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Abstract

In this paper we consider general rank minimization problems with rank appearing either in the
objective function or as a constraint. We first establish that a class of special rank minimization prob-
lems has closed-form solutions. Using this result, we then propose penalty decomposition methods
for general rank minimization problems in which each subproblem is solved by a block coordinate
descent method. Under some suitable assumptions, we show that any accumulation point of the
sequence generated by the penalty decomposition methods satisfies the first-order optimality condi-
tions of a nonlinear reformulation of the problems. Finally, we test the performance of our methods
by applying them to the matrix completion and nearest low-rank correlation matrix problems. The
computational results demonstrate that our methods are generally comparable or superior to the
existing methods in terms of solution quality.

Key words: rank minimization, penalty decomposition methods, matrix completion, nearest low-
rank correlation matrix
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1 Introduction

In this paper we consider the following rank minimization problems:

min
X
{f(X) : g(X) ≤ 0, h(X) = 0, rank(X) ≤ r, X ∈ X ∩ Ω}, (1)

min
X
{f(X) + ν rank(X) : g(X) ≤ 0, h(X) = 0, X ∈ X ∩ Ω} (2)

for some integer r ≥ 0 and ν ≥ 0 controlling the rank of the solutions, where X is a closed convex set, Ω is
a closed unitarily invariant convex set in <m×n, and f : <m×n → <, g : <m×n → <p and h : <m×n → <t
are continuously differentiable functions (for the definition of unitarily invariant set, see Section 2). In
the literature, there are numerous application problems in the form of (1) or (2). For example, several
well-known combinatorial optimization problems such as maximal cut (MAXCUT) and maximal stable
set can be formulated as problem (1) (see, for example, [14, 1, 5]). More generally, nonconvex quadratic
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programming problems can also be cast into (2) (see, for example, [1]). Recently, some image recovery
problems are formulated as (1) or (2) (see, for example, [36]). In addition, the problem of finding nearest
low-rank correlation matrix is in the form of (1), which has important application in finance (see, for
example, [4, 38, 46, 47, 33, 39, 15]).

Several approaches have recently been developed for solving problems (1) and (2) or their special
cases. In particular, for those arising in combinatorial optimization (e.g., MAXCUT), one novel approach
is to first solve a semidefinite programming (SDP) relaxation of (1) and then obtain an approximate
solution of (1) by applying some heuristics to the solution of the SDP (see, for example, [14]). Despite
the remarkable success on those problems, it is not clear about the performance of this method when
extended to solve general problem (1). In addition, the nuclear norm relaxation approach has been
proposed for problems (1) or (2). For example, Fazel et al. [10] considered a special case of problem (2)
with f ≡ 0 and Ω = <m×n. In their approach, a convex relaxation is applied to (1) or (2) by replacing
the rank of X by the nuclear norm of X and numerous efficient methods can then be applied to solve the
resulting convex problems. Recently, Recht et al. [36] showed that under some conditions, such a convex
relaxation is tight for the case where X is an affine manifold. The quality of such a relaxation, however,
remains unknown when applied to general problems (1) and (2). Additionally, in some applications, the
nuclear norm stays constant in the feasible region. As an example, for the nearest low-rank correlation
matrix problem (see Subsection 6.2), any feasible point is a symmetric positive semidefinite matrix
with all diagonal entries equal to one and its nuclear norm is a constant. For those problems, nuclear
norm relaxation approach is clearly inappropriate. In a recent work [13], Gao and Sun proposed a
majorized penalty approach to solving this rank-constrained nearest correlation matrix problem. In
their approach, the constraint rank(X) ≤ r for an n × n symmetric positive semidefinite matrix X
is equivalently reformulated as

∑n
i=r+1 λi(X) = 0, where λi(X) is the ith largest eigenvalue of X,

and a majorization method is then applied to solve the penalty problem resulted from penalizing the
constraint

∑n
i=r+1 λi(X) = 0. Another nonconvex relaxation approach was proposed to solve a special

class of rank minimization problems arising in matrix completion and sensor network (see, for example,
[31, 11, 18, 20, 27]), in which rank(X) is approximated by the Schatten p-quasi-norm of X for some
p ∈ (0, 1). In addition, Meka et al. [30] proposed a singular value projection method for solving rank
constrained least squares problems arising in matrix completion. A nonlinear programming (NLP)
reformulation approach has also been applied to a class of rank-constrained optimization problems
arising in SDP and matrix completion (see, for example, [5, 45]). For this approach, the rank-constrained
optimization problems are cast into NLP problems by replacing the constraint rank(X) ≤ r by X = UV
where U ∈ <m×r and V ∈ <r×n, and some classical nonlinear optimization methods are then applied to
solve the resulting NLPs. For general problem (1), the resulting NLP by this approach is usually highly
nonlinear, which might be challenging for the existing numerical optimization methods. Moreover, it
seems that this approach is not applicable to problem (2).

In this paper we consider general rank minimization problems (1) and (2). We first establish that a
class of special rank minimization problems has closed-form solutions. Using this result, we then propose
penalty decomposition methods for general rank minimization problems in which each subproblem
is solved by a block coordinate descent method. Under some suitable assumptions, we show that
any accumulation point of the sequence generated by the penalty decomposition methods satisfies the
first-order optimality conditions of a nonlinear reformulation of the problems. Finally, we test the
performance of our methods by applying them to the matrix completion and nearest low-rank correlation
matrix problems. The computational results demonstrate that our methods are generally comparable
or superior to the existing methods in terms of solution quality.

The rest of this paper is organized as follows. In Subsection 1.1, we introduce the notation that is used
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throughout the paper. In Section 2, we study a class of special rank minimization problems. We develop
penalty decomposition (PD) methods for general rank minimization problems in Sections 3, 4 and 5
and establish some convergence results for them. In Section 6, we conduct numerical experiments to
test the performance of our PD methods for solving matrix completion and nearest low-rank correlation
matrix problems. Finally, we present some concluding remarks in Section 7.

1.1 Notation

In this paper, the symbol <n denotes the n-dimensional Euclidean space, and the set of all m × n
matrices with real entries is denoted by <m×n. The spaces of n × n diagonal and symmetric matrices
will be denoted by Dn and Sn, respectively. If X ∈ Sn is positive semidefinite, we write X � 0.
The cone of positive semidefinite matrices is denoted by Sn+. Given matrices X and Y in <m×n, the
standard inner product is defined by 〈X,Y 〉 := Tr(XY T ), where Tr(·) denotes the trace of a matrix.
The Frobenius norm of a real matrix X is defined as ‖X‖F :=

√
Tr(XXT ), and the nuclear norm of X,

denoted by ‖X‖∗, is defined as the sum of all singular values of X. The rank of a matrix X is denoted
by rank(X). We denote the identity matrix and the all-ones matrix by I and E, respectively, whose
dimension should be clear from the context. For a real symmetric matrix X, λ(X) denotes the vector
of all eigenvalues of X arranged in nondecreasing order and Λ(X) is the diagonal matrix whose ith
diagonal entry is λi(X) for all i. Similarly, for any X ∈ <m×n, σ(X) denotes the q-dimensional vector
consisting of all singular values of X arranged in nondecreasing order, where q = min(m,n), and Σ(X)
is the m × n matrix whose ith diagonal entry is σi(X) for all i and all off-diagonal entries are 0, that
is, Σii(X) = σi(X) for 1 ≤ i ≤ q and Σij(X) = 0 for all i 6= j. We define the operator D : <q → <m×n
as follows:

Dij(x) =

{
xi if i = j;
0 otherwise

∀x ∈ <q,

where q = min(m,n). Given an n × n matrix X, D̃(X) denotes a diagonal matrix whose ith diagonal
element is Xii for i = 1, . . . , n. Given a vector x ∈ <n, the nonnegative part of x is denoted by
x+ = max(x, 0), where the maximization operates entry-wise, and ‖x‖0, ‖x‖1 and ‖x‖2 denote the
cardinality (i.e., the number of nonzero entries), the standard 1-norm and the Euclidean norm of x,
respectively. Given a real vector space U and a closed convex set C ⊆ U , NC(x) and TC(x) denote the
normal and tangent cones of C at any x ∈ C, respectively, and PC(·) denotes the standard projection
map.

2 A class of special rank minimization problems

In this section we first show that a class of matrix optimization problems can be solved as lower
dimensional vector optimization problems. As a consequence, we establish that a class of special rank
minimization problems has closed-form solutions, which will be used to develop penalty decomposition
methods in Sections 3, 4 and 5.

Before proceeding, we introduce some definitions that will be used subsequently. Let Un denote the
set of all unitary matrices in <n×n.

Definition 1 A norm ‖ · ‖ is a unitarily invariant norm on <m×n if ‖UXV ‖ = ‖X‖ for all U ∈ Um,
V ∈ Un, X ∈ <m×n.

Definition 2 A function F : <m×n → < is a unitarily invariant function if F (UXV ) = F (X) for all
U ∈ Um, V ∈ Un, X ∈ <m×n.
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Definition 3 A set X ⊆ <m×n is a unitarily invariant set if

{UXV : U ∈ Um, V ∈ Un, X ∈ X} = X .

Definition 4 A function F : Sn → < is a unitary similarity invariant function if F (UXUT ) = F (X)
for all U ∈ Un, X ∈ Sn.

Definition 5 A set X ⊆ Sn is a unitary similarity invariant set if

{UXUT : U ∈ Un, X ∈ X} = X .

The following result establishes that a class of matrix optimization problems over a subset of <m×n
can be solved as lower dimensional vector optimization problems. We make use of the fact that diagonal
matrices are sufficient to characterize useful properties of unitarily invariant functions. This fact has
been used to derive the gradient formula for spectral functions in [22].

Proposition 2.1 Let ‖ · ‖ be a unitarily invariant norm on <m×n, and let F : <m×n → < be a
unitarily invariant function. Suppose that X ⊆ <m×n is a unitarily invariant set. Let A ∈ <m×n be
given, q = min(m,n), and let φ be a non-decreasing function on [0,∞). Suppose that UΣ(A)V T is the
singular value decomposition of A. Then, X∗ = UD(x∗)V T is an optimal solution of the problem

min F (X) + φ(‖X −A‖)
s.t. X ∈ X , (3)

where x∗ ∈ <q is an optimal solution of the problem

min F (D(x)) + φ(‖D(x)− Σ(A)‖)
s.t. D(x) ∈ X . (4)

Proof. Since ‖ · ‖ is a unitarily invariant norm, we know from Theorem 7.4.51 on page 448 of [17]
that

‖X −A‖ ≥ ‖Σ(X)− Σ(A)‖ ∀X ∈ <m×n. (5)

It then follows from (5), the monotonicity of φ and the relation Σ(X) = D(σ(X)) that

φ(‖X −A‖) ≥ φ(‖D(σ(X))− Σ(A)‖) ∀X ∈ <m×n.

