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AN ITERATIVE SOLVER-BASED INFEASIBLE
PRIMAL-DUAL PATH-FOLLOWING ALGORITHM FOR CONVEX

QUADRATIC PROGRAMMING∗

ZHAOSONG LU† , RENATO D. C. MONTEIRO‡ , AND JEROME W. O’NEAL§

Abstract. In this paper we develop a long-step primal-dual infeasible path-following algorithm
for convex quadratic programming (CQP) whose search directions are computed by means of a
preconditioned iterative linear solver. We propose a new linear system, which we refer to as the aug-
mented normal equation (ANE), to determine the primal-dual search directions. Since the condition
number of the ANE coefficient matrix may become large for degenerate CQP problems, we use a
maximum weight basis preconditioner introduced in [A. R. L. Oliveira and D. C. Sorensen, Linear
Algebra Appl., 394 (2005), pp. 1–24; M. G. C. Resende and G. Veiga, SIAM J. Optim., 3 (1993),
pp. 516–537; P. Vaida, Solving Linear Equations with Symmetric Diagonally Dominant Matrices by
Constructing Good Preconditioners, Tech. report, Department of Computer Science, University of
Illinois at Urbana-Champaign, Urbana, IL, 1990] to precondition this matrix. Using a result obtained
in [R. D. C. Monteiro, J. W. O’Neal, and T. Tsuchiya, SIAM J. Optim., 15 (2004), pp. 96–100], we
establish a uniform bound, depending only on the CQP data, for the number of iterations needed by
the iterative linear solver to obtain a sufficiently accurate solution to the ANE. Since the iterative
linear solver can generate only an approximate solution to the ANE, this solution does not yield a
primal-dual search direction satisfying all equations of the primal-dual Newton system. We propose
a way to compute an inexact primal-dual search direction so that the equation corresponding to
the primal residual is satisfied exactly, while the one corresponding to the dual residual contains a
manageable error which allows us to establish a polynomial bound on the number of iterations of
our method.

Key words. convex quadratic programming, iterative linear solver, maximum weight basis pre-
conditioner, primal-dual path-following methods, interior-point methods, augmented normal equa-
tion, inexact search directions, polynomial convergence

AMS subject classifications. 65F10, 65F35, 90C20, 90C25, 90C51

DOI. 10.1137/04060771X

1. Introduction. In this paper we develop an interior-point long-step primal-
dual infeasible path-following (PDIPF) algorithm for convex quadratic programming
(CQP) whose search directions are computed by means of an iterative linear solver.
We will refer to this algorithm as an inexact algorithm, in the sense that the Newton
system which determines the search direction will be solved only approximately at
each iteration. The problem we consider is

min
x

{
1

2
xTQx + cTx : Ax = b, x ≥ 0

}
,(1)
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where the data are Q ∈ �n×n, A ∈ �m×n, b ∈ �m, and c ∈ �n, and the decision vector
is x ∈ �n. We also assume that Q is positive semidefinite and that a factorization
Q = V E2V T is explicitly given, where V ∈ �n×l and E is an l × l positive diagonal
matrix.

A similar algorithm for solving the special case of linear programming (LP), i.e.,
problem (1) with Q = 0, was developed by Monteiro and O’Neal in [16]. The algorithm
studied in [16] is essentially the long-step PDIPF algorithm studied in [9, 28], the
only difference being that the search directions are computed by means of an iterative
linear solver. We refer to the iterations of the iterative linear solver as the inner
iterations and to the ones performed by the interior-point method itself as the outer
iterations. The main step of the algorithm studied in [9, 16, 28] is the computation
of the primal-dual search direction (Δx,Δs,Δy), whose Δy component can be found
by solving a system of the form AD2ATΔy = g, referred to as the normal equation,
where g ∈ �m and the positive diagonal matrix D depends on the current primal-dual
iterate. In contrast to [9, 28], the algorithm studied in [16] uses an iterative linear
solver to obtain an approximate solution to the normal equation. Since the condition
number of the normal matrix AD2AT may become excessively large on degenerate
LP problems (see e.g., [13]), the maximum weight basis (MWB) preconditioner T
introduced in [19, 22, 25] is used to better condition this matrix, and an approximate
solution of the resulting equivalent system with coefficient matrix TAD2ATTT is then
computed. By using a result obtained in [17], which establishes that the condition
number of TAD2ATTT is uniformly bounded by a quantity depending only on A,
Monteiro and O’Neal [16] showed that the number of inner iterations of the algorithm
in [16] can be uniformly bounded by a constant depending on n and A.

In the case of CQP, the standard normal equation takes the form

A(Q + X−1S)−1ATΔy = g(2)

for some vector g. When Q is not diagonal, the matrix (Q+X−1S)−1 is not diagonal,
and hence the coefficient matrix of (2) does not have the form required for the result
of [17] to hold. To remedy this difficulty, we develop in this paper a new linear
system, referred to as the augmented normal equation (ANE), to determine a portion
of the primal-dual search direction. This equation has the form ÃD̃2ÃTu = w, where
w ∈ �m+l, D̃ is an (n + l) × (n + l) positive diagonal matrix, and Ã is a 2 × 2 block
matrix of dimension (m+ l)× (n+ l) whose blocks consist of A, V T , the zero matrix,
and the identity matrix (see (21)). As was done in [16], a MWB preconditioner T̃ for
the ANE is computed and an approximate solution of the resulting preconditioned
equation with coefficient matrix T̃ ÃD̃2ÃT T̃T is generated using an iterative linear
solver. Using the result of [17], which claims that the condition number of T̃ ÃD̃2ÃT T̃T

is uniformly bounded regardless of D̃, we obtain a uniform bound (depending only on
Ã) on the number of inner iterations performed by the iterative linear solver to find
a desirable approximate solution to the ANE (see Theorem 3.5).

Since the iterative linear solver can generate only an approximate solution to the
ANE, it is clear that not all equations of the Newton system, which determines the
primal-dual search direction, can be satisfied simultaneously. In the context of LP,
Monteiro and O’Neal [16] proposed a recipe to compute an inexact primal-dual search
direction so that the equations of the Newton system corresponding to the primal
and dual residuals were both satisfied. In the context of CQP, such an approach is
no longer possible. Instead, we propose a way to compute an inexact primal-dual
search direction so that the equation corresponding to the primal residual is satisfied
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exactly, while the one corresponding to the dual residual contains a manageable error
which allows us to establish a polynomial bound on the number of outer iterations
of our method. Interestingly, the presence of this error on the dual residual equation
implies that the primal and dual residuals go to zero at different rates. This is a
unique feature of the convergence analysis of our algorithm in that it contrasts with
the analysis of other interior-point PDIPF algorithms, where the primal and dual
residuals are required to go to zero at the same rate.

The use of inexact search directions in interior-point methods has been extensively
studied in the context of cone programming problems (see e.g., [1, 2, 7, 11, 12, 15, 18,
29]). Moreover, the use of iterative linear solvers to compute the primal-dual Newton
search directions of interior-point path-following algorithms has also been extensively
investigated in [1, 3, 4, 7, 12, 18, 19, 20, 22, 24]. For feasibility problems of the form
{x ∈ H1 : Ax = b, x ∈ C}, where H1 and H2 are Hilbert spaces, C ⊆ H1 is a closed
convex cone satisfying some mild assumptions, and A : H1 → H2 is a continuous
linear operator, Renegar [21] has proposed an interior-point method where the Newton
system that determines the search directions is approximately solved by performing
a uniformly bounded number of iterations of the conjugate gradient (CG) method.
To our knowledge, no one has used the ANE system in the context of CQP to obtain
either an exact or inexact primal-dual search direction.

Our paper is organized as follows. In subsection 1.1, we give the terminology
and notation which will be used throughout our paper. Section 2 describes the outer
iteration framework for our algorithm and the complexity results we have obtained for
it, along with presenting the ANE as a means to determine the search direction. In
section 3, we discuss the use of iterative linear solvers to obtain a suitable approximate
solution to the ANE and the construction of an inexact search direction based on this
solution. Section 4 gives the proofs of the results presented in sections 2 and 3. Finally,
we present some concluding remarks in section 5.

