,∆b) = X̃B(t,W,∆C,∆b) − X̃B(0,W,∆C,∆b)

=
∂

∂t
X̃B(0,W,∆C,∆b)t + O(t2)(73)

for every (t,W,∆C,∆b) ∈ [0, 1] ×W(γ) ×K. Moreover, by Lemma 4.7, we have

∂X̃B

∂t
(0,W b,∆C,∆b) = 0

for any (W,∆C,∆b) ∈ W × K, where W b is as defined in (69). Hence, for every
(W,∆C,∆b) ∈ W(γ) ×K, we have

∂

∂t
X̃B(0,W,∆C,∆b) =

∂

∂t
X̃B(0,W b,∆C,∆b)+O(‖W −W b‖) = O(‖WBN‖).(74)
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Combining (73) and (74), we obtain (72) upon letting ν = t2.
The proof of Theorem 5.1 now follows from assumption A.1 and Theorem 5.7

with ν = τ , W = X1/2SX1/2/τ , (X,S) = (X(ν,W,∆C,∆b), S(ν,W,∆C,∆b)), and
the fact that (X(0,W,∆C,∆b), S(0,W,∆C,∆b), y(0,W,∆C,∆b)) ∈ F∗

P ×F∗
D.

6. Superlinear convergence criteria. In this section, we consider a sufficient
condition introduced by Potra and Sheng [33], which guarantees the superlinear con-
vergence of a class of primal-dual interior-point algorithms for SDP, and we show that
it is equivalent to a natural condition about the matrix W (X,S, τ) of Theorem 5.1.

For the sake of concreteness, we will focus our attention on the algorithm and
results obtained in Potra and Sheng (see Algorithm 3.1 in [34]), but we remark that
our discussion also applies to a broader class of algorithms. Potra and Sheng [34]
have developed a primal-dual infeasible-interior-point algorithm which, for some α ∈
(0, 1/2], generates a sequence of iterates {(Xk, Sk, yk)} ⊆ Sn

++ ×Sn
++ ×�m satisfying

‖W k − I‖F ≤ α, rkp =
τk
τ0

r0
p, rkd =

τk
τ0

r0
d(75)

for some sequence {τk} ⊂ �++ converging to 0 at least Q-linearly, where

rkp ≡ AXk − b,

rkd ≡ A∗yk + Sk − C,

W k ≡ (Xk)1/2Sk(Xk)1/2

τk

for all k ≥ 0. The derived linear rate of convergence of the sequence {τk} is sufficient
to guarantee polynomial convergence of their method under some suitable conditions
on the initial point (X0, S0, y0). Observe that the first condition in (75) implies that
τk = Θ(Xk •Sk/n), and hence asymptotic convergence of {Xk •Sk/n} can be derived
from the one obtained for {τk}.

Some sufficient conditions have been developed in the literature which guarantee
the Q-superlinear convergence of {τk} to zero. One such condition is the tangential
condition proposed by Kojima, Shida, and Shindoh [17], namely,

lim
k→∞

W k = I.(76)

Another such condition, and the one which will be the main subject of this section,
is the one that has been proposed by Potra and Sheng [33], namely,

lim
k→∞

XkSk/
√
τk = 0.(77)

We remark that Potra and Sheng [33] have shown that the tangential condition (76)
implies their condition (77). Moreover, they have also established the following su-
perlinear convergence result.

Proposition 6.1 (Theorem 6.1 of [33]). If (77) holds, then the sequence {τk}
generated by Algorithm 3.1 of [34] converges to zero Q-superlinearly. Moreover, if
XkSk = O(τ0.5+σ

k ) for some constant σ > 0, then {τk} converges to zero with Q-
order at least 1 + min{σ, 0.5}.

A natural relaxation of the tangential condition (76) is the condition that

lim
k→∞

W k
BN = 0.(78)
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Surprisingly, the following result shows that it is equivalent to Potra and Sheng’s
condition (77).

Proposition 6.2. Let θk ≡ ‖XkSk‖/√τk. Then, ‖W k
BN‖+

√
τk = Θ(θk+

√
τk).

Proof. We first show that ‖W k
BN‖ +

√
τk = O(θk +

√
τk). By Lemma 4.2 of [33],

we have

Xk =

(
Θ(1) O(

√
τk)

O(
√
τk) O(τk)

)
, Sk =

(
O(τk) O(

√
τk)

O(
√
τk) Θ(1)

)
,

and hence

XkSk

√
τk

=
1

√
τk

(
Θ(1) O(

√
τk)

O(
√
τk) O(τk)

)(
O(τk) O(

√
τk)

O(
√
τk) Θ(1)

)

=

(
O(

√
τk) O(1)

O(τk) O(
√
τk)

)
.