Since X is a unitarily invariant set and F is a unitarily invariant function, we have

D(σ(X)) ∈ X , F (D(σ(X))) = F (X) ∀X ∈ X .

Using the above relations, we immediately obtain that

F (X) + φ(‖X −A‖) ≥ F (D(σ(X))) + φ(‖D(σ(X))− Σ(A)‖) ∀X ∈ X ,

which together with D(σ(X)) ∈ X implies that the optimal value of problem (3) is minorized by that of
problem (4). Further, by the definitions of x∗ and X∗, we know that D(x∗) ∈ X , which along with the
assumption that X is a unitarily invariant set, implies that X∗ ∈ X , that is, X∗ is a feasible solution of
problem (3). Moreover, we observe that

F (X∗) = F (D(x∗)), φ(‖X∗ −A‖) = φ(‖UD(x∗)V T −A‖) = φ(‖D(x∗)− Σ(A)‖).
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Thus, the objective function of (3) reaches the optimal value of problem (4) at X∗. It then immediately
follows that problems (4) and (3) share the same optimal value, and hence X∗ is an optimal solution of
(3).

As some consequences of Proposition 2.1, we next state that a class of rank minimization problems
on a subset of <m×n can be solved as lower dimensional vector minimization problems.

Corollary 2.2 Let ν ≥ 0 and A ∈ <m×n be given, and let q = min(m,n). Suppose that X ⊆ <m×n is a
unitarily invariant set, and UΣ(A)V T is the singular value decomposition of A. Then, X∗ = UD(x∗)V T

is an optimal solution of the problem

min{ν rank(X) +
1

2
‖X −A‖2F : X ∈ X}, (6)

where x∗ ∈ <q is an optimal solution of the problem

min{ν‖x‖0 +
1

2
‖x− σ(A)‖22 : D(x) ∈ X}. (7)

Proof. Let ‖ · ‖ := ‖ · ‖F , F (X) := ν rank(X) for all X, and φ(t) := t2/2 for all t. Clearly, the
assumptions of Proposition 2.1 are satisfied for such ‖ · ‖, F and φ. Further, notice that rank(D(x)) =
‖x‖0 and ‖D(x) − Σ(A)‖F = ‖x − σ(A)‖2 for all x ∈ <q. It immediately follows from Proposition 2.1
that the conclusion holds.

Corollary 2.3 Let r ≥ 0 and A ∈ <m×n be given, and let q = min(m,n). Suppose that X ⊆ <m×n is a
unitarily invariant set, and UΣ(A)V T is the singular value decomposition of A. Then, X∗ = UD(x∗)V T

is an optimal solution of the problem

min{‖X −A‖F : rank(X) ≤ r, X ∈ X}, (8)

where x∗ ∈ <q is an optimal solution of the problem

min{‖x− σ(A)‖2 : ‖x‖0 ≤ r, D(x) ∈ X}. (9)

Proof. Its proof is similar to that of Corollary 2.2.

Remark. When X is simple enough, problems (6) and (8) have closed form solutions. For example,
when X = {X ∈ <m×n : a ≤ σi(X) ≤ b ∀i} for some 0 ≤ a < b ≤ ∞, one can see that D(x) ∈ X if and
only if a ≤ |xi| ≤ b for all i. It is not hard to observe that the associated problems (7) and (9) have
closed-form solutions, and hence problems (6) and (8) also have closed-form solutions.

The following results are crucially used to develop efficient algorithms for solving the nuclear norm
relaxation of the matrix completion problems (see, for example, [6, 29, 44]). They can be immediately
obtained from Proposition 2.1.

Corollary 2.4 Let ν ≥ 0 and A ∈ <m×n be given, and let q = min(m,n). Suppose that UΣ(A)V T is
the singular value decomposition of A. Then, X∗ = UD(x∗)V T is an optimal solution of the problem

min ν‖X‖∗ +
1

2
‖X −A‖2F ,

where x∗ ∈ <q is an optimal solution of the problem

min ν‖x‖1 +
1

2
‖x− σ(A)‖22.
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Corollary 2.5 Let r ≥ 0 and A ∈ <m×n be given, and let q = min(m,n). Suppose that UΣ(A)V T is
the singular value decomposition of A. Then, X∗ = UD(x∗)V T is an optimal solution of the problem

min{‖X −A‖F : ‖X‖∗ ≤ r},

where x∗ ∈ <q is an optimal solution of the problem

min{‖x− σ(A)‖2 : ‖x‖1 ≤ r}.

We next show that a class of matrix optimization problems over a subset of Sn can also be solved
as lower dimensional vector optimization problems.

Proposition 2.6 Let ‖ · ‖ be a unitarily invariant norm on <n×n, and let F : Sn → < be a unitary
similarity invariant function. Suppose that X ⊆ Sn is a unitary similarity invariant set. Let A ∈ Sn be
given, and let φ be a non-decreasing function on [0,∞). Suppose that UΛ(A)UT is the eigenvalue value
decomposition of A. Then, X∗ = UD(x∗)UT is an optimal solution of the problem

min F (X) + φ(‖X −A‖)
s.t. X ∈ X ,

where x∗ ∈ <n is an optimal solution of the problem

min F (D(x)) + φ(‖D(x)− Λ(A)‖)
s.t. D(x) ∈ X .

Proof. The conclusion of this proposition follows from the Ky Fan’s inequality (e.g., see [2] (IV.62))

‖X − Y ‖ ≥ ‖Λ(X)− Λ(Y )‖ ∀X,Y ∈ Sn,

and a similar argument as used in the proof of Proposition 2.1.

As some consequences of Proposition 2.6, we next show that a class of rank minimization problems
on a subset of Sn can be solved as lower dimensional vector minimization problems.

Corollary 2.7 Let ν ≥ 0 and A ∈ Sn be given. Suppose that X ⊆ Sn is a unitary similarity invariant
set, and UΛ(A)UT is the eigenvalue decomposition of A. Then, X∗ = UD(x∗)UT is an optimal solution
of the problem

min{ν rank(X) +
1

2
‖X −A‖2F : X ∈ X}, (10)

where x∗ ∈ <q is an optimal solution of the problem

min{ν‖x‖0 +
1

2
‖x− λ(A)‖22 : D(x) ∈ X}. (11)

Proof. The conclusion of this corollary immediately follows from Proposition 2.6, and the relations
rank(D(x)) = ‖x‖0 and ‖D(x)− Λ(A)‖F = ‖x− λ(A)‖ for all x ∈ <n.
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Corollary 2.8 Let r ≥ 0 and A ∈ Sn be given. Suppose that X ⊆ Sn is a unitary similarity invariant
set, and UΛ(A)UT is the eigenvalue decomposition of A. Then, X∗ = UD(x∗)UT is an optimal solution
of the problem

min{‖X −A‖F : rank(X) ≤ r, X ∈ X}, (12)

where x∗ ∈ <q is an optimal solution of the problem

min{‖x− λ(A)‖2 : ‖x‖0 ≤ r, D(x) ∈ X}. (13)

Proof. Its proof is similar to that of Corollary 2.7.

Remark. When X is simple enough, problems (10) and (12) have closed form solutions. For example,
when X = {X ∈ Sn : a ≤ λi(X) ≤ b ∀i} for some a < b ≤ ∞, one can see that D(x) ∈ X if and only if
a ≤ xi ≤ b for all i. It is not hard to observe that the associated problems (11) and (13) have closed-form
solutions, and hence problems (10) and (12) also have closed-form solutions.

3 Penalty decomposition method for rank minimization of asymmet-
ric matrices

In this section, we consider general rank minimization problems (1) and (2) by assuming that X and
Ω are some subsets in <m×n. In particular, we first study the first-order optimality conditions for (1)
and (2) in Subsection 3.1. We then propose penalty decomposition (PD) methods for solving (1) and
(2) and establish their convergence in Subsections 3.2 and 3.3, respectively.

Throughout this section, we make the following assumption for problems (1) and (2).

Assumption 1 Problems (1) and (2) are feasible, and moreover, at least a feasible solution, denoted
by X feas, is known.

This assumption will be used to design the PD methods with nice convergence properties. It can
be dropped, but the theoretical convergence of the corresponding PD methods may be weakened. We
shall mention that, for numerous real applications, X feas is readily available or can be observed from
the physical background of problems. For example, all application problems discussed in Section 6 have
a trivial feasible solution. On the other hand, for some problems which do not have a trivial feasible
solution, one can always approximate them by the problems which have a trivial feasible solution. For
instance, problem (1) can be approximately solved as the following problem:

min
X∈X∩Ω

{f(X) + ρ(‖u+‖22 + ‖v‖22) : g(X)− u ≤ 0, h(X)− v = 0, rank(X) ≤ r}

for some large ρ. The latter problem has a trivial feasible solution when X and Ω are sufficiently simple.

3.1 First-order optimality conditions

In this subsection, we establish the first-order optimality conditions for problems (1) and (2).
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Theorem 3.1 Suppose that X∗ is a local minimizer of problem (1). Let U∗ ∈ <m×r, V ∗ ∈ <r×n be
such that (U∗)TU∗ = I and X∗ = U∗V ∗. Assume that the following Robinson condition holds:


g′(X∗)dX − v
h′(X∗)dX

dX − dUV ∗ − U∗dV
dY − dUV ∗ − U∗dV

 :
dX ∈ TX (X∗), v ∈ <p, vi ≤ 0, i ∈ A(X∗),
dU ∈ <m×r, dV ∈ <r×n, dY ∈ TΩ(X∗)

 = <p ×<t ×<m×n ×<m×n,

(14)
where g′(X∗) and h′(X∗) denote the Jacobian of the functions g = (g1, . . . , gp) and h = (h1, . . . , ht) at
X∗, respectively, and

A(X∗) = {1 ≤ i ≤ p : gi(X
∗) = 0}.

Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ <m×n, Z∗Y ∈ <m×n such that

−∇f(X∗)−∇g(X∗)λ∗ −∇h(X∗)µ∗ − Z∗X ∈ NX (X∗),

(Z∗X − Z∗Y )(V ∗)T = 0, (U∗)T (Z∗X − Z∗Y ) = 0,

λ∗i ≥ 0, λ∗i gi(X
∗) = 0, i = 1, . . . , p; Z∗Y ∈ NΩ(X∗).