1.1. Terminology and notation. Throughout this paper, uppercase roman
letters denote matrices, lowercase roman letters denote vectors, and lowercase Greek
letters denote scalars. We let �n, �n

+, and �n
++ denote the set of n-dimensional vectors

having real, nonnegative real, and positive real components, respectively. Also, we
let �m×n denote the set of m × n matrices with real entries. For a vector v ∈ �n,
we let |v| denote the vector whose ith component is |vi| for every i = 1, . . . , n, and
we let Diag(v) denote the diagonal matrix whose ith diagonal element is vi for every
i = 1, . . . , n. In addition, given vectors u ∈ �m and v ∈ �n, we denote by (u, v) the
vector (uT , vT )T ∈ �m+n.

Certain matrices bear special notation, namely the matrices X, ΔX, S, D, and
D̃. These matrices are the diagonal matrices corresponding to the vectors x, Δx, s,
d, and d̃, respectively, as described in the previous paragraph. The symbol 0 will be
used to denote a scalar, vector, or matrix of all zeros; its dimensions should be clear
from the context. Also, we denote by e the vector of all 1’s, and by I the identity
matrix; their dimensions should be clear from the context.

For a symmetric positive definite matrix W , we denote its condition number
by κ(W ), i.e., its maximum eigenvalue divided by its minimum eigenvalue. We will
denote sets by uppercase calligraphic letters (e.g., B, N ). For a finite set B, we denote
its cardinality by |B|. Given a matrix A ∈ �m×n and an ordered set B ⊆ {1, . . . , n},
we let AB denote the submatrix whose columns are {Ai : i ∈ B} arranged in the same
order as B. Similarly, given a vector v ∈ �n and an ordered set B ⊆ {1, . . . , n}, we let
vB denote the subvector consisting of the elements {vi : i ∈ B} arranged in the same
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order as B.
We will use several different norms throughout the paper. For a vector z ∈ �n,

‖z‖ =
√
zT z is the Euclidian norm, ‖z‖1 =

∑n
i=1 |zi| is the “1-norm,” and ‖z‖∞ =

maxi=1,...,n |zi| is the “infinity norm.” For a matrix V ∈ �m×n, ‖V ‖ denotes the
operator norm associated with the Euclidian norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖. Finally,

‖V ‖F denotes the Frobenius norm: ‖V ‖F = (
∑m

i=1

∑n
j=1 V

2
ij)

1/2.

2. Outer iteration framework. In this section, we introduce our PDIPF algo-
rithm based on a class of inexact search directions and discuss its iteration complexity.
This section is divided into two subsections. In subsection 2.1, we discuss an exact
PDIPF algorithm, which will serve as the basis for the inexact PDIPF algorithm
given in subsection 2.2, and we give its iteration complexity result. We also present
an approach based on the ANE to determine the Newton search direction for the ex-
act algorithm. To motivate the class of inexact search directions used by our inexact
PDIPF algorithm, we describe in subsection 2.2 a framework for computing an inexact
search direction based on an approximate solution to the ANE. We then introduce
the class of inexact search directions, state a PDIPF algorithm based on it, and give
its iteration complexity result.

2.1. An exact PDIPF algorithm and the ANE. Consider the following
primal-dual pair of CQP problems:

min
x

{
1

2
xTV E2V Tx + cTx : Ax = b, x ≥ 0

}
,(3)

max
(x̂,s,y)

{
−1

2
x̂TV E2V T x̂ + bT y : AT y + s− V E2V T x̂ = c, s ≥ 0

}
,(4)

where the data are V ∈ �n×l, E ∈ Diag(�l
++), A ∈ �m×n, b ∈ �m, and c ∈ �n, and

the decision variables are x ∈ �n and (x̂, s, y) ∈ �n ×�n ×�m. We observe that the
Hessian matrix Q is already given in factored form Q = V E2V T .

It is well known that if x∗ is an optimal solution for (3) and (x̂∗, s∗, y∗) is an
optimal solution for (4), then (x∗, s∗, y∗) is also an optimal solution for (4). Now, let
S denote the set of all vectors w := (x, s, y, z) ∈ �2n+m+l satisfying

Ax = b, x ≥ 0,(5)

AT y + s + V z = c, s ≥ 0,(6)

Xs = 0,(7)

EV Tx + E−1z = 0.(8)

It is clear that w ∈ S if and only if x is optimal for (3), (x, s, y) is optimal for (4),
and z = −E2V Tx. (Throughout this paper, the symbol w will always denote the
quadruple (x, s, y, z), where the vectors lie in the appropriate dimensions; similarly,
Δw = (Δx,Δs,Δy,Δz), wk = (xk, sk, yk, zk), w̄ = (x̄, s̄, ȳ, z̄), etc.)

We observe that the presentation of the PDIPF algorithm based on exact Newton
search directions in this subsection differs from the classical way of presenting it in
that we introduce an additional variable z as above. Clearly, it is easy to see that
the variable z is completely redundant and can be eliminated, thereby reducing the
method described below to the usual way of presenting it. The main reason for
introducing the variable z is due to the development of the ANE presented at the end
of this subsection.
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We will make the following two assumptions throughout the paper.
Assumption 1. A has full row rank.
Assumption 2. The set S is nonempty.
For a point w ∈ �2n

++ ×�m+l, let us define

μ := μ(w) = xT s/n,(9)

rp := rp(w) = Ax− b,(10)

rd := rd(w) = AT y + s + V z − c,(11)

rV := rV (w) = EV Tx + E−1z,(12)

r := r(w) = (rp(w), rd(w), rV (w)).(13)

Moreover, given γ ∈ (0, 1) and an initial point w0 ∈ �2n
++ × �m+l, we define the

following neighborhood of the central path:

Nw0(γ) :=

{
w ∈ �2n

++ ×�m+l : Xs ≥ (1 − γ)μe, r = ηr0(14)

for some 0 ≤ η ≤ min

[
1,

μ

μ0

]}
,

where r := r(w), r0 := r(w0), μ := μ(w), and μ0 := μ(w0).
We are now ready to state the PDIPF algorithm based on exact Newton search

directions.
Exact PDIPF algorithm.
1. Start: Let ε > 0 and 0 < σ ≤ σ < 1 be given. Let γ ∈ (0, 1) and w0 ∈

�2n
++ ×�m+l be such that w0 ∈ Nw0(γ). Set k = 0.

2. While μk := μ(wk) > ε do
(a) Let w := wk and μ := μk; choose σ := σk ∈ [σ, σ].
(b) Let Δw = (Δx,Δs,Δy,Δz) denote the solution of the linear system

AΔx = −rp,(15)

ATΔy + Δs + V Δz = −rd,(16)

XΔs + SΔx = −Xs + σμe,(17)

EV TΔx + E−1Δz = −rV .(18)

(c) Let α̃ = argmax {α ∈ [0, 1] : w + α′Δw ∈ Nw0(γ), ∀α′ ∈ [0, α]}.
(d) Let ᾱ = argmin

{
(x + αΔx)T (s + αΔs) : α ∈ [0, α̃]

}
.

(e) Let wk+1 = w + ᾱΔw, and set k ← k + 1.
End (while)

A proof of the following result, under slightly different assumptions, can be found
in [28].

Theorem 2.1. Assume that the constants γ, σ, and σ are such that

max
{
γ−1, (1 − γ)−1, σ−1, (1 − σ)−1

}
= O(1),

and that the initial point w0 ∈ �2n
++ × �m+l satisfies (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S. Then, the exact PDIPF algorithm finds an iterate wk ∈ �2n
++ × �m+l

satisfying μk ≤ εμ0 and ‖rk‖ ≤ ε‖r0‖ within O(n2 log(1/ε)) iterations.
A few approaches have been suggested in the literature for computing the Newton

search direction (15)–(18). Instead of using one of them, we will discuss below a new
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approach, referred to in this paper as the ANE approach, that we believe to be suitable
not only for direct solvers but especially for iterative linear solvers, as we will see in
section 3.

