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SMOOTH OPTIMIZATION APPROACH FOR SPARSE
COVARIANCE SELECTION∗

ZHAOSONG LU†

Abstract. In this paper we first study a smooth optimization approach for solving a class of
nonsmooth strictly concave maximization problems whose objective functions admit smooth con-
vex minimization reformulations. In particular, we apply Nesterov’s smooth optimization technique
[Y. E. Nesterov, Dokl. Akad. Nauk SSSR, 269 (1983), pp. 543–547; Y. E. Nesterov, Math. Program-
ming, 103 (2005), pp. 127–152] to their dual counterparts that are smooth convex problems. It is
shown that the resulting approach has O(1/

√
ε) iteration complexity for finding an ε-optimal solution

to both primal and dual problems. We then discuss the application of this approach to sparse covari-
ance selection that is approximately solved as an l1-norm penalized maximum likelihood estimation
problem, and also propose a variant of this approach which has substantially outperformed the latter
one in our computational experiments. We finally compare the performance of these approaches
with other first-order methods, namely, Nesterov’s O(1/ε) smooth approximation scheme and block-
coordinate descent method studied in [A. d’Aspremont, O. Banerjee, and L. El Ghaoui, SIAM J.
Matrix Anal. Appl., 30 (2008), pp. 56–66; J. Friedman, T. Hastie, and R. Tibshirani, Biostatistics,
9 (2008), pp. 432–441] for sparse covariance selection on a set of randomly generated instances. It
shows that our smooth optimization approach substantially outperforms the first method above, and
moreover, its variant substantially outperforms both methods above.
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1. Introduction. In [19, 21], Nesterov proposed an efficient smooth optimiza-
tion method for solving convex programming problems of the form

(1) min{f(u) : u ∈ U},

where f is a convex function with Lipschitz continuous gradient, and U is a closed con-
vex set. It is shown that his method has O(1/

√
ε) iteration complexity bound, where

ε > 0 is the absolute precision of the final objective function value. A proximal-point-
type algorithm for (1) having the same complexity as above has also been proposed
more recently by Auslender and Teboulle [2].

Motivated by [10], we are particularly interested in studying the use of a smooth
optimization approach for solving a class of nonsmooth strictly concave maximization
problems whose objective functions admit smooth convex minimization reformulations
in this paper. Our key idea is to apply Nesterov’s smooth optimization technique
[19, 21] to their dual counterparts that are smooth convex problems. It is shown that
the resulting approach has O(1/

√
ε) iteration complexity for finding an ε-optimal

solution to both primal and dual problems.
One interesting application of the above approach is for sparse covariance se-

lection. Given a set of random variables with Gaussian distribution for which the
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true covariance matrix is unknown, covariance selection is a procedure used to esti-
mate true covariance from a sample covariance matrix by maximizing its likelihood
while imposing a certain sparsity on the inverse of the covariance estimation (e.g., see
[11]). Therefore, it can be applied to determine a robust estimate of the true vari-
ance matrix, and simultaneously to discover the sparse structure in the underlying
model. Despite its popularity in numerous real-world applications (e.g., see [3, 10, 25]
and the references therein), sparse covariance selection itself is a challenging NP-hard
combinatorial optimization problem. By an argument that is often used in regres-
sion techniques such as LASSO [23], Yuan and Lin [25] and d’Aspremont et al. [10]
(see also [3]) showed that it can be approximately solved as an l1-norm penalized
maximum likelihood estimation problem. Moreover, the authors of [10] studied two
efficient first-order methods for solving this problem, that is, Nesterov’s smooth ap-
proximation scheme and block-coordinate descent method. It was shown in [10] that
their first method has O(1/ε) iteration complexity for finding an ε-optimal solution.
For their second method, each iterate requires solving a box constrained quadratic
programming, and it has a local linear convergence rate. However, its global iteration
complexity for finding an ε-optimal solution is theoretically unknown. After the first
release of our paper, Friedman, Hastie, and Tibshirani [16] studied a slight variant
of the block-coordinate descent method proposed in [10]. At each iteration of their
method, a coordinate descent approach is applied to solve a lasso (l1-regularized)
least-squares problem, which is the dual of the box constrained quadratic program-
ming appearing in the block-coordinate descent method [10]. In contrast with these
methods, the smooth optimization approach proposed in this paper has a more at-
tractive iteration complexity that is O(1/

√
ε) for finding an ε-optimal solution. In

addition, we propose a variant of the smooth optimization approach which has sub-
stantially outperformed the latter one in our computational experiments. We also
compare the performance of our approaches with their methods for sparse covariance
selection on a set of randomly generated instances. It shows that our smooth opti-
mization approach substantially outperforms their first method above (i.e., Nesterov’s
smooth approximation scheme) and, moreover, its variant substantially outperforms
their methods [10, 16] mentioned above.

The paper is organized as follows. In section 2, we introduce a class of nonsmooth
concave maximization problems in which we are interested and propose a smooth op-
timization approach to them. In section 3, we briefly introduce sparse covariance
selection and show that it can be approximately solved as an l1-norm penalized max-
imum likelihood estimation problem. We also discuss the application of the smooth
optimization approach for solving this problem and propose a variant of this approach.
In section 4, we compare the performance of our smooth optimization approach and
its variant with two other first-order methods studied in [10, 16] for sparse covari-
ance selection on a set of randomly generated instances. Finally, we present some
concluding remarks in section 5.

1.1. Notation. In this paper, all vector spaces are assumed to be finite-dimen-
sional. The space of symmetric n × n matrices will be denoted by Sn. If X ∈ Sn is
positive semidefinite, we write X � 0. Also, we write X � Y to mean Y − X � 0.
The cone of positive semidefinite (resp., definite) matrices is denoted by Sn

+ (resp.,
Sn

++). Given matrices X and Y in �p×q, the standard inner product is defined
by 〈X,Y 〉 := Tr(XY T ), where Tr(·) denotes the trace of a matrix. ‖ · ‖ denotes
the Euclidean norm and its associated operator norm unless it is explicitly stated
otherwise. The Frobenius norm of a real matrix X is defined as ‖X‖F :=

√
Tr(XXT ).



SMOOTH OPTIMIZATION FOR SPARSE COVARIANCE SELECTION 1809

We denote by e the vector of all ones, and by I the identity matrix. Their dimensions
should be clear from the context. For a real matrix X, we denote by Card(X) the
cardinality of X, that is, the number of nonzero entries of X, and denote by |X|
the absolute value of X, that is, |X|ij = |Xij | for all i, j. The determinant and
the minimal (resp., maximal) eigenvalue of a real symmetric matrix X are denoted
by detX and λmin(X) (resp., λmax(X)), respectively. For an n-dimensional vector w,
diag(w) denotes the diagonal matrix whose ith diagonal element is wi for i = 1, . . . , n.
We denote by Z+ the set of all nonnegative integers.

Let the space F be endowed with an arbitrary norm ‖ · ‖. The dual space of F ,
denoted by F∗, is the normed real vector space consisting of all linear functionals of
s : F → �, endowed with the dual norm ‖ · ‖∗ defined as

‖s‖∗ := max
u

{〈s, u〉 : ‖u‖ ≤ 1} ∀s ∈ F∗,

where 〈s, u〉 := s(u) is the value of the linear functional s at u. Finally, given an
operator A : F → F∗, we define

A[H,H] := 〈AH,H〉

for any H ∈ F .