(15)

Proof. Let Y ∗ = X∗. Since X∗ is a local minimizer of problem (1), one can observe that
(X∗, Y ∗, U∗, V ∗) is a local minimizer of

min
X,Y,U,V

{f(X) : g(X) ≤ 0, h(X) = 0, X−UV = 0, Y−UV = 0, X ∈ X , Y ∈ Ω, U ∈ <m×r, V ∈ <r×n}.

Using this observation, (14) and Theorem 3.25 of [40], we see that the conclusion holds.

Theorem 3.2 Suppose that X∗ is a local minimizer of problem (2). Let r = rank(X∗), U∗ ∈ <m×r,
V ∗ ∈ <r×n be such that (U∗)TU∗ = I and X∗ = U∗V ∗. Assume that the Robinson condition (14) holds
at (X∗, U∗, V ∗). Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ <m×n, Z∗Y ∈ <m×n such that (15) holds.

Proof. By the assumption that X∗ is a local minimizer of problem (2), we can observe that X∗ is also
a local minimizer of problem (1) for r = rank(X∗). The conclusion of this theorem then immediately
follows from Theorem 3.1.

3.2 Penalty decomposition method for problem (1)

In this subsection, we propose a PD method for solving (1) and establish its convergence.
Clearly, problem (1) can be equivalently reformulated as

min
X,Y
{f(X) : g(X) ≤ 0, h(X) = 0, X − Y = 0, X ∈ X , Y ∈ Y}, (16)

where
Y := {Y ∈ Ω| rank(Y ) ≤ r}. (17)

Given a penalty parameter % > 0, the associated quadratic penalty function for (16) is defined as

Q%(X,Y ) := f(X) +
%

2

(
‖[g(X)]+‖22 + ‖h(X)‖22 + ‖X − Y ‖2F

)
. (18)

We now propose a PD method for solving problem (16) (or equivalently, (1)) in which each penalty
subproblem is approximately solved by a block coordinate descent (BCD) method. BCD method is a
simple but widely used method for solving numerous large-scale optimization problems. The properties
and convergence of BCD for some classes of optimization problems have been well studied in literature
(see, for example, [43]).
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Algorithm 3.1 Penalty decomposition method for (16) (asymmetric matrices):

Let {εk} be a positive decreasing sequence. Let %0 > 0, c > 1 be given. Choose an arbitrary Y 0
0 ∈ Y and

a constant Υ ≥ max{f(X feas),minX∈X Q%0(X,Y 0
0 )}. Set k = 0.

1) Set l = 0 and apply the BCD method to find an approximate solution (Xk, Y k) ∈ X × Y to the
penalty subproblem

min{Q%k(X,Y ) : X ∈ X , Y ∈ Y} (19)

by performing steps 1a)-1d):

1a) Solve Xk
l+1 ∈ Arg min

X∈X
Q%k(X,Y k

l ).

1b) Solve Y k
l+1 ∈ Arg min

Y ∈Y
Q%k(Xk

l+1, Y ).

1c) Set (Xk, Y k) := (Xk
l+1, Y

k
l+1). If (Xk, Y k) satisfies

‖PX (Xk −∇XQ%k(Xk, Y k))−Xk‖F ≤ εk, (20)

then go to step 2).

1d) Set l← l + 1 and go to step 1a).

2) Set %k+1 := c%k.

3) If min
X∈X

Q%k+1
(X,Y k) > Υ, set Y k+1

0 := X feas. Otherwise, set Y k+1
0 := Y k.

4) Set k ← k + 1 and go to step 1).

end

Remark. The condition (20) will be used to establish the global convergence of Algorithm 3.1. It
may not be easily verifiable unless X is simple. On the other hand, we observe that the sequence
{Q%k(Xk

l , Y
k
l )} is non-increasing for any fixed k. In practice, it is thus reasonable to terminate the BCD

method based on the progress of {Q%k(Xk
l , Y

k
l )}. That is, one can terminate the BCD method if

|Q%k(Xk
l , Y

k
l )−Q%k(Xk

l−1, Y
k
l−1)|

max(|Q%k(Xk
l , Y

k
l )|, 1)

≤ εI (21)

for some εI > 0. Another practical termination criterion for the BCD method is based on the relative
change of the sequence {(Xk

l , Y
k
l )}. Similarly, we can terminate the outer iterations of the PD method

once
max
ij
|Xk

ij − Y k
ij | ≤ εO (22)

for some εO > 0. Given that problem (19) is nonconvex, the BCD method may converge to a local
stationary point. To enhance its practical performance, one may execute it multiple times by restarting
from a suitable perturbation of the current best approximate solution. For example, at the kth outer
iteration, let (Xk, Y k) be the current best approximate solution of (19) found by the BCD method,
and let rk = rank(Y k). Assume that rk > 1. Before starting the (k + 1)th outer iteration, one can
re-apply the BCD method starting from Y k

0 ∈ Arg min
Y ∈Ω
{‖Y −Y k‖F : rank(Y ) ≤ rk−1} (namely, a rank-

one perturbation of Y k) and obtain a new approximate solution (X̃k, Ỹ k) of (19). If Q%k(X̃k, Ỹ k) is
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“sufficiently” smaller than Q%k(Xk, Y k), one can set (Xk, Y k) := (X̃k, Ỹ k) and repeat the above process.
Otherwise, one can terminate the kth outer iteration and start the next outer iteration. Finally, in view
of Corollary 2.3, the subproblem in step 1b) can be reduced to a problem in the form of (9), which has
a closed-form solution when Ω is simple enough.

The following theorem establishes the convergence of the outer iterations of Algorithm 3.1 for solving
problem (1). In particular, we show that under some suitable assumptions, any accumulation point of
the sequence generated by Algorithm 3.1 satisfies the first-order optimality conditions (15).

Theorem 3.3 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.1 satisfying (20), and let Uk ∈
<m×r and V k ∈ <r×n be such that

(Uk)TUk = I, Y k = UkV k. (23)

Assume that εk → 0. Suppose that the level set XΥ := {X ∈ X |f(X) ≤ Υ} is compact. Then, the
following statements hold:

(a) The sequence {(Xk, Y k, Uk, V k)} is bounded;

(b) Suppose that a subsequence {(Xk, Y k, Uk, V k)}k∈K converges to (X∗, Y ∗, U∗, V ∗). Then, X∗ is
a feasible point of problem (1), and moreover, X∗ = Y ∗ = U∗V ∗. In addition, assume that the
Robinson condition (14) holds at (X∗, U∗, V ∗) and{

dY − dUV k − UkdV : dU ∈ <m×r, dV ∈ <r×n, dY ∈ TΩ(Y k)
}

= <m×n (24)

holds for sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, where

λk = %k[g(Xk)]+, µk = %kh(Xk), ZkX = %k(X
k − Y k), (25)

and each accumulation point (λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗, U∗, V ∗) and
some Z∗Y ∈ <m×n satisfies the first-order optimality conditions (15).

Proof. In view of (18) and our choice of Y k
0 that is specified in step 3), one can observe that

f(Xk)+
%k
2

(‖[g(Xk)]+‖22 +‖h(Xk)‖22 +‖Xk−Y k‖2F ) = Q%k(Xk, Y k) ≤ min
X∈X

Q%k(X,Y k
0 ) ≤ Υ ∀k. (26)

It immediately implies that {Xk} ⊆ XΥ, and hence {Xk} is bounded due to the compactness of XΥ.
Moreover, we can obtain from (26) that

‖Xk − Y k‖2F ≤ 2[Υ− f(Xk)]/%k ≤ 2[Υ− min
X∈XΥ

f(X)]/%0, (27)

which together with the boundedness of {Xk} yields that {Y k} is bounded. In addition, it follows
from (23) that {Uk} is bounded and V k = (Uk)TY k, which implies that {V k} is also bounded. Thus,
statement (a) holds.

We next show that statement (b) also holds. Suppose that {(Xk, Y k, Uk, V k)}k∈K converges to
(X∗, Y ∗, U∗, V ∗). Notice that %k → ∞ as k → ∞. Upon taking limits on both sides of (27) as
k ∈ K → ∞, we have X∗ − Y ∗ = 0. In addition, it is not hard to show that Y is closed. We then see
that X∗ ∈ X and Y ∗ ∈ Y due to the closedness of X and Y. It thus follows that (X∗, Y ∗) is a feasible
point of problem (16) and X∗ is a feasible point of (1). The equality X∗ = U∗V ∗ immediately follows
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from the identities Y k = UkV k and Y ∗ = X∗. Now, let us prove the second part of statement (b).
Indeed, let Sk be the matrix such that

PX (Xk −∇XQ%k(Xk, Y k)) = Xk + Sk.

It then follows from (20) that ‖Sk‖F ≤ εk for all k, which together with limk→∞ εk = 0 implies
limk→∞ S

k = 0. By a well-known property of the projection map PX , we have

〈X −Xk − Sk, Xk −∇XQ%k(Xk, Y k)−Xk − Sk〉 ≤ 0, ∀X ∈ X .

Hence, we obtain that
−∇XQ%k(Xk, Y k)− Sk ∈ NX (Xk + Sk). (28)

Using this relation, (28), (25) and the definition of Q%, we have

−∇f(Xk)−∇g(Xk)λk −∇h(Xk)µk − ZkX − Sk ∈ NX (Xk + Sk). (29)

By the definitions of Xk and Y k, one can see that

Y k ∈ Arg min
Y ∈Y

Q%k(Xk, Y ).

Using this relation and the definitions of Uk, V k and Y, we can observe that

(Y k, Uk, V k) ∈ Arg min{Q%k(Xk, UV ) : Y − UV = 0, Y ∈ Ω, U ∈ <m×r, V ∈ <r×n}.

It follows from (24) and Theorem 3.34 of [40] that for sufficiently large k ∈ K, there exists ZkY ∈ <m×n
such that

(ZkY − ZkX)(V k)T = 0, (Uk)T (ZkY − ZkX) = 0, ZkY ∈ NΩ(Y k), (30)

where ZkX is defined in (25). We claim that {(λk, µk, ZkX , ZkY )}k∈K is bounded. Suppose not, by passing
to a subsequence if necessary, we can assume that {(λk, µk, ZkX , ZkY )}k∈K →∞. Let

(λ̄k, µ̄k, Z̄kX , Z̄
k
Y ) = (λk, µk, ZkX , Z

k
Y )/‖(λk, µk, ZkX , ZkY )‖ ∀k.

