
Math. Program., Ser. B (2007) 109:385–411
DOI 10.1007/s10107-006-0025-0

F U L L L E N G T H PA P E R

A modified nearly exact method for solving
low-rank trust region subproblem

Zhaosong Lu · Renato D. C. Monteiro

Received: 11 December 2004 / Accepted: 19 December 2005 /
Published online: 22 November 2006
© Springer-Verlag 2006

Abstract In this paper, we first discuss how the nearly exact (NE) method pro-
posed by Moré and Sorensen [14] for solving trust region (TR) subproblems can
be modified to solve large-scale “low-rank” TR subproblems efficiently. Our
modified algorithm completely avoids computation of Cholesky factorizations
by instead relying primarily on the Sherman–Morrison–Woodbury formula for
computing inverses of “diagonal plus low-rank” type matrices. We also imple-
ment a specific version of the modified log-barrier (MLB) algorithm proposed
by Polyak [17] where the generated log-barrier subproblems are solved by a
trust region method. The corresponding direction finding TR subproblems are
of the low-rank type and are then solved by our modified NE method. We finally
discuss the computational results of our implementation of the MLB method
and its comparison with a version of LANCELOT [5] based on a collection
extracted from CUTEr [12] of nonlinear programming problems with simple
bound constraints.

Keywords Nearly exact method · Trust region method ·
Large-scale optimization · Limited-memory BFGS method ·
Sherman–Morrison–Woodbury formula

Mathematics Subject Classification (2000) 90C06 · 90C30 · 65K05

Z. Lu (B)
Department of Mathematics, Simon Fraser University, Burnaby,
BC, V5A 156, CANADA
e-mail: zhaosong@sfu.ca

R. D. C. Monteiro
School of Industrial and Systems Engineering, Georgia Institute of Technology,
Atlanta, GA, 30332, USA
e-mail: monteiro@isye.gatech.edu

386 Z. Lu, R. D. C. Monteiro

1 Introduction

Trust region algorithms are classical methods for solving both convex and non-
convex nonlinear optimization problems. They are known to possess strong
convergence properties (see Fletcher [8]). At each iteration of a trust region
method, the following is specified: i) a “simple” approximation φ(x̃) to the objec-
tive function, called the model, and; ii) a region T around the current iterate x,
where φ(x̃) is believed to provide a good approximation to the objective func-
tion. An approximate solution p of the subproblem minp{φ(x+ p) : x+ p ∈ T}
is then computed, and the next iterate x̂ is set to be x̂ := x+ p provided there is
a “significant” objective function progress; otherwise, we define the next iterate
x̂ as x̂ := x. In both cases, the region T might be updated and the process is then
repeated until a desirable iterate is obtained.

In most trust region (TR) methods, the above subproblem is either of or
reduces to the following form:

minimize {q(p) : ‖p‖M ≤ � } (1)

where � is a positive parameter, M is a symmetric positive-definite matrix
referred to as the scaling matrix, ‖ · ‖M is the M-norm defined as

‖x‖M =
√

xTMx, ∀x ∈ �n,

and q : �n → � is the quadratic function defined as

q(p) = gTp+ 1
2

pTHp, ∀p ∈ �n, (2)

for some g ∈ �n and symmetric matrix H ∈ �n×n. The matrix H can be either
the Hessian of the objective function or some approximation of it.

There are at least three well-known methods available in the literature for
finding an “approximate” solution of TR subproblem (1), which achieves at
least as much reduction in the model q as the reduction achieved by the so
called “Cauchy point” (see for example Moré [15] and Chapter 4 of Nocedal
and Wright [16]). The first method is the dogleg method proposed by Powell
[18], and later modified by Dennis and Mei [7], which is appropriate when
the model Hessian H is positive definite. Recently, Zhang and Xu [26] pro-
posed a dogleg method for the case when H is indefinite, which is based on
the estimation of the most negative eigenvalue of H and computation of the
stable Bunch–Parlett factorization of H (see [3]). The second method is the
two-dimensional subspace minimization method proposed by Shultz et al. [20],
which can be applied when H is indefinite, though it also requires an esti-
mate of the most negative eigenvalue of H. The third method is the Steihaug
method proposed independently by Steihaug [22] and Toint [23], which is most
appropriate when H is the Hessian of the objective function and when this
matrix is large and sparse. Based on similar ideas as in the Steihaug method,

A modified nearly exact method for solving low-rank trust region subproblem 387

Gould et al. [11] proposed a method whose resulting TR subproblems are tri-
diagonal and can be efficiently solved by the Moré and Sorensen algorithm
[14].

Besides the three “approximate” methods mentioned above, there is a
method due to Moré and Sorensen [14], which finds an approximate solu-
tion of the TR subproblem (1) in a stronger sense (see (9)). Following stan-
dard convention, we will refer to such solutions as “nearly exact” (NE) solu-
tions and to methods for computing them as NE methods. Since the NE
method of [14] requires repeated computations of Cholesky factorizations of
diagonal displacements of H, it is suitable only for small- to medium-sized
problems.

The main goal of this paper is to develop a method for computing NE solu-
tions of the TR subproblem (1) when H and M are large-scale matrices having
the following special structures:

H = D+ VEVT, (3)

M = D̃+ ṼẼṼT � 0, (4)

where D, D̃ and Ẽ are positive diagonal matrices, V and Ṽ have few number
of columns (say less than 10), and E is a diagonal matrix. We will refer to the
resulting subproblem as the “low-rank trust region” (LRTR) subproblem. We
will show that every step of the NE method of [14] can be properly modified to
handle the LRTR subproblem and also that the resulting modified NE (MNE)
method is quite efficient and robust for computing NE solutions of large-scale
LRTR subproblems.

LRTR subproblems arise in several contexts. For example, when using trust
region methods to solve unconstrained or linear-equality constrained minimi-
zation problems, the matrix H is usually obtained by using a low-rank update
(memoryless) formula and the resulting H has the structure specified in (3).
In such a case, the scaling matrix M is chosen as either the identity matrix or
some other positive definite matrix whose structure is as specified in (4) and de-
pends on the specific problem at hand. It is well known that many constrained
minimization problems can be solved by minimizing a sequence of uncon-
strained ones, obtained by using either the penalty, log-barrier, augmented
Lagrangian multiplier (see for example [16]), or modified log-barrier methods
(see Polyak [17]). Thus, the NE method developed in this paper for solving
the LRTR subproblem can potentially be used in solving many optimization
problems.

Independently to the present work, Wang, Wen and Yuan [24] (see also [25])
proposed the subspace trust region method for large-scale unconstrained non-
linear optimization problems, which is based on a subspace trust region method
and limited memory BFGS method. The size of the TR subproblems in their
method is very small (usually about 6 – 16). These TR subproblems can be
solved very quickly and exactly, and hence their methods can be used to solve
large-scale unconstrained nonlinear problems. The method proposed in [24] is

388 Z. Lu, R. D. C. Monteiro

generally different from our limited memory quasi-Newton TR method based
on solving a sequence of full-dimensional LRTR subproblems since the TR
subproblem of one method generally cannot be converted into an equivalent
one of the other method.

The following notations are used throughout our paper. We denote the k-
th coordinate vector by ek and the identity matrix by I. Their dimensions are
always clear from the context. The symbol�n denote the n-dimensional Euclid-
ean space. The set of all m×n matrices with real entries is denoted by�m×n. For
J ⊆ {1, . . . , n} and w ∈ �n, we let wJ denotes the subvector [wi]i∈J ; moreover, if
E is an m×n matrix then EJ denotes the m×|J| submatrix of E corresponding to
J. For a vector w ∈ �n, Diag(w) denote the diagonal matrix whose i-th diagonal
element is wi for i = 1, . . . , n, and for any real number α, wα denote the vector
whose i-th component is wα

i whenever it is well-defined for i = 1, . . . , n. The
Euclidean norm, the 1-norm and the ∞-norm are denoted by ‖ · ‖, ‖ · ‖1 and
‖ · ‖∞, respectively. For a matrix E, Im(E) denotes the subspace generated by
the columns of E and Ker(E) denotes the subspace orthogonal to the rows of E.
The superscript T denotes transpose. For any real symmetric matrix E, λmin(E)

(resp., λmax(E)) denotes the minimal (resp., maximal) eigenvalue of the matrix
E; E
 0 (resp., E � 0) denotes that E is positive semi-definite (resp., positive
definite).

Before ending this section, we provide one example to show how the LRTR
subproblem naturally arises in the context of solving linearly constrained mini-
mization problems using a log-barrier approach. Indeed, consider the problem

minimize f (x)

subject to Ax = b,
l ≤ x ≤ u,

(5)

where f (x) is twice continuously differentiable in �n, A ∈ �m×n has full row
rank, l, u ∈ �n may have some components equal to −∞ or +∞, and m is
small. The log-barrier approach applied to (5) consists of solving the following
sequence of log-barrier subproblems parametrized by µ > 0:

minimize φµ(x)

subject to Ax = b,
(6)

where

φµ(x) = f (x)− µ

n∑

i=1

log(xi − li)− µ

n∑

i=1

log(ui − xi).