Let us begin by defining the following matrices:

D := X1/2S−1/2,(19)

D̃ :=

(
D 0
0 E−1

)
∈ �(n+l)×(n+l),(20)

Ã :=

(
A 0
V T I

)
∈ �(m+l)×(n+l).(21)

Suppose that we first solve the following system of equations for (Δy,Δz):

ÃD̃2ÃT

(
Δy
Δz

)
= Ã

(
x− σμS−1e−D2rd

0

)
+

(
−rp

−E−1rV

)
=: h.(22)

This system is what we refer to as the ANE. Next, we obtain Δs and Δx according
to

Δs = −rd −ATΔy − V Δz,(23)

Δx = −D2Δs− x + σμS−1e.(24)

Clearly, the search direction Δw = (Δx,Δs,Δy,Δz) computed as above satisfies (16)
and (17) in view of (23) and (24). Moreover, it also satisfies (15) and (18) due to the
fact that by (20)–(24), we have that

Ã

(
Δx

E−2Δz

)
= Ã

(
−D2Δs− x + σμS−1e

E−2Δz

)
= Ã

(
D2rd + D2ATΔy + D2V Δz − x + σμS−1e

E−2Δz

)
= Ã

(
D2ATΔy + D2V Δz

E−2Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
= ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
=

(
−rp

−E−1rV

)
.(25)

Theorem 2.1 assumes that Δw is the exact solution of (22), which is usually
obtained by computing the Cholesky factorization of the coefficient matrix of the
ANE. In this paper, we will consider a variant of the exact PDIPF algorithm whose
search directions are approximate solutions of (22) and ways of determining these
inexact search directions by means of a suitable preconditioned iterative linear solver.

2.2. An inexact PDIPF algorithm for CQP. In this subsection, we describe
a PDIPF algorithm based on a family of search directions that are approximate solu-
tions to (15)–(18) and discuss its iteration complexity properties.

Clearly, an approximate solution to the ANE can yield only an approximate
solution to (15)–(18). In order to motivate the class of inexact search directions used
by the PDIPF algorithm presented in this subsection, we present a framework for
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obtaining approximate solutions to (15)–(18) based on an approximate solution to
the ANE.

Suppose that the ANE is solved only inexactly, i.e., that the vector (Δy,Δz)
satisfies

ÃD̃2ÃT

(
Δy
Δz

)
= h + f(26)

for some error vector f . If Δs and Δx were computed by (23) and (24), respectively,
then it is clear that the search direction Δw would satisfy (16) and (17). However,
(15) and (18) would not be satisfied, since by an argument similar to (25), we would
have that

Ã

(
Δx

E−2Δz

)
= · · · = ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
=

(
−rp

−E−1rV

)
+ f.

Instead, suppose we use (23) to determine Δs as before, but now we determine Δx as

Δx = −D2Δs− x + σμS−1e− S−1p,(27)

where the correction vector p ∈ �n will be required to satisfy some conditions which
we will now describe.

To motivate the conditions on p, we note that (23), (26), and (27) imply that

(28)

Ã

(
Δx

E−2Δz

)
+

(
rp

E−1rV

)
= Ã

(
−D2Δs− x + σμS−1e− S−1p

E−2Δz

)
+

(
rp

E−1rV

)
= Ã

(
D2rd + D2ATΔy + D2V Δz − x + σμS−1e− S−1p

E−2Δz

)
+

(
rp

E−1rV

)
= ÃD̃2

(
ATΔy + V Δz

Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
− Ã

(
S−1p

0

)
+

(
rp

E−1rV

)
= ÃD̃2ÃT

(
Δy
Δz

)
+ Ã

(
D2rd − x + σμS−1e

0

)
− Ã

(
S−1p

0

)
+

(
rp

E−1rV

)
= f − Ã

(
S−1p

0

)
.

Based on the above equation, one is naturally tempted to choose p so that the right-
hand side of (28) is zero, and consequently (15) and (18) are satisfied exactly. However,
the existence of such p cannot be guaranteed and, even if it exists, its magnitude might
not be sufficiently small to yield a search direction which is suitable for the develop-
ment of a polynomially convergent algorithm. Instead, we consider an alternative
approach where p is chosen so that the first component of (28) is zero and the second
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component is small. More specifically, by partitioning f = (f1, f2) ∈ �m × �l, we
choose p ∈ �n such that

AS−1p = f1.(29)

It is clear that p is not uniquely defined. Note that (21) implies that (29) is equivalent
to

f = Ã

(
S−1p
E−1q

)
,(30)

where q := E(f2 − V TS−1p). Then, using (21), (28), and (30), we conclude that

Ã

(
Δx

E−2Δz

)
+

(
rp

E−1rV

)
= f − Ã

(
S−1p
E−1q

)
+ Ã

(
0

E−1q

)
= Ã

(
0

E−1q

)
=

(
0

E−1q

)
,(31)

from which we see that the first component of (28) is set to 0 and the second component
is exactly E−1q.

In view of (23), (27), and (31), the above construction yields a search direction
Δw satisfying the following modified Newton system of equations:

AΔx = −rp,(32)

ATΔy + Δs + V Δz = −rd,(33)

XΔs + SΔx = −Xs + σμe− p,(34)

EV TΔx + E−1Δz = −rV + q.(35)

As far as the outer iteration complexity analysis of our algorithm is concerned,
all we require of our inexact search directions is that they satisfy (32)–(35) and that
p and q be relatively small in the following sense.

Definition 1. Given a point w ∈ �2n
++ ×�m+l and positive scalars τp and τq, an

inexact direction Δw is referred to as a (τp, τq)-search direction if it satisfies (32)–(35)
for some p and q satisfying ‖p‖∞ ≤ τpμ and ‖q‖ ≤ τq

√
μ, where μ is given by (9).

We next define a generalized central path neighborhood which is used by our
inexact PDIPF algorithm. Given a starting point w0 ∈ �2n

++ ×�m+l and parameters
η ≥ 0, γ ∈ [0, 1], and θ > 0, define the following set:

(36)

Nw0(η, γ, θ) =

{
w ∈ �2n

++ ×�m+l :
Xs ≥ (1 − γ)μe, (rp, rd) = η(r0

p, r
0
d),

‖rV − ηr0
V ‖ ≤ θ

√
μ, η ≤ μ/μ0

}
,

where μ = μ(w), μ0 = μ(w0), r = r(w), and r0 = r(w0). The generalized central
path neighborhood is then given by

Nw0(γ, θ) =
⋃

η∈[0,1]

Nw0(η, γ, θ).(37)

We observe that the neighborhood given by (37) agrees with the neighborhood given
by (15) when θ = 0.

We are now ready to state our inexact PDIPF algorithm.
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Inexact PDIPF algorithm.
1. Start: Let ε > 0 and 0 < σ ≤ σ < 4/5 be given. Choose γ ∈ (0, 1), θ > 0,

and w0 ∈ �2n
++ ×�m+l such that w0 ∈ Nw0(γ, θ). Set k = 0.

2. While μk := μ(wk) > ε do
(a) Let w := wk and μ := μk; choose σ ∈ [σ, σ].
(b) Set

τp = γσ/4 and(38)

τq =
[√

1 + (1 − 0.5γ)σ − 1
]
θ.(39)

(c) Set rp = Ax − b, rd = AT y + s + V z − c, rV = EV Tx + E−1z, and
η = ‖rp‖/‖r0

p‖.
(d) Compute a (τp, τq)-search direction Δw.
(e) Compute α̃ := argmax{α ∈ [0, 1] : w + α′Δw ∈ Nw0(γ, θ), ∀α′ ∈ [0, α]}.
(f) Compute ᾱ := argmin{(x + αΔx)T (s + αΔs) : α ∈ [0, α̃]}.
(g) Let wk+1 = w + ᾱΔw, and set k ← k + 1.

End (while)
The following result gives a bound on the number of iterations needed by the

inexact PDIPF algorithm to obtain an ε-solution to the KKT conditions (5)–(8). Its
proof will be given in subsection 4.2.

Theorem 2.2. Assume that the constants γ, σ, σ, and θ are such that

max

{
γ−1 , (1 − γ)−1 , σ−1 ,

(
1 − 5

4
σ

)−1
}

= O(1), θ = O(
√
n),(40)

and that the initial point w0 ∈ �2n
++ × �m+l satisfies (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S. Then, the inexact PDIPF algorithm generates an iterate wk ∈ �2n
++ × �m+l

satisfying μk ≤ εμ0, ‖(rkp , rkd)‖ ≤ ε‖(r0
p, r

0
d)‖, and ‖rkV ‖ ≤ ε‖r0

V ‖ + ε1/2θμ
1/2
0 within

O
(
n2 log(1/ε)

)
iterations.

