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‘Separable’ uncertainty sets have been widely used in robust portfolio selection models (e.g. see
[E. Erdoğan, D. Goldfarb, and G. Iyengar, Robust portfolio management, manuscript, Department of
Industrial Engineering and Operations Research, Columbia University, New York, 2004; D. Goldfarb and
G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp. 1–38; R.H. Tütüncü and
M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp. 157–187]). For these uncertainty sets,
each type of uncertain parameter (e.g. mean and covariance) has its own uncertainty set. As addressed in
[Z. Lu, A new cone programming approach for robust portfolio selection, Tech. Rep., Department of Math-
ematics, Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio
selection based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-
009-0271-z], these ‘separable’ uncertainty sets typically share two common properties: (1) their actual
confidence level, namely, the probability of uncertain parameters falling within the uncertainty set, is
unknown, and it can be much higher than the desired one; and (2) they are fully or partially box-type. The
associated consequences are that the resulting robust portfolios can be too conservative, and moreover, they
are usually highly non-diversified, as observed in the computational experiments conducted in [Z. Lu, A
new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics,
Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection
based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z;
R.H. Tütüncü and M. Koenig, Robust asset allocation, Ann. Oper. Res. 132 (2004), pp. 157–187]. To com-
bat these drawbacks, we consider a factor model for random asset returns. For this model, we introduce a
‘joint’ ellipsoidal uncertainty set for the model parameters and show that it can be constructed as a confi-
dence region associated with a statistical procedure applied to estimate the model parameters. We further
show that the robust maximum risk-adjusted return (RMRAR) problem with this uncertainty set can be
reformulated and solved as a cone programming problem. The computational results reported in [Z. Lu, A
new cone programming approach for robust portfolio selection, Tech. Rep., Department of Mathematics,
Simon Fraser University, Burnaby, BC, 2006; Z. Lu, A computational study on robust portfolio selection
based on a joint ellipsoidal uncertainty set, Math. Program. (2009), DOI: 10.1007/510107-009-0271-Z]
demonstrate that the robust portfolio determined by the RMRAR model with our ‘joint’ uncertainty set
outperforms that with Goldfarb and Iyengar’s ‘separable’ uncertainty set proposed in the seminal paper
[D. Goldfarb and G. Iyengar, Robust portfolio selection problems, Math. Oper. Res. 28 (2003), pp. 1–38]
in terms of wealth growth rate and transaction cost; moreover, our robust portfolio is fairly diversified, but
Goldfarb and Iyengar’s is surprisingly highly non-diversified.
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90 Z. Lu

1. Introduction

The portfolio selection problem is concerned with determining a portfolio such that the ‘return’
and ‘risk’ of the portfolio have a favourable trade-off. The first mathematical model for the
portfolio selection problem was developed by Markowitz [23] five decades ago, in which an
optimal or efficient portfolio can be identified by solving a convex quadratic program. In his
model, the ‘return’ and ‘risk’ of a portfolio are measured by the mean and variance, respectively,
of the random portfolio return. Thus, the Markowitz portfolio model is also widely referred to as
the mean-variance model.

Despite the theoretical elegance and importance of the mean-variance model, it continues to
encounter skepticism among investment practitioners. One of the main reasons is that the optimal
portfolios determined by the mean-variance model are often sensitive to perturbations in the
parameters of the problem (e.g. expected returns and the covariance matrix), and thus lead to
large turnover ratios with periodic adjustments of the problem parameters; see, for example,
Michaud [24]. Various aspects of this phenomenon have also been extensively studied in the
literature, for example, see [7–9,11].

As a recently emerging modelling tool, robust optimization can incorporate the perturbations
in the parameters of the problems into the decision-making process. Generally speaking, robust
optimization aims to find solutions to the given optimization problems with uncertain problem
parameters that will achieve good objective values for all or most of the realizations of the
uncertain problem parameters. For details, see [1–3,12,13]. Recently, robust optimization has
been applied to model portfolio selection problems in order to combat the sensitivity of optimal
portfolios to statistical errors in the estimates of problem parameters. For example, Goldfarb and
Iyengar [16] considered a factor model for random portfolio returns, and proposed some statistical
procedures for constructing uncertainty sets for the model parameters. For these uncertainty
sets, they showed that robust portfolio selection problems can be reformulated as second-order
cone programs. Subsequently, Erdoğan et al. [15] extended this method to robust index tracking
and active portfolio management problems. Alternatively, Tütüncü and Koenig [28] (see also
Halldórsson and Tütüncü [17]) considered a box-type uncertainty structure for the mean and
covariance matrix of the assets returns. For this uncertainty structure, they showed that the robust
portfolio selection problems can be formulated and solved as smooth saddle-point problems
that involve semidefinite constraints. In addition, for finite uncertainty sets, Ben-Tal et al. [4]
studied the robust formulations of multi-stage portfolio selection problems. Also, El Ghaoui
et al. [14] considered the robust value-at-risk (VaR) problems given the partial information on
the distribution of the returns, and they showed that these problems can be cast as semidefinite
programs. Zhu and Fukushima [30] showed that the robust conditional value-at-risk problems can
be reformulated as linear programs or second-order cone programs for some simple uncertainty
structures of the distributions of the returns. Recently, DeMiguel and Nogales [10] proposed a
novel approach for portfolio selection by minimizing certain robust estimators of portfolio risk.
In their method, robust estimation and portfolio optimization are performed by solving a single
nonlinear program.