2. Smooth optimization approach. In this section, we consider a class of
concave nonsmooth maximization problems:

(2) max
x∈X

{g(x) := min
u∈U

φ(x, u)},

where X and U are nonempty convex compact sets in finite-dimensional real vector
spaces E and F , respectively, and φ(x, u) : X×U → � is a continuous function which
is strictly concave in x ∈ X for every fixed u ∈ U , and convex differentiable in u ∈ U
for every fixed x ∈ X. Therefore, for any u ∈ U , the function

(3) f(u) := max
x∈X

φ(x, u)

is well-defined. We also easily conclude that f(u) is convex differentiable on U , and
its gradient is given by

(4) ∇f(u) = ∇uφ(x(u), u) ∀u ∈ U,

where x(u) denotes the unique solution of (3).
Let the space F be endowed with an arbitrary norm ‖ · ‖. We further assume

that ∇f(u) is Lipschitz continuous on U with respect to ‖ · ‖, i.e., there exists some
L > 0 such that

‖∇f(u) −∇f(ũ)‖∗ ≤ L‖u− ũ‖ ∀u, ũ ∈ U.

Under the above assumptions, we easily observe that (i) problem (2) and its dual,
that is,

(5) min
u

{f(u) : u ∈ U},

are both solvable and have the same optimal value; and (ii) the dual problem (5) can
be suitably solved by Nesterov’s smooth minimization approach [19, 21].
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Denote by d(u) a prox-function of the set U . We assume that d(u) is continuous
and strongly convex on U with modulus σ > 0. Let u0 be the center of the set U
defined as

(6) u0 = arg min{d(u) : u ∈ U}.

Without loss of generality assume that d(u0) = 0. We now describe Nesterov’s smooth
minimization approach [19, 21] for solving the dual problem (5), and we will show
that it simultaneously solves the nonsmooth concave maximization problem (2).

Smooth minimization algorithm.

Let u0 ∈ U be given in (6). Set x−1 = 0 and k = 0.
(1) Compute ∇f(uk) and x(uk). Set xk = k

k+2xk−1 + 2
k+2x(uk).

(2) Find usd
k ∈ Argmin

{
〈∇f(uk), u− uk〉 + L

2 ‖u− uk‖2 : u ∈ U
}
.

(3) Find uag
k = argmin

{
L
σ d(u) +

∑k
i=0

i+1
2 [f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}
.

(4) Set uk+1 = 2
k+3u

ag
k + k+1

k+3u
sd
k .

(5) Set k ← k + 1 and go to step 1.
end
The following property of the above algorithm is established in Theorem 2 of

Nesterov [21].
Theorem 2.1. Let the sequence {(uk, u

sd
k )}∞k=0 ⊆ U × U be generated by the

smooth minimization algorithm. Then for any k ≥ 0 we have
(7)

(k + 1)(k + 2)

4
f(usd

k ) ≤ min

{
L

σ
d(u) +

k∑
i=0

i + 1

2
[f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}
.

We are ready to establish the main convergence result of the smooth minimization
algorithm for solving the nonsmooth concave maximization problem (2) and its dual
(5). Its proof is a generalization of the one given in a more special context in [21].

Theorem 2.2. After k iterations, the smooth minimization algorithm generates
a pair of approximate solutions (usd

k , xk) to problem (2) and its dual (5), respectively,
which satisfy the following inequality:

(8) 0 ≤ f(usd
k ) − g(xk) ≤

4LD

σ(k + 1)(k + 2)
.

Thus if the termination criterion f(usd
k ) − g(xk) ≤ ε is applied, the iteration com-

plexity of finding an ε-optimal solution to problem (2) and its dual (5) by the smooth
minimization algorithm does not exceed 2

√
LD/(σε), where

(9) D = max{d(u) : u ∈ U}.

Proof. In view of (3), (4), and the notation x(u), we have

(10) f(ui) + 〈∇f(ui), u− ui〉 = φ(x(ui), ui) + 〈∇uφ(x(ui), ui), u− ui〉.

Invoking the fact that the function φ(x, ·) is convex on U for every fixed x ∈ X, we
obtain

φ(x(ui), ui) + 〈∇uφ(x(ui), ui), u− ui〉 ≤ φ(x(ui), u).(11)
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Notice that x−1 = 0, and xk = k
k+2xk−1 + 2

k+2x(uk) for any k ≥ 0, which imply

(12) xk =

k∑
i=0

2(i + 1)

(k + 1)(k + 2)
x(ui).

Using (10), (11), (12), and the fact that the function φ(·, u) is concave on X for every
fixed u ∈ U , we have

k∑
i=0

(i + 1)[f(ui) + 〈∇f(ui), u− ui〉] ≤
k∑

i=0

(i + 1)φ(x(ui), u)

≤ 1

2
(k + 1)(k + 2)φ(xk, u)

for all u ∈ U . It follows from this relation, (7), (9), and (2) that

f(usd
k ) ≤ 4LD

σ(k + 1)(k + 2)

+ min
u

{
k∑

i=0

2(i + 1)

(k + 1)(k + 2)
[f(ui) + 〈∇f(ui), u− ui〉] : u ∈ U

}

≤ 4LD

σ(k + 1)(k + 2)
+ min

u∈U
φ(xk, u) =

4LD

σ(k + 1)(k + 2)
+ g(xk),

and hence the inequality (8) holds. The remaining conclusion directly follows from
(8).

Remark. We shall mention that Nesterov [20] developed the excessive gap tech-
nique for solving problem (2) and its dual (5) in a special context, which enjoys the
same iteration complexity as the smooth minimization algorithm described above.
In addition, it is not hard to observe that the technique proposed in [20] can be ex-
tended to solve problem (2) and its dual (5) in the aforementioned general framework,
provided that the subproblem

(13) min
u∈U

φ(x, u) + μd(u)

can be suitably solved for any given μ > 0 and x ∈ X. The computation of each iterate
of Nesterov’s excessive gap technique [20] is similar to that of the smooth minimization
algorithm except that the former method requires solving a prox subproblem in the
form of (13), but the latter one needs to solve the prox subproblem described in
step 3 above. When the function φ(x, ·) is affine for every fixed x ∈ X, these two
prox subproblems have the same form, and thus the computational cost of Nesterov’s
excessive gap technique [20] is almost the same as that of the smooth minimization
algorithm; however, for a more general function φ(·, ·), the computational cost of the
former method can be more expensive than that of the latter method.

The following results will be used to develop a variant of the smooth minimization
algorithm for sparse covariance selection in subsection 3.4.

Lemma 2.3. Problem (2) has a unique optimal solution, denoted by x∗. Moreover,
for any u∗ ∈ Argmin{f(u) : u ∈ U}, we have

(14) x∗ = arg max
x∈X

φ(x, u∗).
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Proof. We clearly know that problem (2) has an optimal solution. To prove its
uniqueness, it suffices to show that g(x) is strictly concave on X. Indeed, since X×U
is a convex compact set and φ(x, u) is continuous on X × U , it follows that for any
t ∈ (0, 1), x1 �= x2 ∈ X, there exist some ũ ∈ U such that

φ(tx1 + (1 − t)x2, ũ) = min
u∈U

φ(tx1 + (1 − t)x2, u).

