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Abstract

In this paper we study primal-dual first-order methods for a class of cone program-
ming problems. In particular, we first present four natural primal-dual smooth convex
minimization reformulations for them, and then discuss first-order methods, especially a
variant of Nesterov’s smooth (VNS) method [2] for solving these reformulations. The asso-
ciated worst-case major arithmetic operation costs of the VNS method are estimated and
compared. We conclude that the VNS method based on the last reformulation generally
outperforms the others. Finally, we justify our theoretical prediction on the behavior of
the VNS method by conducting numerical experiments on Dantzig selector, basis pursuit
de-noising, MAXCUT SDP relaxation and Lovász capacity problems.

AMS 2000 subject classification: 65K05, 65K10, 90C05, 90C22, 90C25

1 Introduction

In [27, 28], Nesterov proposed an optimal algorithm for solving convex programming problems
of the form

inf{f(u) : u ∈ U}, (1)

where f is a convex function with Lipschitz continuous gradient and U is a sufficiently simple
closed convex set. It is shown that his method has O(

√
L/ε) iteration-complexity bound, where

L is the Lipschitz constant for the gradient of f and ε > 0 is the absolute precision of the final
objective function value. It shall be mentioned that each iterate of his method needs to solve two
proximal subproblems or one proximal subproblem plus one projection subproblem. Recently,
Auslender and Teboulle [2] proposed a variant of Nesterov’s smooth (VNS) method that enjoys
the same complexity as Nesterov’s smooth method [27, 28], but it requires solving only one
(proximal) subproblem per iteration. Thus, in contrast with Nesterov’s smooth method, the

∗Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada (Email:
zhaosong@sfu.ca). This author was supported in part by NSERC Discovery Grant.

1



VNS method [2] is generally computationally more efficient. More recently, Tseng [31] extended
the VNS method [2] to a broader class of convex optimization problems and also proposed an
alternative VNS method.

Lan, Lu and Monteiro [24] recently studied first-order methods for general cone programming
(CP) problems. In particular, they proposed a class of primal-dual convex (smooth and/or
nonsmooth) minimization reformulations for them, and discussed suitable first-order methods
for solving these reformulations such as Nesterov’s optimal method [27, 28], Nesterov’s smooth
approximation scheme [28], Nemirovski’s prox-method [26] and a variant of Nesterov’s optimal
method [24]. They also provided iteration-complexity bounds for these first-order methods when
applied to the aforementioned reformulations of CP problems. It shall be mentioned that the
methods studied in [24] require solving two subproblems per iteration. Additionally, for a general
CP, it is not clear which reformulation is mostly suitable for the user since the performance of
first-order methods can vary much with different reformulations.

In this paper we consider a class of CP problems which, for example, include the MAX-
CUT semidefinite programming (SDP) relaxation [19], Lovász capacity [25] and those arising in
compressed sensing [30, 14, 7, 8, 9, 10, 12, 13, 11]. In particular, we first present four natural
primal-dual convex smooth minimization reformulations (13)-(16) for them, and then discuss
first-order methods, especially the VNS method [2] for solving these reformulations. The as-
sociated worst-case major arithmetic operation costs of the VNS method are estimated and
compared. We conclude that the VNS method based on reformulation (16) generally outper-
forms that applied to the others, namely, (13)-(15). Finally, we justify our theoretical prediction
on the behavior of the VNS method by conducting numerical experiments on Dantzig selector,
basis pursuit de-noising, MAXCUT SDP relaxation and Lovász capacity problems.

The rest of paper is organized as follows. In Section 2, we introduce a class of CP problems
of our interest and present four natural primal-dual smooth convex minimization reformulations
for them. In Sections 3 and 4, we review the VNS method [2] and discuss its application to these
reformulations, respectively. In Section 5, we conduct numerical experiments to compare the
performance of the VNS method when applied to the aforementioned reformulations of Dantzig
selector, basis pursuit de-noising, MAXCUT SDP relaxation and Lovász capacity problems.

1.1 Notation

The following notation is used throughout our paper. All vector spaces given in this paper are
assumed to be finite dimensional. The symbol <n denotes the n-dimensional Euclidean space.
The 1-norm, Euclidean norm and infinity-norm in <n are denoted by ‖ · ‖1, ‖ · ‖2 and ‖ · ‖∞,
respectively. We denote by 1 the vector of all ones whose dimension should be clear from the
context. Given a sequence of vectors xi ∈ <ni for i = 1, . . . ,m, let (x1; · · · ;xm) denote the
vector in <n with n =

∑m
i=1 ni obtained by stacking the vectors xi one by one for i = 1, . . . ,m.

The space of all m × n matrices with real entries is denoted by <m×n. We denote by I the
identity matrix whose size should be clear from the context. Given any Z ∈ <m×n, we denote its
operator norm by ‖Z‖2, i.e., ‖Z‖2 = max{‖Zu‖2 : ‖u‖2 ≤ 1}. We define the condition number
of a real nonsingular matrix Z as κ(Z) = ‖Z‖2‖Z−1‖2. We let Tr(Z) denote the trace of a
matrix Z ∈ <n×n. By Sn we denote the space of real n × n symmetric matrices, and we define
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Sn
+ to be the subset of Sn consisting of the positive semidefinite matrices. We write Z � 0 to

indicate Z ∈ Sn
+. Given any Z ∈ Sn, let λi(Z) denote its ith largest eigenvalue for i = 1, ..., n,

and λmin(Z) (resp., λmax(Z)) denote its minimal (resp., maximal) eigenvalue.
Given a real Hilbert space U , we denote its inner product by 〈·, ·〉U , which gives rise to the

inner product norm ‖ · ‖U on U , that is, ‖ · ‖U =
√
〈·, ·〉U . If V denotes another Hilbert space,

and E : U → V is a linear operator, the adjoint of E is the linear operator E∗ : V → U defined
by

〈E∗v, u〉U = 〈Eu, v〉V , ∀u ∈ U, v ∈ V.

With a slight abuse of notation, we sometimes write E and E∗ as their representation matrices
with respect to some natural (standard) basis. Further, the operator norm of E is defined as

‖E‖ = max
u
{‖Eu‖V : ‖u‖U ≤ 1}. (2)

Also, if E is invertible, its condition number is defined as

κ(E) = ‖E‖‖E−1‖. (3)

In addition, for an operator E , Im(E) denotes its range space. We use I to denote the identity
operator.

Let U be a normed vector space whose norm is denoted by ‖·‖. The dual space of U , denoted
by U∗, is the normed vector space consisting of all linear functionals of u∗ : U → <, endowed
with the dual norm ‖ · ‖∗ defined as

‖u∗‖∗ = max
u
{u∗(u) : ‖u‖ ≤ 1}, ∀u∗ ∈ U∗. (4)

Given a closed convex set C ⊆ U and an arbitrary norm ‖ · ‖ on U , let dC : U → < denote the
distance function for C measured in terms of ‖ · ‖, namely,

dC(u) := inf
ũ∈C
‖u− ũ‖, ∀u ∈ U. (5)

We further assume that U is a real Hilbert space. A function f : Ω ⊆ U → < is said to be
L-Lipschitz-differentiable with respect to ‖ · ‖ if it is differentiable and

‖∇f(u)−∇f(ũ)‖∗ ≤ L‖u− ũ‖, ∀u, ũ ∈ Ω.