The structure of the uncertainty set is an important ingredient in formulating and solving
robust portfolio selection problems. The ‘separable’ uncertainty sets have been commonly used
in the literature. For example, Tütüncü and Koenig [28] (see also Halldórsson and Tütüncü [17])
proposed the box-type uncertainty sets Sm = {μ : μL ≤ μ ≤ μU } and Sv = {� : � � 0, �L ≤
� ≤ �U } for the mean μ and covariance � of the asset return vector r, respectively. Here, A� 0
(resp. � 0) denotes that the matrix A is symmetric and positive semidefinite (resp. definite). In
the seminal paper [16], Goldfarb and Iyengar studied a factor model for the asset return vector r
in the form of

r = μ + V Tf + ε,
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where μ is the mean return vector, f is the random factor return vector, V is the factor loading
matrix and ε is the residual return vector (see Section 2 for details). They also proposed some
uncertainty sets Sm and Sv for μ and V, respectively; in particular, Sm is a box and Sv , a Cartesian
product of a bunch of ellipsoids. It shall be mentioned that all the ‘separable’uncertainty sets above
share two common properties: (1) viewed as a joint uncertainty set, the actual confidence level
of Sm × Sv is unknown, although Sm and/or Sv may have known confidence levels individually;
and (2) Sm × Sv is fully or partially box-type. The associated consequences are that the resulting
robust portfolio can be too conservative since the actual confidence level of Sm × Sv can be much
higher than the desired one, or equivalently, the uncertainty set Sm × Sv can be too noisy; and
moreover, it is highly non-diversified as observed in the computational experiments conducted in
[21,22,28]. These drawbacks will be further addressed in detail in Section 2.

In this article, we also consider the same factor model for asset returns as studied in [16]. To
combat the aforementioned drawbacks, we propose a ‘joint’ ellipsoidal uncertainty set for the
model parameters (μ,V ), and show that it can be constructed as a confidence region associated
with a statistical procedure applied to estimate (μ,V ) for any desired confidence level. We further
show that for this uncertainty set, the robust maximum risk-adjusted return (RMRAR) problem can
be reformulated and solved as a cone programming problem. The computational results reported
in [21,22] demonstrate that the robust portfolio determined by the RMRAR model with our ‘joint’
uncertainty set outperforms that with Goldfarb and Iyengar’s ‘separable’ uncertainty set proposed
in the seminal paper [16] in terms of wealth growth rate and transaction cost; moreover, our robust
portfolio is fairly diversified, but Goldfarb and Iyengar’s is surprisingly highly non-diversified.

The rest of this article is organized as follows. In Section 2, we describe the factor model
for asset returns that was studied in Goldfarb and Iyengar [16], and briefly review the statistical
procedure proposed in [16] for constructing a ‘separable’uncertainty set of the model parameters.
The associated drawbacks of this uncertainty set are also addressed. In Section 3, we introduce a
‘joint’uncertainty set for the model parameters, and propose a statistical procedure for constructing
it for any desired confidence level. Several robust portfolio selection problems for this uncertainty
set are also discussed. In Section 4, we show that for our ‘joint’ uncertainty set, the RMRAR
problem can be reformulated and solved as a cone programming problem. Finally, we give some
concluding remarks in Section 5.

2. Factor model and separable uncertainty sets

In this section, we first describe the factor model for asset returns that was studied in Goldfarb and
Iyengar [16]. Then, we briefly review the statistical procedure proposed in [16] for constructing a
‘separable’uncertainty set for the model parameters. The associated drawbacks of this uncertainty
set are also addressed.

The following factor model for asset returns was studied in [16]. Suppose that a discrete-time
market has n traded assets. The vector of asset returns over a single market period is denoted by
r ∈Rn. The returns on the assets in different market periods are assumed to be independent. The
single period return r is assumed to be a random vector given by

r = μ + V Tf + ε, (1)

where μ∈Rn is the vector of mean returns, f ∼ N (0, F ) ∈ �m denotes the returns of the m
factors driving the market, V ∈Rm×n denotes the factor loading matrix of the n assets and ε ∼
N (0, D) ∈ �n is the vector of residual returns. Here x ∼ N (μ, �) denotes that x is a multivariate
normal random variable with mean μ and covariance �. Further, it is assumed that D is a positive
semidefinite diagonal matrix, and the residual return vector ε is independent of the factor return
vector f. Thus, it can be seen from the above assumption that r ∼ N (μ, V TFV + D).
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92 Z. Lu

Goldfarb and Iyengar [16] also studied a robust model for (1). In their model, the mean return
vector μ is assumed to lie in the uncertainty set Sm given by

Sm = {μ : μ = μ0 + ξ, |ξi | ≤ γi, i = 1, . . . , n}, (2)

and the factor loading matrix V is assumed to belong to the uncertainty set Sv given by

Sv = {V : V = V0 + W, ‖Wi‖G ≤ ρi, i = 1, . . . , n}, (3)

where Wi is the ith column of W and ‖w‖G = √
wTGw denotes the elliptic norm of w with

respect to a symmetric, positive definite matrix G.
Two analogous statistical procedures were proposed in [16] for constructing the above uncer-

tainty sets Sm and Sv . As observed in our computational experiments, the behaviour of these
uncertainty sets is almost identical. Therefore, we only briefly review their first statistical pro-
cedure as follows. Suppose the market data consists of asset returns {rt :t = 1, . . . , p} and factor
returns {f t :t = 1, . . . , p} for p trading periods. Then the linear model (1) implies that

rt
i = μi +

m∑
j=1

Vjif
t
j + εt

i , i = 1, . . . , n, t = 1, . . . , p. (4)