Recall that φ(·, u) is strictly concave on X for every fixed u ∈ U . Therefore, we have

φ(tx1 + (1 − t)x2, ũ) > tφ(x1, ũ) + (1 − t)φ(x2, ũ),

≥ tminu∈U φ(x1, u) + (1 − t) minu∈U φ(x2, u),

which together with (2) implies that

g(tx1 + (1 − t)x2) > tg(x1) + (1 − t)g(x2)

for any t ∈ (0, 1), x1 �= x2 ∈ X, and hence g(x) is strictly concave on X as desired.
Note that x∗ is the optimal solution of problem (2). We clearly know that for any

u∗ ∈ Argmin{f(u) : u ∈ U}, (u∗, x∗) is a saddle point for problem (2), that is,

φ(x∗, u) ≥ φ(x∗, u∗) ≥ φ(x, u∗) ∀(x, u) ∈ X × U,

and hence we have

x∗ ∈ Arg max
x∈X

φ(x, u∗).

This, together with the fact that φ(·, u∗) is strictly concave on X, immediately yields
(14).

Theorem 2.4. Let x∗ be the unique optimal solution of (2), and let f∗ be the opti-
mal value of problems (2) and (5). Assume that the sequences {uk}∞k=0 and {x(uk)}∞k=0

are generated by the smooth minimization algorithm. Then the following statements
hold:

(1) f(uk) → f∗, x(uk) → x∗ as k → ∞;
(2) f(uk) − g(x(uk)) → 0 as k → ∞.
Proof. Recall from the smooth minimization algorithm that

uk+1 =
(
2uag

k + (k + 1)usd
k

)
/(k + 3) ∀k ≥ 0.

Since usd
k , uag

k ∈ U for all k ≥ 0, and U is a compact set, we have uk+1 − usd
k → 0

as k → ∞. Notice that f(u) is continuous on the compact set U , and hence it is
uniformly continuous on U . Then we further have f(uk+1) − f(usd

k ) → 0 as k → ∞.
Also, it follows from Theorem 2.2 that f(usd

k ) → f∗ as k → ∞. Therefore, we conclude
that f(uk) → f∗ as k → ∞.

Note that X is a compact set, and x(uk) ⊆ X for all k ≥ 0. To prove that
x(uk) → x∗ as k → ∞, it suffices to show that every convergent subsequence of
{x(uk)}∞k=0 converges to x∗ as k → ∞. Indeed, assume that {x(unk

)}∞k=0 is an
arbitrary convergent subsequence, and x(unk

) → x̃∗ as k → ∞ for some x̃∗ ∈ X.
Without loss of generality, assume that the sequence {unk

}∞k=0 → ũ∗ as k → ∞ for
some ũ∗ ∈ U (otherwise, one can consider any convergent subsequence of {unk

}∞k=0).
Using the result that f(uk) → f∗, we obtain that

φ (x(unk
), unk

) = f(unk
) → f∗ as k → ∞.
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Upon letting k → ∞ and using the continuity of φ(·, ·), we have φ(x̃∗, ũ∗) = f(ũ∗) =
f∗. Hence, it follows that

ũ∗ ∈ Arg min
u∈U

f(u), x̃∗ = arg max
x∈X

φ(x, ũ∗),

which together with Lemma 2.3 implies that x̃∗ = x∗. Hence, as desired, x(unk
) → x∗

as k → ∞.
As shown in Lemma 2.3, the function g(x) is continuous on X. This result,

together with statement 1, immediately implies that statement 2 holds.

3. Sparse covariance selection. In this section, we discuss the application of
the smooth optimization approach proposed in section 2 to sparse covariance selection.
More specifically, we briefly introduce sparse covariance selection in subsection 3.1
and show that it can be approximately solved as an l1-norm penalized maximum
likelihood estimation problem in subsection 3.2. In subsection 3.3, we address some
implementation details of the smooth optimization approach for solving this problem
and propose a variant of this approach in subsection 3.4.

3.1. Introduction of sparse covariance selection. In this subsection, we bri-
efly introduce sparse covariance selection. For more details, see d’Aspremont, Banerjee,
and El Ghaoui [10] and the references therein.

Given n variables with a Gaussian distribution N (0, C) for which the true covari-
ance matrix C is unknown, we are interested in estimating C from a sample covariance
matrix Σ by maximizing its likelihood while imposing a certain number of components
in the inverse of the estimation of C to zero. This problem is commonly known as
sparse covariance selection (see [11]). Since zeros in the inverse of covariance matrix
correspond to conditional independence in the model, sparse covariance selection can
be used to determine a robust estimate of the covariance matrix, and simultaneously
discover the sparse structure in the underlying graphical model.

Several approaches have been proposed for sparse covariance selection in litera-
ture. For example, Bilmes [4] proposed a method based on choosing statistical depen-
dencies according to conditional mutual information computed from training data.
The recent works [18, 12] involve identifying the Gaussian graphical models that are
best supported by the data and any available prior information on the covariance
matrix. Given a sample covariance matrix Σ ∈ Sn

+, d’Aspremont et al. [10] recently
formulated sparse covariance selection as the following estimation problem:

(15)
maxX log detX − 〈Σ, X〉 − ρCard(X)

s.t. α̃I � X � β̃I,

where ρ > 0 is a parameter controlling the trade-off between likelihood and cardinality,
and 0 ≤ α̃ < β̃ ≤ ∞ are the fixed bounds on the eigenvalues of the solution. For some
specific choices of ρ, the formulation (15) has been used for model selection in [1, 5],
and applied to speech recognition and gene network analysis (see [4, 13]).

Note that the estimation problem (15) itself is an NP-hard combinatorial problem
because of the penalty term Card(X). To overcome the computational difficulty,
d’Aspremont et al. [10] used an argument that is often used in regression techniques
(e.g., see [23, 6, 14]), where sparsity of the solution is concerned, to relax Card(X) to
eT |X|e, and obtained the following l1-norm penalized maximum likelihood estimation
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problem:

(16)
maxX log detX − 〈Σ, X〉 − ρeT |X|e

s.t. α̃I � X � β̃I.

Recently, Yuan and Lin [25] proposed a similar estimation problem for sparse covari-
ance selection given as follows:

(17)

maxX log detX − 〈Σ, X〉 − ρ
∑
i �=j

|Xij |

s.t. α̃I � X � β̃I,

with α̃ = 0 and β̃ = ∞. They showed that problem (17) can be suitably solved
by the interior point algorithm developed in Vandenberghe, Boyd, and Wu [24]. A
few other approaches have also been studied for sparse covariance selection by solving
some related maximum likelihood estimation problems in the literature. For example,
Huang, Liu, and Pourahmadi [17] proposed an iterative (heuristic) algorithm to min-
imize a nonconvex penalized likelihood. Dahl et al. [8, 7] applied Newton’s method,
the coordinate steepest descent method, and the conjugate gradient method for the
problems for which the conditional independence structure is partially known.

As shown in d’Aspremont et al. [10] (see also [3]) and Yuan and Lin [25], the l1-
norm penalized maximum likelihood estimation problems (16) and (17) are capable of
discovering effectively the sparse structure or, equivalently, the conditional indepen-
dence in the underlying graphical model. Also, it is not hard to see that the estimation
problem (17) becomes a special case of problem (16) if replacing Σ by Σ + ρI in (17).
For these reasons, in the remainder of this paper we focus on problem (16) only.