Assume that x denotes the current iterate towards a (local) solution of (6).
To find the next iterate, a typical TR method in this context computes the
(potential) displacement p by solving the TR subproblem

A modified nearly exact method for solving low-rank trust region subproblem 389

minimize gTp+ 1
2 pTHp

subject to Ap = 0,

‖W−1p‖ ≤ �,

(7)

where W = Diag([(x − l)−2 + (u − x)−2]−1/2) � 0, g = ∇φµ(x), � > 0, and
H = D + VEVT is an approximation to ∇2φµ(x) obtained by using a low-
rank (memoryless) update formula. Thus, H has the structure as in (3), Now,
let B ⊂ {1, . . . , n} be a basic index set and let N denote its complement. By
permuting the columns of A, W and D, we may assume that

A = [AB, AN], W = Diag(WB, WN), D = Diag(DB, DN).

Since Ap = 0, we have pB = −A−1
B ANpN . Eliminating pB from (7), we obtain

the following equivalent LRTR subproblem

minimize ḡTpN + 1
2 pT

NH̄pN

subject to ‖pN‖M ≤ �,
(8)

where

ḡ = STg, H̄ = STHS, M = STW−2S, S =
[−A−1

B AN
I

]
.

Thus, we easily see that

M = W−2
N + (A−1

B AN)TW−2
B (A−1

B AN),

H̄ = DN + (A−1
B AN)TDB(A−1

B AN)+ (STV)E(VTS).

Noting that A has low full rank and H has the structure specified in (3), we
immediately see that the matrices M and H̄ themselves have the structure
as in (4) and (3), respectively. Thus, the subproblem (8) is indeed an LRTR
subproblem.

The outline of the paper is as follows. In Sect. 2, we review the NE method
proposed by Moré and Sorensen [14]. In Sect. 3, we discuss how this method
can be modified in order to solve large-scale LRTR subproblems efficiently.
In Sect. 4, we first review the modified log-barrier (MLB) algorithm pro-
posed by Polyak [17] and implement a specific version of this algorithm where
the generated log-barrier subproblems are solved by a trust region method
whose direction finding subproblems are of the LRTR type. The LRTR sub-
problems are then solved by our modified NE method. Section 4 also gives
computational results of our implementation of the MLB method and its com-
parison with a version of LANCELOT [5] based on a collection extracted
from CUTEr [12] of nonlinear programming problems with simple bound con-
straints.

390 Z. Lu, R. D. C. Monteiro

2 Review the NE method for solving TR subproblem

It is well-known that the TR subproblems which arise in a TR method does
not need to be solved exactly to guarantee the global convergence of the algo-
rithm. For example, it has been shown by Moré and Sorensen [14] (see also
[15]) that, under some mild conditions, good theoretical and numerical con-
vergence results for a standard TR method can be obtained if p is chosen so
that

q(p) ≤ τ1q∗ and ‖p‖M ≤ τ2� (9)

for some positive constants τ1 and τ2, where q∗ is the optimal value of TR sub-
problem (1). (Note that q∗ ≤ 0 and that q∗ = 0 if and only if g = 0 and H
 0.)
We will refer to such vectors p as NE solutions of (1).

The NE method proposed by Moré and Sorensen [14] is a method for com-
puting a NE solution p of (1). In this section, we review the technical results of
the NE method of [14] for solving TR subproblem (1) (see [6,9,14–16] for more
details). The computational difficulties of using the NE method to TR subprob-
lems corresponding to large-scale optimization problems are also presented.
But, in Sect. 3, we will show that the NE method can be suitably modified to
overcome these difficulties if all the TR subproblems are constructed as LRTR
ones.

This section is divided into five subsections. In Subsect. 2.1, we discuss the
necessary and sufficient optimality conditions for a global solution of the TR
subproblem (1). In Subsect. 2.2, we discuss some classical and easily verifi-
able sufficient conditions for p to be a NE solution of (1) (see for example
[6] and [14]). In Subsect. 2.3, we discuss how Newton method applied to
a classical one dimensional nonlinear equation provides an estimate of the
optimal Lagrange multiplier associated with the constraint of (1). Since the
search for the optimal Lagrange multiplier requires the estimation of ever-
improving lower bounds for it, we discuss in Subsect. 2.4 how these bounds
are normally generated. The complete NE method of [14] and its computa-
tional difficulties in the context of large-scale problems are also discussed in
this subsection.

2.1 Characterization of the solution of TR subproblem

In this subsection, we provide optimality conditions which characterize the
global solutions of subproblem (1).

The proof of the next lemma, which provides the above mentioned optimality
conditions, is given in Theorem 7.4.1 on pp. 201 of Conn et al. [6]. (This result
was obtained independently by Gay [10] and Sorensen [21].)

Lemma 1 p is a global solution of TR subproblem (1) if only if ‖p‖M ≤ � and
there exists λ ≥ 0 such that

A modified nearly exact method for solving low-rank trust region subproblem 391

H(λ)p = −g, (10)

λ(�− ‖p‖M) = 0, (11)

H(λ)
 0, (12)

where H(λ) ≡ H + λM for any λ ∈ �. Moreover, there exists a unique λ∗ ≥ 0
such that:

i) λ = λ∗ for every pair (p, λ) as above;
ii) if H(λ∗) � 0 then (1) has a unique global optimal solution.

We now introduce some notation. Define

λ1 ≡ λmin(M−1/2HM−1/2), λ̂ ≡ max(−λ1, 0). (13)

Moreover, we define
p(λ) ≡ −H(λ)−1g, (14)

for every λ ∈ � for which the above inverse exists. It is well-known that, when
g �= 0, the function ‖p(λ)‖M is strictly decreasing and convex on (λ̂,∞).

We now describe how an exact solution for (1) can be computed, depending
on which of the following three cases occur:

1. If there exists λ̃ ∈ (λ̂,+∞) such that λ̃ solves the equation

‖p(λ)‖M = �, (15)

then λ∗ = λ̃ > 0 and p(λ̃) is the unique solution of (1). This case is usually
referred to as the “easy” one. (Note that this case occurs if and only if
lim

λ↓λ̂ ‖p(λ)‖M > �.)

2. If λ1 > 0 and (15) has no solution in (λ̂,+∞), then λ∗ = λ̂ = 0 and p(0) is a
solution of (1). (This case can easily be detected and usually referred to as
the “interior convergence” one.)

3. If λ1 ≤ 0 and (15) has no solution in (λ̂,+∞), then λ∗ = λ̂ = −λ1. Hence,
there exist 0 �= u ∈ Ker(H + λ̂M) and αM ∈ � such that

‖pcrt + αMu‖M = �,

where pcrt ≡ −H(λ̂)†g, and the superscript † denotes the Moore–Penrose
generalized inverse. Using Lemma 1, one easily sees that pcrt + αMu is a
solution of (1). This case is usually referred to as the “hard” one.

Some steps in the NE algorithm for solving (1) require to test whether λ > λ̂

or λ > λ∗. These two inequalities can be checked by using the following easily
verifiable characterizations: i) λ > λ̂ if and only if λ > 0 and H(λ) � 0; ii) λ > λ∗
if and only if λ > λ̂ and ‖p(λ)‖M < �.

392 Z. Lu, R. D. C. Monteiro

2.2 Termination conditions

Among the three cases mentioned in Subsect. 2.1, only the interior convergence
case can be implemented exactly. When the other two cases occur, we can only
expect to obtain an approximate solution of (1). In this subsection, we review
some sufficient conditions for a vector p ∈ �n to be a NE solution of (1) when
either the easy or hard case occurs.

While looking for a scalar λ > λ̂ satisfying (15), we might simply stop when
| ‖p(λ)‖M −� | ≤ ke�, where ke ∈ (0, 1) is a fixed tolerance. In this case, the
following result establishes that p(λ) is a NE solution of (1). Its proof is similar
to the one given in Lemma 7.3.5 on pp. 195 of [6] (see also [14]).

Lemma 2 If λ > λ̂ satisfies | ‖p(λ)‖M −� | ≤ ke� for some ke ∈ (0, 1), then
q(p(λ)) ≤ (1− ke)

2q∗.

The following result describes how an approximate version of the hard case
yields NE solutions for (1). Its proof is similar to the one given in Lemma 7.3.6
on pp. 196 of [6] (see also [14]).

Lemma 3 Suppose that λ > λ∗, α ∈ � and u ∈ �n such that ‖u‖M = 1 satisfy

α2uTH(λ)u ≤ kh

(
p(λ)TH(λ)p(λ)+ λ�2

)
and ‖p(λ)+ αu‖M = �, (16)

for some kh ∈ (0, 1). Then, q(p(λ)+ αu) ≤ (1− kh)q∗.