As in the typical linear regression analysis, it is assumed that {εt
i : i = 1, . . . , n, t = 1, . . . , p}

are all independent normal random variables and εt
i ∼ N (0, σ 2

i ) for all t = 1, . . . , p. Now, let
B = (f 1, f 2, . . . , f p) ∈Rm×p denote the matrix of factor returns, and let e∈Rp denote an all-one
vector. Further, define

yi = (r1
i , r2

i , . . . , r
p

i )T, A = (e BT), xi = (μi, V1i , V2i , . . . , Vmi)
T, εi = (ε1

i , . . . , ε
p

i )T

(5)
for i = 1, . . . , n. Then (4) can be rewritten as

yi = Axi + εi, ∀ i = 1, . . . , n. (6)

Since usually p � m in practice, it was assumed in [16] that the matrix A has full column rank. As
a result, it follows from (6) that the least-squares estimate x̄i of the true parameter xi is given by

x̄i = (ATA)−1ATyi. (7)

The following result has played a crucial role in constructing the uncertainty sets Sm and Sv in
[16]. It will also be used to build a ‘joint’ ellipsoidal uncertainty set in Section 3.

Theorem 2.1 Let s2
i be the unbiased estimate of σ 2

i given by

s2
i = ‖yi − Ax̄i‖2

p − m − 1
(8)

for i= 1, . . . , n. Then the random variables

Y i = 1

(m + 1)s2
i

(x̄i − xi)
TATA(x̄i − xi), i = 1, . . . , n, (9)

are distributed according to the F-distribution with m+ 1 degrees of freedom in the numerator
and p−m− 1 degrees of freedom in the denominator. Moreover, {Y i}ni=1 are independent.
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Proof The first statement was shown in [16, p. 16]. We now prove the second statement. In view
of (6) and (7), we obtain that

x̄i − xi = (ATA)−1ATεi, yi − Ax̄i = [I − A(ATA)−1AT]εi .

Using these relations and the assumption that {εi: i = 1, . . . , n} are independent, we conclude that
{Y i}ni=1 are independent. �

Let FJ denote the cumulative distribution function of the F-distribution with J degrees of
freedom in the numerator and p−m − 1 degrees of freedom in the denominator. Given any
ω̃ ∈ (0, 1), let cJ (ω̃) be its ω̃-critical value, that is, FJ (cJ (ω̃)) = ω̃. Also, we let

S i (ω̃) = {xi : (x̄i − xi)
TATA(x̄i − xi) ≤ (m + 1)cm+1(ω̃)s2

i }, i = 1, . . . , n,

S(ω̃) = S1(ω̃) × S2(ω̃) × · · · × Sn(ω̃).
(10)

Using Theorem 2.1, Goldfarb and Iyengar showed that S(ω̃) is an ω̃n-confidence set of (μ,V ).
Let Sm(ω̃) and Sv(ω̃) denote the projection of S(ω̃) along μ and V, respectively. Their explicit
expressions can be found in [16, Section 5], and they are in the form of (2)–(3). Goldfarb and
Iyengar [16] set Sm := Sm(ω̃) and Sv := Sm(ω̃), and viewed them as the ω̃n-confidence sets of
μ and V, respectively. However, we immediately observe that

P(μ ∈ Sm(ω̃)) ≥ P((μ, V ) ∈ S(ω̃)) = ω̃n,

and similarly, P(V ∈ Sv(ω̃)) ≥ ω̃n. Hence, Sm and Sv have at least ω̃n-confidence levels, but
their actual confidence levels are unknown and can be much higher than ω̃n. Further, in view of
the relation S(ω̃) ⊆ Sm(ω̃) × Sv(ω̃), one has

P((μ, V ) ∈ Sm(ω̃) × Sv(ω̃)) ≥ P((μ, V ) ∈ S(ω̃)) = ω̃n.

Thus Sm(ω̃) × Sv(ω̃), as a joint uncertainty set of (μ,V ), has at least a ω̃n-confidence level.
However, its actual confidence level is unknown and can be much higher than the desired one,
that is, ω̃n. One immediate consequence is that the robust portfolio selection models based on
such uncertainty sets Sm(ω̃) and Sv(ω̃) can be too conservative. In addition, we observe from
computational experiments that the resulting robust portfolios are highly non-diversified, in other
words, they concentrate only on a few assets. One possible interpretation of this phenomenon is
that Sm(ω̃) has a box-type structure. To combat these drawbacks, we introduce a ‘joint’ ellipsoidal
uncertainty set for (μ,V ) in Section 3, and show that it can be constructed by a statistical approach.

Before ending this section, we shall remark that in Goldfarb and Iyengar’s robust factor model,
some uncertainty structures were also proposed for the parameters F and D that are the covari-
ances of factor and residual returns. Nevertheless, they are often assumed to be fixed in practical
computations, and can be estimated by some standard statistical approaches [16, Section 7]. For
brevity of presentation, we assume that F and D are fixed throughout the rest of the article. But
we shall mention that the results of this article can be extended to the case where F and D have
the same uncertainty structures as described in [16].

3. Joint uncertainty set and robust portfolio selection models

In this section, we consider the same factor model for asset returns as described in Section 2. In
particular, we first introduce a ‘joint’ ellipsoidal uncertainty set for the model parameters (μ,V ).
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94 Z. Lu

Then we propose a statistical procedure for constructing it. Finally, we discuss several robust
portfolio selection models for this uncertainty set.