3.2. Nonsmooth strictly concave maximization reformulation. In this
subsection, we show that problem (16) can be reformulated as a nonsmooth strictly
concave maximization problem of the form (2).

Recall from subsection 3.1 that Σ ∈ Sn
+, and keep in mind that the notation | · |,

‖ · ‖, and ‖ · ‖F is defined in subsection 1.1. We first provide some tighter bounds on
the optimal solution of problem (16) for the case where α̃ = 0 and β̃ = ∞.

Proposition 3.1. Assume that α̃ = 0 and β̃ = ∞. Let X∗ ∈ Sn
++ be the unique

optimal solution of problem (16). Then we have αI � X∗ � βI, where

(18) α =
1

‖Σ‖ + nρ
, β = min

{
n− αTr(Σ)

ρ
, η

}

with

η =

{
min

{
eT |Σ−1|e, (n− ρ

√
nα)‖Σ−1‖ − (n− 1)α

}
if Σ is invertible;

2eT |(Σ + ρ
2I)

−1|e− Tr((Σ + ρ
2I)

−1) otherwise.

Proof. Let

(19) U := {U ∈ Sn : |Uij | ≤ 1 ∀ij}

and

(20) L(X,U) = log detX − 〈Σ + ρU,X〉 ∀(X,U) ∈ Sn
++ × U .
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Note that X∗ ∈ Sn
++ is the optimal solution of problem (16). It can be easily shown

that there exist some U∗ ∈ U such that (X∗, U∗) is a saddle point of L(·, ·) on Sn
++×U ,

that is,

X∗ = arg min
X∈Sn

++

L(X,U∗), U∗ ∈ Arg min
U∈U

L(X∗, U).

The above relations along with (19) and (20) immediately yield

(21) X∗(Σ + ρU∗) = I, 〈X∗, U∗〉 = eT |X∗|e.

Hence, we have

X∗ = (Σ + ρU∗)−1 � 1

‖Σ‖ + ρ‖U∗‖I,

which together with (19) and the fact U∗ ∈ U implies that X∗ � 1
‖Σ‖+nρI. Thus, as

desired, X∗ � αI, where α is given in (18).
We next bound X∗ from above. In view of (21), we have

(22) 〈X∗,Σ〉 + ρeT |X∗|e = n,

which together with the relation X∗ � αI implies that

(23) eT |X∗|e ≤ n− αTr(Σ)

ρ
.

Now let X(t) := (Σ + tρI)−1 for t ∈ (0, 1). By concavity of log det(·), one can easily
see that X(t) maximizes the function log det(·) − 〈Σ + tρI, ·〉 over Sn

++. Using this
observation and the definition of X∗, we can have

log detX∗ − 〈Σ + tρI,X∗〉 ≤ log detX(t) − 〈Σ + tρI,X(t)〉,

log detX(t) − 〈Σ, X(t)〉 − ρeT |X(t)|e ≤ log detX∗ − 〈Σ, X∗〉 − ρeT |X∗|e.

Adding the above two inequalities upon some algebraic simplification, we obtain that

eT |X∗|e− tTr(X∗) ≤ eT |X(t)|e− tTr(X(t)),

and hence

(24) eT |X∗|e ≤ eT |X(t)|e− tTr(X(t))

1 − t
∀t ∈ (0, 1).

If Σ is invertible, upon letting t ↓ 0 on both sides of (24), we have

eT |X∗|e ≤ eT |Σ−1|e.

Otherwise, letting t = 1/2 in (24), we obtain

eT |X∗|e ≤ 2eT
∣∣∣∣(Σ +

ρ

2
I
)−1

∣∣∣∣ e− Tr

((
Σ +

ρ

2
I
)−1

)
.

Combining the above two inequalities and (23), we have

(25) ‖X∗‖ ≤ ‖X∗‖F ≤ eT |X∗|e ≤ min

{
n− αTr(Σ)

ρ
, γ

}
,
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where

γ =

{
eT |Σ−1|e if Σ is invertible;

2eT |(Σ + ρ
2I)

−1|e− Tr((Σ + ρ
2I)

−1) otherwise.

Further, using the relation X∗ � αI, we obtain that

eT |X∗|e ≥ ‖X∗‖F ≥
√
nα,

which together with (22) implies that

Tr(X∗Σ) ≤ n− ρ
√
nα.

This inequality, along with the relation X∗ � αI, yields

λmin(Σ)((n− 1)α + ‖X∗‖) ≤ Tr(X∗Σ) ≤ n− ρ
√
nα.

Hence if Σ is invertible, we further have

‖X∗‖ ≤ (n− ρ
√
nα)‖Σ−1‖ − (n− 1)α.

This together with (25) implies that X∗ � βI, where β is given in (18).
Remark. Some bounds on X∗ were also derived in d’Aspremont, Banerjee, and

El Ghaoui [10]. In contrast with their bounds, our bounds given in (18) are tighter.
Moreover, our approach for deriving the above bounds can be generalized to handle
the case where α̃ > 0 and β̃ = ∞, but their approach cannot. Indeed, if α̃ > 0 and
β̃ = ∞, we can set α = α̃ and replace the above X(t) by the optimal solution of

maxX log detX − 〈Σ + ρI,X〉

s.t. α̃I � X,

which has a closed-form expression. By following a similar derivation as above, one
can obtain a positive scalar β such that X∗ � βI. In addition, for the case where
α̃ = 0 and 0 < β̃ < ∞, one can set β = β̃ and easily show that X∗ ≥ αI, where
α = βe−β(Tr(Σ)+nρ).

From the above discussion, we conclude that problem (16) is equivalent to the
following problem:

(26)
maxX log detX − 〈Σ, X〉 − ρeT |X|e

s.t. αI � X � βI

for some 0 < α < β < ∞.
We further observe that problem (26) can be rewritten as

(27) max
X∈X

min
U∈U

log detX − 〈Σ + ρU,X〉,

where U is defined in (19), and X is defined as follows:

(28) X := {X ∈ Sn : αI � X � βI}.

Therefore, we conclude that problem (16) is equivalent to (27). For the remainder of
the paper, we will focus on problem (27) only.
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3.3. Smooth optimization method for sparse covariance selection. In
this subsection, we describe the implementation details of the smooth minimization
algorithm proposed in section 2 for solving problem (27). We also compare the com-
plexity of this algorithm with interior point methods, and two other first-order meth-
ods studied in d’Aspremont et al. [10], that is, Nesterov’s smooth approximation
scheme and block-coordinate descent method.

We first observe that the sets X and U both lie in the space Sn, where X and
U are defined in (28) and (19), respectively. Let Sn be endowed with the Frobenius
norm, and let d̃(X) = log detX for X ∈ X . Then for any X ∈ X , we have

∇2d̃(X)[H,H] = −Tr(X−1HX−1H) ≤ −β−2‖H‖2
F

for all H ∈ Sn, and hence, d̃(X) is strongly concave on X with modulus β−2. Using
this result and Theorem 1 of [21], we immediately conclude that ∇f(U) is Lipschitz
continuous with constant L = ρ2β2 on U , where

(29) f(U) := max
X∈X

log detX − 〈Σ + ρU,X〉 ∀U ∈ U .