2 A class of CP problems and reformulations

In this section we introduce a class of CP problems of our interest and present four natural
primal-dual convex minimization reformulations for them.

Before proceeding, we adopt the same convention as in Golub and Van Loan [20] for counting
number of floating point operations (e.g., the inner product of two n-vectors involves 2n floating
point operations).
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Definition 1 For any map ψ : P → Q between two sets P and Q, and for each p ∈ P , we denote
by fps(ψ(p)) the number of floating point operations required to compute ψ(p) ∈ Q. Moreover,
we define fps(ψ) = sup{fps(ψ(p)) : p ∈ P}.

We are now ready to introduce a class of CP problems of our interest. Assume X and Y are
two real Hilbert spaces. Given a linear operator A : X → Y , c ∈ X and b ∈ Y and a closed
convex cone L ⊆ X, consider the CP problem

min
x
〈c, x〉X

s.t. Ax = b, x ∈ L,
(6)

and its associated dual problem

max
(y,s)

〈b, y〉Y
s.t. A∗y + s = c, s ∈ L∗,

(7)

where A∗ is the adjoint operator of A, and L∗ := {s ∈ X : 〈s, x〉X ≥ 0, ∀x ∈ L} is the dual cone
of L. We make the following assumptions regarding CP problems (6) and (7) throughout this
paper:

A.1 The pair of CP problems (6) and (7) have optimal solutions and their associated duality
gap is zero;

A.2 Im(A) = Y and b 6= 0;

A.3 fps((AA∗)−1) and fps((I +AA∗)−1) are comparable to fps(A) + fps(A∗).

We remark that Assumption A.2 is fairly standard. Indeed, the assumption Im(A) = Y
is often imposed in the literature. Also, the assumption b 6= 0 is very mild. In fact, for the
case where b = 0, CP problems (6) and (7) become trivial and their solutions can be obtained
straightforwardly. In addition, Assumption A.3 plays a crucial role in estimating and comparing
the worst-case major arithmetic operation costs of the VNS method for solving CP problems
(6) and (7) based on several reformulations (see Section 4). It actually holds for a variety of
important CP problems (see the discussion below).

It follows from Definition 1 that fps((AA∗)−1) and fps((I+AA∗)−1) can be measured by the
arithmetic operation cost of solving linear systems:

AA∗v = h, (I +AA∗)v = h (8)

for some 0 6= h ∈ Y , respectively. We now look into two cases where Assumption A.3 holds.

1) κ(AA∗) is small. Noting that κ(I +AA∗) ≤ κ(AA∗), so κ(I +AA∗) is also small. Thus,
the number of iterations performed by the conjugate gradient (CG) method for solving
(8) is expected to be reasonably small. Moreover, we know that the arithmetic operation
cost of CG method per iteration is O(fps(A) + fps(A∗)). Therefore, fps((AA∗)−1) and
fps((I +AA∗)−1) are comparable to fps(A) + fps(A∗) when CG method is applied to solve
(8).
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2) AA∗ is a diagonal operator. In this case, (8) can be trivially solved, and thus fps((AA∗)−1)
and fps((I +AA∗)−1) are even much less than fps(A) + fps(A∗).

Combining the above two cases, we can further conclude that when AA∗ is a block diagonal
operator whose each diagonal block is either a diagonal operator or an operator with a small
conditional number, fps((AA∗)−1) and fps((I + AA∗)−1) are comparable to fps(A) + fps(A∗).
Indeed, there are a variety of CP problems from application whose operator A possesses such
a nice property, and Assumption A.3 thus holds for them. For example, for MAXCUT SDP
relaxation [19] and Lovász capacity problem [25], AA∗ is a diagonal operator. Additionally,
several CP problems arising in compressed sensing proposed in [30, 14, 7, 8, 9, 10, 12, 13, 11]
also enjoy the aforementioned property (see Section 5).

We next aim to reformulate CP problems (6) and (7) into smooth convex minimization
problems which are suitable for first-order methods (e.g., the VNS method [2]).

In view of Assumption A.1, a pair of primal-dual optimal solutions of (6) and (7) can be
found by solving the following constrained system of linear equations:

Ax− b = 0,
A∗y + s− c = 0,

〈c, x〉X − 〈b, y〉Y = 0,
(x, s, y) ∈ L × L∗ × Y. (9)

Clearly, the primal-dual system (9) can be viewed as a cone linear system:

Eu− e = 0, u ∈ K, (10)

where

K = L × L∗ × Y, E =

 A 0 0

0 I A∗

c 0 −b

 , u =

 x
s
y

 , e =

 b
c
0

 . (11)

We easily observe that E is a linear operator from U to V , where U = X × X × Y and V =
Y ×X ×<.

Our approach to solving (10) (or, equivalently, (9)) will be to reformulate it as a smooth
convex minimization problem. To proceed, we define the linear manifold M as follows:

M = {u ∈ U : Eu− e = 0}. (12)

Let dK(·) and dM(·) denote the distance functions for K and M measured in terms of the norm
‖ · ‖U , respectively. We immediately observe that problem (10) can be reformulated into the
following minimization problems:

min{f1(u) := ‖Eu− e‖2V : u ∈ K}, (13)

min{f2(u) := (dM(u))2 + (dK(u))2 : u ∈ U}, (14)

min{f3(u) := (dM(u))2 : u ∈ K}, (15)

min{f4(u) := (dK(u))2 : u ∈M}. (16)
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We remark that reformulation (13) was proposed and studied in [24], in which Nemirovski’s
prox-method [26], Nesterov’s smooth method [27, 28] and its variant [24] were applied to solve it.
In addition, (14) has been recently studied in Jarre and Rendl [23], where nonlinear conjugate
gradient methods were used to solve it.

Before ending this section, we observe that the objective functions of problems (13)-(16)
are convex differentiable and their gradients are Lipschitz continuous, and hence (13)-(16) are
smooth convex minimization reformulations of problem (10).

Proposition 1 The functions f1(u), f2(u), f3(u) and f4(u) are convex and 2‖E‖2, 4, 2, 2-
Lipschitz differentiable with respect to the norm ‖ · ‖U , respectively, where ‖E‖ is defined in (2).

Proof. The conclusion immediately follows from Propositions 1 and 15 of [24].

In Section 4, we will discuss first-order methods, especially the VNS method [2] for solving
CP problems (6) and (7) based on (13)-(16). We also estimate and compare the worst-case major
arithmetic operation costs of the VNS method for them.