3. Determining an inexact search direction via an iterative solver. The
results in subsection 2.2 assume we can obtain a (τp, τq)-search direction Δw, where
τp and τq are given by (38) and (39), respectively. In this section, we will describe
a way to obtain a (τp, τq)-search direction Δw using a uniformly bounded number
of iterations of a suitable preconditioned iterative linear solver applied to the ANE.
It turns out that the construction of this Δw is based on the recipe given at the
beginning of subsection 2.2, together with a specific choice of the perturbation vector
p.

This section is divided into two subsections. In subsection 3.1, we introduce the
MWB preconditioner which will be used to precondition the ANE. In addition, we
also introduce a family of iterative linear solvers used to solve the preconditioned
ANE. Subsection 3.2 gives a specific approach for constructing a pair (p, q) satisfying
(30), and an approximate solution to the ANE so that the recipe described at the
beginning of subsection 2.2 yields a (τp, τq)-search direction Δw. It also provides a
uniform bound on the number of iterations that any member of the family of iterative
linear solvers needs to perform to obtain such a direction Δw when applied to the
preconditioned ANE.

3.1. MWB preconditioner and a family of solvers. In this subsection we
introduce the MWB preconditioner, and we discuss its use as a preconditioner in
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solving the ANE via a family of iterative linear solvers. Since the condition number
of the ANE matrix ÃD̃2ÃT may “blow up” for points w near an optimal solution,
the direct application of a generic iterative linear solver for solving the ANE without
first preconditioning it is generally not effective. We discuss a natural remedy to this
problem which consists of using a preconditioner T̃ , namely the MWB preconditioner,
such that κ(T̃ ÃD̃2ÃT T̃T ) remains uniformly bounded regardless of the iterate w.
Finally, we analyze the complexity of the resulting approach to obtain a suitable
approximate solution to the ANE.

We start by describing the MWB preconditioner. Its construction essentially
consists of building a basis B of Ã which gives higher priority to the columns of Ã
corresponding to larger diagonal elements of D̃. More specifically, the MWB precon-
ditioner is determined by the following algorithm.

Maximum weight basis algorithm.
Start: Given d̃ ∈ �(n+l)

++ , and Ã ∈ �(m+l)×(n+l) such that rank(Ã) = m + l,

1. Order the elements of d̃ so that d̃1 ≥ · · · ≥ d̃n+l; order the columns of Ã
accordingly.

2. Let B = ∅, j = 1.
3. While |B| < m + l do

(a) If Ãj is linearly independent of {Ãi : i ∈ B}, set B ← B ∪ {j}.
(b) j ← j + 1.

4. Return to the original ordering of Ã and d̃; determine the set B according to
this ordering and set N := {1, . . . , n + l}\B.

5. Set B := ÃB and D̃B := Diag(d̃B).
6. Let T̃ = T̃ (Ã, d̃) := D̃−1

B B−1.
end

Note that the above algorithm can be applied to the matrix Ã defined in (21)
since this matrix has full row rank due to Assumption 1. The MWB preconditioner
was originally proposed by Vaidya [25] and Resende and Veiga [22] in the context of
the minimum cost network flow problem. In this case, Ã = A is the node-arc incidence
matrix of a connected digraph (with one row deleted to ensure that Ã has full row
rank), the entries of d̃ are weights on the edges of the graph, and the set B generated
by the above algorithm defines a maximum spanning tree on the digraph. Oliveira
and Sorensen [19] later proposed the use of this preconditioner for general matrices
Ã. Boman et al. [5] have proposed variants of the MWB preconditioner for diagonally
dominant matrices, using the fact that they can be represented as D1+AD2A

T , where
D1 and D2 are nonnegative diagonal and positive diagonal matrices, respectively, and
A is a node-arc incidence matrix.

For the purpose of stating the next result, we now introduce some notation. Let
us define

ϕÃ := max{‖B−1Ã‖F : B is a basis of Ã}.(41)

The constant ϕÃ is related to the well-known condition number χ̄Ã (see [26]), defined
as

χ̄Ã := sup{‖ÃT (ÃẼÃT )−1ÃẼ‖ : Ẽ ∈ Diag(�(n+l)
++ )}.

Specifically, ϕÃ ≤ (n + l)1/2χ̄Ã, in view of the facts that ‖C‖F ≤ (n + l)1/2 ‖C‖ for
any matrix C ∈ �(m+l)×(n+l) and, as shown in [23] and [26],

χ̄Ã = max{‖B−1Ã‖ : B is a basis of Ã}.



ITERATIVE SOLVER-BASED INFEASIBLE QP ALGORITHM 297

The following result, which establishes the theoretical properties of the MWB
preconditioner, follows as a consequence of Lemmas 2.1 and 2.2 of [17].

Proposition 3.1. Let T̃ = T̃ (Ã, d̃) be the preconditioner determined according to
the maximum weight basis algorithm, and define W := T̃ ÃD̃2ÃT T̃T . Then, ‖T̃ ÃD̃‖ ≤
ϕÃ and κ(W ) ≤ ϕ2

Ã
.

Note that the bound ϕ2
Ã

on κ(W ) is independent of the diagonal matrix D̃ and

depends only on Ã. This will allow us to obtain a uniform bound on the number of
iterations needed by any member of the family of iterative linear solvers described
below to obtain a suitable approximate solution of (22). This topic is the subject of
the remainder of this subsection.

Instead of dealing directly with (22), we consider the application of an iterative
linear solver to the preconditioned ANE:

Wu = v,(42)

where

W := T̃ ÃD̃2ÃT T̃T , v := T̃ h.(43)

For the purpose of our analysis below, the only thing we will assume regarding the
iterative linear solver when applied to (42) is that it generates a sequence of iterates
{uj} such that

‖v −Wuj‖ ≤ c(κ)

[
1 − 1

ψ(κ)

]j
‖v −Wu0‖ ∀ j = 0, 1, 2, . . . ,(44)

where c and ψ are positive, nondecreasing functions of κ ≡ κ(W ).

Examples of solvers which satisfy (44) include the steepest descent (SD) and CG
methods, with the values for c(κ) and ψ(κ) given in Table 3.1.

Table 3.1

Solver c(κ) ψ(κ)
SD

√
κ (κ + 1)/2

CG 2
√
κ (

√
κ + 1)/2

The justification for Table 3.1 follows from section 7.6 and Exercise 10 of section
8.8 of [14].

The following result gives an upper bound on the number of iterations that any
iterative linear solver satisfying (44) needs to perform to obtain a ξ-approximate so-
lution of (42), i.e., an iterate uj such that ‖v − Wuj‖ ≤ ξ

√
μ for some constant

ξ > 0.

Proposition 3.2. Let u0 be an arbitrary starting point. Then, a generic iterative
linear solver with a convergence rate given by (44) generates an iterate uj satisfying
‖v −Wuj‖ ≤ ξ

√
μ in

O
(
ψ(κ) log

(
c(κ)‖v −Wu0‖

ξ
√
μ

))
(45)

iterations, where κ ≡ κ(W ).
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Proof. Let j be any iteration such that ‖v −Wuj‖ > ξ
√
μ. We use relation (44)

and the fact that 1 + ω ≤ eω for all ω ∈ � to observe that

ξ
√
μ < ‖v −Wuj‖ ≤ c(κ)

[
1 − 1

ψ(κ)

]j
‖v −Wu0‖ ≤c(κ) exp

{
−j

ψ(κ)

}
‖v −Wu0‖.

Rearranging the first and last terms of the inequality, it follows that

j < ψ(κ) log

(
c(κ)‖v −Wu0‖

ξ
√
μ

)
,

and the result is proven.
From Proposition 3.2, it is clear that different choices of u0 and ξ lead to differ-

ent bounds on the number of iterations performed by the iterative linear solver. In
subsection 3.2, we will describe a suitable way of selecting u0 and ξ so that (i) the
bound (45) is independent of the iterate w and (ii) the approximate solution T̃Tuj

of the ANE, together with a suitable pair (p, q), yields a (τp, τq)-search direction Δw
through the recipe described in subsection 2.2.