The main use of Lemma 3 is related with the hard case, but we emphasize
that the result can also be applied in other cases. We now explain how to satisfy
the conditions of Lemma 3 in the hard case. From the discussion in Subsect. 2.1,
we know that λ∗ = −λ1. Hence, if λ−λ∗ is sufficiently small, then H(λ) is nearly
singular and thus there exists a vector u such that ‖u‖M = 1 and uTH(λ)u is
nearly zero. Once the pair (λ, u) is determined, a scalar α satisfying the equality
in (16) can be easily obtained by solving the following problem

minimize α
1
2 (p+ αu)TH(p+ αu)+ gT(p+ αu)

subject to ‖p+ αu‖M = �,
(17)

where p = p(λ). Using the well-known formula of α for the case when M = I
(see page 558 of [14]), it is easy to see that the optimal solution of (17) is given
by

α = �2 − ‖p‖2M
pTMu+ sgn(pTMu)[(pTMu)2 +�2 − ‖p‖2M]1/2

, (18)

where the function sgn : � → � is defined as sgn(t) = 1 if t ≥ 0, and sgn(t) = −1
if t < 0. It can be easily verified that the right hand side of the inequality in (16)
evaluated at a triple (λ, u, α) obtained as above stays bounded away from zero
as λ − λ∗ approaches zero. Thus, as λ − λ∗ approaches zero, a triple (λ, u, α)

obtained as above will eventually satisfy (16) when the hard case occurs.

A modified nearly exact method for solving low-rank trust region subproblem 393

The key part to find a triple (λ, u, α) satisfying (16) in the hard case is the com-
putation of a vector u = uλ such that uTH(λ)u approaches zero as λ ↓ λ∗. The
NE method of [14] computes such a vector u by first computing the Cholesky
factor of H(λ), and then using the LINPACK technique [4] (see also Appendix
of [14]) for estimating its smallest singular value. On the other hand, since our
approach for solving the low rank version of (1) does not rely on computation
of Cholesky factorizations, it uses an entirely different approach to compute a
vector u as above (see Subsect. 3.3).

2.3 Newton update for λ

We have seen in the Subsect. 2.1 that λ∗ is a root of (15) in the easy case.
Hence, given an approximation λ > −λ1 of λ∗, it is natural to try to perform
a Newton iteration at λ with respect to (15) to obtain a new approximation of
λ∗. In this subsection, we describe the details of a Newton iteration applied to
a reformulation of the nonlinear equation (15) and discuss its main properties.

Since the function ‖p(λ)‖M goes to infinity as λ tends to −λ1, it is highly
nonlinear near −λ1 (see [15] and [16]). As a result, Newton method applied
directly to (15) might not work well when λ is near−λ1. Reinsch [19] and Heb-
den [13] independently observed that Newton method applied to the following
alternative reformulation of (15) works better in practice:

φ(λ) ≡ 1
‖p(λ)‖M −

1
�
= 0. (19)

The following result describes some important properties of the function
φ(λ) and provides the formula of a Newton iteration for (19).

Lemma 4 Suppose g �= 0. Then, φ(λ) is strictly increasing and concave on
(−λ1,∞). Moreover, the Newton iterate at λ with respect to (19) is

λ+ = λ+
(‖p(λ)‖M −�

�

) (
‖p(λ)‖2M

p(λ)TMH(λ)−1Mp(λ)

)

. (20)

Proof For λ > −λ1, let p̄(λ) ≡ −H̄(λ)−1ḡ, where ḡ ≡ M−1/2g and H̄(λ) ≡
M−1/2H(λ)M−1/2 = M−1/2HM−1/2 + λI. By (14) we have p̄(λ) = M1/2p(λ),
which together with (19) implies that

φ(λ) = 1
‖p̄(λ)‖ −

1
�

.

Hence, by Lemma 7.3.1 on pp. 183 of [6], it follows that the function φ(λ) is
strictly increasing and concave when λ ∈ (−λ1,∞), and that its first derivative
is given by

394 Z. Lu, R. D. C. Monteiro

φ′(λ) = p̄(λ)TH̄(λ)
−1

p̄(λ)

‖p̄(λ)‖3 . (21)

The formula (20) for the Newton iteration λ+ = λ − φ′(λ)/φ(λ) can be easily
derived using (21), p̄(λ) =M1/2p(λ) and H̄(λ) =M−1/2H(λ)M−1/2. ��

The next result gives a few useful properties of Newton method applied to
(19).

Proposition 1 Suppose g �= 0. Then the following statements hold:

(a) Suppose λ ∈ (−λ1, λ∗). Then all Newton iterates starting from λ will stay in
(−λ1, λ∗) and converge to the solution λ∗ of the equation (19) monotoni-
cally. The convergence is globally Q-linear with the ratio at least

γλ = 1− φ′(λ∗)
φ′(λ)

< 1

and is ultimately Q-quadratic.
(b) Suppose λ ∈ (λ∗,∞). Then the next Newton iterate λ+ ∈ (−λ1, λ∗] or

λ+ ∈ (−∞,−λ1].
Proof The proof is similar to the ones given in Lemmas 7.3.2 and 7.3.3 on
pp. 185–186 of [6]. ��

To compute the Newton iterate λ+ according to (20), the NE method of [14]
first computes the lower Cholesky factor L of H(λ), and uses it to first compute
a vector p such that LLTp = −g and then a vector w such that Lw = Mp. By
(20), we then have

λ+ = λ+
(‖p‖M −�

�

) (
‖p‖2M
‖w‖2

)

. (22)

In our approach for solving the low rank version of (1) we entirely avoid the
computation of Cholesky factorizations by instead computing the inverse of
H(λ) by means of the Sherman–Morrison–Woodbury (SMW) formula (see
Subsect. 3.2).

2.4 A safeguard Newton method

Since a Newton iteration might result in infeasible iterates λ+ ≤ −λ1, the NE
method of [14] uses some safeguard strategies to handle such iterates in order
to obtain a globally convergent0 method for obtaining a NE solution of (1).
The basic idea used is to bracket λ∗ by a lower bound λL and an upper bound
λU and reduce the length of the interval [λL, λU] by using a clever bisection
strategy. In this subsection, we discuss the details of this hybrid method.

A modified nearly exact method for solving low-rank trust region subproblem 395

At every iteration of the method, we have two scalars λL and λU such that
0 ≤ λL ≤ λ∗ ≤ λU and a current approximation λ ∈ [λL, λU] of λ∗. Each iter-
ation of the method then consists of updating the quantities λL, λU and λ. We
first describe the basic idea used to update λL. Suppose that u ∈ �n is a vector
such that ‖u‖M = 1. Using (13), we see that for any λ ∈ �,

uTH(λ)u = (M1/2u)T(M−1/2HM−1/2 + λI)(M1/2u) ≥ (λ1 + λ)‖u‖2M = λ1 + λ.

Defining
λB = λB(λ, u) ≡ λ− uTH(λ)u, (23)

it follows from the above inequality that λB ≤ −λ1 ≤ λ∗, or in words, λB is a
lower bound for λ∗. In view of this discussion, we conclude that a natural update
for λL is simply to let λL ← max(λL, λB).

We are now ready to describe how the NE method of [14] updates the three
quantities λL, λU and λ. Fix some constant θ ∈ (0, 1) (e.g., θ = 0.01). It is
convenient to consider the following three cases separately:

(i) Assume λ ≤ −λ1. If λ = −λ1, we perform the update λL ← max(λL, λ).
Otherwise, H(λ) is indefinite, and hence there exists a vector u such that
‖u‖M = 1 and uTH(λ)u < 0. One approach to find such a vector u is to
perform a partial Cholesky factorization of H(λ) to find a scalar δ > 0
and a vector v such that

(H(λ)+ δekeT
k)v = 0 and eT

k v = 1. (24)

(for more details, see [14] or pp. 191–192 of [6]). Letting u = v/‖v‖M
in (23) and using (24), we easily see that λB = λ + δ/‖v‖2M. Then, we
perform the update λL ← max(λL, λB). Finally, we perform the update
λ← max(

√
λLλU, λL + θ(λU − λL)).

(ii) Assume λ ∈ (−λ1, λ∗). In this case, we perform the updates λL ← λ and
λ← λ+, where λ+ denotes the Newton iterate defined in (20).

(iii) Assume λ > λ∗. In this case, we have seen in the paragraph following
Lemma 3 that a vector u ∈ �n such that ‖u‖M = 1 can be computed
using the LINPACK technique which makes uTH(λ)u small as long as
λ + λ1 is small. This vector u, together with λ, is then used to compute
λB according to (23), and the updates λU ← λ, λL ← max(λL, λB) and
λ← max(λ+, λL) are then performed.

The above scheme for updating λL, λU and λ can be shown to generate
a sequence of λ’s which approaches λ∗. Indeed, if case (ii) occurs then the
sequence of λ’s generated afterwards approaches λ∗ monotonically from the
left in view of Proposition 1(a). Also, Proposition 1(b) implies that if case (iii)
occurs then either case (i) or (ii) must occur at the next iteration. Hence, if case
(ii) never occurs then case (i) must occur infinitely often. But every time (i)
occurs, it is easy to see that the ratio of the length of the interval [λL, λU] at the
end of the next iteration and its length at the current iteration is bounded above

396 Z. Lu, R. D. C. Monteiro

by max(θ , 1 − θ). Hence, if case (ii) never occurs, the length of the generated
intervals [λL, λU] converges to zero, and thus the generated sequence of λ’s
approaches λ∗.