Throughout this section, we assume that all notations are given in Section 2, unless explicitly
defined otherwise.

Recall from Section 2 that the ‘separable’ uncertainty set Sm(ω̃) × Sv(ω̃) of (μ,V ) proposed
in [16] has several drawbacks. To overcome these drawbacks, we consider a ‘joint’ ellipsoidal
uncertainty set of (μ,V ) with a ω-confidence level in the form of

Sμ,v(ω) =
{

(μ̃, Ṽ ) ∈ �n × �m×n :
n∑

i=1

(x̃i − x̄i )
T(ATA)(x̃i − x̄i )

s2
i

≤ (m + 1)c̃(ω)

}
(11)

for some c̃(ω), where x̃i = (μ̃i, Ṽ1i , Ṽ2i , . . . , Ṽmi)
T for i = 1, . . . , n. Using the definition of

{Y i}ni=1 (see (9)), we can observe that the following property holds for Sμ,v(ω).

Proposition 3.1 Sμ,v(ω) is an ω-confidence uncertainty set of (μ,V ) for some c̃(ω) if and only
if P(

∑n
i=1 Y i ≤ c̃(ω)) = ω, that is, c̃(ω) is the ω-critical value of

∑n
i=1 Y i .

We are now ready to propose a statistical procedure for constructing the aforementioned ‘joint’
ellipsoidal uncertainty set for the parameters (μ,V ). First, we know from Theorem 2.1 that the
random variables {Y i}ni=1 have the F-distribution with m + 1 degrees of freedom in the numerator
and p−m − 1 degrees of freedom in the denominator. It follows from a standard statistical result
(e.g. see [26]) that their mean and standard deviation are

μF = p − m − 1

p − m − 3
, σF =

√
2(p − m − 1)2(p − 2)

(m + 1)(p − m − 3)2(p − m − 5)
, (12)

respectively, provided that p>m + 5, which often holds in practice. In view of Theorem 2.1, we
also know that {Y i}ni=1 are i.i.d.. Using this fact and the central limit theorem (e.g. see [20]), we
conclude that the distribution of the random variable

Zn =
∑n

i=1 Y i − nμF

σF

√
n

converges towards the standard normal distribution N (0, 1) as n → ∞. Note that when n
approaches a couples dozens, the distribution of Zn is very nearly N (0, 1). Given that ω ∈ (0, 1),
let c(ω) be the ω-critical value for a standard normal variable Z , that is, P(Z ≤ c(ω)) = ω.
Then we have limn→∞ P(Zn ≤ c(ω)) = ω. Hence, for a relatively large n,

P

(∑n
i=1 Y i − nμF

σF

√
n

≤ c(ω)

)
≈ ω,

and hence, P(
∑n

i=1 Y i ≤ c̃(ω)) ≈ ω, where c̃(ω) = c(ω)σF

√
n + nμF . In view of this result and

Proposition 3.1, one can see that the set Sμ,v given in (11) with such a c̃(ω) is an ω-confidence
uncertainty set of (μ,V ) when n is relatively large (say a couple dozen). We next consider the case
where n is relatively small. Recall that {Y i}ni=1 are i.i.d. and have F-distribution. Thus, we can
apply simulation techniques (e.g. see [25]) to find a h(ω) such that P(

∑n
i=1 Y i ≤ h(ω)) ≈ ω. In

view of this relation and Proposition 3.1, we immediately see that the set Sμ,v given in (11) with
c̃(ω) = h(ω) is an ω-confidence uncertainty set of (μ,V ). Therefore, for every ω ∈ (0, 1), one can
apply the above statistical procedure to build an uncertainty set of (μ,V ) in the form of (11) with
a ω-confidence level.
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Optimization Methods & Software 95

From now on, we assume that for every ω ∈ (0, 1), Sμ,v(ω) given in (11), simply denoted by
Sμ,v , is a ‘joint’ ellipsoidal uncertainty set of (μ,V ) with a ω-confidence level. In view of (9), one
has

∑n
i=1 Y i ≥ 0. Moreover, we know from Theorem 2.1 that

∑n
i=1 Y i is a continuous random

variable. Using these facts and Proposition 3.1, one can observe that the following property holds
for Sμ,v:

c̃(ω) > 0, if ω > 0. (13)

We next consider several robust portfolio selection problems for the ‘joint’ ellipsoidal uncer-
tainty set Sμ,v . Indeed, an investor’s position in the market can be described by a portfolio φ ∈Rn,
where the ith component φi represents the fraction of total wealth invested in the ith asset. The
return rφ on the portfolio φ is given by

rφ = rTφ = μTφ + f TV φ + εTφ ∼ N (φTμ, φT(V TFV + D)φ), (14)

and hence, the mean and variance of rφ are

E[rφ] = φTμ and Var[rφ] = φT(V TFV + D)φ, (15)

respectively. Generally, for any investment, there are costs associated with short-sale restrictions.
On the other hand, as shown in Jagannathan and Ma [19], no short-sale restrictions can consistently
reduce estimation errors on the covariance matrix. Therefore, we assume that short-sale restrictions
are not imposed, that is, φ ≥ 0. Let


 = {φ : eTφ = 1, φ ≥ 0}. (16)

The objective of the robust maximum return problem is to maximize the worst-case expected
return subject to a constraint on the worst-case variance, that is, to solve the following problem:

max
φ

min
(μ,V )∈Sμ,v

E[rφ]

s.t. max
(μ,V )∈Sμ,v

Var[rφ] ≤ λ,

φ ∈ 
.