Without loss of generality, assume that {(λ̄k, µ̄k, Z̄kX , Z̄kY )}k∈K → (λ̄, µ̄, Z̄X , Z̄Y ) (otherwise, one can con-
sider its convergent subsequence). Clearly, ‖(λ̄, µ̄, Z̄X , Z̄Y )‖ = 1. Recall that {(Xk, Y k, Uk, V k)}k∈K →
(X∗, Y ∗, U∗, V ∗) and Y ∗ = X∗. Dividing both sides of (29) and (30) by ‖(λk, µk, ZkX , ZkY )‖, taking limits
as k ∈ K → ∞, and using the relation ZkY ∈ NΩ(Y k) and the semicontinuity of NX (·) and NΩ(·) (see
Lemma 2.42 of [40]), we obtain that

−∇g(X∗)λ̄−∇h(X∗)µ̄− Z̄X ∈ NX (X∗),

(Z̄Y − Z̄X)(V ∗)T = 0, (U∗)T (Z̄Y − Z̄X) = 0, Z̄Y ∈ NΩ(X∗).
(31)

We can see from (25) that λ̄ ∈ <m+ and λ̄i = 0 for i /∈ A(X∗). By (14), there exist dX ∈ TX (X∗),
dY ∈ TΩ(X∗), dU ∈ <m×r, dV ∈ <r×n, v ∈ <p with vi ≤ 0 for i ∈ A(X∗) such that

−λ̄ = g′(X∗)dX − v,
−µ̄ = h′(X∗)dX ,
−Z̄X = dX − dUV ∗ − U∗dV ,
−Z̄Y = dUV

∗ + U∗dV − dY .
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Recall that λ̄ ∈ <m+ , λ̄i = 0 for i /∈ A(X∗), and vi ≤ 0 for i ∈ A(X∗). Hence, vT λ̄ ≤ 0. Using these
relations, (31) and the fact that dX ∈ TX (X∗) and dY ∈ TΩ(X∗), we have

‖(λ̄, µ̄)‖22 + ‖(Z̄X , Z̄Y )‖2F = −〈λ̄,−λ̄〉 − 〈µ̄,−µ̄〉 − 〈Z̄X ,−Z̄X〉 − 〈Z̄Y ,−Z̄Y 〉,
= −〈λ̄, g′(X∗)dX − v〉 − 〈µ̄, h′(X∗)dX〉 − 〈Z̄X , dX − dUV ∗ − U∗dV 〉 − 〈Z̄Y , dUV ∗ + U∗dV − dY 〉,
= 〈−∇g(X∗)λ̄−∇h(X∗)µ̄− Z̄X , dX〉+ 〈λ̄, v〉+ 〈Z̄X − Z̄Y , dUV ∗ + U∗dV 〉+ 〈Z̄Y , dY 〉 ≤ 0,

which implies that ‖(λ̄, µ̄, Z̄X , Z̄Y )‖ = 0, which contradicts the identity ‖(λ̄, µ̄, Z̄X , Z̄Y )‖ = 1. Thus,
{(λk, µk, ZkX , ZkY )}k∈K is bounded. Now let (λ∗, µ∗, Z∗X , Z

∗
Y ) be an accumulation point of {(λk, µk, ZkX , ZkY )}k∈K .

By passing to a subsequence if necessary, we can assume that {(λk, µk, ZkX , ZkY )}k∈K → (λ∗, µ∗, Z∗X , Z
∗
Y ).

Recall that {(Xk, Uk, V k)}k∈K → (X∗, U∗, V ∗). Taking limits on both sides of (29) and (30) as
k ∈ K → ∞, and using the semicontinuity of NX (·), we immediately see that the first three rela-
tions of (15) hold. In addition, we see from (25) that λki ≥ 0 and λki gi(X

k) = 0 for all i, which
immediately implies that λ∗i ≥ 0, λ∗i gi(X

∗) = 0 for i = 1, . . . , p. Finally, using the semicontinuity of
NΩ(·), ZkY ∈ NΩ(Y k) and {(ZkY , Y k)}k∈K → (Z∗Y , X

∗), we conclude that Z∗Y ∈ NΩ(X∗).

Before ending this subsection, we next establish a convergence result regarding the inner iterations
of Algorithm 3.1. In particular, we will show that an approximate solution (Xk, Y k) ∈ X ×Y of problem
(19) satisfying (20) can be found by the BCD method described in steps 1a)-1d). For convenience of
presentation, we omit the index k from (19) and consider the BCD method for solving the following
problem

min
X,Y
{Q%(X,Y ) : X ∈ X , Y ∈ Y}. (32)

instead. Accordingly, we rename the iterates of the BCD method stated in Algorithm 3.1 and present
it as follows.

Algorithm 3.2 Block coordinate descent method for (32):

Choose an arbitrary initial point Y0 ∈ Y. Set l = 0.

1) Solve Xl+1 ∈ Arg min
X∈X

Q%(X,Yl).

2) Solve Yl+1 ∈ Arg min
Y ∈Y

Q%(Xl+1, Y ).

3) Set l← l + 1 and go to step 1).

end

Theorem 3.4 Let {(Xl, Yl)} ⊆ X × Y be generated by Algorithm 3.2, and let ε > 0 be given. Suppose
that {(Xl, Yl)} has at least an accumulation point. Then, there exists some l > 0 such that

‖PX (Xl −∇XQ%(Xl, Yl))−Xl‖F < ε.

Proof. We observe from the first two steps of Algorithm 3.2 that

Q%(Xl+1, Yl) ≤ Q%(X,Yl) ∀X ∈ X ,
Q%(Xl, Yl) ≤ Q%(Xl, Y ) ∀Y ∈ Y. (33)

It follows that
Q%(Xl+1, Yl+1) ≤ Q%(Xl+1, Yl) ≤ Q%(Xl, Yl) ∀l ≥ 1. (34)
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Hence, the sequence {Q%(Xl, Yl)} is non-increasing. By the assumption, {(Xl, Yl)} has at least an accu-
mulation point, denoted by (X∗, Y ∗), and there exists a subsequence L such that liml∈L→∞(Xl, Yl) =
(X∗, Y ∗). We then observe that {Q%(Xl, Yl)}l∈L is bounded, which together with the monotonicity
of {Q%(Xl, Yl)} implies that {Q%(Xl, Yl)} is bounded below and hence liml→∞Q%(Xl, Yl) exists. This
observation, (34) and the continuity of Q%(·, ·) yield

lim
l→∞

Q%(Xl+1, Yl) = lim
l→∞

Q%(Xl, Yl) = lim
l∈L→∞

Q%(Xl, Yl) = Q%(X
∗, Y ∗).

Using these relations, the continuity of Q%(·, ·), and taking limits on both sides of the first inequality of
(33) as l ∈ L→∞, we have

Q%(X
∗, Y ∗) ≤ Q%(X,Y ∗) ∀X ∈ X .

Using this relation and the first-order optimality condition, we have

‖PX (X∗ −∇XQ%(X∗, Y ∗))−X∗‖F = 0.

By the continuity of PX (·) and ∇XQ%(·, ·), and the relation liml∈L→∞(Xl, Yl) = (X∗, Y ∗), one can see
that

lim
l∈L→∞

‖PX (Xl −∇XQ%(Xl, Yl))−Xl‖F = 0,

and hence, the conclusion immediately follows.

3.3 Penalty decomposition method for problem (2)

In this subsection we propose a PD method for solving problem (2) and establish some convergence
results for it.

Clearly, (2) can be equivalently reformulated as

min
X,Y
{f(X) + ν rank(Y ) : g(X) ≤ 0, h(X) = 0, X − Y = 0, X ∈ X , Y ∈ Ω}. (35)

Given a penalty parameter % > 0, the associated quadratic penalty function for (35) is defined as

P%(X,Y ) := f(X) + ν rank(Y ) +
%

2

(
‖[g(X)]+‖22 + ‖h(X)‖22 + ‖X − Y ‖2F

)
. (36)

We are now ready to present a PD method for solving (35) (or, equivalently, (2)) in which each
penalty subproblem is approximately solved by a BCD method.

Algorithm 3.3 Penalty decomposition method for (35):

Let %0 > 0, c > 1 be given. Choose an arbitrary Y 0
0 ∈ Ω and a constant Υ such that Υ ≥ max{f(X feas)+

ν rank(X feas),minX∈X P%0(X,Y 0
0 )}. Set k = 0.

1) Set l = 0 and apply the BCD method to find an approximate solution (Xk, Y k) ∈ X × Ω to the
penalty subproblem

min{P%k(X,Y ) : X ∈ X , Y ∈ Ω} (37)

by performing steps 1a)-1c):

1a) Solve Xk
l+1 ∈ Arg min

X∈X
P%k(X,Y k

l ).
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1b) Solve Y k
l+1 ∈ Arg min

Y ∈Ω
P%k(Xk

l+1, Y ).

1c) Set (Xk, Y k) := (Xk
l+1, Y

k
l+1). If (Xk, Y k) satisfies

‖PX (Xk −∇XQ%k(Xk, Y k))−Xk‖F ≤ εk, (38)

where Q%(·, ·) is defined in (18), then go to step 2).

1d) Set l← l + 1 and go to step 1a).

2) Set %k+1 := c%k.

3) If min
X∈X

P%k+1
(X,Y k) > Υ, set Y k+1

0 := X feas. Otherwise, set Y k+1
0 := Y k.

4) Set k ← k + 1 and go to step 1).

end

Remark. The practical termination criteria proposed in Subsection 3.2 can also be applied to Algo-
rithm 3.3. In addition, one can apply a similar strategy as mentioned in Subsection 3.2 to enhance the
performance of the BCD method for solving (37). Finally, in view of Corollary 2.2, the subproblem in
step 1b) can be reduced to a problem in the form of (7), which has a closed-form solution when Ω is
simple enough.

We next establish a convergence result regarding the inner iterations of Algorithm 3.3. In particular,
we will show that an approximate solution (Xk, Y k) of problem (37) satisfying (38) can be found by
the BCD method described in steps 1a)-1d) of Algorithm 3.3. For convenience of presentation, we omit
the index k from (37) and consider the BCD method for solving the following problem:

min{P%(X,Y ) : X ∈ X , Y ∈ Ω} (39)

instead. Accordingly, we rename the iterates of the BCD method presented in Algorithm 3.3. We can
observe that the resulting BCD method is the same as the one presented in Subsection 3.2 except that
P% and Ω replace Q% and Y, respectively. For the sake of brevity, we omit the presentation of this BCD
method.