3.2. Computation of the inexact search direction Δw. In this subsection,
we use the results of subsections 2.2 and 3.1 to build a (τp, τq)-search direction Δw,
where τp and τq are given by (38) and (39), respectively. In addition, we describe a
way of choosing u0 and ξ which ensures that the number of iterations of an iterative
linear solver satisfying (44) applied to the preconditioned ANE is uniformly bounded
by a constant depending on n and ϕÃ.

Suppose that we solve (42) inexactly according to subsection 3.1. Then our final
solution uj satisfies Wuj − v = f̃ for some vector f̃ . Letting(

Δy
Δz

)
= T̃Tuj ,(46)

we easily see from (43) that (26) is satisfied with f := T̃−1f̃ . We can then apply the
recipe of subsection 2.2 to this approximate solution, using the pair (p, q) which we
will now describe.

First, note that (30) with f as defined above is equivalent to the system

f̃ = T̃ Ã

(
S−1p
E−1q

)
= T̃ ÃD̃

(
(XS)−1/2 0

0 I

)(
p
q

)
.(47)

Now, let B = (B1, . . . ,Bm+l) be the ordered set of basic indices computed by the
MWB algorithm applied to the pair (Ã, d̃) and note that, by step 6 of this algorithm,
the Bith column of T̃ ÃD̃ is the ith unit vector for every i = 1, . . . ,m + l. Then,
the vector t ∈ �n+l defined as tBi

= f̃i for i = 1, . . . ,m + l and tj = 0 for every
j /∈ {B1, . . . ,Bm+l} clearly satisfies

f̃ = T̃ ÃD̃ t.(48)

We then obtain a pair (p, q) ∈ �n ×�l satisfying (30) by defining(
p
q

)
:=

(
(XS)1/2 0

0 I

)
t.(49)
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It is clear from (49) and the fact that ‖t‖ = ‖f̃‖ that

‖p‖ ≤ ‖XS‖1/2‖f̃‖, ‖q‖ ≤ ‖f̃‖.(50)

As an immediate consequence of this relation, we obtain the following result.
Lemma 3.3. Suppose that w ∈ �2n

++ × �m+l and positive scalars τp and τq are

given. Assume that uj is a ξ-approximate solution of (42) or, equivalently, f̃ ≤ ξ
√
μ,

where ξ := min{n−1/2τp, τq}. Let Δw be determined according to the recipe given in
subsection 2.2 using the approximate solution (46) and the pair (p, q) given by (49).
Then Δw is a (τp, τq)-search direction.

Proof. It is clear from the previous discussion that Δw and the pair (p, q) satisfy
(32)–(35). Next, relation (50) and the facts that ξ ≤ n−1/2τp and ‖XS‖1/2 ≤ √

nμ
imply that

‖p‖∞ ≤ ‖p‖ ≤ ‖XS‖1/2‖f̃‖ ≤ √
nμ ξ

√
μ ≤ τpμ.

Similarly, (50) and the fact that ξ ≤ τq imply that ‖q‖ ≤ τq
√
μ. Thus, Δw is a

(τp, τq)-search direction as desired.
Lemma (3.3) implies that to construct a (τp, τq)-search direction Δw as in step

2(d) of the inexact PDIPF algorithm, it suffices to find a ξ-approximate solution to
(42), where

ξ := min

{
γσ

4
√
n
,

[√
1 +

(
1 − γ

2

)
σ − 1

]
θ

}
.(51)

We next describe a suitable way of selecting u0 so that the number of iterations
required by an iterative linear solver satisfying (44) to find a ξ-approximate solution
of (42) can be uniformly bounded by a universal constant depending only on the
quantities n and ϕÃ. First, compute a point w̄ = (x̄, s̄, ȳ, z̄) such that

Ã

(
x̄

E−2z̄

)
=

(
b

0

)
, AT ȳ + s̄ + V z̄ = c.(52)

Note that vectors x̄ and z̄ satisfying the first equation in (52) can be easily computed
once a basis of Ã is available (e.g., the one computed by the maximum weight basis
algorithm in the first outer iteration of the inexact PDIPF algorithm). Once ȳ is
arbitrarily chosen, a vector s̄ satisfying the second equation of (52) is immediately
available. We then define

u0 = −η T̃−T

(
y0 − ȳ
z0 − z̄

)
.(53)

The following lemma gives a bound on the size of the initial residual ‖Wu0 − v‖. Its
proof will be given in subsection 4.1.

Lemma 3.4. Assume that T̃ = T̃ (Ã, d̃) is given and that w0 ∈ �2n
++ × �m+l and

w̄ are such that (x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Further,
assume that w ∈ Nw0(γ, θ) for some γ ∈ [0, 1] and θ > 0, and that W , v, and u0

are given by (43) and (53), respectively. Then, the initial residual in (44) satisfies
‖v −Wu0‖ ≤ Ψ

√
μ, where

Ψ :=

[
7n + θ2/2√

1 − γ
+ θ

]
ϕÃ.(54)
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As an immediate consequence of Proposition 3.2 and Lemmas 3.3 and 3.4, we can
bound the number of inner iterations required by an iterative linear solver satisfying
(44) to yield a (τp, τq)-search direction Δw.

Theorem 3.5. Assume that ξ is defined in (51), where σ, γ, θ are such that

max{σ−1, γ−1, (1 − γ)−1, θ, θ−1}

is bounded by a polynomial of n. Assume also that w0 ∈ �2n
++ × �m+l and w̄ are

such that (x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Then, a generic
iterative linear solver with a convergence rate given by (44) generates a ξ-approximate
solution, which leads to a (τp, τq)-search direction Δw in

O
(
ψ(ϕ2

Ã
) log

(
c(ϕ2

Ã
)nϕÃ

))
(55)

iterations. As a consequence, the SD and CG methods generate this approximate
solution uj in O(ϕ2

Ã
log(nϕÃ)) and O(ϕÃ log(nϕÃ)) iterations, respectively.

Proof. The proof of the first part of Theorem 3.5 immediately follows from Propo-
sitions 3.1 and 3.2 and Lemmas 3.3 and 3.4. The proof of the second part of Theorem
3.5 follows immediately from Table 3.1 and Proposition 3.1.

Using the results of sections 2 and 3, we see that the number of “inner” itera-
tions of an iterative linear solver satisfying (44) is uniformly bounded by a constant
depending on n and ϕÃ, while the number of “outer” iterations in the inexact PDIPF
algorithm is polynomially bounded by a constant depending on n and log ε−1.

4. Technical results. This section is devoted to the proofs of Lemma 3.4 and
Theorem 2.2. Subsection 4.1 presents the proof of Lemma 3.4, and subsection 4.2
presents the proof of Theorem 2.2.

4.1. Proof of Lemma 3.4. In this subsection, we will provide the proof of
Lemma 3.4. We begin by establishing three technical lemmas.

Lemma 4.1. Suppose that w0 ∈ �2n
++×�m+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1],

γ ∈ [0, 1], and θ > 0, and w∗ ∈ S. Then

(x− ηx0 − (1 − η)x∗)T (s− ηs0 − (1 − η)s∗) ≥ −θ2

4
μ.(56)

Proof. Let us define w̃ := w−ηw0−(1−η)w∗. Using the definitions of Nw0(η, γ, θ),
r, and S, we have that

Ax̃ = 0,

AT ỹ + s̃ + V z̃ = 0,

V T x̃ + E−2z̃ = E−1(rV − ηr0
V ).

