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Abstract

In this paper we consider a class of structured nonsmooth difference-of-convex (DC) minimiza-

tion in which the first convex component is the sum of a smooth and nonsmooth functions while

the second convex component is the supremum of possibly infinitely many convex smooth func-

tions. We first propose an inexact enhanced DC algorithm for solving this problem in which the

second convex component is the supremum of finitely many convex smooth functions, and show

that every accumulation point of the generated sequence is an (α, η)-D-stationary point of the

problem, which is generally stronger than an ordinary D-stationary point. In addition, inspired by

the recent work [13, 19], we propose two proximal DC algorithms with extrapolation for solving

this problem. We show that every accumulation point of the solution sequence generated by them

is an (α, η)-D-stationary point of the problem, and establish the convergence of the entire sequence

under some suitable assumption. We also introduce a concept of approximate (α, η)-D-stationary

point and derive iteration complexity of the proposed algorithms for finding an approximate (α, η)-

D-stationary point. In contrast with the DC algorithm [13], our proximal DC algorithms have much

simpler subproblems and also incorporate the extrapolation for possible acceleration. Moreover,

one of our proximal DC algorithms is potentially applicable to the DC problem in which the second

convex component is the supremum of infinitely many convex smooth functions. In addition, our

algorithms have stronger convergence results than the proximal DC algorithm in [19].
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1 Introduction

Difference-of-convex (DC) minimization, which refers to the problem of minimizing the difference of

two convex functions, forms a large class of nonconvex optimization problems and has been studied

extensively for decades in the literature of mathematical programming. In this paper we consider a

class of DC minimization in the form of

min
x∈Rn

F (x) := f(x)− g(x), (1.1)

where

f(x) := fs(x) + fn(x), g(x) := max
y∈Y

ψ(x, y). (1.2)

Throughout this paper we make the following assumptions for problem (1.1).

Assumption 1.

(a) fn is a proper closed convex function with a nonempty domain denoted by dom(fn).

(b) fs is convex and continuously differentiable on Rn, and its gradient ∇fs is Lipschitz continuous

with Lipschitz constant L > 0.

(c) Y is a compact set in Rm. For any y ∈ Y, ψ(·, y) is convex and continuously differentiable on

an open convex set Ω containing dom(fn). Moreover, as a function of (x, y), ψ is continuous

on Ω× Y.

(d) The optimal value of (1.1), denoted as F ∗, is finite.

It is not hard to observe that both f and g are convex but possibly nonsmooth. In addition,

g is finite and continuous on Ω, and F : Rn → (−∞,∞] is lower-semicontinuous with dom(F ) =

dom(f) = dom(fn). Applications of DC problem (1.1) can be found in sparse recovery [9, 11], digital

communication system [1, 13], assignment allocation [17] and low-rank matrix optimization [11].

The classical difference-of-convex algorithm (DCA) is broadly used in DC programming (e.g., see

[8, 14, 10, 9]) and can be applied to problem (1.1). Given an iterate xk, DCA generates the next one

by solving the convex optimization problem

xk+1 ∈ Argmin
x∈Rn

f(x)− 〈vk, x〉

for some vk ∈ ∂g(xk). By exploiting the structure of f , the proximal DCA (PDCA) has recently been

proposed for solving a class of DC programming (e.g., see [9]). It can be suitably applied to (1.1) for

which the new iterate is obtained by solving the proximal subproblem

xk+1 = argmin
x∈Rn

fn(x) + 〈∇fs(xk)− vk, x〉+
L

2
‖x− xk‖2 (1.3)

for some vk ∈ ∂g(xk), where L > 0 is the Lipschitz constant of ∇fs. For possibly accelerating PDCA,

Wen et al. [19] recently proposed a proximal DCA with extrapolation (PDCAe) that is also applicable
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to solve (1.1). In particular, an extrapolation point zk = xk + βk(x
k − xk−1) is first constructed for

some βk ∈ [0, 1), and the next iterate is then computed by

xk+1 = argmin
x∈Rn

fn(x) + 〈∇fs(zk)− vk, x〉+
L

2
‖x− zk‖2 (1.4)

for some vk ∈ ∂g(xk). It has been shown that every accumulation point x∞ of the sequence {xk}
generated by DCA, PDCA and PDCAe is a critical point of problem (1.1), that is, ∂f(x∞)∩∂g(x∞) 6=
∅.