Theorem 3.5 Let {(Xl, Yl)} be the sequence generated by the BCD method applied to problem (39),
and let ε > 0 be given. Suppose that {(Xl, Yl)} has at least an accumulation point. Then, there exists
some l > 0 such that

‖PX (Xl −∇XQ%(Xl, Yl))−Xl‖F < ε,

where Q% is defined in (18).

Proof. We first observe that

P%(Xl+1, Yl) ≤ P%(X,Yl) ∀X ∈ X , (40)

P%(Xl, Yl) ≤ P%(Xl, Y ) ∀Y ∈ Ω. (41)

It then follows that
P%(Xl+1, Yl+1) ≤ P%(Xl+1, Yl) ≤ P%(Xl, Yl) ∀l ≥ 1. (42)

Hence, the sequence {P%(Xl, Yl)} is non-increasing. By the assumption, {(Xl, Yl)} has at least an accu-
mulation point, denoted by (X∗, Y ∗). Then, there exists a subsequence L such that liml∈L→∞(Xl, Yl) =
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(X∗, Y ∗) and moreover, X∗ ∈ X due to the closedness of X . We can observe that {P%(Xl, Yl)}l∈L is
bounded, which together with the monotonicity of {P%(Xl, Yl)} implies that {P%(Xl, Yl)} is bounded
below and hence liml→∞ P%(Xl, Yl) exists. This observation and (42) yield

lim
l→∞

P%(Xl, Yl) = lim
l→∞

P%(Xl+1, Yl). (43)

For the sake of notational convenience, let

F (X) := f(X) +
%

2
(‖[g(X)]+‖22 + ‖h(X)‖22).

It then follows from (36) that

P%(X,Y ) = F (X) + ν rank(Y ) +
%

2
‖X − Y ‖2F . (44)

In view of (40) and (44), we have

F (X) + %
2‖X − Yl‖

2
F = P%(X,Yl)− ν rank(Yl) ≥ P%(Xl+1, Yl)− ν rank(Yl)

= F (Xl+1) + %
2‖Xl+1 − Yl‖2F , ∀X ∈ X .

(45)

Since {rank(Yl)}l∈L is bounded, there exists a subsequence L̄ ⊆ L such that liml∈L̄→∞ rank(Yl) exists.
Then we have

lim
l∈L̄→∞

F (Xl+1) + %
2‖Xl+1 − Yl‖2F = lim

l∈L̄→∞
P%(Xl+1, Yl)− ν rank(Yl)

= lim
l∈L̄→∞

P%(Xl+1, Yl)− ν lim
l∈L̄→∞

rank(Yl) = lim
l∈L̄→∞

P%(Xl, Yl)− ν lim
l∈L̄→∞

rank(Yl)

= lim
l∈L̄→∞

P%(Xl, Yl)− ν rank(Yl) = lim
l∈L̄→∞

F (Xl) + %
2‖Xl − Yl‖2F = F (X∗) + %

2‖X
∗ − Y ∗‖2F ,

where the third equality is due to (43). Using this relation and taking limits on both sides of (45) as
l ∈ L̄→∞, we further have

F (X) +
%

2
‖X − Y ∗‖2F ≥ F (X∗) +

%

2
‖X∗ − Y ∗‖2F , ∀X ∈ X ,

which together with (18) yields

Q%(X,Y
∗) ≥ Q%(X

∗, Y ∗), ∀X ∈ X .

The rest of proof is similar to that of Theorem 3.4.

Before ending this subsection we next establish the convergence of the outer iterations of Algorithm
3.3 for solving problem (2). In particular, we show that under some suitable assumptions, any accumu-
lation point of the sequence generated by Algorithm 3.3 satisfies the first-order optimality conditions
(15).

Theorem 3.6 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.3 satisfying (38), and let
{(λk, µk, ZkX)} be the associated sequence defined according to (25). Assume that εk → 0. Suppose
that the level set XΥ := {X ∈ X |f(X) ≤ Υ} is compact. Then, the following statements hold:

(a) The sequence {(Xk, Y k)} is bounded. Moreover, any accumulation point (X∗, Y ∗) of the sequence
{(Xk, Y k)} is a feasible point of problem (35).
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(b) Suppose that a subsequence {(Xk, Y k)}k∈K̄ converges to (X∗, Y ∗) and rank(Y k) = r for all
k ∈ K̄, where r = rank(Y ∗). Let Uk ∈ <m×r and V k ∈ <r×n be such that (23) holds. Then,
{(Xk, Y k, Uk, V k)}k∈K̄ is bounded. Further, let K ⊆ K̄ be a subsequence such that {(Xk, Y k, Uk, V k)}k∈K
converges to (X∗, Y ∗, U∗, V ∗). Assume that the Robinson condition (14) holds at (X∗, U∗, V ∗) and
(24) holds for sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, and each accumu-
lation point (λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗, U∗, V ∗) and some Z∗Y ∈ <m×n
satisfies the first-order optimality conditions (15).

Proof. Statement (a) and the first part of statement (b) can be similarly proved as in Theorem 3.3.
We now prove the second part of statement (b). Indeed, by the definition of Y k, one can see that

Y k ∈ Arg min
Y ∈Ω

P%k(Xk, Y ),

which, together with (36), (18) and the assumption that rank(Y k) = r for all k ∈ K̄, implies that

Y k ∈ Arg min
Y ∈Ω
{Q%k(Xk, Y ) : rank(Y ) ≤ r}, ∀k ∈ K̄.

Using this relation and (23), we can observe that

(Y k, Uk, V k) ∈ Arg min{Q%k(Xk, UV ) : Y − UV = 0, Y ∈ Ω, U ∈ <m×r, V ∈ <r×n}, ∀k ∈ K̄.

By virtue of this relation and (38), the rest of proof follows similarly as that of Theorem 3.3.

4 Penalty decomposition method for rank minimization of general
symmetric matrices

In this section, we consider rank minimization problems (1) and (2) by assuming that X is a closed
convex set in Sn, Ω is a closed unitarily invariant convex set in Sn, and f : Sn → <, g : Sn → <p
and h : Sn → <t are continuously differentiable functions. In particular, we first study the first-order
optimality conditions for (1) and (2) in the context of symmetric matrix space. We then discuss the
convergence of the PD methods for solving these problems. As in Section 3, we also assume that
problems (1) and (2) are feasible, and moreover, at least a feasible solution, denoted by X feas, is known.

We first study the first-order optimality conditions for problems (1) and (2) in the context of sym-
metric matrix space.

Theorem 4.1 Suppose that X∗ is a local minimizer of problem (1) in the context of symmetric matrix
space. Let U∗ ∈ <n×r, D∗ ∈ Dr be such that (U∗)TU∗ = I and X∗ = U∗D∗(U∗)T . Assume that the
following Robinson condition holds:


g′(X∗)dX − v
h′(X∗)dX

dX − dUD∗(U∗)T − U∗dD(U∗)T − U∗D∗dTU
dY − dUD∗(U∗)T − U∗dD(U∗)T − U∗D∗dTU

 :
dX ∈ TX (X∗), v ∈ <p, vi ≤ 0, i ∈ A(X∗),
dU ∈ <n×r, dD ∈ Dr, dY ∈ TΩ(X∗)

 = <p×<t×Sn×Sn.

(46)
Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ Sn, Z∗Y ∈ Sn such that

−∇f(X∗)−∇g(X∗)λ∗ −∇h(X∗)µ∗ − Z∗X ∈ NX (X∗),

(Z∗X − Z∗Y )U∗D∗ = 0, D̃
(
(U∗)T (Z∗X − Z∗Y )U∗

)
= 0,

λ∗i ≥ 0, λ∗i gi(X
∗) = 0, i = 1, . . . , p; Z∗Y ∈ NΩ(X∗).

(47)
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Proof. Let Y ∗ = X∗. Since X∗ is a local minimizer of problem (1) in the context of symmetric
matrix space, one can observe that (X∗, Y ∗, U∗, D∗) is a local minimizer of

min
X,Y,U,D

{f(X) : g(X) ≤ 0, h(X) = 0, X−UDUT = 0, Y−UDUT = 0, X ∈ X , Y ∈ Ω, U ∈ <n×r, D ∈ Dr}.

Using this observation, (46) and Theorem 3.25 of [40], we see that the conclusion holds.

Theorem 4.2 Suppose that X∗ is a local minimizer of problem (2) in the context of symmetric matrix
space. Let r = rank(X∗), U∗ ∈ <n×r, D∗ ∈ Dr be such that (U∗)TU∗ = I and X∗ = U∗D∗(U∗)T .
Assume that the Robinson condition (46) holds. Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ Sn,
Z∗Y ∈ Sn such that (47) holds.

Proof. By the assumption that X∗ is a local minimizer of problem (2), we observe that X∗ is a local
minimizer of problem (1) with r = rank(X∗). The conclusion of this theorem then immediately follows
from Theorem 4.1.

Clearly, the PD methods (namely, Algorithms 3.1 and 3.3) proposed in Section 3 can be directly
applied to solve problems (1) and (2) in the context of symmetric matrix space detailed in the beginning
of this section. We now state their convergence results in the following theorems. Their proofs are similar
to those of Theorems 3.3 and 3.6.

Theorem 4.3 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.1 applied to problem (1) in the
context of symmetric matrix space, and let {(λk, µk, ZkX)} be the associated sequence defined according
to (25). In addition, let Uk ∈ <n×r and Dk ∈ Dr be such that

(Uk)TUk = I, Y k = UkDk(Uk)T . (48)

Assume that {(Xk, Y k)} satisfies (20) and εk → 0. Suppose that the level set XΥ := {X ∈ X |f(X) ≤ Υ}
is compact. Then, the following statements hold:

(a) The sequence {(Xk, Y k, Uk, Dk)} is bounded;

(b) Suppose that a subsequence {(Xk, Y k, Uk, Dk)}k∈K converges to (X∗, Y ∗, U∗, D∗). Then, X∗ is a
feasible point of problem (1), and moreover, X∗ = Y ∗ = U∗D∗(U∗)T . In addition, assume that
the Robinson condition (46) holds at (X∗, U∗, D∗) and{

dY − dUDk(Uk)T − UkdD(Uk)T − UkDkdTU : dU ∈ <n×r, dD ∈ Dr, dY ∈ TΩ(Y k)
}

= Sn (49)

holds for sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, and each accumulation
point (λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗, U∗, D∗) and some Z∗Y ∈ Sn satisfies
the first-order optimality conditions (47).