According to the definition of θk , we then conclude that

XkSk

√
τk

=

(
O(

√
τk) O(θk)

O(τk) O(
√
τk)

)
.(79)

By Lemma 4.5 of [33], we have

(Xk)1/2 =

(
O(1) O(

√
τk)

O(
√
τk) O(

√
τk)

)
, (Xk)−1/2 =

(
O(1) O(1)
O(1) O(1/

√
τk)

)
,(80)

which together with (79) imply

W k =
(Xk)1/2Sk(Xk)1/2

τk
=

1
√
τk

(Xk)−1/2

(
XkSk

√
τk

)
(Xk)1/2

=
1

√
τk

(
O(1) O(1)
O(1) O(1/

√
τk)

)(
O(

√
τk) O(θk)

O(τk) O(
√
τk)

)(
O(1) O(

√
τk)

O(
√
τk) O(

√
τk)

)
.

Since the (B,N)-block of the matrix in the right-hand side of the above identity is
O(θk +

√
τk), we conclude that ‖W k

BN‖ +
√
τk = O(θk +

√
τk).

Next we show that θk +
√
τk = O(‖W k

BN‖+
√
τk). By the first condition in (75),

we have

W k =

(
O(1) O(‖W k

BN‖)
O(‖W k

BN‖) O(1)

)
,

which together with (80) implies that

XkSk

√
τk

=
√
τk (Xk)1/2

(
(Xk)1/2Sk(Xk)1/2

τk

)
(Xk)−1/2 =

√
τk (Xk)1/2W k(Xk)−1/2

=
√
τk

(
O(1) O(

√
τk)

O(
√
τk) O(

√
τk)

)(
O(1) O(‖W k

BN‖)
O(‖W k

BN‖) O(1)

)(
O(1) O(1)
O(1) O(1/

√
τk)

)

=

(
O
(√

τk +
√
τk ‖W k

BN‖
)

O
(√

τk + ‖W k
BN‖

)
O
(
τk + τk‖W k

BN‖
)

O
(√

τk +
√
τk ‖W k

BN‖
) )

.
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This together with the definition of θk implies that θk +
√
τk = O(W k

BN +
√
τk).

In view of the equivalence between (77) and (78), it follows that a sufficient
condition for the superlinear convergence of the path-following algorithm outlined
in this section is that the sequence of matrices {W k} approaches the set of block
diagonal matrices. Clearly, this a much weaker condition than (76), which requires
this sequence to approach the identity matrix.

7. Concluding remarks. In this section we provide some final remarks related
to the results derived in this paper.

Under the assumptions of this paper, we have shown that the reparametrized
(W,∆C,∆b)-weighted central path (X(t2), S(t2), y(t2)) is analytic at t = 0 and that
the condition WBN = 0 implies that limν↓0(Ẋ(ν), Ṡ(ν), ẏ(ν)) exists. Based on the
latter conclusion, it is natural to wonder whether the path (X(ν), S(ν), y(ν)) is an-
alytic at ν = 0 when W is block diagonal. Note that the answer to this question is
affirmative when (W,∆C,∆b) = (I, 0, 0); i.e., the weighted central path is exactly the
central path (see Halická [12]).

In this paper, we have proved that the rate of convergence of the (W,∆C,∆b)-
weighted central path (X(ν), S(ν), y(ν)) toward the optimal solution set is O(

√
ν)

(and O(ν) when WBN = 0). In contrast, Preiß and Stoer [35] have shown that the rate
of convergence of the weighted central paths associated with the map (XS + SX)/2
is always O(ν)(see also Lu and Monteiro [20]). An error bound of this type has also
been shown by Kojima, Shida, and Shindoh [18], where it is shown that an interior-
point algorithm based on a centering condition associated with the (XS + SX)/2
map does not need to approach the central path tangentially in order to converge
superlinearly. On the other hand, the iterates of all superlinearly convergent interior-
point algorithms based on centering conditions associated with the map X1/2SX1/2

that have been proposed in the literature are required to approach the central path
tangentially. The latter requirement is natural in view of the fact that it forces
(Xk)1/2Sk(Xk)1/2 to approach a block diagonal matrix (the identity matrix), and
hence it reduces the bound on the distance of (Xk, Sk, yk) to the optimal solution set
from the usual O(

√
µk) to o(

√
µk) (see Theorem 5.1).
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