Note that the implementations of cases (i) and (iii) of the above scheme for
updating λL, λU and λ are based on the computation of the (partial) Cholesky
factorization of a matrix. In our approach for finding NE solutions of the low
rank version of (1), these cases must be implemented differently so as to avoid
the computation of Cholesky factorizations, which are known to be expensive
for large scale problems. These alternative implementations of cases (i) and (iii)
are discussed in detail in Subsects. 3.2 and 3.3.

We are now ready to state the whole algorithm of [14] for finding a NE
solution of (1).

Algorithm 1 (NE method for solving (1)):

Let constants θ , ke, kh ∈ (0, 1) be given (e.g., θ = 0.01, ke = 0.1, kh = 0.2).

1. Find initial scalars 0 ≤ λL < λU such that λ∗ ∈ [λL, λU] and set λ = λL.

2. Attempt to do Cholesky factorization H(λ) = LLT to check whether λ > −λ1.

3. If λ > −λ1, solve LLTp=−g for p. Check for interior convergence and easy termination.

If λ > λ∗, compute a pair (u, α) ∈ �n ×� to check for the hard termination (16).

4. If λ ≤ −λ1, then update λL and λ according to case (i) as above, and go to step (2).

5. If λ ∈ (−λ1, λ∗), then update λL and λ according to case (ii) as above, and go to step (2).

6. If λ > λ∗, then update λL, λU and λ according to case (iii) as above, and go to step (2).

End

For large-scale problems, several computational difficulties arise in the NE
method of [14] above. In step (1), it generally takes O(n2) amount of arithme-
tic operations to find the initial λU (see Sect. 7.3.8 of [6]), which is somehow
expensive for large-scale problems. The Cholesky or partial holesky factoriza-
tion of H(λ) used in steps (2), (4), (6) and (7) needs O(n3) amount of arithmetic
operations. It will be prohibitive for large-scale problems. In the next section,
we will modify the NE method of [14] above to overcome those difficulties for
solving the LRTR subproblem.

3 A modified NE method for solving LRTR subproblem

In this section a modified NE (MNE) method for solving large-scale RTR sub-
problems is presented. We follow the framework of Algorithm 1 as described in
Sect. 2. Our main effort is to overcome the computational difficulties mentioned
in Sect. 2.

This section is divided into four subsections. A more efficient approach for
checking whether H(λ) is positive definite is given in Subsect. 3.1. We also
modify the approach of solving the linear equation H(λ)p = −g and comput-
ing a Newton iterate in this subsection. A more efficient approach for dealing
with hard case termination is developed in Subsect. 3.2. In Subsect. 3.3, a more
efficient approach for improvingλL when λ < λ1 is given. In ubsect. 3.4, we

A modified nearly exact method for solving low-rank trust region subproblem 397

develop a cheaper approach to initialize λU. We emphasize that all modified
approaches completely avoid computing Cholesky or partial Cholesky factor-
ization of large-scale matrices.

3.1 Checking positive definiteness of H(λ) and solving H(λ)p = −g

In step (2) of Algorithm 1, given any λ ≥ 0, the NE method of [14] checks
whether H(λ) is positive definite by computing the Cholesky factorization of it,
which is very expensive and even prohibitive for the large-scale problems. In
this subsection, we provide a more efficient method instead, which needs O(n)

amount of arithmetic operation for large-scale LRTR problems. Furthermore,
in steps (5) and (6) of Algorithm 1, the NE method of [14] uses the Cholesky
factor of H(λ) to solve the linear equation H(λ)p = −g and compute Newton
iterate, respectively. We will modify those approaches as well in this subsection.

The following theorem provides the main tool for the analysis in this
subsection.

Theorem 1 Let Ê ∈ Sm, V̂ ∈ �n×m and an invertible matrix D̂ ∈ Sn be given
and define Ĥ ≡ D̂+ V̂ÊV̂T and Ŵ ≡ V̂TD̂−1V̂. Then, the following statements
hold:

(i) If Ê is invertible, then Ĥ is invertible if and only if Ê−1 +W is invertible.
(ii) If D̂ � 0, then Ĥ
 0 if and only if Ŵ + ŴÊŴ
 0.

(iii) If D̂� 0, then Ĥ� 0 and V̂ has full column rank if and only if Ŵ+ ŴÊŴ� 0.

Proof It is well-known that if Ê−1 + Ŵ is invertible then the SWM formula
applied to Ĥ implies that Ĥ−1 = D̂−1 − D̂−1V̂(Ê−1 + Ŵ)−1V̂TD̂−1. Similarly,
if Ĥ = D̂ + V̂ÊV̂T is invertible then the SMW formula applied to Ê−1 + Ŵ
reveals that this matrix is invertible. Hence, i) follows.

To prove statement (ii), assume that D̂ � 0. We can then write Ĥ as Ĥ =
D̂1/2FD̂1/2, where F ≡ I + D̂−1/2V̂ÊV̂TD̂−1/2. Clearly, Ĥ
 0 if and only if
F
 0. In view of the decomposition �n = Ker(V̂TD̂−1/2) + Im(D̂−1/2V̂), it
follows that, for any p ∈ �n, there exist u, v ∈ �n and y ∈ �m such that

p = u+ v, V̂TD̂−1/2u = 0, v = D̂−1/2V̂y.

This relation, the facts that Fu = u and uTv = 0, and some simple algebraic
manipulation imply that

pTFp = (u+ v)TF(u+ v) = uTFu+ 2uTFv+ vTFv,

= ‖u‖2 + vTFv = ‖u‖2 + yT(Ŵ + ŴÊŴ)y.

By the arbitrariness of p, we easily see that F
 0 if only if Ŵ + ŴÊŴ
 0.
This, together with the fact that Ĥ
 0 if only if F
 0, implies that (ii) holds.
Under additional assumption that V̂ has full column rank, the statement (iii)
can be shown by using a similar argument as (ii). ��

398 Z. Lu, R. D. C. Monteiro

We now describe an efficient approach to check whether H(λ) with λ ≥ 0 is
positive definite in step 2) of Algorithm 1. Noting that H(λ) = H + λM, we see
from (3) and (4) that

H(λ) = D̂+ V̂ÊV̂T, (25)

where
D̂ ≡ D+ λD̃ � 0, V̂ ≡ (V, Ṽ), Ê ≡ Diag(E, λẼ). (26)

Hence, by Theorem 1 (ii), if V̂ has full column rank, then we can check the
positive definiteness of H(λ) by checking whether

X ≡ Ŵ + ŴÊŴ (27)

is positive definite. On the other hand, if V̂ does not have full column rank, then
we determine a matrix R with full column rank and a matrix T such that V̂ = RT.
It then follows that H(λ) = D̂+V̂ÊV̂T = D̂+RĚRT, where Ě ≡ TÊTT. Hence,
Theorem 1 (ii) can now be used to check the positive definiteness of H(λ) by
checking whether W̌ + W̌ĚW̌ � 0, where W̌ ≡ RTD̂−1R. For convenience of
the presentation, we will assume throughout the remaining subsections that V̂
has full column rank.

Recall that one of the requirements for (1) to be a LRTR subproblem is that
the number of columns of V̂ be small. In this case, X is a small-sized matrix
whose positive definiteness can be checked by performing a relatively cheap
Cholesky factorization. Since the amount of arithmetic operations to compute
X for a large-scale RTR subproblem is O(n), the above approach for check-
ing whether H(λ) is positive definite only requires O(n) arithmetic operations.
If H(λ) turns out to be positive definite, we can then solve the linear system
H(λ)p = −g by means of SMW formula as

p = −H(λ)−1g = −
(

D̂−1 − D̂−1V̂(Ê−1 + V̂TD̂−1V̂)−1V̂TD̂−1
)

g,

= −D̂−1g+ D̂−1V̂(Ê−1 + Ŵ)−1V̂TD̂−1g.

Note that the matrix Ê−1 + Ŵ is invertible due to the fact H(λ) � 0 and The-
orem 1 (i). Since the size of Ê−1 + Ŵ is small, this approach for solving the
linear system H(λ)p = −g also requires O(n) arithmetic operations. Note that,
in the context of a LRTR subproblem, the Newton iterate λ+ can be efficiently
computed by means of (20), which requires solving another linear system with
coefficient matrix H(λ).

3.2 Handling the hard case termination

Recall that one of the key parts in the implementation of steps (3) and (6) of
Algorithm 1 is the computation of a vector u = uλ such that ‖u‖M = 1 and
uTH(λ)u approaches zero as λ ↓ −λ1 (see Subsects. 2.2 and 2.4). In this sub-
section, we provide an efficient approach to find such a vector u in the context

A modified nearly exact method for solving low-rank trust region subproblem 399

of the low-rank version of (1), which completely avoids the computation of the
holesky factorization of H(λ).