3 A variant of Nesterov’s smooth method

In this section, we review a variant of Nesterov’s smooth (VNS) method recently proposed by
Auslender and Teboulle [2] for solving a class of smooth convex programming problems.

Let U be a real Hilbert space endowed with a norm ‖ · ‖ (not necessarily the inner product
norm), and let U ⊆ U be a closed convex set. Assume that f : U → < is a differentiable convex
function such that for some L ≥ 0,

‖∇f(u)−∇f(ũ)‖∗ ≤ L‖u− ũ‖, ∀u, ũ ∈ U . (17)

Our problem of interest in this section is the convex programming problem (1).
We assume throughout our discussion that the optimal value f ∗ of problem (1) is finite and

that its set of optimal solutions is nonempty. Let hU : U → < be a differentiable strongly convex
function with modulus σu > 0 with respect to ‖ · ‖U , i.e.,

hU(u) ≥ hU(ũ) + 〈∇hU(ũ), u− ũ〉+
σu
2
‖u− ũ‖2, ∀u, ũ ∈ U . (18)

The Bregman distance function dhU
: U × U → < associated with hU is defined as

dhU
(u; ũ) = hU(u)− lhU

(u; ũ), ∀u, ũ ∈ U , (19)

where lhU
: U × U → < is the “linear approximation” of hU defined as

lhU
(u; ũ) = hU(ũ) + 〈∇hU(ũ), u− ũ〉, ∀(u, ũ) ∈ U × U .

We can similarly define the function lf by replacing hU by f in the above identity.
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We are now ready to state the VNS method proposed by Auslender and Teboulle [2] for
solving (1).

Variant of Nesterov’s Smooth (VNS) Method:

0) Let ū0 = ũ0 ∈ U be given and set k = 0.

1) Set uk = 2
k+2

ūk + k
k+2

ũk and compute f(uk) and ∇f(uk).

2) Compute (ũk+1, ūk+1) ∈ U × U as

ūk+1 = argmin

{
k + 2

2
lf (u;uk) +

L

σu
dhU

(u; ūk) : u ∈ U
}
, (20)

ũk+1 =
2

k + 2
ūk+1 +

k

k + 2
ũk. (21)

3) Set k ← k + 1 and go to step 1).

end

The main convergence result established by Auslender and Teboulle [2] regarding the above
algorithm is summarized in the following theorem (see also Tseng [31]).

Theorem 2 The sequence {ũk} generated by the above VNS method satisfies

f(ũk)− f ∗ ≤ 4LdhU
(u∗; ũ0)

σu (k + 1)2
, ∀k ≥ 1, (22)

where u∗ is an optimal solution of (1).

We observe that the above VNS method requires solving only one (proximal) subproblem per
iteration, but Nesterov’s smooth algorithm [28] needs to solve two proximal subproblems or one
projection subproblem plus one proximal subproblem per iteration. Moreover, it shares the same
worst-case iteration complexity with Nesterov’s smooth algorithm. Therefore, the VNS method
is generally computationally more efficient.

4 VNS method for cone programming

In this section, we discuss the VNS method [2] described in Section 3 for solving CP problems
(6) and (7). In particular, the worst-case major arithmetic operation costs of the VNS method
when applied to the reformulations (13)-(16) of CP are estimated and compared.

We first present some convergence results of the VNS method when applied to (13)-(16),
which are an immediate consequence of Theorem 2.
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Proposition 3 Suppose that Assumption A.1 holds. Let {ũk} be the sequence generated by the
VNS method when applied to (13). Given any ε > 0, an iterate ũk ∈ K satisfying ‖E ũk−e‖V ≤ ε
can be found in no more than  2

√
2‖E‖
ε

√
dhU

(u∗; ũ0)

σu


iterations, where u∗ is a solution of (10) and ‖E‖ is defined in (2).

Proof. Note that f(u) = ‖Eu− e‖2V for all u ∈ K, f ∗ = 0, and that any solution u∗ of (10) is
also an optimal solution of (13). (The existence of u∗ follows from Assumption A.1.) Further, in
view of Proposition 1, we know that the function f is 2‖E‖2-Lipschitz-differentiable with respect
to ‖ · ‖U . Using these facts and Theorem 2, we see that

‖E ũk − e‖2V ≤
8‖E‖2 dhU

(u∗; ũ0)

σu (k + 1)2
, ∀k ≥ 1.

The conclusion then immediately follows from the above relation.

We can similarly show that the following three propositions hold.

Proposition 4 Suppose that Assumption A.1 holds. Let {ũk} be the sequence generated by the
VNS method when applied to (14). Given any ε > 0, an iterate ũk ∈ U satisfying√

(dM(ũk))2 + (dK(ũk))2 ≤ ε can be found in no more than 4

ε

√
dhU

(u∗; ũ0)

σu


iterations, where u∗ is a solution of (10).

Proposition 5 Suppose that Assumption A.1 holds. Let {ũk} be the sequence generated by the
VNS method when applied to (15). Given any ε > 0, an iterate ũk ∈ K satisfying dM(ũk) ≤ ε
can be found in no more than  2

√
2

ε

√
dhU

(u∗; ũ0)

σu


iterations, where u∗ is a solution of (10).

Proposition 6 Suppose that Assumption A.1 holds. Let {ũk} be the sequence generated by the
VNS method when applied to (16). Given any ε > 0, an iterate ũk ∈ M satisfying dK(ũk) ≤ ε
can be found in no more than  2

√
2

ε

√
dhU

(u∗; ũ0)

σu


iterations, where u∗ is a solution of (10).
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From Propositions 3-6, we observe that the ε-optimal solutions ũk obtained by the VNS
method when applied to (13)-(16) all satisfy

u ∈ U,
√

(dM(u))2 + (dK(u))2 ≤ ε. (23)

Thus, with respect to this accuracy criterion, they are all ε-optimal solutions of (10). Never-
theless, we notice that the worst-case iteration complexity of the VNS method for (13)-(16) can
differ from each other. By estimating and comparing the associated worst-case major arithmetic
operation costs, we next explore which one of (13)-(16) is most computationally efficient for the
VNS method to find an ε-optimal solution of (10) satisfying (23).

To proceed, we specialize the norms ‖ · ‖U and ‖ · ‖V on the vector spaces U and V as follows:

‖u‖U =
√
‖ux‖2X + ‖us‖2X + ‖uy‖2Y , ∀u = (ux;us;uy) ∈ U, (24)

‖v‖V =
√
‖vp‖2Y + ‖vd‖2X + v2o , ∀v = (vp; vd; vo) ∈ V. (25)

And the strongly convex function hU(·) for the VNS method is chosen as

hU(u) =
1

2
‖u‖2U , ∀u ∈ U. (26)

Given a closed convex set C ⊆ U , let ΠC : U → C be the projection map with respect to the
norm ‖ · ‖U , that is,

ΠC(u) = argmin{‖u− ũ‖U : ũ ∈ C}, ∀u ∈ U. (27)

Since fps(A) and fps(A∗) generally much dominate the cost of basic vector operations such
as addition, subtraction, scalar multiplication and inner product, we omit for simplicity fps(b),
fps(c) and other basic vector operation costs from all arithmetic operation costs counted in this
section. The following theorem provides an estimate of the worst-case major arithmetic operation
costs of the VNS method when applied to (13)-(16).