By exploring the structure of g, Pang et al. [13] recently proposed a novel enhanced DCA (EDCA)

for solving problem (1.1) with Y being a finite set. For the sake of convenience, assume Y = {1, . . . , I}
and ψ(x, i) = ψi(x) for every i ∈ Y. Given the iterate xk, EDCA first solves the following convex

optimization problems

xk,i = argmin
x∈Rn

f(x)− 〈∇ψi(xk), x〉+
1

2
‖x− xk‖2 (1.5)

for each i ∈ A(xk, η̃), where A(xk, η̃) = {i ∈ Y : ψi(x
k) ≥ g(xk)− η̃} for some η̃ > 0. It then generates

the next iterate by letting xk+1 = xk,̂i with î given by

î ∈ Argmin
i∈A(xk,η̃)

F (xk,i) +
1

2
‖xk,i − xk‖2. (1.6)

It is shown in [13] that any accumulation point x∞ of the sequence {xk} generated by EDCA is

a directional-stationary (D-stationary) point of problem (1.1), that is, ∂g(x∞) ⊆ ∂f(x∞), which is

stronger than the aforementioned critical point.

Although EDCA generally enjoys stronger convergence than DCA, PDCA and PDCAe, its conver-

gence proof requires an exact solution of its subproblems (1.5). Since these subproblems are generally

not simple and their exact solution typically requires an iterative scheme, it would be desirable to have

a version of EDCA that would alleviate this requirement. Motivated by this, we propose an inexact

EDCA, referred to as iEDCA, for solving problem (1.1) with Y being a finite set, whose subproblems

are solved only inexactly. In particular, given an iterate xk, iEDCA first finds an approximate solution

xk,i of subproblem (1.5) such that

dist(0, ∂f(xk,i)−∇ψi(xk) + xk,i − xk) ≤ δk (1.7)

for each i ∈ A(xk, η̃) and some δk ≥ 0. It then generates the next iterate by letting xk+1 = xk,̂i with

î given by (1.6). Given that xk,i satisfying (1.7) can be found, iEDCA is practically implementable.

We show that if
∑∞

k=0 δ
2
k < ∞, any accumulation point of the sequence generated by iEDCA is an

(α, η)-D-stationary point∗ of problem (1.1) (see Section 2 for the definition) for some α > 0 and η ≥ 0,

which is generally stronger than an ordinary D-stationary point. Also, notice that iEDCA reduces to

EDCA if δk ≡ 0. As a byproduct, we thus improve the convergence results in [13] on EDCA.

Though iEDCA generally enjoys stronger convergence than PDCA and PDCAe, its subproblems

(1.5) are, however, generally complicated, which require some iterative method for finding an approx-

imate solution and render the entire algorithm a doubly iterative method. On the other hand, the

∗The concept of (α, η)-D-stationary point does not exist in the literature yet. We introduce in this paper such a

concept and study some properties of it.
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subproblems (1.3) and (1.4) of PDCA and PDCAe are much simpler, which only require evaluating

the proximal operator associated with fn.† Motivated by this, we propose an enhanced PDCA algo-

rithm, referred to as EPDCA1, for solving problem (1.1) with Y being a finite set, which inherits the

advantages of EDCA and PDCAe. In particular, its subproblems are analogous to those of PDCAe

with extrapolation incorporated for possible acceleration. Moreover, any accumulation point of the

sequence generated by the proposed algorithm is an (α, η)-D-stationary point of problem (1.1). We

also show that its entire sequence is convergent under some suitable assumption. We shall mention

that the framework of EPDCA1 includes EDCA as a special case. Therefore, as a byproduct we also

provide some sufficient conditions on the convergence of the entire sequence generated by EDCA.

It shall be mentioned that EDCA, iEDCA and EPDCA1 are only applicable to problem (1.1) with

Y being a finite set. As remarked in [13], it has remained open to design an algorithm converging

(subsequentially) to a D-stationary point of problem (1.1) for which Y is an infinite compact set. In

this paper we make an attempt to answer this question. In particular, we propose another enhanced

PDCA, referred to as EPDCA2, for solving problem (1.1) with Y being a (possibly infinite) compact

set. Similar to EPDCA1, the extrapolation scheme is incorporated in this algorithm for possible

acceleration. It is also shown that any accumulation point of the sequence generated by EPDCA2 is

an (α, η)-D-stationary point of problem (1.1). The key difference between this algorithm and EPDCA1

and EDCA is that it contains a single minimization subproblem at each iteration. Even for the case

where Y is a finite set, EPDCA2 also distinguishes from EPDCA1 and EDCA. Albeit nonconvex in

general, we show that this subproblem can be efficiently solved for some instances of (1.1).

Though EDCA, iEDCA, EPDCA1 and EPDCA2 converge subsequentially to an (α, η)-D-stationary

point of problem (1.1) in long run, in practical computation one has to terminate the methods at

some approximate (α, η)-D-stationary point. We introduce the concept of an approximate (α, η)-D-

stationary point and study some properties of it. We also derive the iteration complexity of EPDCA1

and EPDCA2 for computing an approximate (α, η)-D-stationary point of problem (1.1).