Recall from (3) that H = D + VEVT, where D � 0 and E is diagonal and
nonsingular. We can partition E (after performing a symmetric permutation of
its rows and columns) as E = Diag(E1,−E2), where both E1 and E2 are positive
diagonal matrices. Accordingly, we partition V as V = (V1, V2), and hence

VEVT = V1E1VT
1 − V2E2VT

2 . (28)

Noting that H(λ) = H + λM, we can write H(λ) as

H(λ) = F(λ)− V2E2VT
2 , (29)

where F(λ) = D + λM + V1E1VT
1 � 0 for any λ ≥ 0 due to the fact that

D, M � 0.
The following technical lemma provides the key tool for our analysis in this

subsection.

Lemma 5 Assume that λ1 defined in (13) is nonpositive. Then,

lim
λ↓−λ1

λmax

(
VT

2 H(λ)−1V2

)
= ∞,

where V2 is defined as above.

Proof For any λ > −λ1, using (29) and SMW formula twice, we have

H(λ)−1 = F(λ)−1 + F(λ)−1V2

(
E−1

2 − V2
TF(λ)−1V2

)−1
V2

TF(λ)−1, (30)

and

(
E−1

2 − V2
TF(λ)−1V2

)−1 = E2 + E2V2
T
(

F(λ)− V2E2V2
T
)−1

V2E2,

= E2 + E2V2
TH(λ)−1V2E2. (31)

Using the definition of F(λ) and the fact M � 0, we easily see that F(λ) � D � 0
for any λ > −λ1 ≥ 0. This implies that ‖F(λ)−1‖, and hence ‖F(λ)−1V2‖, is
bounded for all λ > −λ1. From (30), we obtain that

‖H(λ)−1‖ ≤ ‖F(λ)−1‖+‖F(λ)−1V2‖
∥
∥
∥
∥
(

E−1
2 − V2

TF(λ)−1V2

)−1
∥
∥
∥
∥ ‖V2

TF(λ)−1‖
(32)

By the definitions of H(λ) and λ1, we have limλ↓−λ1 ‖H(λ)−1‖ = ∞, which,
together with (32) and the fact that ‖F(λ)−1‖ and ‖F(λ)−1V2‖ are bounded for

400 Z. Lu, R. D. C. Monteiro

all λ > −λ1 ≥ 0, implies

lim
λ↓−λ1

∥
∥
∥
∥
(

E−1
2 − V2

TF(λ)−1V2

)−1
∥
∥
∥
∥ = ∞. (33)

Moreover, from (31), we have

∥
∥
∥
∥
(

E−1
2 − V2

TF(λ)−1V2

)−1
∥
∥
∥
∥ ≤ ‖E2‖ + ‖E2‖

∥
∥
∥V2

TH(λ)−1V2

∥
∥
∥ ‖E2‖,

with together with (33) implies that

λmax

(
V2

TH(λ)−1V2

)
=

∥
∥
∥V2

TH(λ)−1V2

∥
∥
∥→∞ as λ ↓ −λ1.

��
The following theorem provides an efficient approach to compute the vector

u for dealing with the hard case termination in step (3) of Algorithm 1 and
updating λL in step (6) of Algorithm 1.

Theorem 2 Assume that λ1 defined in (13) is nonpositive. Suppose uλ = H(λ)−1

v/‖H(λ)−1v‖M, where v = V2r and r is a unit eigenvector of VT
2 H(λ)−1V2 cor-

responding to its maximum eigenvalue. Then,

lim
λ↓−λ1

uT
λ H(λ)uλ = 0.

Proof It follows from Cauchy-Schwarz inequality that

vTH(λ)−1v ≤ ‖v‖M−1‖H(λ)−1v‖M. (34)

Using (34) and the definitions of v and r, we have

uT
λ H(λ)uλ = vTH(λ)−1v

‖H(λ)−1v‖2M
= (vTH(λ)−1v)2

(vTH(λ)−1v)‖H(λ)−1v‖2M
,

≤ ‖v‖2
M−1

vTH(λ)−1v
= rTVT

2 M−1V2r

rTVT
2 H(λ)−1V2r

,

≤ ‖VT
2 M−1V2‖

λmax(VT
2 H(λ)−1V2)

,

which, together with Lemma 5, immediately implies that the conclusion holds.
��

A modified nearly exact method for solving low-rank trust region subproblem 401

Before ending this subsection, we make two observations. First, since λ∗ =
−λ1 in the hard case, Theorem 2 implies that the vector uλ defined in its state-
ment satisfies limλ↓λ∗ uT

λ H(λ)uλ = 0, which is exactly the condition required in
the discussion of the hard case (see Subsect. 2.2). Second, since the number of
columns of V is assumed to be small in the low-rank version subproblem (1), it
follows that the matrix VT

2 H(λ)−1V2 is small-sized, and hence a unit eigenvector
r as in Theorem 2 can be easily computed. Moreover, the SMW formula can be
used to compute VT

2 H(λ)−1V2 and uλ in O(n) arithmetic operations.

3.3 Improving λL when λ < −λ1

Recall that the key part in the implementation of step (4) of Algorithm 1 con-
sists of finding a vector u satisfying ‖u‖M = 1 and uTH(λ)u < 0, whenever
λ < −λ1 (see ubsects. 2.4). In this subsection, we provide an efficient approach
to find such a vector u in the context of the low-rank version of (1), which
completely avoids the computation of a partial Cholesky factorization of H(λ).

Assume then that 0 ≤ λ < −λ1. This implies that H(λ) is indefinite, and
hence that the matrix X defined in (27) is also indefinite, in view of Theorem
1(iii). Hence, letting y be an eigenvector of X corresponding to its minimum
eigenvalue, we have that yTXy < 0. Using the definition of Ŵ and relations
(25), (26) and (27), we easily see that

X = Ŵ + ŴÊŴ = V̂TD̂−1H(λ)D̂−1V̂. (35)

Hence, letting u := D̂−1V̂y/‖D̂−1V̂y‖M, we have that ‖u‖M = 1 and

uTH(λ)u = yTXy

‖D̂−1V̂y‖2M
< 0.

Note that since X is a small-sized matrix (see Subsect. 3.1), it is relatively
cheap to compute the vector y as described above. Moreover, since the amount
of arithmetic operations to compute X for a large-scale LRTR subproblem is
O(n), the computation of the vector u described above can be carried out in
O(n) arithmetic operations.

3.4 Finding the initial λU

Recall that step (1) of Algorithm 1 requires initial estimates of the lower bound
λL and the upper bound λU. An approach for estimating these bounds for a
general TR subproblem in O(n2) arithmetic operations is described in Sect.
7.3.8 of [6]. For the large-scale lower-rank version subproblem (1), the above
approach is expensive, and hence not suitable.

402 Z. Lu, R. D. C. Monteiro

In our implementation of Algorithm 1, we set λL = 0. We now provide an
efficient approach to find an initial estimate of λU in the context of the low-rank
version of (1) in this subsection.

Recall that H and M have low-rank structure (see (3) and (4)). Assume that
the row size of matrices E and Ẽ is k̄ and k̃, respectively. For the convenience
of the presentation, we rewrite H and M in (3) and (4) as follows

H = D+
k̄∑

i=1

EiivivT
i , (36)

M = D̃+
k̃∑

i=1

ẼiiṽiṽT
i , (37)

where vi, ṽi are the ith column of V and Ṽ, respectively.
Given any ε > 0, we can trivially set initial λU to be ε if λ∗ = 0. Hence, we

now assume that λ∗ > 0. It follows from Lemma 1 that λ∗ together with a global
solution p of (1) satisfies

(H + λ∗M)p = −g, (38)

‖p‖M = �, (39)

H + λ∗M
 0 . (40)

Multiplying (38) by pT on the left and using (39) and the fact M � 0, we obtain

pTHp+ λ∗�2 = −pTg ≤ ‖p‖M‖g‖M−1 = �‖g‖M−1 .

Hence
λ∗ ≤ ‖g‖M−1�

−1 − (pTHp)�−2. (41)

Let p̃ =M1/2p/�. Noting that ‖p̃‖ = 1, we have

(pTHp)�−2 = p̃TM−1/2HM−1/2p̃,

≥ p̃TM−1/2

⎛

⎝D+
∑

{i|Eii<0}
EiivivT

i

⎞

⎠ M−1/2p̃,

≥ λmin(D)‖M−1/2p̃‖2 +
∑

{i|Eii<0}
Eii(vT

i M−1/2p̃)2,

≥ ζ‖M−1/2p̃‖2, (42)

A modified nearly exact method for solving low-rank trust region subproblem 403

where ζ = λmin(D)+∑
{i|Eii<0} Eii‖vi‖2. Using (37) and the fact that Ẽii > 0 for

all i, we have

λmin(M) ≥ min
1≤i≤n

D̃ii and λmax(M) ≤ max
1≤i≤n

D̃ii +
k̃∑

i=1

Ẽii‖ṽi‖2. (43)

Note that

λmax(M)−1 ≤ ‖M−1/2p̃‖2 ≤ λmin(M)−1.