Denote the unique optimal solution of problem (29) by X(U). For any U ∈ U , we can
compute X(U), f(U), and ∇f(U) as follows.

Let Σ + ρU = Qdiag(γ)QT be an eigenvalue decomposition of Σ + ρU such that
QQT = I. For i = 1, . . . , n, let

λi =

{
min{max{1/γi, α}, β} if γi > 0;

β otherwise.

It is not hard to show that

(30) X(U) = Qdiag(λ)QT , f(U) = −γTλ +

n∑
i=1

log λi, ∇f(U) = −ρX(U).

From the above discussion, we see that problem (27) has exactly the same form
as (2) and also satisfies all assumptions imposed on problem (2). Therefore, it can
be suitably solved by the smooth minimization algorithm proposed in section 2. The
implementation details of this algorithm for problem (27) are described as follows.

Given U0 ∈ U , let d(U) = ‖U − U0‖2
F /2 be the proximal function on U , which is

strongly convex function with modulus σ = 1. For our specific choice of the norm and
d(U), we clearly see that steps 2 and 3 of the smooth minimization algorithm can be
solved as a problem of the form

V = arg min
U∈U

〈G,U〉 + ‖U‖2
F /2

for some G ∈ Sn. In view of (19), we see that

Vij = max{min{−Gij , 1},−1}, i, j = 1, . . . , n.

In addition, for any X ∈ X , we define

(31) g(X) := log detX − 〈Σ, X〉 − ρeT |X|e.

For the ease of comparison with its latter variant, we now present a complete
version of the aforementioned smooth minimization algorithm for solving problem
(27) and its dual.



1818 ZHAOSONG LU

Smooth minimization algorithm for covariance selection (SMACS).

Let ε > 0 and U0 ∈ U be given. Set X−1 = 0, L = ρ2β2, σ = 1, and k = 0.
(1) Compute ∇f(Uk) and X(Uk). Set Xk = k

k+2Xk−1 + 2
k+2X(Uk).

(2) Find Usd
k = argmin

{
〈∇f(Uk), U − Uk〉 + L

2 ‖U − Uk‖2
F : U ∈ U

}
.

(3) Find Uag
k = argmin{ L

2σ‖U − U0‖2
F +

∑k
i=0

i+1
2 [f(Ui) + 〈∇f(Ui), U − Ui〉] :

U ∈ U}.
(4) Set Uk+1 = 2

k+3U
ag
k + k+1

k+3U
sd
k .

(5) Set k ← k + 1. Go to step 1 until f(Usd
k ) − g(Xk) ≤ ε.

end
The iteration complexity of the above algorithm for solving problem (27) is es-

tablished in the following theorem.
Theorem 3.2. The iteration complexity performed by the algorithm SMACS

for finding an ε-optimal solution to problem (27) and its dual does not exceed
√

2ρβ
maxU∈U ‖U − U0‖F /

√
ε, and moreover, if U0 = 0, it does not exceed

√
2ρβn/

√
ε.

Proof. From the above discussion, we know that L = ρ2β2, D = maxU∈U ‖U −
U0‖2

F /2, and σ = 1, which together with Theorem 2.2 immediately implies that the
first part of the statement holds. Further, if U0 = 0, we easily obtain from (19) that
D = maxU∈U ‖U‖2

F /2 = n2/2. The second part of the statement directly follows from
this result and Theorem 2.2.

Remark. By the definition of U (see (19)), we can easily show that minU0∈U
maxU∈U ‖U − U0‖F has a unique minimizer U0 = 0. This result together with The-
orem 3.2 implies that the initial point U0 = 0 gives the optimal worst-case iteration
complexity for the algorithm SMACS.

Alternatively, d’Aspremont et al. [10] applied Nesterov’s smooth approximation
scheme [21] to solve problem (27). More specifically, let ε > 0 be the desired accuracy,
and let

d̂(U) = ‖U‖2
F /2, D̂ = max

U∈U
d̂(U) = n2/2.

As shown in [21], the nonsmooth function g(X) defined in (31) is uniformly approxi-
mated by the smooth function

gε(X) = min
U∈U

log detX − 〈Σ + ρU,X〉 − ε

2D̂
d̂(U)

on X with the error at most by ε/2, and, moreover, the function gε(X) has a Lipschitz
continuous gradient on X with some constant L(ε) > 0. Nesterov’s smooth optimiza-
tion technique [19, 21] is then applied to solve the perturbed problem maxX∈X gε(X),
and problem (27) is accordingly solved. It was shown in [10] that the iteration com-
plexity of this approach for finding an ε-optimal solution to problem (27) does not
exceed

(32)
2
√

2ρβn1.5 log κ

ε
+ κ

√
n log κ

ε
,

where κ := β/α.
In view of (32) and Theorem 3.2, we conclude that the smooth optimization

approach improves upon Nesterov’s smooth approximation scheme at least by a factor
of O(

√
n log κ/

√
ε) in terms of the iteration complexity for solving problem (27).

Moreover, the computational cost per iteration of the former approach is at least as
cheap as that of the latter one.
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d’Aspremont et al. [10] also studied a block-coordinate descent method for solving
problem (16) with α̃ = 0 and β̃ = ∞. Each iterate of this method requires computing
the inverse of an (n − 1) × (n − 1) matrix and solving a box constrained quadratic
programming with n−1 variables. As mentioned in section 3 of [10], this method has
a local linear convergence rate. However, its global iteration complexity for finding
an ε-optimal solution is theoretically unknown. Moreover, this method is not suitable
for solving problem (16) with α̃ > 0 or β̃ < ∞.

In addition, we observe that problem (26) (also (16)) can be reformulated as a
constrained smooth convex problem that has an explicit O(n2)-logarithmically homo-
geneous self-concordant barrier function. Thus, it can be suitably solved by interior
point methods (see Nesterov and Nemirovskii [22] and Vandenberghe, Boyd, and Wu
[24]). The worst-case iteration complexity of interior point methods for finding an
ε-optimal solution to (26) is O(n log(ε0/ε)), where ε0 is an initial gap. Each iterate
of interior point methods requires O(n6) arithmetic cost for assembling and solving
a typically dense Newton system with O(n2) variables. Thus, the total worst-case
arithmetic cost of interior point methods for finding an ε-optimal solution to (26) is
O(n7 log(ε0/ε)). In contrast to interior point methods, the algorithm SMACS requires
O(n3) arithmetic cost per iteration dominated by eigenvalue decomposition and ma-
trix multiplication of n × n matrices. Based on this observation and Theorem 3.2,
we conclude that the overall worst-case arithmetic cost of the algorithm SMACS for
finding an ε-optimal solution to (26) is O(ρβn4/

√
ε), which is substantially superior

to that of interior point methods, provided that ρβ is not too large and ε is not too
small.

3.4. Variant of the smooth minimization algorithm. As discussed in sub-
section 3.3, the algorithm SMACS has a nice theoretical complexity in contrast with
interior point methods, Nesterov’s smooth approximation scheme, and the block-
coordinate descent method. However, its practical performance is still not very at-
tractive (see section 4). To enhance the computational performance, we propose a
variant of the algorithm SMACS for solving problem (27) in this subsection.