The rest of this paper is organized as follows. In Section 2, we introduce the concepts of (α, η)-D-

stationary point and approximate (α, η)-D-stationary point, and study some of their properties. In

Sections 3 and 4, we respectively propose an inexact enhanced DCA and an enhanced PDCA with

extrapolation for solving problem (1.1) with g given by a finite supremum and study the convergence of

the methods. In Section 5, we propose another enhanced PDCA with extrapolation that is potentially

applicable to problem (1.1) with g given by an infinite supremum and establish its convergence.

Finally, in Section 6 we present some concluding remarks.

1.1 Notation

Let Rn denote the n-dimensional Euclidean space, 〈·, ·〉 denote the standard inner product, and ‖ · ‖
denote the Euclidean norm. Given a function h : Rn → (−∞,∞], we use dom(h) to denote the

domain of h, that is, dom(h) = {x ∈ Rn : h(x) < ∞}. The directional derivative of h at a point

†The proximal operator associated with fn is defined as proxfn
(x) = argmin

y
{ 1
2
‖y−x‖2 + fn(y)}, which can be easily

computed for many functions in applications (e.g., see Tables 10.2 and 10.3 in [6] for a list of such functions).
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x ∈ dom(h) along a direction d ∈ Rn is defined as

h′(x; d) = lim
τ↓0

h(x+ τd)− h(x)

τ
.

Suppose h is additionally convex. We use ∂h to denote the subdifferential of h (e.g., see [15]). The

proximal operator of h, denoted as proxh, is a mapping from Rn to Rn defined as

proxh(z) = argmin
x∈Rn

1

2
‖x− z‖2 + h(x). (1.8)

Given any x ∈ Rn, we define the level set L(x) := {z ∈ Rn : F (z) ≤ F (x)}. For the function g given

in (1.2) and any scalar η ≥ 0, we define

A(x) := {y ∈ Y : ψ(x, y) = g(x)}, A(x, η) := {y ∈ Y : ψ(x, y) ≥ g(x)− η}. (1.9)

Clearly, A(x) is the associated active indices in defining g(x). Moreover, A(x, 0) = A(x) and A(x) ⊆
A(x, η) ⊆ Y for any η ≥ 0.

Before ending this section, we briefly introduce some concepts of stationarity for problem (1.1).

We refer the interested readers to [13] for the detailed discussion. Given x ∈ dom(F ), x is said to be

a critical point of problem (1.1) if 0 ∈ ∂f(x)− ∂g(x), or equivalently, ∂f(x)∩ ∂g(x) 6= ∅. In addition,

x is called a directional-stationary (D-stationary) point of (1.1) if F ′(x; d) ≥ 0 for all d ∈ Rn. It is

known that x is a D-stationary point of (1.1) if and only if ∂g(x) ⊆ ∂f(x). It is also known that any

local minimizer of problem (1.1) must be a critical point and also a D-stationary point of (1.1). In

addition, a D-stationary point of (1.1) must be a critical point of (1.1), but the converse generally

does not hold.

2 Preliminaries

In this section we introduce the concepts of (α, η)-D-stationary point and approximate (α, η)-D-

stationary point of (1.1), and study some of their properties. To proceed, we start with a characteri-

zation of D-stationary point of (1.1).

Proposition 1. Let α > 0 be given. Then x̄ is a D-stationary point of (1.1) if and only if

x̄ = argmin
x∈Rn

f(x)− 〈∇xψ(x̄, y), x− x̄〉+
1

2α
‖x− x̄‖2, ∀y ∈ A(x̄), (2.1)

or equivalently,

x̄ = proxαf (x̄+ α∇xψ(x̄, y)) , ∀y ∈ A(x̄). (2.2)

Proof. By Danskin’s theorem (e.g., see [3, Theorem B.25]), one has

g′(x; d) = max
y∈A(x)

〈∇xψ(x, y), d〉. (2.3)

Since the objective of problem (2.1) is convex, it follows that (2.1) holds if and only if f ′(x̄; d) ≥
〈∇xψ(x̄, y), d〉 for any d ∈ Rn and y ∈ A(x̄). Due to (2.3), the latter holds if and only if f ′(x̄; d) ≥
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g′(x̄; d) for any d ∈ Rn, which is equivalent to F ′(x̄; d) ≥ 0 for any d ∈ Rn, that is, x̄ is a D-stationary

point of (1.1). It follows from these and (1.8) that the conclusion holds. tu

From Proposition 1, we see that x̄ is a D-stationary point of (1.1) if and only if

F (x̄) ≤ f(x)− ψ(x̄, y)− 〈∇xψ(x̄, y), x− x̄〉+
1

2α
‖x− x̄‖2, ∀x ∈ Rn, ∀y ∈ A(x̄).