Multiplying the second relation by x̃T on the left and using the first and third relations
along with the fact that w ∈ Nw0(η, γ, θ), we see that

x̃T s̃ = −x̃TV z̃ = [E−2z̃ − E−1(rV − ηr0
V )]T z̃ = ‖E−1z̃‖2 − (E−1z̃)T (rV − ηr0

V )

≥ ‖E−1z̃‖2 − ‖E−1z̃‖‖rV − ηr0
V ‖ =

(
‖E−1z̃‖ − ‖rV − ηr0

V ‖
2

)2

− ‖rV − ηr0
V ‖2

4

≥ −‖rV − ηr0
V ‖2

4
≥ −θ2

4
μ.
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Lemma 4.2. Suppose that w0 ∈ �2n
++ × �m+l such that (x0, s0) ≥ (x∗, s∗) for

some w∗ ∈ S. Then, for any w ∈ Nw0(η, γ, θ) with η ∈ [0, 1], γ ∈ [0, 1], and θ > 0,
we have

η(xT s0 + sTx0) ≤
(

3n +
θ2

4

)
μ.(57)

Proof. Using the fact w ∈ Nw0(η, γ, θ) and (56), we obtain

xT s− η(xT s0 + sTx0) + η2x0T

s0 − (1 − η)(xT s∗ + sTx∗)

+ η(1 − η)(x∗T

s0 + s∗
T

x0) + (1 − η)2x∗T

s∗ ≥ −θ2

4
μ.

Rearranging the terms in this equation and using the facts that η ≤ xT s/x0T

s0,

x∗T

s∗ = 0, (x, s) ≥ 0, (x∗, s∗) ≥ 0, (x0, s0) > 0, η ∈ [0, 1], x∗ ≤ x0, and s∗ ≤ s0, we
conclude that

η(xT s0 + sTx0) ≤ η2x0T

s0 + xT s + η(1 − η)(x∗T

s0 + s∗
T

x0) +
θ2

4
μ

≤ η2x0T

s0 + xT s + 2η(1 − η)x0T

s0 +
θ2

4
μ

≤ 2ηx0T

s0 + xT s +
θ2

4
μ

≤ 3xT s +
θ2

4
μ =

(
3n +

θ2

4

)
μ.

Lemma 4.3. Suppose w0 ∈ �2n
++ × �m+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1],

γ ∈ [0, 1], and θ > 0, and w̄ satisfies (52). Let W , v, and u0 be given by (43) and
(53), respectively. Then,

Wu0 − v = T̃ Ã

(
−x + σμS−1e + η(x0 − x̄) + ηD2(s0 − s̄)

E−1(rV − ηr0
V )

)
.(58)

Proof. Using the fact that w ∈ Nw0(η, γ, θ) along with (21), (36), and (52), we
easily obtain that

(
rp

E−1rV

)
=

(
ηr0

p

ηE−1r0
V + E−1(rV − ηr0

V )

)
= ηÃ

(
x0 − x̄

E−2(z0 − z̄)

)
+ Ã

(
0

E−1(rV − ηr0
V )

)
,(59)

s0 − s̄ = −AT (y0 − ȳ) − V (z0 − z̄) + r0
d.(60)
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Using relations (20), (21), (43), (36), (53), (59), and (60), we obtain

Wu0 − v = T̃ ÃD̃2ÃT T̃Tu0 − T̃ Ã

(
x− σμS−1e−D2rd

0

)
+ T̃

(
rp

E−1rV

)
= − ηT̃ ÃD̃2ÃT

(
y0 − ȳ
z0 − z̄

)
− T̃ Ã

(
x− σμS−1e− ηD2r0

d

0

)
+ T̃

(
rp

E−1rV

)

= − ηT̃ Ã

(
D2AT (y0 − ȳ) + D2V (z0 − z̄) −D2r0

d

E−2(z0 − z̄)

)
− T̃ Ã

(
x− σμS−1e

0

)
+ T̃

(
rp

E−1rV

)
,

= − ηT̃ Ã

(
−D2(s0 − s̄)
E−2(z0 − z̄)

)
− T̃ Ã

(
x− σμS−1e

0

)
+ ηT̃ Ã

(
x0 − x̄

E−2(z0 − z̄)

)
+ T̃ Ã

(
0

E−1(rV − ηr0
V )

)
,

which yields (58), as desired.
We now turn to the proof of Lemma 3.4.
Proof. Since w ∈ Nw0(γ, θ), we have that xisi ≥ (1 − γ)μ for all i, which implies

‖(XS)−1/2‖ ≤ 1√
(1 − γ)μ

.(61)

Note that ‖Xs−σμe‖, when viewed as a function of σ ∈ [0, 1], is convex. Hence, it is
maximized at one of its endpoints, which, together with the facts ‖Xs− μe‖ < ‖Xs‖
and σ ∈ [σ, σ] ⊂ [0, 1], immediately implies that

‖Xs− σμe‖ ≤ ‖Xs‖ ≤ ‖Xs‖1 = xT s = nμ.(62)

Using the fact that (x0, s0) ≥ |(x̄, s̄)| together with Lemma 4.2, we obtain that

η‖S(x0 − x̄) + X(s0 − s̄)‖ ≤ η
{
‖S(x0 − x̄)‖ + ‖X(s0 − s̄)‖

}
≤ 2η

{
‖Sx0‖ + ‖Xs0‖

}
≤ 2η(xT s0 + xT s0) ≤

(
6n +

θ2

2

)
μ.(63)

Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ). It is clear that
the requirements of Lemma 4.3 are met, so (58) holds. By (19), (20), and (58), we
see that

‖v −Wu0‖ =

∥∥∥∥T̃ ÃD̃

(
(XS)−1/2{Xs− σμe− η[S(x0 − x̄) + X(s0 − s̄)]}

rV − ηr0
V

)∥∥∥∥
≤ ‖T̃ ÃD̃‖

{
‖(XS)−1/2‖

[
‖Xs− σμe‖ + η‖X(s0 − s̄) + S(x0 − x̄)‖

]
+ ‖rV − ηr0

V ‖
}
,

≤ ϕÃ

{
1√

(1 − γ)μ

[
nμ +

(
6n +

θ2

2

)
μ

]
+ θ

√
μ

}
= Ψ

√
μ,

where the last inequality follows from Proposition 3.1, relations (61), (62), (63), and
the assumption that w ∈ Nw0(γ, θ).
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4.2. “Outer” iteration results—Proof of Theorem 2.2. In this subsection,
we will present the proof of Theorem 2.2. Specifically, we will show that the inexact
PDIPF algorithm obtains an ε-approximate solution to (5)–(8) in O(n2 log(1/ε)) outer
iterations.

Throughout this section, we use the following notation:

w(α) := w + αΔw, μ(α) := μ(w(α)), r(α) := r(w(α)).

Lemma 4.4. Assume that Δw satisfies (32)–(35) for some σ ∈ �, w ∈ �2n+m+l,
and (p, q) ∈ �n ×�l. Then, for every α ∈ �, we have

(a) X(α)s(α) = (1 − α)Xs + ασμe− αp + α2ΔXΔs;
(b) μ(α) = [1 − α(1 − σ)]μ− αpT e/n + α2ΔxTΔs/n;
(c) (rp(α), rd(α)) = (1 − α)(rp, rd);
(d) rV (α) = (1 − α)rV + αq.
Proof. Using (34), we obtain

X(α)s(α) = (X + αΔX)(s + αΔs)

= Xs + α(XΔs + SΔx) + α2ΔXΔs

= Xs + α(−Xs + σμe− p) + α2ΔXΔs

= (1 − α)Xs + ασμe− αp + α2ΔXΔs,

thereby showing that (a) holds. Left multiplying the above equality by eT and dividing
the resulting expression by n, we easily conclude that (b) holds. Statement (c) can be
easily verified by means of (32) and (33), while statement (d) follows from (35).

Lemma 4.5. Assume that Δw satisfies (32)–(35) for some σ ∈ �, w ∈ �2n
++ ×

�m+l, and (p, q) ∈ �n × �l such that ‖p‖∞ ≤ γσμ/4. Then, for every scalar α
satisfying

0 ≤ α ≤ min

{
1 ,

σμ

4 ‖ΔXΔs‖∞

}
,(64)

we have

μ(α)

μ
≥ 1 − α.(65)

Proof. Since ‖p‖∞ ≤ γσμ/4, we easily see that

|pT e/n| ≤ ‖p‖∞ ≤ σμ/4.(66)

Using this result and Lemma 4.4(b), we conclude for every α satisfying (64) that

μ(α) = [1 − α(1 − σ)]μ− αpT e/n + α2ΔxTΔs/n

≥ [1 − α(1 − σ)]μ− 1

4
ασμ + α2ΔxTΔs/n

≥ (1 − α)μ +
1

4
ασμ− α2‖ΔXΔs‖∞

≥ (1 − α)μ.