(17)

A closely related problem, the robust minimum variance problem, is the ‘dual’ of (17). The
objective of this problem is to minimize the worst-case variance of the portfolio subject to a
constraint on the worst-case expected return on the portfolio. It can be formulated as

min
φ

max
(μ,V )∈Sμ,v

Var[rφ]

s.t. min
(μ,V )∈Sμ,v

E[rφ] ≥ β,

φ ∈ 
.

(18)

We now address a drawback associated with problem (17). Let

Sμ = {μ : (μ, V ) ∈ Sμ,v for some V }, SV = {V : (μ, V ) ∈ Sμ,v for some μ}.
In view of (15), we observe that (17) is equivalent to

max
φ

min
(μ,V )∈Sμ×SV

E[rφ]

s.t. max
(μ,V )∈Sμ×SV

Var[rφ] ≤ λ,

φ ∈ 
.

(19)
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96 Z. Lu

Hence, the uncertainty set of (μ,V ) used in problem (17) is essentially Sμ × SV . Recall that Sμ,v

has a ω-confidence level, and hence, we have

P((μ, V ) ∈ Sμ × SV ) ≥ P((μ, V ) ∈ Sμ,v) = ω.

Using this relation, we immediately conclude that Sμ × SV has at least a ω-confidence level,
but its actual confidence level is unknown and could be much higher than the desired ω. Hence,
problem (17) can be too conservative even though Sμ,v has the desired confidence level ω. Using
a similar argument, we see that problem (18) also has this drawback.

To combat the drawback of problem (17), we establish the following two propositions.

Proposition 3.2 Let

λl = min
φ∈


max
V ∈SV

Var[rφ],

and let φ∗
λ denote an optimal solution of problem (17) for any λ>λl . Then, φ∗

λ is also an optimal
solution of the following problem

max
φ∈


min
(μ,V )∈Sμ×SV

E[rφ] − θVar[rφ], (20)

for some θ ≥ 0.

Proof Recall that problem (17) is equivalent to problem (19). It implies that φ∗
λ is also an optimal

solution of (19). Let

f (φ) = min
(μ,V )∈Sμ×SV

E[rφ], g(φ) = max
(μ,V )∈Sμ×SV

Var[rφ].

In view of (15), we see that f (φ) is concave and g(φ) is convex over the convex compact set 
.
For any λ>λl, we can observe that: (i) problem (19) is feasible and its optimal value is finite
and (ii) there exists φ0 ∈
 such that g(φ0) <λ. Hence, from Bertsekas [5, Proposition 5.3.1], we
know that there exists at least one Lagrange multiplier θ ≥ 0 such that φ∗

λ solves problem (20) for
such θ , and the conclusion follows. �

We observe that the converse of Proposition 3.2 also holds.

Proposition 3.3 Let φ∗
θ denote an optimal solution of problem (20) for any θ ≥ 0. Then, φ∗

θ is
also an optimal solution of problem (17) for

λ = max
V ∈SV

Var[rφ∗
θ
]. (21)

Proof We first observe that φ∗
θ is a feasible solution of problem (17) with λ given by (21). Now

assume for a contradiction that there exists φ ∈
 such that

max
(μ,V )∈Sμ,v

Var[rφ] ≤ λ, min
(μ,V )∈Sμ,v

E[rφ] > min
(μ,V )∈Sμ,v

E[rφ∗
θ
],

or equivalently,

max
V ∈SV

Var[rφ] ≤ λ, min
μ∈Sμ

E[rφ] > min
μ∈Sμ

E[rφ∗
θ
]
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due to (15). These relations together with (15) and (21) imply that for such φ,

min
(μ,V )∈Sμ×SV

E[rφ] − θVar[rφ] = min
μ∈Sμ

E[rφ] − θ max
V ∈SV

Var[rφ],

> min
μ∈Sμ

E[rφ∗
θ
] − θ max

V ∈SV

Var[rφ∗
θ
],

= min
(μ,V )∈Sμ×SV

E[rφ∗
θ
] − θVar[rφ∗

θ
],

which is a contradiction of the fact that φ∗
θ is an optimal solution of problem (20). Thus, the

conclusion holds. �

In view of Propositions 3.2 and 3.3, we conclude that problems (17) and (20) are equivalent. We
easily observe that the conservativeness of problem (20) (or equivalently (17)) can be alleviated
if we replace Sμ × SV by Sμ,v in (20). This leads to the RMRAR problem with the uncertainty
set Sμ,v:

max
φ∈


min
(μ,V )∈Sμ,v

E[rφ] − θVar[rφ], (22)

where θ ≥ 0 represents the risk-aversion parameter.
In contrast to problems (17) and (18), the RMRAR problem (22) has a clear advantage that the

confidence level of its underlying uncertainty set is controllable. In the next section, we show that
problem (22) can be reformulated as a cone programming problem.

4. Cone programming reformulation

In this section, we show that the RMRAR problem (22) can be reformulated as a cone programming
problem.

In view of (14), the RMRAR problem (22) can be written as

max
φ∈


{
min

(μ,V )∈Sμ,v

{
μTφ − θφTV TFV φ

}− θφTDφ

}
. (23)

By introducing auxiliary variables ν and t, problem (23) can be reformulated as

max
φ,ν,t

ν − θt

s.t. min
(μ,V )∈Sμ,v

{
μTφ − θφTV TFV φ

} ≥ ν,

φTDφ ≤ t,

φ ∈ 
.