Our first concern of the algorithm SMACS is that the eigenvalue decomposition
of two n × n matrices is required per iteration. Indeed, the eigenvalue decomposi-
tion of Σ + ρUk and Σ + ρUsd

k is needed at steps 1 and 5 to compute ∇f(Uk) and
f(Usd

k ), respectively. We also know that the eigenvalue decomposition is one of major
computations for the algorithm SMACS. To reduce the computational cost, we now
propose a new termination criterion other than f(Usd

k ) − g(Xk) ≤ ε that is used in
the algorithm SMACS. In view of Theorem 2.4, we know that

f(Uk) − g(X(Uk)) → 0 as k → ∞.

Thus, f(Uk) − g(X(Uk)) ≤ ε can be used as an alternative termination criterion.
Moreover, it follows from (30) that the quantity f(Uk)−g(X(Uk)) is readily available
in step 1 of the algorithm SMACS with almost no additional cost. We easily see
that the algorithm SMACS with this new termination criterion would require only
one eigenvalue decomposition per iteration. Despite this clear advantage, we shall
mention that the iteration complexity of the resulting algorithm is unfortunately
unknown. Nevertheless, in practice we have found that the number of iterations
performed by the algorithm SMACS with the above two different termination criteria
are almost same. Thus, f(uk)−g(x(uk)) ≤ ε is a useful practical termination criterion.

For sparse covariance selection, the penalty parameter ρ is usually small, but the
parameter β can be fairly large. In view of Theorem 3.2, we know that the iteration
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complexity of the algorithm SMACS for solving problem (27) is proportional to β.
Therefore, when β is too large, the complexity and practical performance of this
algorithm become unattractive. To overcome this drawback, we will propose one
strategy to dynamically update β.

Let X∗ be the unique optimal solution of problem (27). For any β̂ ∈ [λmax(X
∗), β],

we easily observe that X∗ is also the unique optimal solution to the following problem:

(33) (Pβ̂) max
X∈Xβ̂

min
U∈U

log detX − 〈Σ + ρU,X〉,

where U is defined in (19) and Xβ̂ is given by

Xβ̂ := {X : αI � X � β̂I}.

In view of Theorem 3.2, the iteration complexity of the algorithm SMACS for problem
(33) is lower than that for problem (27), provided β̂ ∈ [λmax(X

∗), β). Hence, ideally

we set β̂ = λmax(X
∗), which would give the lowest iteration complexity, but unfor-

tunately λmax(X
∗) is unknown. However, we can generate a sequence {β̂k}∞k=0 that

asymptotically approaches λmax(X
∗) as the algorithm progresses. Indeed, in view of

Theorem 2.4, we know that X(Uk) → X∗ as k → ∞, and we obtain that

λmax(X(Uk)) → λmax(X
∗) as k → ∞.

Therefore, we see that {λmax(X(Uk))}∞k=0 can be used to generate a sequence {β̂k}∞k=0

that asymptotically approaches λmax(X
∗). We next propose a strategy to generate

such a sequence {β̂k}∞k=0.
For convenience of presentation, we introduce some new notation. Given any

U ∈ U and β̂ ∈ [α, β], we define

Xβ̂(U) := arg max
X∈Xβ̂

log detX − 〈Σ + ρU,X〉,(34)

fβ̂(U) := max
X∈Xβ̂

log detX − 〈Σ + ρU,X〉.(35)

Definition 1. Given any U ∈ U and β̂ ∈ [α, β], Xβ̂(U) is called “active” if

λmax(Xβ̂(U)) = β̂ and β̂ < β; otherwise it is called “inactive.”

Let ς1, ς2 > 1, and ς3 ∈ (0, 1) be given and fixed. Assume that Uk ∈ U and

β̂k ∈ [α, β] are given at the beginning of the kth iteration for some k ≥ 0. We now

describe the strategy for generating the next iterate Uk+1 and β̂k+1 by considering
the following three different cases:

(1) If Xβ̂k
(Uk) is active, find the smallest s ∈ Z+ such that Xβ̄(Uk) is inactive,

where β̄ = min{ςs1 β̂k, β}. Set β̂k+1 = β̄, and apply the algorithm SMACS for
problem (Pβ̂k+1

) starting with the point Uk and set its next iterate to be
Uk+1.

(2) If Xβ̂k
(Uk) is inactive and λmax(Xβ̂k

(Uk)) ≤ ς3β̂k, set β̂k+1 = max{min{ς2
λmax(Xβ̂k

(Uk)), β}, α}. Apply the algorithm SMACS for problem (Pβ̂k+1
)

starting with the point Uk, and set its next iterate to be Uk+1.
(3) If Xβ̂k

(Uk) is inactive and λmax(Xβ̂k
(Uk)) > ς3β̂k, set β̂k+1 = β̂k. Continue

the algorithm SMACS for problem (Pβ̂k
), and set its next iterate to be Uk+1.
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For the sequences {Uk}∞k=0 and {β̂k}∞k=0 recursively generated above, we observe
that the sequence {Xβ̂k+1

(Uk)}∞k=0 is always inactive. This together with (34), (35),

(29), and the fact that β̂k ≤ β for k ≥ 0 implies that

(36) f(Uk) = fβ̂k+1
(Uk), ∇f(Uk) = ∇fβ̂k+1

(Uk) ∀k ≥ 0.

Therefore, the new termination criterion f(Uk) − g(X(Uk)) ≤ ε can be replaced by

(37) fβ̂k+1
(Uk) − g(Xβ̂k+1

(Uk)) ≤ ε

accordingly.
We now incorporate into the algorithm SMACS the new termination criterion

(37) and the aforementioned strategy for generating a sequence {β̂k}∞k=0 that asymp-
totically approaches λmax(X

∗), and we obtain a variant of the algorithm SMACS for
solving problem (27). For convenience of presentation, we omit the subscript k from

β̂k.
Variant of the smooth minimization algorithm for covariance selec-

tion (VSMACS).

Let ε > 0, ς1, ς2 > 1, and ς3 ∈ (0, 1) be given. Choose a U0 ∈ U . Set β̂ = β,
L = ρ2β2, σ = 1, and k = 0.

(1) Compute Xβ̂(Uk) according to (30).

(1a) If Xβ̂(Uk) is active, find the smallest s ∈ Z+ such that Xβ̄(Uk) is inac-

tive, where β̄ = min{ςs1 β̂, β}. Set k = 0, U0 = Uk, β̂ = β̄, L = ρ2β̂2, and
go to step 2.

(1b) If Xβ̂(Uk) is inactive and λmax(Xβ̂(Uk)) ≤ ς3β̂, set k = 0, U0 = Uk,

β̂ = max{min{ς2λmax(Xβ̂(Uk)), β}, α}, and L = ρ2β̂2.

(2) If fβ̂(Uk)− g(Xβ̂(Uk)) ≤ ε, terminate. Otherwise, compute ∇fβ̂(Uk) accord-

ing to (30).
(3) Find Usd

k = argmin{〈∇fβ̂(Uk), U − Uk〉 + L
2 ‖U − Uk‖2

F : U ∈ U}.
(4) Find Uag

k = argmin{ L
2σ‖U − U0‖2

F +
∑k

i=0
i+1
2 [fβ̂(Ui) + 〈∇fβ̂(Ui), U − Ui〉] :

U ∈ U}.
(5) Set Uk+1 = 2

k+3U
ag
k + k+1

k+3U
sd
k .