Lemma 4.6. Assume that Δw is a (τp, τq)-search direction, where τp and τq are
given by (38) and (39), respectively. Assume also that σ > 0 and that w ∈ Nw0(γ, θ)
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with w0 ∈ �2n
++ × �m+l, γ ∈ [0, 1], and θ ≥ 0. Then, w(α) ∈ Nw0(γ, θ) for every

scalar α satisfying

0 ≤ α ≤ min

{
1 ,

γσμ

4 ‖ΔXΔs‖∞

}
.(67)

Proof. Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ). We
will show that w(α) ∈ Nw0((1 − α)η, γ, θ) ⊆ Nw0(γ, θ) for every α satisfying (67).

First, we note that (rp(α), rd(α)) = (1 − α)η(r0
p, r

0
d) by Lemma 4.4(c) and the

definition of Nw0(η, γ, θ). Next, it follows from Lemma 4.5 that (65) holds for every
α satisfying (64), and hence (67) due to γ ∈ [0, 1]. Thus, for every α satisfying (67),
we have

(1 − α)η ≤ μ(α)

μ
η ≤ μ(α)

μ

μ

μ0
=

μ(α)

μ0
.(68)

Now, it is easy to see that for every u ∈ �n and τ ∈ [0, n], there holds ‖u −
τ(uT e/n)e‖∞ ≤ (1+τ)‖u‖∞. Using this inequality twice, the fact that w ∈ Nw0(η, γ, θ),
relation (38), and statements (a) and (b) of Lemma 4.4, we conclude for every α sat-
isfying (67) that

X(α)s(α) − (1 − γ)μ(α)e

= (1 − α) [Xs− (1 − γ)μe] + αγσμe− α

[
p− (1 − γ)

(
pT e

n

)
e

]
+ α2

[
ΔXΔs− (1 − γ)

(
ΔxTΔs

n

)
e

]
≥ α

[
γσμ−

∥∥∥∥p− (1 − γ)
pT e

n
e

∥∥∥∥
∞

− α

∥∥∥∥ΔXΔs− (1 − γ)
ΔxTΔs

n
e

∥∥∥∥
∞

]
e

≥ α (γσμ− 2‖p‖∞ − 2α‖ΔXΔs‖∞) e ≥ α

(
γσμ− 1

2
γσμ− 1

2
γσμ

)
e = 0.

Next, by Lemma 4.4(d), we have that

rV (α) = (1 − α)rV + αq = (1 − α)ηr0
V + â,

where â = (1 − α)(rV − ηr0
V ) + αq. To complete the proof, it suffices to show that

‖â‖ ≤ θ
√

μ(α) for every α satisfying (67). By using equation (39) and Lemma 4.4(b)
along with the facts that ‖rV − ηr0

V ‖ ≤ θ
√
μ and α ∈ [0, 1], we have

‖â‖2 − θ2μ(α) = (1 − α)2‖rV − ηr0
V ‖2 + 2α(1 − α)[rV − ηr0

V ]T q + α2‖q‖2 − θ2μ(α)

≤ (1 − α)2θ2μ + 2α(1 − α)θ
√
μ‖q‖ + α2‖q‖2

− θ2

{
[1 − α(1 − σ)]μ− α

pT e

n
+ α2 ΔxTΔs

n

}
≤ α2‖q‖2 + 2αθ

√
μ‖q‖ − αθ2σμ + αθ2 p

T e

n
− α2θ2 ΔxTΔs

n

≤ α
[
‖q‖2 + 2θ

√
μ‖q‖ −

(
1 − γ

4

)
θ2σμ + θ2α‖ΔXΔs‖∞

]
≤ α

[
‖q‖2 + 2θ

√
μ‖q‖ −

(
1 − γ

2

)
θ2σμ

]
≤ 0,
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where the last inequality follows from the quadratic formula and the fact that ‖q‖ ≤ τq,
where τq is given by (39).

Next, we derive a lower bound on the step size of the inexact PDIPF algorithm.
Lemma 4.7. In every iteration of the inexact PDIPF algorithm, the step length

ᾱ satisfies

ᾱ ≥ min

{
1,

min{γσ, 1 − 5
4σ}μ

4 ‖ΔXΔs‖∞

}
(69)

and

μ(ᾱ) ≤
[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ.(70)

Proof. We know that Δw is a (τp, τq)-search direction in every iteration of the
inexact PDIPF algorithm, where τp and τq are given by (38) and (39). Hence, by
Lemma 4.6, the quantity α̃ computed in step (g) of the inexact PDIPF algorithm
satisfies

α̃ ≥ min

{
1,

γσμ

4 ‖ΔXΔs‖∞

}
.(71)

Moreover, by (66), it follows that the coefficient of α in the expression for μ(α) in
Lemma 4.4(b) satisfies

−(1 − σ)μ− pT e

n
≤ −(1 − σ)μ + ‖p‖∞ ≤ −(1 − σ)μ +

1

4
γσμ(72)

= −
(

1 − 5

4
σ

)
μ < 0,

since σ ∈ (0, 4/5). Hence, if ΔxTΔs ≤ 0, it is easy to see that ᾱ = α̃ and hence that
(69) holds in view of (71). Moreover, by Lemma 4.4(b) and (72), we have

μ(ᾱ) ≤ [1 − ᾱ(1 − σ)]μ− ᾱ
pT e

n
≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

]
μ ≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ,

showing that (70) also holds. We now consider the case where ΔxTΔs > 0. In this
case, we have ᾱ = min{αmin , α̃}, where αmin is the unconstrained minimum of μ(α).
It is easy to see that

αmin =
nμ(1 − σ) + pT e

2ΔxTΔs
≥

n[μ(1 − σ) − 1
4σμ]

2ΔxTΔs
≥

μ(1 − 5
4σ)

2 ‖ΔXΔs‖∞
.

The last two observations together with (71) imply that (69) holds in this case too.
Moreover, since the function μ(α) is convex, it must lie below the function φ(α) over
the interval [0, αmin], where φ(α) is the affine function interpolating μ(α) at α = 0
and α = αmin. Hence,

μ(ᾱ) ≤ φ(ᾱ) =
[
1 − (1 − σ)

ᾱ

2

]
μ− ᾱ

pT e

2n
≤

[
1 −

(
1 − 5

4
σ

)
ᾱ

2

]
μ,(73)

where the second inequality follows from (72). We have thus shown that ᾱ satisfies
(70).
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Our next task will be to show that the step size ᾱ remains bounded away from
zero. In view of (69), it suffices to show that the quantity ‖ΔXΔs‖∞ can be suitably
bounded. The next lemma addresses this issue.

Lemma 4.8. Let w0 ∈ �2n
++ × �m+l be such that (x0, s0) ≥ (x∗, s∗) for some

w∗ ∈ S, and let w ∈ Nw0(γ, θ) for some γ ≥ 0 and θ ≥ 0. Then, the inexact search
direction Δw used in the inexact PDIPF algorithm satisfies

max(‖D−1Δx‖, ‖DΔs‖) ≤
(

1 − 2σ +
σ2

1 − γ

)1/2 √
nμ

+
1√

1 − γ

(
γσ

4

√
n + 6n +

θ2

2

)
√
μ + θ

√
μ.(74)

Proof. Since w ∈ Nw0(γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ).

Let Δ̃w := Δw + η(w0 − w∗). Using relations (32), (33), (35), and the fact that
w ∈ Nw0(η, γ, θ), we easily see that

AΔ̃x = 0,(75)

AT Δ̃y + Δ̃s + V Δ̃z = 0,(76)

V T Δ̃x + E−2Δ̃z = E−1(q − rV + ηr0
V ).(77)

Premultiplying (76) by Δ̃x
T

and using (75) and (77), we obtain

Δ̃x
T
Δ̃s = −Δ̃x

T
V Δ̃z = [E−2Δ̃z − E−1(q − rV + ηr0

V )]T Δ̃z

= ‖E−1Δ̃z‖2 − (q − rV + ηr0
V )T (E−1Δ̃z)

≥ ‖E−1Δ̃z‖2 − ‖q − rV + ηr0
V ‖ ‖E−1Δ̃z‖ ≥ −‖q − rV + ηr0

V ‖2

4
.(78)

Next, we multiply (34) by (XS)−1/2 to obtain D−1Δx+DΔs = H(σ)−(XS)−1/2p,
where H(σ) := −(XS)1/2e + σμ(XS)−1/2e. Equivalently, we have that

D−1Δ̃x + DΔ̃s = H(σ) − (XS)−1/2p + η
[
D(s0 − s∗) + D−1(x0 − x∗)

]
=: g.