(24)

We next aim to reformulate the inequality

min
(μ,V )∈Sμ,v

{
μTφ − θφTV TFV φ

} ≥ ν (25)

as linear matrix inequalities (LMIs). Before proceeding, we introduce two lemmas that will be
used subsequently.

The following lemma is about the S -procedure. For a discussion of the S -procedure and its
applications, see Boyd et al. [6].
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98 Z. Lu

Lemma 4.1 Let Fi(x) = xTAix + 2bT
i x + ci , i= 0, . . . , p be quadratic functions of x∈Rn. Then

F0(x) ≤ 0 for all x such that Fi(x) ≤ 0, i= 1, . . . , p, if there exists τ i ≥ 0 such that

p∑
i=1

τi

(
ci bT

i

bi Ai

)
−
(

c0 bT
0

b0 A0

)
� 0.

Moreover, if p= 1 then the converse holds if there exists x0 ∈Rn such that F1(x0) < 0.

In the next lemma, we state one simple property of the standard Kronecker product, denoted
by ⊗. For its proof, see [18].

Lemma 4.2 If H � 0 and K � 0, then H ⊗ K � 0.

We are now ready to show that the inequality (25) can be reformulated as LMIs.

Lemma 4.3 Let Sμ,v be an ω-confidence uncertainty set given in (11) for ω ∈ (0, 1). Then, the
inequality (25) is equivalent to the following LMIs

⎛
⎝τR − 2θS ⊗

(
0 0
0 F

)
τh + q

τhT + qT τη − 2ν

⎞
⎠ � 0,

(
1 φT

φ S

)
� 0, τ ≥ 0,

(26)

where

R =

⎛
⎜⎜⎜⎜⎜⎝

ATA

s2
1

. . .

ATA

s2
n

⎞
⎟⎟⎟⎟⎟⎠ ∈ �[(m+1)n]×[(m+1)n], η =

n∑
i=1

x̄T
i

(
ATA

s2
i

)
x̄i − c̃(ω), (27)

h =

⎛
⎜⎜⎜⎜⎜⎝

−ATAx̄1

s2
1

...

−ATAx̄n

s2
n

⎞
⎟⎟⎟⎟⎟⎠ ∈ �(m+1)n, q =

⎛
⎜⎜⎜⎜⎜⎝

φ1

0
...

φn

0

⎞
⎟⎟⎟⎟⎟⎠ ∈ �(m+1)n (28)

(here, 0 denotes the m-dimensional zero vector).

Proof Given any (ν, θ , φ) ∈R ×R ×Rn, we define

H(μ, V ) = −μTφ + θφTV TFV φ + ν.

As in (5), let xi = (μi,V 1i,V 2i, . . . ,Vmi)T for i = 1, . . . , n. Viewing H(μ,V ) as a function of
x = (x1, . . . , xn) ∈R(m+1)n, we have

∂H

∂xi

=
( −φi

2θφiFV φ

)
,

∂2H

∂xi∂xj

=
(

0 0
0 2θφiφjF

)
, i, j = 1, . . . , n.
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Using these relations and performing the Taylor series expansion for H(μ,V ) at x = 0, we obtain
that

H(μ, V ) = 1

2

n∑
i,j=1

xT
i

(
0 0
0 2θφiφjF

)
xj +

n∑
i=1

(−φi

0

)T

xi + ν. (29)

Note that Sμ,v is given by (11). It can be written as

Sμ,v =
{

(μ, V ) :
n∑

i=1

xT
i

(
ATA

s2
i

)
xi − 2

n∑
i=1

(
ATAx̄i

s2
i

)T

xi +
n∑

i=1

x̄T
i

(
ATA

s2
i

)
x̄i − c̃(ω) ≤ 0

}
.

(30)
In view of (13) and the fact that ω > 0, we have c̃(ω) > 0. Hence, we see that x = x̄ strictly satisfies
the inequality given in (30). Using (29), (30) and Lemma 4.1, we conclude that H(μ,V ) ≤ 0 for
all (μ, V ) ∈ Sμ,v if and only if there exists τ ∈R such that

τ

(
R h

hT η

)
−
(

E −q

−qT 2ν

)
� 0, τ ≥ 0, (31)

where R, η, h and q are defined in (27) and (28), respectively, and E is given by

E = (Eij ) ∈ �[(m+1)n]×[(m+1)n], Eij =
(

0 0
0 2θφiφjF

)
∈ �(m+1)×(m+1), i, j = 1, . . . , n.

In terms of the Kronecker product ⊗, we can rewrite E as

E = 2θ(φφT) ⊗
(

0 0
0 F

)
.

This identity together with Lemma 4.2 and the fact that F � 0 implies that (31) holds if and only if

⎛
⎝τR − 2θS ⊗

(
0 0
0 F

)
τh + q

τhT + qT τη − 2ν

⎞
⎠ � 0, S � φφT, τ ≥ 0. (32)

Using the Schur Complement Lemma, we further observe that (32) holds if and only if (26) holds.
Thus, we see that H(μ,V ) ≤ 0 for all (μ, V ) ∈ Sμ,v if and only if (26) holds. Then the conclusion
immediately follows from this result and the fact that the inequality (25) holds if and only if
H(μ,V ) ≤ 0 for all (μ, V ) ∈ Sμ,v . �

In the following theorem, we show that the RMRAR problem (22) can be reformulated as a
cone programming problem.
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100 Z. Lu

Theorem 4.4 Let Sμ,v be an ω-confidence uncertainty set given in (11) for ω ∈ (0, 1). Then, the
RMRAR problem (22) is equivalent to

max
φ,S,τ,ν,t

ν − θt

s.t.