Theorem 7 Suppose that Assumption A.1 holds. Let E, K and M be defined in (11) and (12),
respectively. Given any ε > 0, the worst-case major arithmetic operation costs of the VNS method
when applied to (13)-(16) for finding a pair of ε-optimal solutions of CP problems (6) and (7)
based on the termination criterion (23) are

C1(ε) := [2(fps(A) + fps(A∗)) + fps(ΠK)]

⌈
2
√

2‖E‖ ‖u∗ − ũ10‖U
ε

⌉
, (28)

C2(ε) := [fps(ΠM) + fps(ΠK)]

⌈
4‖u∗ − ũ20‖U

ε

⌉
, (29)

C3(ε) := [fps(ΠM) + fps(ΠK)]

⌈
2
√

2‖u∗ − ũ30‖U
ε

⌉
, (30)

C4(ε) := [fps(ΠM) + fps(ΠK)]

⌈
2
√

2‖u∗ − ũ40‖U
ε

⌉
, (31)
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respectively, where u∗ is an optimal solution of CP problems (6) and (7), and ũ10 ∈ K, ũ20 ∈ U ,
ũ30 ∈ K and ũ40 ∈M are the initial points of the VNS method for (13)-(16), respectively.

Proof. In view of (13)-(16), (5), (27) and Proposition 15 of [24], we have

∇f1(u) = 2E∗(Eu− e), ∇f2(u) = 2(2u− ΠM(u)− ΠK(u)),
∇f3(u) = 2(u− ΠM(u)), ∇f4(u) = 2(u− ΠK(u)).

Using (26) and the first relation above, we observe that when applied to (13), the worst-case
major arithmetic operation cost per iteration of the VNS method includes: 2(fps(A) + fps(A∗))
for computing ∇f1(·) in step 1); and fps(ΠK) for solving the proximal subproblem in step 2) with
hU(·) given in (26). Together with Proposition 3, we see that the worst-case major arithmetic
operation cost of the VNS method when applied to (13) for finding a pair of ε-optimal solutions
of CP problems (6) and (7) is given by (28). Similarly, we can show the remaining conclusions
hold.

As observed in our computational experiment, the actual number of iterations performed by
the VNS method is generally proportional to its worst-case iteration complexity given in Theorem
2. Thus, the worst-case major arithmetic operation costs estimated in Theorem 7 can be used to
compare the actual performance of the VNS method for solving (13)-(16). In order to compare
C1(ε), C2(ε), C3(ε) and C4(ε), we assume for the remainder of this section that

ũ10 = ũ30 = ΠK(ũ20), ũ40 = ΠM(ũ10) (32)

for some ũ20 ∈ U . These together with u∗ ∈ K ∩M immediately imply that

‖u∗ − ũ40‖U ≤ ‖u∗ − ũ30‖U = ‖u∗ − ũ10‖U ≤ ‖u∗ − ũ20‖U . (33)

In view of this relation, (29) and (30), we conclude that C4(ε) ≤ C3(ε) ≤ C2(ε), and hence it
is generally more efficient to solve (16) than (14) and (15) by the VNS method for finding a pair
of ε-optimal solutions of CP problems (6) and (7) based on the termination criterion (23).

For the rest of this section, our aim is to compare C4(ε) with C1(ε). To proceed, we now
establish some useful properties for the operators AA∗ and EE∗.

Proposition 8 Let E be defined in (11). Under Assumption A.2, the following statements hold:

i) The operator AA∗ is invertible;

ii) The operator EE∗ is invertible, and moreover,

(EE∗)−1 = H∗GH, (34)
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where

H =

 I 0 0

0 I 0

−cA∗(AA∗)−1 bA(I +A∗A)−1 I

 , (35)

G =

 (AA∗)−1 0 0

0 (I +A∗A)−1 0

0 0 ξ−1

 , (36)

ξ = cc∗ + bb∗ − cA∗(AA∗)−1Ac∗ − bA(I +A∗A)−1A∗b∗. (37)

Proof. Let y ∈ Y be such that AA∗y = 0. Then we have

‖A∗y‖2X = 〈A∗y, A∗y〉X = 〈y, AA∗y〉Y = 0,

and hence A∗y = 0. It leads to

〈Ax, y〉Y = 〈x, A∗y〉X = 0, ∀x ∈ X,

which together with Im(A) = Y (see Assumption A.2), implies that 〈y, y〉Y = 0, and so y = 0.
It follows that AA∗ is injective. Now let {yi}mi=1 be a basis for the space Y . As shown above,
AA∗(

∑m
i=1 αiy

i) = 0 for some {αi}mi=1 yields
∑m

i=1 αiy
i = 0. The latter relation implies αi = 0 for

i = 1, . . . ,m. Thus, we immediately see that {AA∗yi}mi=1 is linearly independent, and {AA∗yi}mi=1

is a basis for Y , which leads to AA∗Y = Y , and hence AA∗ is surjective. The statement i)
immediately follows.

In view of the definition of E (see (11)), we obtain that

Eu =

 Aux
us +A∗uy
cux − buy

 , ∀u =

 ux
us
uy

 ∈ U.
The above relation together with Assumption A.2 immediately implies that Im(E) = V . Using
this result and following a similar proof as for statement i), we conclude that EE∗ is invertible.

Further, we see from (11) that

E∗ =

 A
∗ 0 c∗

0 I 0

0 A −b∗

 , EE∗ =

 AA
∗ 0 Ac∗

0 I +A∗A −A∗b∗

cA∗ −bA cc∗ + bb∗

 . (38)

In view of this relation and (35), it is easy to verify that

HEE∗H∗ =

 AA
∗ 0 0

0 I +A∗A 0

0 0 ξ

 . (39)
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Noticing that H, H∗ and EE∗ are invertible, we conclude from (39) that ξ−1 exists. Upon taking
inverse on both sides of (39), we immediately see that (34) holds.

To compare C4(ε) with C1(ε), it is clear from (28) and (31) that we need to relate fps(ΠM)
with fps(A) and fps(A∗). We now aim to build a relation between them. In view of (27), (12)
and (24), we can easily show that

ΠM(u) = u+ E∗(EE∗)−1(e− Eu),

which together with the definition of E implies that

fps(ΠM) = 2 (fps(A) + fps(A∗)) + fps((EE∗)−1). (40)

We next need to estimate fps((EE∗)−1). First, we note from (37) that ξ only depends on A, b,
c and their adjoint operators, and thus it only needs to be computed once. Evidently, the major
work for evaluating ξ is to compute:

τ := (AA∗)−1Ac∗, δ := (I +A∗A)−1A∗b∗, (41)

A∗τ and Aδ. It is easy to observe that the major arithmetic operation cost for computing ξ, τ
and δ is

2 (fps(A) + fps(A∗)) + fps((AA∗)−1) + fps((I +A∗A)−1).