Theorem 4.4 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.3 applied to problem (2) in the
context of symmetric matrix space, and let {(λk, µk, ZkX)} be the associated sequence defined according
to (25). Assume that {(Xk, Y k)} satisfies (38) and εk → 0. Suppose that the level set XΥ := {X ∈
X |f(X) ≤ Υ} is compact. Then, the following statements hold:
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(a) The sequence {(Xk, Y k)} is bounded. Moreover, any accumulation point (X∗, Y ∗) of the sequence
{(Xk, Y k)} is a feasible point of problem (35).

(b) Suppose that a subsequence {(Xk, Y k)}k∈K̄ converges to (X∗, Y ∗) and rank(Y k) = r for all
k ∈ K̄, where r = rank(Y ∗). Let Uk ∈ <n×r and Dk ∈ Dr be such that (48) holds. Then,
{(Xk, Y k, Uk, Dk)}k∈K̄ is bounded. Further, let K ⊆ K̄ be a subsequence such that {(Xk, Y k, Uk, Dk)}k∈K
converges to (X∗, Y ∗, U∗, D∗). Assume that the Robinson condition (46) holds at (X∗, U∗, D∗) and
(49) holds for sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, and each accumula-
tion point (λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗, U∗, D∗) and some Z∗Y ∈ Sn satisfies
the first-order optimality conditions (47).

5 Penalty decomposition method for rank minimization of positive
semidefinite matrices

In this section, we consider rank minimization problems (1) and (2) by assuming that X is a closed
convex set in Sn, Ω is a closed unitarily invariant convex set in Sn+, and f : Sn → <, g : Sn → <p and
h : Sn → <t are continuously differentiable functions. As in Section 3, we also assume that problems
(1) and (2) are feasible, and moreover, at least a feasible solution, denoted by X feas, is known. Since
Ω ⊆ Sn+, it can be represented as

Ω = Sn+ ∩ Ω̃

for some unitarily invariant convex set Ω̃ ⊆ Sn. For example, when Ω = {X ∈ Sn+ : Tr(X) = 1}, one

can choose Ω̃ = {X ∈ Sn : Tr(X) = 1}. In contrast with the Ω considered in Section 4, the above Ω
is more structured. As shown below, by exploiting the structure of Ω, we are able to derive simpler
first-order optimality conditions for (1) and (2) in the context of positive semidefinite matrices than
those given in Theorems 4.1 and 4.2. We can also establish convergence of the PD methods for solving
these problems under simpler conditions.

We first study the first-order optimality conditions for problems (1) and (2) in the context of positive
semidefinite matrices.

Theorem 5.1 Suppose that X∗ is a local minimizer of problem (1) in the context of positive semidefinite
matrices. Let W ∗ ∈ <n×r be such that X∗ = W ∗(W ∗)T . Assume that the following Robinson condition
holds:


g′(X∗)dX − v
h′(X∗)dX

dX − dW (W ∗)T −W ∗dTW
dY − dW (W ∗)T −W ∗dTW

 :
dX ∈ TX (X∗), v ∈ <p, vi ≤ 0, i ∈ A(X∗),
dW ∈ <n×r, dY ∈ TΩ̃

(X∗)

 = <p ×<t × Sn × Sn.

(50)
Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ Sn, Z∗Y ∈ Sn such that

−∇f(X∗)−∇g(X∗)λ∗ −∇h(X∗)µ∗ − Z∗X ∈ NX (X∗),

(Z∗X − Z∗Y )W ∗ = 0,

λ∗i ≥ 0, λ∗i gi(X
∗) = 0, i = 1, . . . , p; Z∗Y ∈ NΩ̃

(X∗).

(51)
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Proof. Let Y ∗ = X∗. Since X∗ is a local minimizer of problem (1) in the context of positive
semidefinite matrices, one can observe that (X∗, Y ∗,W ∗) is a local minimizer of

min
X,Y,W

{f(X) : g(X) ≤ 0, h(X) = 0, X −WW T = 0, Y −WW T = 0, X ∈ X , Y ∈ Ω̃, W ∈ <n×r}.

Using this observation, (50) and Theorem 3.25 of [40], we see that the conclusion holds.

Theorem 5.2 Suppose that X∗ is a local minimizer of problem (2) in the context of positive semidefinite
matrices. Let r = rank(X∗), W ∗ ∈ <n×r be such that X∗ = W ∗(W ∗)T . Assume that the Robinson
condition (50) holds. Then, there exist λ∗ ∈ <p+, µ∗ ∈ <t, Z∗X ∈ Sn, Z∗Y ∈ Sn such that (51) holds.

Proof. By the assumption that X∗ is a local minimizer of problem (2), we observe that X∗ is a local
minimizer of problem (1) with r = rank(X∗). The conclusion of this theorem then immediately follows
from Theorem 5.1.

Clearly, the PD methods (namely, Algorithms 3.1 and 3.3) proposed in Section 3 can be directly
applied to solve problems (1) and (2) in the context of positive semidefinite matrices detailed in the
beginning of this section. We now state their convergence results as follows. Their proofs are similar to
those of Theorems 3.3 and 3.6.

Theorem 5.3 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.1 applied to problem (1) in
the context of positive semidefinite matrices, and let {(λk, µk, ZkX)} be the associated sequence defined
according to (25). In addition, let W k ∈ <n×r be such that Y k = W k(W k)T . Assume that {(Xk, Y k)}
satisfies (20) and εk → 0. Suppose that the level set XΥ := {X ∈ X |f(X) ≤ Υ} is compact. Then, the
following statements hold:

(a) The sequence {(Xk, Y k,W k)} is bounded;

(b) Suppose that a subsequence {(Xk, Y k,W k)}k∈K converges to (X∗, Y ∗,W ∗). Then, X∗ is a feasible
point of problem (1), and moreover, X∗ = Y ∗ = W ∗(W ∗)T . In addition, assume that the Robinson
condition (50) holds at (X∗,W ∗) and{

dY − dW (W k)T −W kdTW : dW ∈ <n×r, dY ∈ TΩ̃
(Y k)

}
= Sn (52)

holds for sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, and each accumulation
point (λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗,W ∗) and some Z∗Y ∈ Sn satisfies the
first-order optimality conditions (51).

Theorem 5.4 Let {(Xk, Y k)} be the sequence generated by Algorithm 3.3 applied to problem (2) in
the context of positive semidefinite matrices, and let {(λk, µk, ZkX)} be the associated sequence defined
according to (25). Assume that {(Xk, Y k)} satisfies (38) and εk → 0. Suppose that the level set
XΥ := {X ∈ X |f(X) ≤ Υ} is compact. Then, the following statements hold:

(a) The sequence {(Xk, Y k)} is bounded. Moreover, any accumulation point (X∗, Y ∗) of the sequence
{(Xk, Y k)} is a feasible point of problem (35).

19



(b) Suppose that a subsequence {(Xk, Y k)}k∈K̄ converges to (X∗, Y ∗) and rank(Y k) = r for all k ∈ K̄,
where r = rank(Y ∗). Let W k ∈ <n×r be such that Y k = W k(W k)T . Then, {(Xk, Y k,W k)}k∈K̄
is bounded. Further, let K ⊆ K̄ be a subsequence such that {(Xk, Y k,W k)}k∈K converges to
(X∗, Y ∗,W ∗). Assume that the Robinson condition (50) holds at (X∗,W ∗) and (52) holds for
sufficiently large k ∈ K. Then, {(λk, µk, ZkX)}k∈K is bounded, and each accumulation point
(λ∗, µ∗, Z∗X) of {(λk, µk, ZkX)}k∈K together with (X∗,W ∗) and some Z∗Y ∈ Sn satisfies the first-
order optimality conditions (51).

6 Numerical results

In this section we conduct numerical experiments to test the performance of the PD methods proposed
in Sections 3 and 5 by applying them to solve matrix completion and nearest low-rank correlation
matrix problems. The codes of all the methods implemented in this section are written in Matlab and
all experiments are performed in Matlab 7.11.0 (2010b) on a workstation with an Intel Xeon E5410
CPU (2.33 GHz) and 8GB RAM running Red Hat Enterprise Linux (kernel 2.6.18).

6.1 Matrix completion problem

In this subsection we apply our PD method proposed in Section 3 to the matrix completion problem,
which has numerous applications in control and systems theory, image recovery and data mining (see,
for example, [42, 32, 9, 24]). It can be formulated as

min
X∈<m×n

rank(X)

s.t. Xij = Mij , (i, j) ∈ Θ,
(53)

where M ∈ <m×n and Θ is a subset of index pairs (i, j). Recently, numerous methods were proposed
to solve the nuclear norm relaxation or the variant of (53) (see, for example, [26, 6, 29, 8, 19, 21, 28,
30, 41, 25, 45]).

It is not hard to see that problem (53) is a special case of the general rank minimization problem
(2) with f(X) ≡ 0, p = q = 0, ν = 1, Ω = <m×n, and

X = {X ∈ <m×n : Xij = Mij , (i, j) ∈ Θ}.

Thus, the PD method proposed in Section 3 for problem (2) can be suitably applied to (53). Recall
that the main computational parts of this method lie in solving the subproblems in steps 1a) and 1b).
In the context of (53), these subproblems are in the form of

min
X
{‖X −A‖2F : X ∈ X}, (54)

min
Y
{rank(Y ) + %‖Y −B‖2F : Y ∈ <m×n} (55)

for some % > 0, A,B ∈ <m×n, respectively. From the above definition of X , we observe that problem
(54) has a closed-form solution. In addition, it follows from Corollary 2.2 that problem (55) also has a
closed-form solution.

We now address the initialization and the termination criteria for our PD method when applied to
(53). In particular, we choose X feas to be the m×n matrix satisfying X feas

ij = Mij for all (i, j) ∈ Θ and

X feas
ij = 0 for all (i, j) /∈ Θ, and set Y 0

0 = X feas. In addition, we choose the initial penalty parameter %0 to
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Table 1: Computational results for m = 500, n = 500 and p = 125000
Rank FPCA LMaFit PD
r NS rel err Time NS rel err Time NS rel err Time

10 50 7.80e−6 6.7 50 1.21e−4 0.2 50 6.35e−5 8.7
20 50 2.07e−5 6.9 50 1.33e−4 0.3 50 9.16e−5 10.1
30 50 3.26e−5 7.8 50 1.72e−4 0.6 50 9.34e−5 11.9
40 50 6.57e−5 8.4 50 2.10e−4 0.9 50 1.31e−4 14.4
50 50 1.16e−4 8.9 50 2.29e−4 1.3 50 1.34e−4 17.1

be 0.1, and set the parameter c = 5. We use (21) and (22) as the inner and outer termination criteria for

the PD method and set their associated accuracy parameters εI = 10−4 and εO =
√∑

(i,j)∈ΘM
2
ij×10−4.