⎛
⎝τR − 2θS ⊗

(
0 0
0 F

)
τh + q

τhT + qT τη − 2ν

⎞
⎠ � 0,

(
1 φT

φ S

)
� 0,

⎛
⎝ 1 + t

1 − t

2D1/2φ

⎞
⎠ ∈ Ln+2,

τ ≥ 0, φ ∈ 
,

(33)

where 
, R, η, h and q are defined in (16), (27) and (28), respectively, and Lk denotes the
k-dimensional second-order cone given by

Lk =
⎧⎨
⎩z ∈ �k : z1 ≥

√√√√ k∑
i=2

z2
i

⎫⎬
⎭.

Proof We observe that the inequality φTDφ ≤ t is equivalent to the third constraint of (33), which
together with Lemma 4.3 implies that (24) is equivalent to (33). The conclusion immediately
follows from this result and the fact that (22) is equivalent to (24). �

The following theorem establishes the solvability of problem (33).

Theorem 4.5 Assume that 0 �= F � 0, ω ∈ (0, 1) and θ > 0. Then, problem (33) and its dual
problem are both strictly feasible, and hence, both problems are solvable and the duality gap
is zero.

Proof Let ri( · ) denote the relative interior of the associated set. We first show that problem (33)
is strictly feasible. In view of (16), we immediately see that ri(
) �=∅. Let φ0 ∈ ri(
), and let
t0 ∈R such that t0 > (φ0)TDφ0. Then we can observe that⎛

⎜⎝
1 + t0

1 − t0

2D1/2φ0

⎞
⎟⎠ ∈ ri(Ln+2).

Let S0 ∈Rn×n be such that S0 �φ0(φ0)T. Then by the Schur Complement Lemma, one has(
1 (φ0)T

φ0 S0

)
� 0.

Using the assumption that A has full column rank, we observe from (27) that R � 0. Hence, there
exists a sufficiently large τ 0 > 0 such that

M ≡ τ 0R − 2θS0 ⊗
(

0 0
0 F

)
� 0. (34)
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Now, let ν0 be sufficiently small such that

τ 0η − 2ν0 − (τ 0h + q0)TM−1(τ 0h + q0) > 0,

where q0 = (φ0
1 , 0, . . . , φ0

n, 0)T ∈ �(m+1)n (here, 0 denotes the m-dimensional zero vector). This,
together with (34) and the Schur Complement Lemma implies that

⎛
⎜⎝τ 0R − 2θS0 ⊗

(
0 0
0 F

)
τ 0h + q0

(τ 0h + q0)T τ 0η − 2ν0

⎞
⎟⎠ � 0.

Thus, we see that (φ0, S0, τ 0, ν0, t0) is a strictly feasible point of problem (33).
We next show that the dual of problem (33) is also strictly feasible. Let

X1 =
(

X1
11 X1

12

X1
21 X1

22

)
, X2 =

(
X2

11 X2
12

X2
21 X2

22

)
, x3 =

⎛
⎜⎝

x3
1

x3
2

x3
3

⎞
⎟⎠ (35)

be the dual variables corresponding to the first three constraints of problem (33), respectively,
where X1

11 ∈ �[(m+1)n]×[(m+1)n], X1
12 ∈ �(m+1)n, X2

22 ∈ �n×n, X2
21, x3

3 ∈ �n, X1
22, X2

11, x3
1 , x3

2 ∈ �.
Also, let x4 ∈R be the dual variable corresponding to the constraint eTφ = 1. Then, we see that
the dual of problem (33) is

min
X1,X2,x3,x4

X2
11 + x3

1 + x3
2 + x4

s.t. − 2�(X1
12) − 2X2

21 − 2D1/2x3
3 + x4e ≥ 0,

2θ

(
0 0
0 F

)
� X1

11 − X2
22 = 0,

−
(

R h

hT η

)
· X1 ≥ 0,

− x3
1 + x3

2 = −θ,

2X1
22 = 1,

X1 � 0, X2 � 0, x3 ∈ Ln+2,

(36)

where �: R(m+1)n →Rn is defined as �(x) = (x1, xm+2, . . . , x(n−2)(m+1)+1, x(n−1)(m+1)+1)T for
every x ∈R(m+1)n, and

(
0 0
0 F

)
� X ≡

((
0 0
0 F

)
· Xij

)
∈ �n×n (37)

for any X = (Xij) ∈R[(m+1)n]×[(m+1)n] with Xij ∈R(m+1)×(m+1) for i, j = 1, . . . , n. We now construct
a strictly feasible soultion (X1, X2, x3, x4) of the dual problem (36). Let x3 = (θ , 0, . . . , 0) ∈Rn+2.
It clearly satisfies the constraint −x3

1 + x3
2 = −θ , and moreover, x3 ∈ ri(Ln+2) due to θ > 0.
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Next, let

X1 = 1

2(1 + γ )

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

x̄1
...

x̄n

1

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

x̄1
...

x̄n

1

⎞
⎟⎟⎟⎠

T

+ γ I

⎤
⎥⎥⎥⎦ . (38)