From now on, we assume that ξ, τ and δ are computed beforehand as above. We are now
ready to estimate fps((EE∗)−1) as follows.

Lemma 9 Under Assumption A.2, the following holds:

fps((EE∗)−1) = fps(A) + fps(A∗) + fps((AA∗)−1) + fps((I +A∗A)−1). (42)

Proof. In view of (34), we observe that for any v = (vp; vd; vo) ∈ V , z = (EE∗)−1v can be
computed according to the following steps: 1) compute h = Hv; 2) compute w = Gh; and 3)
compute z = H∗w. We now analyze their main computation in details. For step 1), using (35)
and the relation h = Hv, we obtain h = (vp; vd;ho), where

ho = −cA∗(AA∗)−1vp + bA(I +A∗A)−1vd + vo.

We clearly see that the main computation for step 1) is to evaluate:

% := (AA∗)−1vp, ϑ := (I +A∗A)−1vd, (43)

A∗% and Aϑ. Hence, the worst-case major arithmetic operation cost for step 1) is

fps(A) + fps(A∗) + fps((AA∗)−1) + fps((I +A∗A)−1).

For step 2), using (36), (43) and the relations h = (vp; vd;ho) and w = Gh, we obtain w =
(wp;wd;wo), where

wp = (AA∗)−1vp = %, wd = (I +A∗A)−1vd = ϑ, wo = ξ−1ho.

12



Since %, ϑ and ho are already computed in step 1), w is readily available and so almost there is no
additional computational cost for step 2). Finally, for step 3), using (35), (41) and the relation
z = H∗w, we obtain z = (zp; zd;wo), where

zp = wp − (AA∗)−1Ac∗wo = wp − τwo,

zd = wd + (I +A∗A)−1A∗b∗wo = wd + δwo.

Noticing that wp, wd and wo are already obtained in step 2), so almost there is no extra computa-
tional cost for step 3). Summing up all major computational costs for steps 1)-3), we immediately
see the conclusion holds.

The following result provides an estimate of fps((I +A∗A)−1).

Lemma 10 The following holds:

fps((I +A∗A)−1) = fps(A) + fps(A∗) + fps((I +AA∗)−1). (44)

Proof. By applying Sherman-Morrison-Woodbury formula in the context of operators, we
have

(I +A∗A)−1 = I − A∗(I +AA∗)−1A,

which immediately leads to the conclusion.

In view of (40), (42) and (44), we now obtain an estimate of fps(ΠM) in terms of A and A∗
as follows.

Lemma 11 Under Assumption A.2, the following holds:

fps(ΠM) = 4(fps(A) + fps(A∗)) + fps((AA∗)−1) + fps((I +AA∗)−1). (45)

Using (31) and (45), we finally obtain an estimate of C4(ε) as follows.

Theorem 12 Let C4(ε) be defined in (31). Under Assumption A.2, the following holds:

C4(ε) = [4(fps(A) + fps(A∗)) + fps((AA∗)−1) + fps((I +AA∗)−1) + fps(ΠK)]

⌈
2
√

2‖u∗ − ũ40‖U
ε

⌉
(46)

for some ũ40 ∈M.

We are now ready to compare C1(ε) and C4(ε) that are estimated in (28) and (46), respectively.
First, by the choice of the initial points specified in (32), we know from (33) that ‖u∗ − ũ40‖U ≤
‖u∗− ũ10‖U . In addition, using the second identity of (38) and the relation ‖A‖ = ‖A∗‖, it is not
hard to see that

‖E‖ =
√
‖EE∗‖ ≥

√
max (‖I +A∗A‖, ‖cc∗ + bb∗‖) ≥ max

(√
1 + ‖A‖2, ‖b‖, ‖c‖

)
.
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Thus, ‖E‖ is bounded below by the quantity on the right-hand side above, which can be much
larger than one. Using this observation and Assumption A.3, we conclude from (28) and (46)
that C4(ε) can be much less than C1(ε).

In summary, assuming the initial points are chosen according to (32), the VNS method [2]
is generally more efficient when applied to (16) than (13)-(15) for finding a pair of ε-optimal
solutions of CP problems (6) and (7). We shall mention that for similar reasons, this conclusion
also holds for the other first-order methods, for example, Nesterov’s smooth method [28] and
another variant of Nesterov’s smooth method proposed by Tseng [31].

5 Computational results

In this section, we justify our theoretical prediction on the behavior of the VNS method when
applied to formulations (13)-(16) by conducting numerical experiments on several CP problems,
that is, Dantzig selector, basis pursuit de-noising, MAXCUT SDP relaxation and Lovász capacity
problems on a set of randomly generated instances.

The above CP problems are either in the form of (6) or (7) of which X and Y are finite
dimensional vector spaces. We set their inner products to the standard ones, and set all norms
used by the VNS method to the inner product norms. In addition, we choose ũ10 = ũ20 = ũ30 :=
(x0; s0; y0) = (0; 0; 0) and ũ40 = ΠM(ũ10) as the initial points for the VNS method when applied
to (13)-(16), respectively. For convenience of presentation, we refer to the VNS method for (13)-
(16) as VNS1, VNS2, VNS3 and VNS4, respectively. The following termination criterion is used
by the VNS method to solve CP problems (6) and (7). Given a tolerance ε > 0, an approximate
primal-dual solution (x, s, y) ∈ L × L∗ × Y is found such that

max {‖A∗y + s− c‖X , ‖Ax− b‖Y , |〈c, x〉 − 〈b, y〉|} ≤ ε. (47)

Furthermore, suppose that ũk is an approximate solution obtained at the kth iteration by these
four approaches. ũk is then used to check the termination criterion (47) for VNS1 and VNS3
while uk = ΠK(ũk) is used for VNS2 and VNS4. The codes for the VNS method are written
in Matlab, which are available online at www.math.sfu.ca/∼zhaosong. All computations in this
section are performed on an Intel Xeon 5410 CPU (2.33GHz) and 8GB RAM running Red Hat
Enterprise Linux 4 (kernel 2.6.18).

5.1 Dantzig selector problem

In this subsection, we aim to compare the performance of the VNS method for solving the Dantzig
selector (DS) problem when applied to formulations (13)-(16).

The DS problem is a model recently proposed by Candès and Tao [13] for recovering large
sparse signal using a relatively small number of linear measurements or observations. Given the
data consisting of a matrix A ∈ <m×n and a vector b, the DS problem is in the form of

min
x
{‖x‖1 : ‖AT (Ax− b)‖∞ ≤ λ}, (48)
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where λ is a nonnegative parameter for controlling the residual. This model is capable of pro-
ducing a sparse vector x∗ such that the residual Ax∗ − b is not too correlated with any of the
columns of A. Recently, the DS problem has also found numerous applications in variable se-
lection and model fitting in the context of linear regression, where it performs especially well
when the number of predictors is large relative to the number of observations (see [5] and the
references therein).