Next we conduct numerical experiments to test the performance of our PD method for solving (53)
on random data. We also compare the results of our method with other two related methods, that is,
FPCA [29] and LMaFit [45]. It shall be mentioned that FPCA solves a (convex) nuclear norm relaxation
of (53) and LMaFit solves a nonconvex smooth reformulation of (53).

In the first experiment, we aim to recover a random matrix M ∈ <m×n with rank r based on a
subset of entries {Mij}(i,j)∈Θ. For this purpose, we randomly generate M and Θ by a similar procedure
as described in [29]. In detail, we first generate random matrices ML ∈ <m×r and MR ∈ <r×n with
i.i.d. standard Gaussian entries and let M = MLM

T
R . We then sample a subset Θ of s entries uniformly

at random. In our experiment, we set m = n = 500, s = 125, 000, and randomly generate 50 copies of
M for five different values of r.

Given an approximate recovery X∗ for M , we define the relative error as

rel err :=
‖X∗ −M‖F
‖M‖F

.

We adopt the same criterion as used in [36, 7], and say a matrix M is successfully recovered by X∗ if
the corresponding relative error is less than 10−3. For each rank r, we apply our PD method and the
aforementioned methods FPCA and LMaFit to recover M on 50 instances that are randomly generated
above. In particular, we set the parameters tol = 10−4, K = b1.25rc, est rank = 1 and rank max = 500
for LMaFit, and set tol = 10−4, µ = 10−6 and maxr = b1.25rc for FPCA. All other parameters of
these two methods are chosen by default. For convenience of presentation, we use NS to denote the
number of matrices that are successfully recovered. The computational results are presented in Table
1. In detail, the rank r of the problems is given in the first column. The results of all three methods in
terms of NS, the average rel err and the average CPU time on the successfully recovered instances are
reported in columns two to ten, respectively. Table 1 shows that the recoverability of three methods is
comparable for all the instances. In addition, we observe that FPCA and PD are slower than LMaFit
because they require a full or partial singular value decomposition at each inner iteration while LMaFit
does not need any singular value decomposition. Finally, we remark that the recoverability of LMaFit
and FPCA depends on the upper bounds of the rank r of the matrix M , which are the parameters
K and maxr, respectively. We observed in our experiments that for larger values of K and maxr, the
recoverability of LMaFit and FPCA becomes worse. Therefore, a good upper bound on r seems to be
crucial for these methods, but it is not needed for our PD method.

Our second experiment is similar to the one conducted in [45]. Its goal is to recover a high-rank
matrix M ∈ <n×n, where most of the singular values of M are close to zero, by a low-rank matrix based
on a subset of entries {Mij}(i,j)∈Θ. To this end, we randomly generate M and Θ by a similar procedure
as described in [45]. In particular, we first generate random matrices ML ∈ <n×n and MR ∈ <n×n with
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i.i.d. standard Gaussian entries. Then we obtain matrices U and V by orthonormalizing the columns
of ML and MR, respectively. We generate two types of diagonal matrix Σ: one has diagonal elements
σi = i−5 for all i while another has diagonal elements σi = 9.9−(i−1) for all i. Finally, we set M = UΣV T

and sample a subset Θ of s entries uniformly at random. We generate 50 instances with n = 500 and a
sample ratio SR varying from 0.1 to 0.9, where SR = s/(mn).

For each sample ratio SR, we apply PD, FPCA and LMaFit methods to recover M on 50 instances
that are randomly generated above. As in [45], we set tol = 10−4, K = 1, est rank = 2, rk inc = 1,
rank max = 500 for LMaFit, while the parameters for the other two methods are the same as the
ones above except maxr = 500 for FPCA. We notice that LMaFit solves a sequence of nonlinear least
squares problems by gradually increasing the trial rank for the unknown recovery while FPCA solves a
sequence of nuclear norm relaxation problems of (53) by gradually reducing the associated regularization
parameter which essentially also increases the trial rank for the unknown recovery. As our aim is to
find a successful recovery with the lowest possible rank, we immediately terminate LMaFit, FPCA and
PD once a recovery with rel err less than 10−3 is obtained. The computational results are presented in
Tables 2 and 3. In particular, Table 2 reports the results for the instances with σi = i−5 for all i while
Table 3 presents the results for the instances with σi = 9.9−(i−1) for all i. In each table, the sample
ratio SR of the test problems is given in the first column. The average rank of the solution matrices,
the average rel err and the average CPU time for these three methods over each group of 50 randomly
generated instances are reported in columns two to ten, respectively. From Table 2, we observe that
PD and FPCA are slower than LMaFit. In addition, M is successfully recovered by PD and LMaFit
for all instances as their average rel err is below 10−3 while FPCA only successfully recovers M for the
instances with the sample ratios larger than 0.2. We also observe that PD generally provides smaller
average rank than LMaFit and FPCA for all instances. Now, one natural question is whether there
exists a matrix X∗ with a smaller rank than the one given by PD for successfully recovering such a M .
The answer is actually not. Indeed, let X∗ be a matrix of rank at most three with smallest rel err, that
is,

X∗ ∈ Arg min{‖X −M‖F : rank(X) ≤ 3}.

Using Corollary 2.3 and the fact that σi(M) = i−5 for all i, we have

‖X∗ −M‖F
‖M‖F

=

√∑500
i=4 σ

2
i (M)√∑500

i=1 σ
2
i (M)

=

√∑500
i=4 i

−10√∑500
i=1 i

−10
≈ 1.04e− 3 > 10−3.

Therefore, according to the above criterion, any matrix of rank at most three cannot successfully recover
such a M . It follows that our PD method is capable of producing a matrix with smallest possible rank to
successfully recover M , but the other two methods cannot. A similar phenomenon can also be observed
in Table 3. Though LMaFit generally outperforms our PD method in terms of speed, it is a specifically
developed method for solving matrix completion problems while our PD method can be applied to much
broader class of problems.

6.2 Nearest low-rank correlation matrix problem

In this subsection we apply our PD method proposed in Section 5 to find the nearest low-rank correlation
matrix, which has important applications in finance (see, for example, [4, 38, 46, 47, 39]). This problem

22



Table 2: Computational results for n = 500 and σi = i−5

FPCA LMaFit PD
SR Rank rel err Time Rank rel err Time Rank rel err Time

0.1 11.9 3.40e−2 32.6 4.6 9.11e−4 0.1 4.0 9.67e−4 54.2
0.2 5.0 5.16e−4 17.2 4.6 8.24e−4 0.1 4.0 9.04e−4 20.9
0.3 5.0 3.97e−4 14.6 4.6 7.73e−4 0.1 4.0 8.01e−4 16.1
0.4 5.0 3.66e−4 11.2 4.5 7.23e−4 0.1 4.0 7.09e−4 13.6
0.5 5.5 3.26e−4 7.8 4.5 6.15e−4 0.2 4.0 6.23e−4 8.4
0.6 5.6 3.22e−4 6.9 4.3 6.03e−4 0.2 4.0 5.42e−4 6.4
0.7 5.7 3.01e−4 6.4 5.0 5.95e−4 0.2 4.0 4.70e−4 5.7
0.8 6.2 2.88e−4 6.2 4.0 5.93e−4 0.2 4.0 4.12e−4 4.9
0.9 6.5 2.69e−4 5.9 4.0 6.04e−4 0.2 4.0 3.73e−4 3.8

Table 3: Computational results for n = 500 and σi = 9.9−(i−1)

FPCA LMaFit PD
SR Rank rel err Time Rank rel err Time Rank rel err Time

0.1 12.2 3.11e−2 32.3 4.6 9.23e−4 0.1 4.0 9.41e−4 52.8
0.2 5.0 4.09e−4 12.9 4.5 7.92e−4 0.1 4.0 8.72e−4 28.7
0.3 5.0 1.94e−4 11.4 4.6 6.84e−4 0.1 4.0 7.58e−4 21.3
0.4 5.0 1.25e−4 10.7 4.6 6.27e−4 0.1 4.0 6.49e−4 14.9
0.5 5.0 1.12e−4 9.2 5.1 5.91e−4 0.2 4.0 5.45e−4 10.5
0.6 5.0 1.09e−4 8.4 4.1 5.10e−4 0.2 4.0 4.42e−4 8.1
0.7 5.5 1.07e−4 8.1 5.0 4.66e−4 0.2 4.0 3.41e−4 6.9
0.8 5.6 1.03e−5 7.5 4.2 4.19e−4 0.3 4.0 2.44e−4 6.7
0.9 5.6 1.03e−5 7.1 4.0 4.31e−4 0.3 4.0 1.56e−4 6.4

can be formulated as
min
X∈Sn

1
2‖H ◦ (X − C)‖2F

s.t. diag(X) = e,
rank(X) ≤ r, X � 0

(56)

for some weight matrix H ∈ Sn, some correlation matrix C ∈ Sn and some integer r ∈ [1, n], where
diag(X) denotes the vector consisting of the diagonal entries of X, e is the all-ones vector and “◦”
denotes the Hadamard product (i.e., (A ◦B)ij = AijBij , i, j = 1, ..., n). Recently, several methods have
been proposed for solving problem (56) in the literature (see, for example, [37, 35, 3, 33, 15, 23]).

It is not hard to see that problem (56) is a special case of the general rank constraint problem (1)
with f(X) = 1

2‖H ◦ (X − C)‖2F , p = q = 0, Ω = Sn+, and

X = {X ∈ Sn : diag(X) = e}.

Thus, the PD method proposed in Section 5 for problem (1) can be suitably applied to (56). Recall
that the main computational parts of this method lie in solving the subproblems in steps 1a) and 1b).
In the context of (56), these subproblems are in the form of

min
X
{‖W ◦ (X −A)‖2F : X ∈ X},

min
Y
{‖Y −B‖2F : rank(Y ) ≤ r, Y � 0} (57)

for some A, B, W ∈ Sn, respectively. In view of the above definition of X and Corollary 2.8, we can
see that the above two problems have closed-form solutions.
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We now address the initialization and termination criteria for our PD method when applied to (56).
In particular, we choose X feas = eeT , and Y 0

0 to be the solution of (57) by replacing B by C. In addition,
we choose the initial penalty parameter %0 to be 1, and set the parameter c =

√
10. And we use (21)

and
‖Xk − Y k‖F

max{|Qρk(Xk, Y k)|, 1}
≤ εO

as the inner and outer termination criteria for the PD method and set their associated accuracy param-
eters εO = 10−5 and εI = εO/2.