This together with (43) implies that

⎛

⎝ max
1≤i≤n

D̃ii +
k̃∑

i=1

Ẽii‖ṽi‖2
⎞

⎠

−1

≤ ‖M−1/2p̃‖2 ≤
(

min
1≤i≤n

D̃ii

)−1

. (44)

Using (41), (42), and (44), we see that λ∗ ≤ λe, where λe is defined as

λe ≡

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖g‖M−1�−1 − ζ

(

max
1≤i≤n

D̃ii +
k̃∑

i=1
Ẽii‖ṽi‖2

)−1

if ζ ≥ 0,

‖g‖M−1�−1 − ζ

(
min

1≤i≤n
D̃ii

)−1

if ζ < 0.

(45)

This together with the fact that λU = ε if λ∗ = 0 implies that max(ε, λe) is a
proper initial estimate of the upper bound λU for any λ∗.

Using the fact that M (4) has low-rank structure, we see that M−1g can be
computed by means of SMW formula requiring O(n) arithmetic operations.
This together with (45), and the fact that ‖g‖M−1 =

√
gTM−1g and k̄ and k̃

are small, implies that this approach for finding initial estimate of the up-
per bound λU requires O(n) arithmetic operations in the context of a LRTR
subproblem.

4 Some numerical implementation results

In this section, our main goal is to test the numerical performance of “low-
rank” trust region methods whose LRTR subproblems are solved by the MNE
method proposed in Sect. 3. For this purpose, we implement a specific ver-
sion of the MLB algorithm due to olyak [17] (see Subsect. 4.1) and use it
to solve a collection of nonlinear programming problems from CUTEr [12]
where only simple bound constraints are present. Like the log-barrier method
discussed in Sect. 1, the MLB algorithm also consists of solving a parame-
trized family of unconstrained nonlinear problems. In our implementation,

404 Z. Lu, R. D. C. Monteiro

these subproblems are solved by using a “low-rank” trust region approach sim-
ilar to the one discussed in Sect. 1 in the context of the log-barrier method.
This section is divided into two subsections. In Subsect. 4.1, we discuss the
generic MLB algorithm for solving nonlinear programming problems with gen-
eral inequality constraints and its specialization to problems with simple bound
constraints. In Subsect. 4.2, we report the computational results of our imple-
mentation of the MLB method and its comparison with a version of LAN-
CELOT [5] based on the orementioned collection of problems from CUTEr
[12].

4.1 The MLB algorithm

In this subsection, we discuss the generic MLB algorithm for solving nonlinear
programming problems with general inequality constraints and its specializa-
tion to problems with simple bound constraints.

Consider the nonlinear programming problem

minimize f (x)

subject to ci(x) ≥ 0, i = 1, . . . , m.
(46)

where the functions f (x) and ci(x), i = 1, . . . , m are twice continuously differ-
entiable in �n. Its associated first-order optimality conditions are:

∇f (x)−
m∑

i=1

λi∇ci(x) = 0, λ ≥ 0,

m∑

i=1

λici(x) = 0, ci(x) ≥ 0, i = 1, . . . , m.

The MLB method proposed by Polyak [17] consists of solving a sequence of
unconstrained problems with objective functions given by

M(x, µ(k), λ(k)) = f (x)− µ(k)
m∑

i=1

λ(k)
i log

(
ci(x)

µ(k)
+ 1

)
, (47)

where λ(k) ∈ �m is an estimate of a Lagrange multiplier at a solution of (46)
and µ(k) > 0 is a log-barrier parameter. Letting x(k) denote a stationary point
of M(x, µ(k), λ(k)), olyak [17] has shown under reasonable conditions that there
exists a threshold value µ̄ > 0 such that for any fixed µ ∈ (0, µ̄), the MLB
method which updates {λ(k)} according to

λ(k+1)
i = λ(k)

i /(ci(x(k))/µ+ 1), (48)

A modified nearly exact method for solving low-rank trust region subproblem 405

generates a sequence of iterates {(x(k), λ(k))} which converges to a point satis-
fying the first-order optimality condition of (46) as k→∞.

In order to give the detailed description of the MLB method, we introduce
the following parameters and definitions (see Breitfeld and Shanno [1] and [2]).

Let T1 = 10−4, T2 = 10−6, ε0 = 10−5, σ = 0.5 or 0.1. Also, let

r = −0.5 log10(T1), εk = max(ε0, 10−(k+r−1)),

ν
(k)

1 = max

{ ‖∇M‖
1+ ‖x(k)‖ ,− min

i=1,··· ,m
ci(x(k))

}
, (49)

ν
(k)
2 = max

{

ν
(k)

1 ,
∑m

i=1 λ
(k+1)
i |ci(x(k))|

1+ ‖x(k)‖ ,
‖∇f (x(k))−∑m

i=1 λ
(k+1)
i ∇ci(x(k))‖∞

1+ ‖x(k)‖

}

,

ν
(k)
3 =

|f (x(k))− f (x(k−1))|
1+ |f (x(k−1))| , ν

(k)
4 =

|ν(k)
2 − ν

(k−1)
2 |

ν
(k−1)
2

.

The algorithm below is a complete description of MLB method as imple-
mented in [1] and [2].

Algorithm MLB

Let ξ ∈ (0, 1), µ(1) > 0, λ(1) > 0, ν
(0)

1 , ν
(0)
2 , ν

(0)
3 be given, and set k = 1.

For k = 1, 2, 3, . . . , until ν
(k−1)
2 < T1 or (ν(k−1)

1 < T1 and ν
(k−1)
3 < T2), do

1. Minimize the function (47) approximately,
obtaining x(k) such that ‖∇M(x(k), µ(k), λ(k))‖ ≤ εk.

2. Update λ(k+1) by (48). If ν
(k)
4 < ξ , set µ(k+1) = σµ(k).

Increment k by 1, and return to step 1.
End

In our implementation, we initialize µ(0) = 10−2 and λ
(0)
i = 1 for i = 1, · · · , m

as suggested in [1] and [17], respectively.
While Breitfeld and Shanno [1] have used a line search method to find x(k), we

instead use a trust region method whose associated TR subproblems have qua-
dratic objective functions with low-rank Hessian matrices obtained by means
of limited-memory BFGS (L-BFGS) method (see Sect. 9.1 of [16])). The MNE
method is then used to solve the resulting LRTR subproblems.

We next provide more details of how a low-rank approximation of the Hes-
sian of M(·, µ(k), λ(k)) is computed in the context of solving nonlinear pro-
gramming problems with simple bound constraints. For the purpose of this
discussion, assume that the constraints of (46) are given by cl

i(x) ≡ xi − li ≥ 0
for i ∈ Il and cu

i (x) ≡ ui−xi ≥ 0 for i ∈ Iu where Il, Iu ⊆ {1, · · · , n} are index sets

406 Z. Lu, R. D. C. Monteiro

corresponding to the lower and upper bound constraints, respectively. Let λl and
λu be the Lagrange multipliers corresponding to the lower and upper bound con-
straints, respectively. We easily see from (47) that∇2M(x, µ, λ) = ∇2f (x)+µQ,
where

Q =
∑

i∈Il

λl
ieieT

i

(cl
i(x)+ µ)2

+
∑

i∈Iu

λu
i eieT

i

(cu
i (x)+ µ)2 . (50)

Since Q is a diagonal matrix and can be easily computed, it makes sense to
just compute a low-rank approximation F of ∇2f (x) and use H ≡ F + µQ
as a low-rank approximation of ∇2M(x, µ, λ). We use the L-BFGS method to
obtain a low-rank apprximation of ∇2f (x). This matrix H is used as the Hessian
of the objective function of the LRTR subproblem (1) at the point x. More-
over, the other data of this subproblem is determined as g ≡ ∇M(x, µ, λ) and
M ≡ Diag(v), where v ∈ �n is defined as vi = 1/

√
Qii if i ∈ Il ∪ Iu, and vi = 1 if

i /∈ Il ∪ Iu.

4.2 Implementations of some problems from CUTEr

In this subsection, we will report the computational results obtained from the
implementation of a specifc version of Algorithm MLB described in Subsect.
4.1 and present the comparisons of our method with LANCELOT [5] on a
collection of nonlinear programming problems from CUTEr [12] where only
simple bound constraints are present.

All computations are performed on a Sun Ultra 10 workstation which has
a single UltraSPARC IIi processor running at 440 Mhz and 512 MB of mem-
ory. The sixty test problems are selected from CUTEr. Seventeen of them
have simple bound constraints and fixed variables. The remaining problems
are unconstrained ones. Each row of Tables 1 and 2 gives the problem name,
the number of variables, the number of bound constraints, the number of free
variables, and the number of fixed variables on columns one through five,
respectively.

Some computational results for our code are also presented in Tables 1 and 2.
For each test problem, the total number of iterations performed by the MNE
method is given in the sixth column, and the total number of LRTR subproblems
(1) solved is given in the seventh column. The average iterations performed by
the MNE method for each test problem is given in the eighth column, which is
obtained by dividing the entry in the sixth column by the entry in the seventh
clolumn.