In the context of compressed sensing, the data matrix A is usually either a Gaussian random
matrix (that is, its elements are independently drawn from the standard normal distribution)
or has all rows randomly chosen from an orthonormal matrix such as the fast Fourier transform
(FFT), discrete cosine transform (DCT) or wavelets transform matrix. It is often large-scale,
fully dense and has full row rank. Moreover, κ(AAT ) is usually small. Indeed, when A is a
Gaussian random matrix, it follows from a well-known random matrix theory (see, for example,
[16]) that A has full row rank with probability one and

n

(
1−

√
m

n

)2

≤ λi(AA
T ) ≤ n

(
1 +

√
m

n

)2

, i = 1, . . . ,m.

Hence,

κ(AAT ) =
λmax(AA

T )

λmin(AAT )
≤

(
1 +

√
m/n

1−
√
m/n

)2

with prevailing probability for large n. Noticing that m� n usually holds, κ(AAT ) is thus often
nearly one. On the other hand, when A is a partial orthonormal matrix mentioned above, we
have AAT = I and hence κ(AAT ) = 1.

We next apply the VNS method to solve problem (48). In particular, we first reformulate it
into a CP problem in the form of (7) and then apply the VNS method to solve the latter problem
based on formulations (13)-(16). It is easy to observe that problem (48) can be reformulated as

max
x+,x−

−1Tx+ − 1Tx−

s.t. ATAx+ − ATAx− ≤ λ1 + ATb,
−ATAx+ + ATAx− ≤ λ1− ATb,
−x+ ≤ 0,

−x− ≤ 0.

(49)

Clearly, (49) is a CP problem in the form of (7) with L = <4n
+ , X = <4n, Y = <2n, and

A =

[
ATA −ATA −I 0
−ATA ATA 0 −I

]
, b =

(
−1
−1

)
, c = (λ1 + ATb;λ1− ATb; 0; 0).

We now show that CP problem (49) satisfies Assumption A.3 by exploring how the linear
systems (8) can be efficiently solved. It is clear to see that

AA∗ = I +

[
ATA −ATA
−ATA ATA

]2
= I + 2

[
ATAAT

−ATAAT

]
[A − A].
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By applying Sherman-Morrison-Woodbury formula to the above identity, we obtain that

(AA∗)−1 = I − 2

[
ATAAT

−ATAAT

](
I + 2[A − A]

[
ATAAT

−ATAAT

])−1
[A − A],

= I − 2

[
ATAAT

−ATAAT

] (
I + 4(AAT )2

)−1
[A − A]. (50)

Similarly, we have

(I +AA∗)−1 =
1

2
I − 1

2

[
ATAAT

−ATAAT

] (
I + 2(AAT )2

)−1
[A − A]. (51)

When the matrix A has all rows randomly chosen from an orthonormal matrix such as FFT,
DCT or wavelets transform matrix, we have AAT = I. Using this relation, (50) and (51), we see
that

(AA∗)−1 = I − 2

5

[
AT

−AT

]
[A − A],

(I +AA∗)−1 =
1

2
I − 1

6

[
AT

−AT

]
[A − A].

It follows that the linear systems (8) can be trivially solved and fps((AA∗)−1) and fps((I +
AA∗)−1) are comparable to fps(A) + fps(A∗). When A is a Gaussian random matrix, we know
from above that κ(AAT ) is often nearly one, and so are κ(I + 4(AAT )2) and κ(I + 2(AAT )2).
Using this fact, (50) and (51), we observe that the linear systems (8) can be reduced to the
ones with coefficient matrices I + 4(AAT )2 and I + 2(AAT )2, and the latter linear systems can
be efficiently solved by CG method whose number of iterations is reasonably small. Addition-
ally, the arithmetic operation cost of CG method per iteration is O(fps(A) + fps(A∗)). Hence,
fps((AA∗)−1) and fps((I +AA∗)−1) are comparable to fps(A) + fps(A∗). We thus conclude that
CP problem (49) satisfies Assumption A.3. In addition, it evidently satisfies Assumptions A.1
and A.2.

We next compare the performance of the VNS method for solving DS problem (48) (or,
equivalently, (49)) when applied to formulations (13)-(16). All instances for DS problem (48)
are randomly generated in the same manner as described in l1-magic [7]. In particular, given
σ > 0 and positive integers m, n, T with m < n and T < n, we first generate a matrix
W ∈ <n×m with entries randomly chosen from a normal distribution with mean zero, variance
one and standard deviation one. Then we compute an orthonormal basis, denoted by B, for the
range space of W , and set A = BT . We also randomly generate a vector x̃ ∈ <n with only T
nonzero components that are ±1, and generate a vector v ∈ <m with entries randomly chosen
from a normal distribution with mean zero, variance one and standard deviation one. Finally,
set b = Ax̃+ σv. Especially, we choose σ = 0.005 for all instances.

As in [7, 18], we set the noise level λ = 3e−3 for DS problem (48). The termination criterion
(47) with ε = 0.1 is used for VNS1-VNS4. The performance of these methods for the above
randomly generated instances is presented in Table 1. In detail, the parameters m, n and T
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Table 1: Comparison of VNS1–VNS4 for DS problem
Problem Iteration Time

m n T vns1 vns2 vns3 vns4 vns1 vns2 vns3 vns4
120 512 20 3958 227 121 109 4.4 0.5 0.3 0.2
240 1024 40 6570 234 142 113 14.3 1.0 0.7 0.5
360 1536 60 9712 291 172 139 46.1 3.2 2.1 1.4
480 2048 80 12650 337 194 160 212.9 13.7 9.4 5.9
600 2560 100 14499 333 199 160 410.0 23.1 16.5 10.1
720 3072 120 18282 387 229 184 724.5 37.7 26.6 16.3
840 3584 140 18477 359 214 168 1002.6 47.8 34.1 20.3
960 4096 160 20669 356 224 168 1455.1 61.7 46.4 26.4

1080 4608 180 21827 363 222 169 1872.9 77.3 56.4 32.5
1200 5120 200 25621 402 248 189 2731.4 105.9 78.0 44.9

of each instance are listed in columns one to three, respectively. The number of iterations of
VNS1-VNS4 is given in columns four to seven, and CPU times (in seconds) are given in the last
four columns, respectively. We observe from Table 1 that VNS4 substantially outperforms the
other three approaches for solving (49) (or, equivalently, (48)).