Next we conduct numerical experiments to test the performance of our method for solving (56)
on five classes of testing problems. These problems are widely used in literature (see, for example,
[3, 23, 13, 34]). Their corresponding data matrix C and weight matrix H are defined as follows:

(P1) Set n = 500, Cij = 0.5 + 0.5 exp(−0.05|i− j|) for all i, j and H = E, where E is the all-ones
matrix (see [3]).

(P2) The matrix C is a 1122 × 1122 correlation matrix corresponding to the 2611-days return (from
December 31st, 2000 to January 2nd, 2011) extracted from the equities’ data of Bloomberg
(http://www.bloomberg.com/professional/equities/) and H = E.

(P3) The matrix C is the same as in (P1). The weight matrix H is generated in the same way as
in [13, 34] such that all its entries are uniformly distributed in [0.1, 10] except that the 2 × 100
submatrix in northwest corner has entries uniformly distributed [0.01, 100].

(P4) The matrix C is the same as in (P2). The weight matrix H is generated in the same way as in
(P3).

(P5) The matrix C is a 943×943 correlation matrix extracted from “movie-100K” data in the MovieLens
data sets [16]. This data consists of 100,000 ratings from 943 users on 1682 movies and has been
used in [13]. It shall be noted that such C may not be positive semidefinite because of missing
data (see [12]). The weight matrix H is provided by T. Fushiki at the Institute of statistical
Mathematics, Japan.

We now apply our PD method, the method Major1 [33] and the method PenCorr [13] to solve
problem (56) on the instances mentioned above. We set the parameters gradtol = 10−5, tolrel = 10−5

and ftol = 10−6 for Major and set tolrel = 10−5 for PenCorr. The computational results of all methods
on the aforementioned instances are presented in Tables 4-8. It shall be mentioned that we choose to
terminate the method Major when its CPU time exceeds 18000 seconds. In each table, the values of r
are listed in the first column and the CPU time and the residue

√
2f(X) of an approximate solution

X for three methods are reported in the rest of columns, respectively. We observe that the residues√
2f(X) for PD and PenCorr are comparable to and generally smaller than those for Major. In addition,

when H = E, PenCorr is generally the fastest method among these three methods. For relatively small
r (say, r ≤ 30), Major generally outperforms PD in terms of speed, but PD substantially outperforms
Major as r becomes larger. When H 6= E, both PenCorr and PD are faster than Major. Moreover,
PenCorr is generally faster than PD, but for some instances the speed of PD is comparable or superior
to that of PenCorr. Though PenCorr generally outperforms our PD method in terms of speed, it can
only solve the rank minimization problems in the form of (1) while our PD method can be applied to
both problems (1) and (2).

1The code for Major used in our paper is the one modified by Defeng Sun, Department of Mathematics, National
University of Singapore.
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Table 4: Comparison on problem (P1) with n = 500
Rank Major PenCorr PD
r Time Residue Time Residue Time Residue

5 3.9 7.883e+1 7.6 7.883e+1 22.6 7.883e+1
10 4.4 3.869e+1 4.8 3.869e+1 21.7 3.869e+1
15 6.0 2.325e+1 4.1 2.325e+1 19.3 2.325e+1
20 10.4 1.571e+1 4.2 1.571e+1 17.5 1.571e+1
25 16.6 1.145e+1 3.6 1.145e+1 16.8 1.145e+1
30 26.0 8.797e+0 3.4 8.796e+0 33.2 8.796e+0
35 44.6 7.020e+0 5.0 7.019e+0 29.7 7.019e+0
40 59.4 5.766e+0 3.3 5.765e+0 27.1 5.765e+0
45 83.6 4.843e+0 3.4 4.841e+0 24.6 4.841e+0
50 108.7 4.141e+0 1.8 4.139e+0 24.0 4.139e+0
60 181.7 3.156e+0 1.8 3.154e+0 19.2 3.154e+0
70 222.1 2.507e+0 1.7 2.504e+0 16.9 2.504e+0
80 329.2 2.053e+0 1.7 2.050e+0 15.1 2.050e+0
90 496.4 1.722e+0 1.8 1.718e+0 13.6 1.718e+0
100 664.2 1.471e+0 1.8 1.467e+0 12.8 1.466e+0
125 1364.5 1.055e+0 1.8 1.048e+0 8.9 1.048e+0

Table 5: Comparison on problem (P2)
Rank Major PenCorr PD
r Time Residue Time Residue Time Residue

10 58.5 2.000e+2 150.5 2.000e+2 360.3 2.000e+1
20 57.9 1.318e+2 125.3 1.318e+2 230.4 1.318e+2
30 115.0 1.025e+2 83.7 1.025e+2 183.0 1.025e+2
40 138.1 8.537e+1 69.0 8.535e+1 163.8 8.536e+1
50 215.3 7.383e+1 63.1 7.380e+1 159.3 7.381e+1
60 427.1 6.533e+1 57.5 6.531e+1 160.7 6.531e+1
70 404.7 5.874e+1 48.8 5.871e+1 163.4 5.871e+1
80 493.4 5.340e+1 48.4 5.338e+1 170.4 5.339e+1
90 665.7 4.899e+1 46.3 4.897e+1 176.7 4.897e+1
100 826.7 4.524e+1 41.6 4.523e+1 185.2 4.523e+1
120 1049.5 3.921e+1 39.8 3.919e+1 200.0 3.920e+1
140 1266.6 3.452e+1 37.1 3.450e+1 219.2 3.450e+1
160 1536.6 3.074e+1 35.2 3.071e+1 254.5 3.071e+1
180 1822.2 2.759e+1 35.4 2.756e+1 273.2 2.756e+1
200 2176.3 2.492e+1 36.4 2.490e+1 310.7 2.490e+1
250 2516.4 1.976e+1 36.1 1.973e+1 386.2 1.972e+1

7 Concluding remarks

In this paper we proposed penalty decomposition methods for general rank minimization problems in
which each subproblem is solved by a block coordinate descent method. Under some suitable assump-
tions, we showed that any accumulation point of the sequence generated by the penalty decomposition
methods satisfies the first-order optimality conditions of a nonlinear reformulation of the problems.
The computational results on matrix completion and nearest low-rank correlation matrix problems
demonstrate that our methods are generally comparable or superior to the existing methods in terms
of solution quality. Though the speed of our methods is generally slower than the methods LMaFit
[45] and PenCorr [13] on these problems, the latter methods are specifically developed for solving these
problems while our methods are general solvers and can be applied to much broader class of problems.
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Table 6: Comparison on problem (P3) with n = 500
Rank Major PenCorr PD
r Time Residue Time Residue Time Residue

5 56.1 8.971e+1 155.4 8.971e+1 171.5 8.972e+1
10 80.5 4.390e+1 103.8 4.393e+1 142.7 4.394e+1
15 128.6 2.622e+1 90.5 2.623e+1 134.5 2.623e+1
20 166.9 1.761e+1 86.2 1.762e+1 54.6 1.763e+1
25 245.2 1.275e+1 80.0 1.275e+1 64.6 1.275e+1
30 297.8 9.688e+0 78.9 9.689e+0 224.2 9.682e+0
35 386.1 7.676e+0 70.4 7.678e+0 207.9 7.667e+0
40 468.8 6.258e+0 81.3 6.252e+0 204.2 6.240e+0
45 639.4 5.225e+0 84.5 5.190e+0 236.3 5.180e+0
50 852.1 4.412e+0 86.9 4.386e+0 258.1 4.375e+0
60 1005.2 3.258e+0 81.1 3.254e+0 409.5 3.236e+0
70 1677.8 2.521e+0 86.0 2.503e+0 492.8 2.473e+0
80 2165.5 2.005e+0 83.4 1.991e+0 137.6 1.988e+0
90 2852.6 1.705e+0 90.3 1.606e+0 162.5 1.585e+0
100 3675.6 1.438e+0 82.6 1.328e+0 146.7 1.293e+0
125 5109.3 9.678e−1 98.4 8.664e−1 91.1 8.165e−1

Table 7: Comparison on problem (P4)
Rank Major PenCorr PD
r Time Residue Time Residue Time Residue

20 4225.3 1.378e+2 1263.9 1.380e+2 1258.6 1.384e+2
30 5103.5 1.025e+2 1903.9 1.029e+2 1519.8 1.030e+2
40 6151.4 8.252e+2 1759.8 8.263e+1 1484.7 8.244e+1
50 7261.4 6.905e+2 1853.3 6.909e+1 2033.2 6.873e+1
60 8548.9 6.935e+2 1888.7 5.932e+1 5463.7 5.900e+1
70 10025.6 5.163e+2 1662.8 5.161e+1 1619.2 5.177e+1
80 11426.1 4.569e+2 1885.1 4.561e+1 1853.5 4.553e+1
90 13008.9 4.098e+1 1477.7 4.092e+1 1798.6 4.053e+1
100 14234.7 3.809e+1 1715.5 3.683e+1 1873.6 3.651e+1
120 16012.7 3.227e+1 1554.6 3.058e+1 4130.9 2.942e+1
140 17730.0 2.808e+1 1435.9 2.580e+1 6275.8 2.341e+1
160 18000.0 2.470e+1 1556.5 2.203e+1 4964.3 1.978e+1
180 18000.0 2.195e+1 1446.6 1.906e+1 6548.9 1.662e+1
200 18000.0 1.965e+1 1392.1 1.661e+1 3621.5 1.466e+1
250 18000.0 1.558e+1 1222.6 1.205e+1 3302.1 1.065e+1

Table 8: Comparison on problem (P5)
Rank Major PenCorr PD
r Time Residue Time Residue Time Residue

20 3088.1 2.388e+2 1242.9 2.398e+2 1039.7 2.398e+2
40 5427.3 1.798e+2 725.2 1.803e+2 653.6 1.802e+2
60 8532.6 1.660e+2 584.7 1.659e+2 1430.2 1.658e+2
80 13168.4 1.632e+2 467.0 1.620e+2 1376.6 1.620e+2
100 18000.0 1.611e+2 449.7 1.611e+2 1291.4 1.610e+2
140 18000.0 1.611e+2 523.4 1.610e+2 1247.7 1.610e+2
180 18000.0 1.611e+2 525.7 1.610e+2 1194.8 1.610e+2
250 18000.0 1.610e+2 527.5 1.610e+2 1219.5 1.610e+2

We shall remark that the augmented Lagrangian decomposition methods can be developed for solving
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general rank minimization problems (1) and (2) simply by replacing the quadratic penalty functions in
the PD methods by the augmented Lagrangian functions. Nevertheless, as observed in our experiments,
their practical performance is generally inferior to the PD methods.
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