In view of this identity and (35), one has X1
22 = 1

2 . Since ω > 0, we know from (13) that c̃(ω) > 0.
This, together with (27), (28) and (38) implies that

−
(

R h

hT η

)
· X1 = − 1

2(1 + γ )

⎡
⎢⎣R ·

⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠
⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠

T

+ 2hT

⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠+ η + γ

(
R h

hT η

)
· I

⎤
⎥⎦

= − 1

2(1 + γ )

[
−c̃(ω) + γ

(
R h

hT η

)
· I

]
� 0

and X1 � 0 for sufficiently small positive γ . Now, let

X2
22 = 2θ

(
0 0
0 F

)
� X1

11. (39)

We next show that X2
22 � 0. Indeed, using (37) and the assumption that 0 �= F � 0, we obtain(

0 0
0 F

)
� I � 0. (40)

Further, we have for every u ∈Rn,

uT

(
0 0
0 F

)
�
⎡
⎢⎣
⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠
⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠

T⎤
⎥⎦ u =

∑
i,j

(
0 0
0 F

)
· (uiuj x̄i x̄

T
j ),

=
(

0 0
0 F

)
·
⎛
⎝∑

i,j

uiuj x̄i x̄
T
j

⎞
⎠ ,

=
(

0 0
0 F

)
·
⎛
⎝(∑

i

ui x̄i

)(∑
i

ui x̄i

)T
⎞
⎠ ≥ 0,

and hence,

(
0 0
0 F

)
�
⎡
⎢⎣
⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠
⎛
⎜⎝

x̄1
...

x̄n

⎞
⎟⎠

T⎤
⎥⎦ � 0.

This, together with (38)–(40) and the assumption that θ > 0, implies that X2
22 � 0. Letting X2

12 = 0
and X2

11 = 1, we immediately see that X2 � 0. We also observe that for sufficiently large x4,
(X1, X2, x3, x4) also strictly satisfies the first constraint of (36). Hence, it is a strictly feasible
solution of the dual problem (36). The remaining proof directly follows from strong duality. �

In view of Theorem 4.5, we conclude that problem (33) can be suitably solved by primal–dual
interior point solvers (e.g. [27,29]).
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5. Concluding remarks

In this article, we considered the factor model of the random asset returns. By exploring the
correlations of the mean return vector μ and factor loading matrix V, we proposed a statistical
approach for constructing a ‘joint’ ellipsoidal uncertainty set Sμ,v for (μ,V ). We further showed
that the RMRAR problem with such an uncertainty set can be reformulated and solved as a
cone programming problem. The computational results reported in [21,22] demonstrate that the
robust portfolio determined by the RMRAR model with our ‘joint’ uncertainty set outperforms
that with Goldfarb and Iyengar’s ‘separable’ uncertainty set [16] in terms of wealth growth rate
and transaction cost; and moreover, our robust portfolio is fairly diversified, but Goldfarb and
Iyengar’s is surprisingly highly non-diversified. It would be interesting to extend the results of
this article to other robust portfolio selection models, for example, robust maximum Sharpe ratio
and robust VaR models (see [16]).
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Ruszczyński and Reha Tütüncü at the 2006 INFORMS annual meeting in Pittsburgh, USA. Also, the author is in debt to
two anonymous referees for insightful comments and suggestions, which have greatly improved the article. This author
was supported in part by NSERC Discovery Grant.

References

[1] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res. 23 (1998), pp. 769–805.
[2] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, Oper. Res. Lett. 25 (1999), pp. 1–13.
[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization: Analysis, Algorithms, Engineering

Applications, MPS-SIAM Series on Optimization, SIAM, Philadelphia, PA, 2001.
[4] A. Ben-Tal, T. Margalit, and A. Nemirovski, Robust modeling of multi-stage portfolio problems, in High Perfor-

mance Optimization, H. Frenk, K. Roos, T. Terlaky, and S. Zhang, eds., Kluwer Academic Press, Dordrecht, 2000,
pp. 303–328.

[5] D. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, New York, 1999.
[6] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory,

Studies in Applied Mathematics Vol. 15, Society for Industrial and Applied Mathematics. Philadelphia, PA, 1994.
[7] M. Broadie, Computing efficient frontiers using estimated parameters, Ann. Oper. Res. 45 (1993), pp. 21–58.
[8] V.K. Chopra, Improving optimization, J. Invest. 8 (1993), pp. 51–59.
[9] V.K. Chopra and W.T. Ziemba, The effect of errors in means, variance and covariance on optimal portfolio choice,

J. Portfolio Manage. 19 (1993), pp. 6–11.
[10] V. DeMiguel and F.J. Nogales, Portfolio selection with robust estimation, Oper. Res. 57 (2009), pp. 560–577.
[11] V. DeMiguel, L. Garlappi, and R. Uppal, Optimal versus naive diversification: how inefficient is the 1/N portfolio

strategy?, Rev. Financ. Stud. 22 (2009), pp. 1915–1953.
[12] L. El Ghaoui and H. Lebret, Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal.

Appl. 18 (1997), pp. 1035–1064.
[13] L. El Ghaoui, F. Outstry, and H. Lebret, Robust solutions to uncertain semidefinite programs, SIAM J. Optim. 9

(1998), pp. 33–52.
[14] L. El Ghaoui, M. Oks, and F. Outstry, Worst-case value-at-risk and robust portfolio optimization: a conic

programming approach, Oper. Res. 51 (2003), pp. 543–556.
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