Since DS problem (48) can be formulated as an LP, the well-known methods such as simplex
and IP methods are suitable for solving it. Recently, Candès and Romberg [7] implemented an IP
method for this problem based on reformulation (49). Subsequently, Friedlander and Saunders
[18] applied CPLEX dual simplex solver [15] and the IP solvers such as PDCO [29] and CPLEX
barrier IP solver to several LP reformulations of (48). The computational results reported in [18]
demonstrate that the IP method [7] generally outperforms the other methods. In addition, we
already see from above that VNS4 typically outperforms VNS1-VNS3. In next experiment we
aim to compare the performance of VNS4 with the IP method [7] (labeled as IP) on the instances
randomly generated in the same manner as above.

We choose the initial point for VNS4 as the one mentioned in the beginning of Section 5
while the initial point for the IP method [7] is chosen by default. The termination criterion (47)
with ε = 0.1 is used for both methods. The codes for both methods are written in Matlab.
In addition, the IP method [7] uses the conjugate gradient method to approximately solve the
associated Newton systems. The performance of these methods on the randomly generated
instances are presented in Tables 2-4 for noise levels λ = 3e− 2, 3e− 3 and 3e− 4, respectively.
(It shall be mentioned that λ = 3e − 3 is the default noise level used in the IP method [7].)
In each of these tables, the parameters m, n and T of the instances are listed in columns one
to three, respectively. The numbers of iterations of VNS4 and IP are given in columns four to
five, and CPU times (in seconds) are given in the last two columns, respectively. From Tables
2-4, we conclude that when low-accuracy solutions are sought, the method VNS4, that is, the
VNS method applied to formulation (16) substantially outperforms the IP method [7] for solving
problem (49) (or, equivalently, (48)). We shall also mention that the former method requires
much less memory than the latter one. In addition, as the noise level λ decreases, the performance
of IP method [7] stays almost same, but the performance of VNS4 clearly improves in terms of
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Table 2: Comparison of VNS4 and IP for DS problem with λ = 3e− 2
Problem Iteration Time

m n T vns4 IP vns4 IP
1560 6656 260 329 26 129.7 2322.2
1680 7168 280 339 26 153.3 2836.4
1800 7680 300 356 27 188.2 3596.0
1920 8192 320 365 27 222.1 4298.4
2040 8704 340 394 27 269.7 5107.6
2160 9216 360 397 26 292.6 5780.6
2280 9728 380 388 27 318.0 7001.3
2400 10240 400 432 27 393.9 8091.3
3600 15360 600 531 31 1100.9 30279.3
4800 20480 800 626 31 2299.3 71384.1

Table 3: Comparison of VNS4 and IP for DS problem with λ = 3e− 3
Problem Iteration Time

m n T vns4 IP vns4 IP
1560 6656 260 198 23 78.7 2019.2
1680 7168 280 197 22 89.6 2350.5
1800 7680 300 210 23 111.4 3018.0
1920 8192 320 215 24 131.9 3751.8
2040 8704 340 219 23 150.6 4286.9
2160 9216 360 217 24 160.8 5231.4
2280 9728 380 213 24 175.4 6123.6
2400 10240 400 227 25 208.3 7385.8
3600 15360 600 246 26 516.6 25244.5
4800 20480 800 282 27 1046.4 62164.1

both CPU times and number of iterations. A possible interpretation for the latter phenomenon
is that, as λ decreases, the distance between the initial point specifically chosen above and the
optimal solution set of the corresponding CP problems gets smaller, and it thus follows from
Theorem 7 that the computational cost for finding an ε-optimal solution becomes cheaper.

5.2 Basis pursuit de-noising problem

In this subsection, we aim to compare the performance of the VNS method for solving the basis
pursuit de-noising (BPDN) problem when applied to formulations (13)-(16).

The BPDN problem is a model proposed by Chen et al. [14] for recovering large-scale sparse
signal from highly incomplete information. Given the data consisting of a matrix A ∈ <m×n and
a vector b, the BPDN problem is in the form of

min
x
λ‖x‖1 +

1

2
‖Ax− b‖22, (52)
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Table 4: Comparison of VNS4 and IP for DS problem with λ = 3e− 4
Problem Iteration Time

m n T vns4 IP vns4 IP
1560 6656 260 193 23 76.6 2015.2
1680 7168 280 192 22 87.1 2354.3
1800 7680 300 203 23 107.6 3018.9
1920 8192 320 206 25 125.9 3898.4
2040 8704 340 212 23 145.8 4271.2
2160 9216 360 208 23 153.3 5029.2
2280 9728 380 208 24 170.9 6126.9
2400 10240 400 219 24 200.5 7086.7
3600 15360 600 238 26 496.1 25123.4
4800 20480 800 258 28 954.0 64246.4

where λ is a nonnegative parameter for controlling the sparsity of solutions.
We observe that problem (52) can be reformulated as

min
x+,x−,t1,t2,u

λ1Tx+ + λ1Tx− + 2t1

s.t. t1 − t2 = 2,
Ax+ − Ax− − u = b,
x+ ≥ 0, x− ≥ 0, (t1; t2;u) ∈ Qm+2.

(53)

Clearly, (53) is a CP problem in the form of (6) with L = <2n
+ ×Qm+2, X = <m+2n+2, Y = <m+1,

and

A =

[
0 0 1 −1 0
A −A 0 0 −I

]
, b =

(
2
b

)
, c = (λ1;λ1; 2; 0; 0).

Note that K = L×L∗×Y = <2n
+ ×Qm+2×<2n

+ ×Qm+2×<m+1. Hence, the projection of a point
into K can be reduced to the projection of a point into Qm+2, which can be cheaply computed
according to Fact 2.3 of [3]. We also see that

AA∗ =

[
2 0
0 I + 2AAT

]
.

Thus, when the matrix A has all rows randomly chosen from an orthonormal matrix such as FFT,
DCT or wavelets transform matrix, AA∗ is a diagonal operator. On the other hand, when A is
a Gaussian random matrix, we know from Subsection 5.1 that κ(AAT ) is often nearly one and
so AA∗ is a block diagonal operator consisting of one diagonal block and another block with a
small conditional number. Therefore, the linear systems (8) can often be either trivially solved by
direct method or efficiently solved by CG method whose number of iterations is reasonably small.
Additionally, the arithmetic operation cost of CG method per iteration is O(fps(A) + fps(A∗)).
Hence, fps((AA∗)−1) and fps((I+AA∗)−1) are comparable to fps(A)+fps(A∗). We thus conclude
that CP problem (53) satisfies Assumption A.3. In addition, it evidently satisfies Assumptions
A.1 and A.2.
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Table 5: Comparison of VNS1–VNS4 for BPDN problem
Problem Iteration Time

m n T vns1 vns2 vns3 vns4 vns1 vns2 vns3 vns4
1320 5632 220 236 51 29 25 10.9 6.6 2.6 2.3
1440 6144 240 252 53 30 26 13.8 8.0 3.1 2.5
1560 6656 260 267 54 31 26 16.8 9.2 3.8 3.0
1680 7168 280 298 57 33 28 21.7 11.5 4.6 3.7
1800 7680 300 311 58 34 28 25.8 13.2 5.4 4.2
1920 8192 320 318 59 34 29 29.6 15.8 6.2 4.9
2040 8704 340 342 61 36 30 36.2 17.2 7.4 5.7
2160 9216 360 366 63 37 31 43.0 21.0 8.5 6.5
2280 9728 380 411 66 40 33 53.3 22.7 10.2 7.7
2400 10240 400 442 69 42 34 62.3 26.5 11.8 8.7