From the eighth column of Tables 1 and 2, we observe that the average itera-
tions performed by the MNE method are between 1.0 and 2.0 for almost all test
problems, except the problems QRTQUAD (2.89) and FLETCBV2 (0). More-
over, the average of the entries in the eighth column over all test problems is
1.25, which is better than the average 1.6 obtained by Moré and Sorensen [14]

A modified nearly exact method for solving low-rank trust region subproblem 407

Table 1 The main test problems and some results of MTR

Problem Var Free Bound Fix TrsIt Trs Ratio

ARGLINA 387 387 0 0 11 6 1.83
ARGLINB 387 387 0 0 25 21 1.19
ARGLINC 388 388 0 0 23 19 1.21
ARWHEAD 10000 10000 0 0 13 12 1.08
BDQRTIC 19999 19999 0 0 180 136 1.32
BRATU1D 13333 13331 0 2 6508 6021 1.08
BROWNAL 547 547 0 0 11 8 1.38
BRYBND 14288 14288 0 0 70 61 1.15
CHEBYQAD 316 0 316 0 383 342 1.12
COSINE 20000 20000 0 0 27 14 1.93
CURLY20 14295 14295 0 0 1597 1471 1.09
CVXBQP1 20000 0 20000 0 1200 1162 1.03
DIXMAANA 19998 19998 0 0 21 15 1.4
DIXMAANB 19998 19998 0 0 21 15 1.4
DIXMAANC 19998 19998 0 0 23 17 1.35
DIXMAAND 19998 19998 0 0 25 19 1.32
DIXMAANJ 19998 19998 0 0 626 617 1.01
DIXMAANK 19998 19998 0 0 419 413 1.01
DIXMAANL 19998 19998 0 0 450 444 1.01
EDENSCH 13333 13333 0 0 55 43 1.28
EIGENBLS 1122 1122 0 0 1695 1608 1.05
EIGENCLS 1122 1122 0 0 1559 1452 1.07
ENGVAL1 19999 19999 0 0 32 26 1.23
ERRINROS 50 50 0 0 819 772 1.06
FLETCBV2 13330 13330 0 0 0 0 0.00
FMINSRF2 19881 19881 0 0 846 841 1.01
FREUROTH 19999 19999 0 0 97 61 1.59
FMINSURF 19881 19881 0 0 2405 2362 1.02
GRIDGENA 6218 0 5560 658 111 98 1.13
HILBERTB 282 282 0 0 16 11 1.45
LIARWHD 19999 19999 0 0 43 32 1.34
LINVERSE 10001 5000 5001 0 110 85 1.29
LMINSURF 19881 19321 0 560 1672 1669 1.00
MANCINO 183 183 0 0 32 21 1.52
NLMSURF 19881 19321 0 560 3618 3579 1.01
NOBNDTOR 12544 6050 6050 444 413 346 1.19
NONDIA 16666 16666 0 0 19 18 1.06

for the NE method applied to the general TR subproblems (1). Hence, this
indicates that the MNE method developed in our paper is efficient and robust
for solving the low-rank version TR subproblem (1).

Our code MTR is written in ANSI C and LANCELOT is a FORTAN code.
MTR and LANCELOT are both compiled under the default optimization.
In MTR, we set the parameter σ = 0.1 for the Algorithm MLB and store
3 most recent vector pairs that provide curvature information for L-BFGS
update. We select the same initial point x0 as LANCELOT whenever it is
strictly feasible; otherwise, we modify the infeasible components of this ini-

408 Z. Lu, R. D. C. Monteiro

Table 2 The main test problems and some results of MTR(cont’d)

Problem Var Free Bound Fix TrsIt Trs Ratio

OBSTCLAE 12769 0 12321 448 296 254 1.17
OBSTCLBL 12769 0 12321 448 135 113 1.19
OBSTCLBM 12769 0 12321 448 139 120 1.16
OBSTCLBU 12769 0 12321 448 141 117 1.21
ODC 16900 16384 0 516 682 682 1.00
PENALTY1 19999 19999 0 0 151 116 1.30
PENALTY3 120 120 0 0 94 76 1.24
POWELLSG 20000 20000 0 0 39 31 1.26
POWER 20000 20000 0 0 779 740 1.05
PROBPENL 19999 0 19999 0 10 6 1.67
QRTQUAD 20000 10000 10000 0 104 36 2.89
SENSORS 199 199 0 0 51 42 1.21
SINQUAD 19999 19999 0 0 82 54 1.52
SPARSQUR 16666 16666 0 0 41 37 1.11
TOINTGSS 20000 20000 0 0 29 21 1.38
TORSION2 12544 0 12100 444 357 298 1.20
TORSION4 12544 0 12100 444 203 180 1.13
TORSION6 12544 0 12100 444 149 125 1.19
TORSIONB 12544 0 12100 444 290 269 1.08
TORSIOND 12544 0 12100 444 244 200 1.22
TORSIONF 12544 0 12100 444 143 123 1.16
TQUARTIC 19999 19999 0 0 29 21 1.38
VARDIM 19999 19999 0 0 101 96 1.05

tial point x0 in order to make it strictly feasible. We set up an upper bound
of one hour computation time (or 3,600 s) per problem for both codes. We
implement the version of LANCELOT which uses bfgs-approximate-second-
derivatives, bandsolver-preconditioned-cg-solver, inexact-cauchy-point, two-
norm-trust-region and all its other default settings. LANCELOT terminates
when the infinity norm of the projected gradient is less than 10−5 or exceeds
one hour computation time.

Tables 3 and 4 give the performance of MTR and LANCELOT. The objec-
tive function values of both methods are given in the second and third columns.
The CPU times (in seconds) are given in the fourth and fifth columns. The
iterations given in the sixth and seventh columns represent the total number
of conjugate gradient iterations performed by LANCELOT and the total num-
ber of TR subproblems generated by MTR, respectively. The total numbers
of function and gradient evaluations for both codes are given in the last two
columns.

Based on the results of Tables 3 and 4, we now give some conclusions about
the performance of the MTR and LANCELOT codes in terms of CPU time
and the relative difference (rel. diff.) of the objective values obtained by MTR
and LANCELOT. Among those test problems, MTR has:

A modified nearly exact method for solving low-rank trust region subproblem 409

Table 3 Comparison of the Two Methods on the main test problems

Problem Obj value Time Iter Nfg
Name mtr lan mtr lan mtr lan mtr lan

ARGLINA 3.870000e+02 3.870000e+02 0.78 38.48 6 3 14 14
ARGLINB 1.931252e+02 1.931252e+02 2.25 29.00 21 1 44 13
ARGLINC 1.951252e+02 1.951252e+02 2.05 28.89 19 2 40 13
ARWHEAD 0.000000e+00 0.000000e+00 5.52 7.86 12 1 26 12
BDQRTIC 8.008640e+04 8.008640e+04 82.48 21.89 136 17 274 40
BRATU1D 5.840393e+06 1.261025e+08 3600.00 3600.00 6021 4540 12044 16852
BROWNAL 2.572063e−11 2.615568e−11 0.98 81.35 8 5 18 14
BRYBND 1.325909e−12 9.511770e−14 26.00 22.94 60 54 122 78
CHEBYQAD 6.778464e−03 8.047224e−03 224.84 3600.00 342 2394 698 2103
COSINE −2.000000e+04 −1.999900e+04 8.35 5.16 14 11 30 33
CURLY20 −1.434017e+06 −1.434021e+06 580.10 3600.00 1471 43104 2944 47
CVXBQP1 2.894382e−04 9.000450e+06 577.99 238.05 1162 9760 2338 14
DIXMAANA 1.000000e+00 1.000000e+00 8.13 7.83 15 21 32 34
DIXMAANB 1.000000e+00 1.000000e+00 8.46 9.14 15 17 32 40
DIXMAANC 1.000000e+00 1.000000e+00 9.51 9.79 17 20 36 42
DIXMAAND 1.000000e+00 1.000000e+00 10.57 14.96 19 33 40 66
DIXMAANJ 1.000001e+00 1.000000e+00 325.88 52.51 617 577 1236 88
DIXMAANK 1.000001e+00 1.000000e+00 217.59 46.26 413 389 828 87
DIXMAANL 1.000001e+00 1.000000e+00 233.88 38.11 444 354 890 84
EDENSCH 8.000128e+04 8.000128e+04 15.97 10.18 43 25 88 70
EIGENBLS 1.974164e−03 1.125255e−01 172.40 3600.00 1608 3424 3218 6914
EIGENCLS 2.454111e−02 7.176403e+02 158.73 3600.00 1452 3131 2906 9172
ENGVAL1 2.219933e+04 2.219933e+04 14.35 5.83 26 10 54 28
ERRINROS 3.990416e+01 3.990415e+01 0.83 0.17 772 110 1546 209
FLETCBV2 −5.001006e−01 −5.001006e−01 0.17 0.59 0 0 2 2
FMINSRF2 1.000002e+00 1.000000e+00 413.21 676.48 841 1454 1684 2341
FREUROTH 2.433123e+06 2.433123e+06 39.90 11.97 61 20 124 47
FMINSURF 1.000002e+00 7.466224e+00 1176.94 3600.00 2362 106 4726 211
GRIDGENA 2.352000e+04 2.352000e+04 16.89 10.70 98 126 210 48
HILBERTB 6.262020e−16 8.799383e−12 1.41 12.19 11 31 24 86
LIARWHD 2.130882e−13 5.932646e−14 17.03 13.34 32 43 66 64
LINVERSE 3.409000e+03 3.409000e+03 29.54 3600.00 85 12067 184 16626
LMINSURF 9.000355e+00 9.000000e+00 856.11 3059.60 1669 7650 3340 10168
MANCINO 2.117119e−16 9.787775e−20 17.58 22.76 21 12 44 45
NLMSURF 3.914874e+01 4.290681e+01 1760.28 3600.00 3579 7237 7160 11997
NOBNDTOR −4.418497e−01 −4.418594e−01 130.18 32.54 346 402 706 72
NONDIA 1.344590e−15 3.812729e−19 7.93 2.63 18 4 38 12