(6) Set k ← k + 1, and go to step 1.
end
We next establish some preliminary convergence properties of the above algo-

rithm.
Proposition 3.3. For the algorithm VSMACS, the following properties hold:
(1) Suppose that the algorithm VSMACS terminates at some iterate (Xβ̂(Uk), Uk).

Then (Xβ̂(Uk), Uk) is an ε-optimal solution to problem (27) and its dual.

(2) Suppose that β̂ is updated only for a finite number of times. Then the algo-
rithm VSMACS terminates in a finite number of iterations and produces an
ε-optimal solution to problem (27) and its dual.

Proof. For the final iterate (Xβ̂(Uk), Uk), we clearly know that fβ̂(Uk)−g(Xβ̂(Uk))

≤ ε, and Xβ̂(Uk) is inactive. As shown in (36), f(Uk) = fβ̂(Uk). Hence, we have

f(Uk) − g(Xβ̂(Uk)) ≤ ε. We also know that Uk ∈ U , and Xβ̂(Uk) ∈ X due to

β̂ ∈ [α, β]. Thus, statement 1 immediately follows. After the last update of β̂, the
algorithm VSMACS behaves exactly like the algorithm SMACS as applied to solve
problem (Pβ̂) except with the termination criterion f(Uk) − g(Xβ̂(Uk)) ≤ ε. Thus, it
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follows from statement 1 and Theorem 2.4 that statement 2 holds. Thus, it follows
from statement 1 and Theorem 2.4 that statement 2 holds.

4. Computational results. In this section, we compare the performance of the
smooth minimization approach and its variant proposed in this paper with other first-
order methods studied in [10, 16], that is, Nesterov’s smooth approximation scheme
and block-coordinate descent method for solving problem (16) (or, equivalently, (27))
on a set of randomly generated instances.

All instances used in this section were randomly generated in the same manner
as described in d’Aspremont et al. [10]. First, we generate a sparse invertible matrix
A ∈ Sn with positive diagonal entries and a density prescribed by . We then generate
the matrix B ∈ Sn by

B = A−1 + τV,

where V ∈ Sn is an independent and identically distributed uniform random matrix,
and τ is a small positive number. Finally, we obtain the following randomly generated
sample covariance matrix:

Σ = B − min{λmin(B) − ϑ, 0}I,

where ϑ is a small positive number. In particular, we set  = 0.01, τ = 0.15, and
ϑ = 1.0e− 4 for generating all instances.

As discussed in section 3.3, our smooth minimization approach has much better
worst-case iteration complexity than Nesterov’s smooth approximation scheme studied
in d’Aspremont et al. [10] for problem (27). However, it is unknown how their practical
performance differs from each other. In the first experiment, we compare the practical
performance of our smooth minimization approach and its variant with Nesterov’s
smooth approximation scheme studied in d’Aspremont et al. [10] for problem (27)
with α = 0.1, β = 10, and ρ = 0.5. For convenience of presentation, we label these
three first-order methods as SM, VSM, and NSA, respectively. The codes for them
are written in MATLAB. More specifically, the code for NSA follows the algorithm
presented in d’Aspremont et al. [10], and the codes for SM and VSM are written in
accordance with the algorithms SMACS and VSMACS, respectively. Moreover, we
set ς1 = ς2 = 1.05 and ς3 = 0.95 for the algorithm VSMACS. These three methods
terminate once the duality gap is less than ε = 0.1. All computations are performed
on an Intel Xeon 2.66 GHz machine with Red Hat Linux version 8.

The performance of the methods NSA, SM, and VSM for the randomly generated
instances are presented in Table 1. The row size n of each sample covariance matrix Σ
is given in column one. The numbers of iterations of NSA, SM, and VSM are given in
columns two to four, the objective function values are given in columns five to seven,
and the CPU times (in seconds) are given in the last three columns, respectively.
From Table 1, we conclude that (i) the method SM, namely, the smooth minimization
approach, outperforms substantially the method NSA, that is, Nesterov’s smooth ap-
proximation scheme; and (ii) the method VSM, namely, the variant of the smooth
minimization approach, substantially outperforms the other two methods. In addi-
tion, we see from this experiment that Nesterov’s smooth minimization approach [19]
is generally more appealing than his smooth approximation scheme [21] whenever
the problem can be solved as an equivalent smooth problem. Nevertheless, we shall
mention that the latter approach has a much wider field of application (e.g., see [21]),
where the former approach cannot be applied.
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Table 1

Comparison of NSA, SM and VSM.

Problem Iter Obj Time

n nsa sm vsm nsa sm vsm nsa sm vsm

50 3657 457 20 −76.399 −76.399 −76.393 49.0 2.7 0.1

100 7629 920 27 −186.717 −186.720 −186.714 900.4 38.4 0.4

150 20358 1455 49 −318.195 −318.194 −318.184 8165.7 188.8 2.0

200 27499 2294 102 −511.246 −511.245 −511.242 26172.5 698.8 9.2

250 45122 3060 128 −3793.255 −3793.256 −3793.257 87298.9 1767.9 19.8

300 54734 3881 161 −3187.163 −3187.171 −3187.172 184798.1 3994.0 45.5

350 64641 4634 182 −2756.717 −2756.734 −2756.734 351460.7 7613.9 83.6

400 74839 5308 176 −3490.640 −3490.667 −3490.667 614237.1 13536.7 116.9

From the above experiment, we have already seen that the method VSM outper-
forms substantially two other first-order methods, namely, SM and NSA for solving
problem (27). In the second experiment, we compare the performance of the method
VSM with the block-coordinate descent methods studied in d’Aspremont et al. [10]
and Friedman, Hastie, and Tibshirani [16] on relatively large-scale instances. For con-
venience of presentation, we label these two methods BCD1 and BCD2, respectively.
The method BCD2 was developed very recently and is a slight variant of the method
BCD1. In particular, each iterate of BCD1 solves a box constrained quadratic pro-
gramming by means of interior point methods, but each iterate of BCD2 applies a
coordinate descent approach to solving a lasso (l1-regularized) least-squares problem,
which is the dual of the box constrained quadratic programming appearing in BCD1.
It is worth mentioning that the methods BCD1 and BCD2 are only applicable for
solving problem (16) with α̃ = 0 and β̃ = ∞. Thus, we only compare their per-
formance with our method VSM for problem (16) with such α̃ and β̃. As shown in
subsection 3.2, problem (16) with α̃ = 0 and β̃ = ∞ is equivalent to problem (27)
with α and β given in (18), and hence it can be solved by applying the method VSM
to the latter problem instead.

The code for the method BCD1 was written in MATLAB by d’Aspremont and
El Ghaoui [9], while the code for BCD2 was written in Fortran 90 by Friedman, Hastie,
and Tibshirani [15]. The methods BCD1 and VSM terminate once the duality gap is
less than ε = 0.1. The original code [15] for BCD2 uses the average absolute change
in the approximate solution as the termination criterion. In particular, the average
absolute change in the approximate solution is evaluated at the end of each cycle con-
sisting of n block-coordinate descent iterations, and their code terminates once it is
below a given accuracy (see [16, p. 6] for details). According to our computational ex-
perience, we found that with such a criterion BCD2 is extremely hard to terminate for
relatively large-scale instances (say n = 300) unless a maximum number of iterations
is set. Obviously, it is not easy to choose a suitable maximum number of iterations
for BCD2. Thus, to be as fair as possible to BCD1 and VSM, we simply replace their
termination criterion detailed in [15] for BCD2 by the one with the duality gap less
than ε = 0.1. In other words, the duality gap is computed at the end of each cycle
consisting of n block-coordinate descent iterations, and BCD2 terminates once it is
below ε = 0.1. It is worth remarking that the cost for computing a duality gap is
O(n3) since the inverse of an n×n symmetric matrix is needed. Thus, it is reasonable
to compute the duality gap once every n iterations rather than each iteration.
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Table 2

Comparison of BCD1, BCD2, and VSM.