We next compare the performance of the VNS method for solving BPDN problem (52) (or,
equivalently, (53)) when applied to formulations (13)-(16). All instances for BPDN problem (48)
are randomly generated in the same manner as described in Subsection 5.1. As in [18], we set
λ = 3e−3 for BPDN problem (52). The termination criterion (47) with ε = 0.1 is used for VNS1-
VNS4. The performance of these methods is presented in Table 5, whose columns have similar
meaning as those of Table 1. We observe from Table 5 that VNS4 substantially outperforms the
other three approaches for solving (53) (or, equivalently, (52)).

In literature, there are numerous efficient methods for solving the BPDN problem (see, for
example, [21, 17, 32, 35, 4, 37, 1, 36]). We observed in our experiments that the VNS method is
usually not competitive with those efficient methods. This phenomenon is actually not surprising
as the VNS method is a generic method for solving a class of convex programming, but those
efficient methods are tailored for the BPDN problem, which considerably utilizes the special
structure of the problem. In addition, when applied to the primal-dual CP problems (6) and (7),
the performance of the VNS method strongly depends on the choice of the primal-dual initial
points (see Theorem 7). For the BPDN problem, it seems not easy to choose a good initial point
for the dual problem.

5.3 MAXCUT SDP relaxation problem

In this subsection, we aim to compare the performance of the VNS method for solving the
MAXCUT SDP relaxation [19] when applied to formulations (13)-(16). Let G be an undirected
graph with vertex set {1, . . . , n} and edge set E whose elements are unordered pairs of distinct
vertices denoted by (i, j). Let W ∈ Sn be a matrix of nonnegative weights such that Wij =
Wji = 0 whenever (i, j) /∈ E. Consider the MAXCUT SDP relaxation

max
Z
{Tr(CZ) : Z � 0, Zii = 1 ∀i} , (54)
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Table 6: Comparison of VNS1–VNS4 for MAXCUT SDP relaxation
Problem Iteration Time
Nodes vns1 vns2 vns3 vns4 vns1 vns2 vns3 vns4

50 6713 1129 651 567 26.0 4.7 2.9 2.4
100 33135 4094 2533 2059 545.4 75.2 47.3 37.7
150 80672 7522 5068 3734 3444.4 360.1 245.4 177.0
200 154354 16158 10491 8115 13201.9 1549.5 1006.2 777.5
250 259318 18825 11605 9396 39024.0 3169.7 1981.7 1581.8
300 407375 25355 16284 12452 98502.5 6775.6 4459.5 3318.2
350 582214 32208 21208 16074 208360.3 12927.0 8565.6 6444.2
400 827348 40495 26629 20160 425426.4 23470.9 15532.3 11578.6

where C ∈ Sn is defined as

Cij =

{ ∑n
k=1Wik/4 if i = j;

−Wij/4 otherwise
∀ij. (55)

Clearly, problem (54) is equivalent to

min
Z
{Tr(−CZ) : Z � 0, Zii = 1 ∀i} , (56)

which is in the form of (6) and satisfies Assumptions A.1-A.3 due to the fact that AA∗ is the
identity operator.

All instances in this test are randomly generated. In particular, we first generate W ∈ Sn

according to the uniform distribution on (0, 1) and set its diagonal to zero, and then compute
C according to (55). The termination criterion (47) with ε = 0.1 is used for VNS1-VNS4. The
performance of these methods are presented in Table 6. In particular, column one lists the
number of nodes of each instance. The number of iterations of VNS1-VNS4 is given in columns
two to five, and CPU times (in seconds) are given in the last four columns, respectively. We see
from Table 6 that VNS4 substantially outperforms the other three approaches for solving (56)
(or, equivalently, (54)).

Though VNS4 outperforms VNS1-VNS3, we observed in our experiment that it is usually
not competitive with some existing efficient methods in literature for solving the MAXCUT SDP
relaxation (see, for example, [6, 22, 38, 33, 34]) as the performance of the VNS method strongly
depends on the choice of the primal-dual initial points and generally it is not easy to choose good
initial points.

5.4 Lovász capacity problem

In this subsection, we aim to compare the performance of the VNS method for solving the
Lovász capacity problem introduced in [25] when applied to formulations (13)-(16). Let G be
an undirected graph with vertex set {1, . . . , n} and edge set E. Consider the Lovász capacity
problem

min
Z,t

{
t : tI − 11T − Z � 0, Zij = 0 ∀(i, j) /∈ E

}
. (57)
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Table 7: Comparison of VNS1–VNS4 for Lovász capacity problem
Problem Iteration Time

Nodes Edges vns1 vns2 vns3 vns4 vns1 vns2 vns3 vns4
50 621 2406 2246 823 768 10.4 10.2 3.7 3.4
100 2475 8410 6791 2505 2369 148.8 128.7 44.9 42.3
150 5636 16799 12522 4506 4286 769.4 600.6 208.7 198.4
200 10060 27487 19351 6956 6612 2476.1 1861.5 594.7 564.9
250 15799 40611 27012 9650 9212 6251.4 4461.1 1415.1 1349.1
300 22637 55360 36109 12920 12333 13536.3 9439.8 3007.9 2859.2
350 30860 71313 45757 16337 15596 25559.8 17667.7 5492.7 5236.9
400 40011 90311 56063 19989 19035 46720.1 30100.9 9483.7 8994.3

Clearly, problem (57) is equivalent to

max
Z,t

{
−t : tI − 11T − Z � 0, Zij = 0 ∀(i, j) /∈ E

}
, (58)

which is in the form of (7) and satisfies Assumptions A.1-A.3 due to the fact that AA∗ is a
diagonal operator.

All graphs in this experiment are randomly generated with density around 50%. The termi-
nation criterion (47) with ε = 0.1 is used for VNS1-VNS4. The performance of these methods
are presented in Table 7. The number of nodes and edges of each graph is listed in columns one
and two, respectively. The number of iterations of VNS1-VNS4 is given in columns three to six,
and CPU times (in seconds) are given in the last four columns, respectively. We observe from
Table 7 that VNS4 is the most efficient one among these four approaches for solving (58) (or,
equivalently, (57)).

In addition, we observed in our experiment that the VNS method is usually not competitive
with some existing efficient methods in literature for solving the Lovász capacity problem (see,
for example, [6, 22, 38, 33, 34]) as the performance of the VNS method strongly depends on the
choice of the primal-dual initial points and generally it is not easy to choose good initial points.
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