(i) better CPU time and better or close optimal value (i.e., rel. diff.≤ 1.0e−5)
for 60% of problems;

(ii) better CPU time and worse optimal value (i.e., rel. diff. > 1.0e-5) for 10%
of problems;

(iii) worse CPU time and better or close optimal value for 23% of problems;
(iv) worse CPU time and worse optimal value for 7% of problems.

Based on the above comparison, we see that it is promising to solve large-scale
problems with simple bound constraints using our approach.

410 Z. Lu, R. D. C. Monteiro

Table 4 Comparison of the Two Methods on the main test problems(cont’d)

Problem Obj value Time Iter Nfg
Name mtr lan mtr lan mtr lan mtr lan

OBSTCLAE 1.894773e+00 1.894763e+00 105.41 389.08 254 6264 522 26
OBSTCLBL 7.285840e+00 7.285834e+00 45.48 165.98 113 2938 240 36
OBSTCLBM 7.285838e+00 7.285834e+00 48.09 291.40 120 4431 254 16
OBSTCLBU 7.285840e+00 7.285834e+00 47.26 58.55 117 1107 248 40
ODC −1.137898e−02 −1.082613e−02 374.75 3600.00 682 6018 1366 14458
PENALTY1 1.985763e−01 1.985846e−01 61.19 1769.96 116 30 206 124
PENALTY3 9.998808e−04 7.704032e−02 5.63 3600.00 76 14981 154 25899
POWELLSG 2.023535e−07 3.498944e−05 13.52 4.90 31 19 64 40
POWER 2.723993e−07 1.546668e−08 305.59 1222.89 740 68 1482 80
PROBPENL 1.000000e−08 1.007191e−08 4.03 202.40 6 5 22 18
QRTQUAD −5.375101e+10 −1.526995e+10 34.46 3600.00 36 7354 72 23
SENSORS −8.336250e+03 −8.064563e+03 18.57 265.23 42 282 86 1008
SINQUAD −1.040172e+08 1.509966e−05 34.91 208.92 54 781 110 586
SPARSQUR 9.098914e−10 3.009349e−06 17.47 19.87 37 68 76 46
TOINTGSS 1.000050e+01 1.000050e+01 11.79 8.34 21 23 44 48
TORSION2 −4.263058e−01 −4.263350e−01 117.85 340.90 298 5327 610 28
TORSION4 −1.212871e+00 −1.212881e+00 69.53 459.81 180 7990 374 20
TORSION6 −2.859436e+00 −2.859446e+00 49.44 474.08 125 9381 264 18
TORSIONB −4.183918e−01 −4.184089e−01 106.21 267.73 269 3829 552 20
TORSIOND −1.204444e+00 −1.204454e+00 82.87 497.59 200 8585 414 22
TORSIONF −2.850759e+00 −2.850769e+00 50.39 485.76 123 9229 260 16
TQUARTIC 1.098962e−14 2.620727e−09 10.51 15.01 21 53 44 50
VARDIM 1.524712e−15 3.050031e−04 40.28 3600.00 96 2 194 108

Acknowledgments The authors would like to thank Nicholas Gould, Jorge Nocedal, Dominique
Orban and Philippe Toint for their kind help in the process of installing the softwares CUTEr and
LANCELOT on our machine. This work was partially supported by NSF Grants CCR-0203113,
INT-9910084 and CCF-0430644, and ONR Grants N00014-03-1-0401 and N00014-05-1-0183.

References

1. Breitfeld, M.G., Shanno, D.F.: Preliminary computational experience with modified log-barrier
functions for large-scale nonlinear programming. In: Hager, W., Hearn, D., Pardalos, P. (eds.)
Large Scale Optimization: State of the Art. pp. 45–67. Kluwer, Dordrecht (1994)

2. Breitfeld, M.G., Shanno, D.F.: Computational experience with penalty-barrier methods for
nonlinear programming. Ann. Oper. Res. 62, 439–463 (1996)

3. Bunch, J.R., Parlett, B.N.: Direct methods for solving symmetric indefinite systems of linear
equations. SIAM J. Numer. Anal. 8, 639–655 (1971)

4. Cline, A.K., Moler, C.B., Stewart, G.W., Wilkinson, J.H.: An estimate for the condition number
of a matrix. SIAM J. Numer. Anal. 16, 368–375 (1979)

5. Conn, A.R., Gould, N.I.M., Toint, P.L.: LANCELOT: A Fortran package for large-scale
nonlinear optimization. Springer Series in Computational Mathematics 17, Springer, Berlin
Heidelberg, New York (1992)

6. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-region methods. SIAM Publications, Philadelphia,
(2000)

7. Dennis, J.E., Mei, H.W.: Two new unconstrained optimization algorithms which use function
and gradient values. J. Optim. Theor. Appl. 28, 453–482 (1979)

8. Fletcher, R.: Practical Methods of Optimization. Unconstrained Optimization 1. John Wiley,
New York (1980)

A modified nearly exact method for solving low-rank trust region subproblem 411

9. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optim.
Methods Softw. 19(1), 41–67 (2004)

10. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 4(2),
186–197 (1981)

11. Gould, N.I.M., Lucidi, S., Roma, M., Toint, P.L.: Solving the trust-region subproblem using the
Lanczos method. SIAM J. Optimization 9(2), 504–525 (1999)

12. Gould, N.I.M., Orban, D., Toint, P.L.: General CUTEr documentation. Technical Report
TR/PA/02/13, CERFACS, Toulouse, France (2003)

13. Hebden, M.D.: An algorithm for minimization using exact second derivatives. Atomic Energy
Research Establishment, Report T.P.515, Harwell, England (1973)

14. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3),
553–572 (1983)

15. Moré, J.J.: Recent developments in algorithms and software for trust region methods. In: Ba-
chem, A., Grotschel, M., Korte B. (eds.) Mathematical Programming: the State of the Art,
University of Bonn, pp. 258–287. Springer, Berlin Heidelberg New York (1983)

16. Nocedal, J., Wright, S.J.: Numerical optimization. Springer, Berlin Heidelberg New York (1999)
17. Polyak, R.: Modified barrier functions (theory and methods). Math. Program. 54, 177–222

(1992)
18. Powell, M.J.D.: A hybrid method for nonlinear equations. In: Rabinowitz, P. (ed.) Numerical

Methods for Nonlinear Algebraic Equations. Gordon and Breach, New York (1970)
19. Reinsch, C.H.: Smoothing by spline functions II. Numer. Math. 16, 451–454 (1971)
20. Shultz, G.A., Schnabel, R.B., Byrd, R.H.: A family of trust-region-based algorithms for uncon-

strained minimization with strong global convergence properties. SIAM J. Numer. Anal. 22,
47–67 (1985)

21. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer.
Anal. 19, 404–426 (1982)

22. Steihaug, T.: The conjugate gradient method and trust regions in large-scale optimization.
SIAM J. Numer. Anal. 20, 626–637 (1983)

23. Toint, P.L.: Towards an efficient sparsity exploiting newton method for minimization. In: Duff,
I.S. (ed.) Sparse Matrices and Their Uses, Institute of Mathematics and its Applications Con-
ference Series, xii+387 Academic Press, Inc. London (1981)

24. Wang, Z.H., Wen, Z.W., Yuan, Y.: A subspace trust region method for large scale unconstrained
optimization. In: Yuan, Y. (ed.) Numerical Linear Algebra and Optimization, Proceeding of the
2003 International Conference on Numerical Optimization and Linear Algebra, pp. 265–274.
Science Press, Beijing (2004)

25. Yuan, Y.: A Subspace Trust Region Algorithm. In: Presented at the Conference of Multi-
scale Optimization Methods and Applications, Center for Applied Optimization, University
of Florida, USA, 26–28, February 2004

26. Zhang, J., Xu, C.: A class of indefinite dogleg path methods for unconstrained minimization.
SIAM J. Optim. 9(3), 646–667 (1999)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