Problem Iter Obj Time

n bcd1 bcd2 vsm bcd1 bcd2 vsm bcd1 bcd2 vsm

100 124 200 33 −186.522 −186.433 −186.522 22.3 0.1 0.5

200 531 600 109 −449.210 −449.179 −449.209 300.0 1.3 9.5

300 1530 1500 146 −767.615 −767.608 −767.614 2428.2 80.9 48.5

400 2259 2400 154 −1082.679 −1082.651 −1082.677 8402.4 298.7 112.3

500 3050 3500 154 −1402.503 −1402.457 −1402.502 22537.1 640.2 211.5

600 3705 4200 165 −1728.628 −1728.587 −1728.627 48950.4 1215.0 397.6

700 4492 4900 163 −2057.894 −2057.862 −2057.892 92052.7 1972.5 611.1

800 4958 5600 169 −2392.713 −2392.671 −2392.712 147778.9 2872.3 943.2

900 5697 6300 161 −2711.874 −2711.827 −2711.874 219644.3 3593.7 1268.5

1000 6536 7000 161 −3045.808 −3045.768 −3045.808 344687.8 6098.7 1710.0

Table 3

Comparison of BCD2 and VSM.

Problem Iter Obj Time

n bcd2 vsm bcd2 vsm bcd2 vsm

100 200 54 −186.433 −186.435 0.1 0.77

200 1200 239 −449.119 −449.122 2.1 21.6

300 3000 310 −767.525 −767.525 32.1 104.2

400 11778400 321 −1082.592 −1082.589 72000.0 223.3

500 6997000 309 −1402.420 −1402.413 72001.0 395.5

600 4637400 318 −1728.553 −1728.538 72004.0 765.2

700 3215100 310 −2057.823 −2057.804 72005.0 1330.0

800 2307200 309 −2392.644 −2392.623 72003.0 1789.2

900 1846800 289 −2711.806 −2711.784 72024.0 2394.0

1000 1257000 283 −3045.749 −3045.718 72051.0 3115.8

All computations are performed on an Intel Xeon 2.66 GHz machine with Red
Hat Linux version 8. The performance of the methods BCD1, BCD2, and VSM
for the randomly generated instances are presented in Table 2. The row size n of
each sample covariance matrix Σ is given in column one. The numbers of iterations
of BCD1, BCD2, and VSM are given in columns two to four, the objective func-
tion values are given in columns five to eight, and the CPU times (in seconds) are
given in the last three columns, respectively. From Table 2, we conclude that both
BCD2 and VSM substantially outperform BCD1. We also observe that our method
VSM outperforms BCD2 for almost all instances except two relatively small-scale
instances.

In the above experimentation, we compared the performance of BCD2 and VSM
for ε = 0.1. We next compare their performance on the same instances as above and
apply the same termination criterion as above except that we set ε = 0.01 and an
upper bound of 20 hours computation time (or 72,000 seconds) per instance for both
codes. The performance of the methods BCD2 and VSM is presented in Table 3. The
row size n of each sample covariance matrix Σ is given in column one. The numbers of
iterations of BCD2 and VSM are given in columns two to three, the objective function
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values are given in columns four to five, and the CPU times (in seconds) are given
in the last two columns, respectively. It shall be mentioned that BCD2 and VSM
are both feasible methods, and, moreover, (16) and (27) are maximization problems.
Therefore for these two methods, the larger the objective function value, the better.
From Table 3, we observe that up to accuracy ε = 0.01, the method BCD2 cannot
solve almost all instances within 20 hours except the first three relatively small-scale
ones, but our method VSM does solve each of these instances in less than one hour
and produces better objective function values for almost all instances except the first
three relatively small-scale ones. Also, it is interesting to observe that the number
of iterations for VSM nearly doubles as the accuracy parameter ε increases by one
digit, which is even better than the theoretical estimate, which is

√
10 according to

Theorem 3.2.

5. Concluding remarks. In this paper, we proposed a smooth optimization
approach for solving a class of nonsmooth strictly concave maximization problems.
We also discussed the application of this approach to sparse covariance selection and
proposed a variant of this approach. The computational results showed that the
variant of the smooth optimization approach substantially outperforms the latter
one, as well as two other first-order methods studied in d’Aspremont et al. [10] and
Friedman et al. [16].

As discussed in subsection 3.3, problem (27) has the same form as (2) and satisfies
all assumptions imposed on problem (2). Moreover, its associated objective function
φ(X,U) = log detX−〈Σ+ρU,X〉 is affine with respect to U for every fixed X ∈ Sn

++.
In view of these facts along with the remarks made in section 2, one can observe
that problem (27) can be suitably solved by Nesterov’s excessive gap technique [20].
Since the iterate complexity and the computational cost per iterate of this technique
is the same as those of the algorithm SMACS, we expect that the computational
performance of these two methods for solving (27) is similar. It would be interesting
to implement Nesterov’s excessive gap technique [20] and its variant (that is, the one
in a similar fashion to the algorithm VSMACS) and compare their computational
performance with SMACS and VSMACS, respectively.

Though the variant of the smooth optimization approach outperforms substan-
tially the smooth optimization approach, we are currently only able to establish some
preliminary convergence properties for it. A possible direction leading to a thorough
proof of its convergence would be to show that the updates on β̂ in the algorithm
VSMACS can occur only for a finite number of times. Given that VSMACS is
a nonmonotone algorithm, it is, however, highly challenging to analyze the behav-
ior of the sequences {Uk} and {Xβ̂(Uk)} and hence the total number of updates on

β̂. Interestingly, we observed in our implementation that when β̂ > λmax(X
∗), the

sequence {Xβ̂(Uk)} generated by the algorithm VSMACS satisfies λmax(Xβ̂(Uk)) ∈
[λmax(X

∗), β̂), where X∗ is the optimal solution of problem (27). Nevertheless, it
remains completely open whether or not this holds in general. In addition, the ideas
used in the variant of the smooth optimization approach are interesting in their own
right even when viewed as some heuristics. They could also be used to enhance
the practical performance of Nesterov’s first-order methods [19, 21] for solving some
general min-max problems.

The codes for the variant of the smooth minimization approach are written in
MATLAB and C, which are available online at www.math.sfu.ca/∼zhaosong. The
C code for this method can solve large-scale problems more efficiently, provided the
LAPACK package is suitably installed. We will plan to extend these codes for solving
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more general problems of the form

maxX log detX − 〈Σ, X〉 −
∑
ij

ωij |Xij |

s.t. α̃I � X � β̃I,

Xij = 0 ∀(i, j) ∈ Ω

for some set Ω, where ωij = ωji ≥ 0 for all i, j = 1, . . . , n, and 0 ≤ α̃ < β̃ ≤ ∞ are
some fixed bounds on the eigenvalues of the solution.
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