Taking the squared norm of both sides of the above equation and using (78), we obtain

‖D−1Δ̃x‖2 + ‖DΔ̃s‖2 = ‖g‖2 − 2Δ̃x
T
Δ̃s ≤ ‖g‖2 +

‖q − rV + ηr0
V ‖2

2

≤
(
‖g‖ +

‖q‖ + ‖rV − ηr0
V ‖√

2

)2

≤ (‖g‖ + θ
√
μ)

2
,

since ‖q‖ + ‖rV − ηr0
V ‖ ≤

[√
2 − 1

]
θ
√
μ + θ

√
μ =

√
2θ
√
μ by (36), (39), and the fact

that 1 + (1 − γ/2)σ ≤ 2. Thus, we have

max(‖D−1Δ̃x‖ , ‖DΔ̃s‖) ≤ ‖g‖ + θ
√
μ

≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + η
[
‖D(s0 − s∗)‖ + ‖D−1(x0 − x∗)‖

]
+ θ

√
μ.
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This, together with the triangle inequality, the definitions of D and Δ̃w, and the fact
that w ∈ Nw0(η, γ, θ), implies that

(79)

max(‖D−1Δx‖, ‖DΔs‖)
≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + 2η

[
‖D(s0 − s∗)‖ + ‖D−1(x0 − x∗)‖

]
+ θ

√
μ

≤ ‖H(σ)‖ + ‖(XS)−1/2‖ ‖p‖ + 2η‖(XS)−1/2‖
[
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

]
+ θ

√
μ

≤ ‖H(σ)‖ +
1√

(1 − γ)μ

[
‖p‖ + 2η

(
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

)]
+ θ

√
μ.

It is well known (see, e.g., [10]) that

‖H(σ)‖ ≤
(

1 − 2σ +
σ2

1 − γ

)1/2 √
nμ.(80)

Moreover, using the fact that s∗ ≤ s0 and x∗ ≤ x0 along with Lemma 4.2, we obtain

η
(
‖X(s0 − s∗)‖ + ‖S(x0 − x∗)‖

)
≤ η(sTx0 + xT s0) ≤

(
3n +

θ2

4

)
μ.(81)

The result now follows by noting that ‖p‖ ≤
√
n‖p‖∞ and by incorporating inequali-

ties (80), (81), and (38) into (79).
We are now ready to prove Theorem 2.2.
Proof. Let Δwk denote the search direction, and let rk = r(wk) and μk = μ(wk)

at the kth iteration of the inexact PDIPF algorithm. Clearly, wk ∈ Nw0(γ, θ). Hence,
using Lemma 4.8, assumption (40), and the inequality

‖ΔXkΔsk‖∞ ≤ ‖ΔXkΔsk‖ ≤ ‖(Dk)−1Δxk‖ ‖DkΔsk‖,

we easily see that ‖ΔXkΔsk‖∞ = O(n2)μk. Using this conclusion together with
assumption (40) and Lemma 4.7, we see that, for some universal constant β > 0, we
have

μk+1 ≤
(

1 − β

n2

)
μk ∀k ≥ 0.

Using this observation and some standard arguments (see, for example, Theorem
3.2 of [27]), we easily see that the inexact PDIPF algorithm generates an iterate
wk ∈ Nw0(γ, θ) satisfying μk/μ0 ≤ ε within O

(
n2 log(1/ε)

)
iterations. The theorem

now follows from this conclusion and the definition of Nw0(γ, θ).

5. Concluding remarks. We have shown that the long-step PDIPF algorithm
for LP based on an iterative linear solver presented in [16] can be extended to the
context of CQP. This was not immediately obvious at first since the standard normal
equation for CQP does not fit into the mold required for the results of [17] to hold. By
considering the ANE, we were able to use the results about the MWB preconditioner
developed in [17] in the context of CQP. Another difficulty we encountered was the
proper choice of the starting iterate u0 for the iterative linear solver. By choosing
u0 = 0 as in the LP case, we obtain ‖v−Wu0‖ = ‖v‖, which can only be shown to be
O(max{μ,√μ}). In this case, for every μ > 1, Proposition 3.2 would guarantee that
the number of inner iterations of the iterative linear solver is

O
(
ψ(ϕ2

Ã
) max

{
log

(
c(ϕ2

Ã
)nϕÃ

)
, logμ

})
,
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a bound which depends on the logarithm of the current duality gap. On the other
hand, Theorem 3.5 shows that choosing u0 as in (53) results in a bound that does not
depend on the current duality gap.

We observe that under exact arithmetic, the CG algorithm applied to Wu = v
generates an exact solution in at most m + l iterations (since W ∈ �(m+l)×(m+l)).
It is clear, then, that the bound (55) is generally worse than the well-known finite
termination bound for CG. However, our results in section 3 were given for a family of
iterative linear solvers, only one member of which is CG. Also, under finite precision
arithmetic, the CG algorithm loses its finite termination property, and its convergence
rate behavior in this case is still an active topic of research (see, e.g., [8]). Certainly,
the impact of finite precision arithmetic on our results is an interesting open issue.

Clearly, the MWB preconditioner is not suitable for dense CQP problems since,
in this case, the cost to construct the MWB is comparable to the cost to form and
factorize ÃD̃2ÃT , and each inner iteration would require Θ((m + l)2) arithmetic op-
erations, the same cost as a forward and backward substitution. There are, however,
some classes of CQP problems for which the method proposed in this paper might
be useful. One class of problems for which PDIPF methods based on MWB precon-
ditioners might be useful are those for which bases of Ã are sparse, but the ANE
coefficient matrices ÃD̃2ÃT are dense; this situation generally occurs in sparse CQP
problems for which n is much larger than m + l. Other classes of problems for which
our method might be useful are network flow problems. The paper [22] developed
interior-point methods for solving the minimum cost network flow problem based on
iterative linear solvers with maximum spanning tree preconditioners. Related to this
work, we believe that the following two issues could be investigated: (i) whether the
incorporation of the correction term p defined in (29) in the algorithm implemented
in [22] will improve the convergence of the method; (ii) whether our algorithm might
be efficient for network flow problems where the costs associated with the arcs are
quadratic functions of the arc flows. Identification of other classes of CQP problems
which could be efficiently solved by the method proposed in this paper is another
topic for future research.

Regarding the second question above, it is easy to see (after a suitable permutation
of the variables) that V T =

(
I 0

)
and E2 is a positive diagonal matrix whose

diagonal elements are the positive quadratic coefficients. In this case, it can be shown
that Ã is totally unimodular; hence ϕ2

Ã
≤ (m + l)(n −m + 1) by Cramer’s rule (see

[17]).
The usual way of defining the dual residual is as the quantity

Rd := AT y + s− V E2V Tx− c,

which, in view of (11) and (12), can be written in terms of the residuals rd and rV as

Rd = rd − V ErV .(82)

Note that, along the iterates generated by the inexact PDIPF algorithm, we have rd =
O(μ) and rV = O(

√
μ), implying that Rd = O(

√
μ). Hence, while the usual primal

residual converges to 0 according to O(μ), the usual dual residual does so according
to O(

√
μ). This is a unique feature of the convergence analysis of our algorithm in

that it contrasts with the analysis of other interior-point PDIPF algorithms, where
the primal and dual residuals are required to go to zero at the same rate. The
convergence analysis under these circumstances is possible due to the specific form of
the O(

√
μ)-term present in (82), i.e., one that lies in the range space of V E.
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CQP problems where V is explicitly available arise frequently in the literature.
One important example arises in portfolio optimization (see [6]), where the rank of V
is often small. In such problems, l represents the number of observation periods used
to estimate the data for the problem. We believe that the inexact PDIPF algorithm
could be of particular use for this type of application.
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