We next introduce the concept of (α, η)-D-stationary point of (1.1) by strengthening this inequality.

Definition 1 ((α, η)-D-stationary point of (1.1)). Given any η ≥ 0 and α > 0, we say that x̄ is

an (α, η)-D-stationary point of problem (1.1) if it satisfies that

F (x̄) ≤ f(x)− ψ(x̄, y)− 〈∇xψ(x̄, y), x− x̄〉+
1

2α
‖x− x̄‖2, ∀x ∈ Rn, ∀y ∈ A(x̄, η). (2.4)

One can observe from (2.4) that an (α, η)-D-stationary point of (1.1) is also an (ᾱ, η̄)-D-stationary

point of (1.1) for any η̄ ∈ [0, η] and ᾱ ∈ (0, α]. We next study some further properties of (α, η)-D-

stationary points.

Proposition 2. Let x∗ be a global minimizer of problem (1.1). Then, x∗ is an (α, η)-D-stationary of

problem (1.1) for any α > 0 and η ≥ 0,

Proof. Since x∗ is a global minimizer of (1.1), we have that for any α > 0, x ∈ Rn and y ∈ Y,

F (x∗) ≤ F (x) = f(x)− g(x) ≤ f(x)− ψ(x, y) (2.5)

≤ f(x)− ψ(x∗, y)− 〈∇xψ(x∗, y), x− x∗〉 (2.6)

≤ f(x)− ψ(x∗, y)− 〈∇xψ(x∗, y), x− x∗〉+
1

2α
‖x− x∗‖2, (2.7)

where (2.5) is due to (1.2) and (2.6) follows from the convexity of ψ(·, y). By (1.9), one has A(x, η) ⊆ Y
for any η ≥ 0. Using this and (2.7), we obtain that for any α > 0 and η ≥ 0,

F (x∗) ≤ f(x)− ψ(x∗, y)− 〈∇xψ(x∗, y), x− x∗〉+
1

2α
‖x− x∗‖2, ∀x ∈ Rn, ∀y ∈ A(x∗, η).

This together with Definition 1 implies that x∗ is an (α, η)-D-stationary point of (1.1) for any η ≥ 0

and α > 0. tu

Proposition 3. Suppose that x̄ is an (α, η)-D-stationary point of problem (1.1) for some η ≥ 0 and

α > 0. Then, it holds that

‖x̄− proxαf (x̄+ α∇xψ(x̄, y)) ‖ ≤
√

2α(g(x̄)− ψ(x̄, y)), ∀y ∈ A(x̄, η). (2.8)

Consequently, we have

‖x̄− proxαf (x̄+ α∇xψ(x̄, y)) ‖

{
= 0, if y ∈ A(x̄);

≤
√

2αη, if y ∈ A(x̄, η) \ A(x̄).
(2.9)

Furthermore, x̄ is a D-stationary point of problem (1.1).
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Proof. Let y ∈ A(x̄, η) be arbitrarily chosen, and let x+ = proxαf (x̄ + α∇xψ(x̄, y)). It then follows

from (1.8) that

x+ = argmin
x∈Rn

f(x)− 〈∇xψ(x̄, y), x− x̄〉+
1

2α
‖x− x̄‖2. (2.10)

Its first-order optimality condition yields

∇xψ(x̄, y) =
1

α
(x+ − x̄) + v (2.11)

for some v ∈ ∂f(x+). Hence, we have

f(x+)− 〈∇xψ(x̄, y), x+ − x̄〉+
1

2α
‖x+ − x̄‖2 = f(x+) + 〈v, x̄− x+〉 − 1

2α
‖x+ − x̄‖2

≤ f(x̄)− 1

2α
‖x+ − x̄‖2 (2.12)

where the equality is due to (2.11) and the inequality uses the convexity of f . Since x̄ is an (α, η)-D-

stationary point of (1.1), it follows from (2.4) with x = x+ that

f(x̄)− g(x̄) ≤ f(x+)− ψ(x̄, y)− 〈∇xψ(x̄, y), x+ − x̄〉+
1

2α
‖x+ − x̄‖2.

Summing up the above two inequalities yields ‖x+ − x̄‖ ≤
√

2α(g(x̄)− ψ(x̄, y)). This together with

the definition of x+ leads to (2.8). In addition, by (1.9), one can see that ψ(x̄, y) = g(x̄) for every

y ∈ A(x̄) and ψ(x̄, y) ≥ g(x̄) − η for all y ∈ A(x̄, η) \ A(x̄). These and (2.8) yield (2.9). Finally, in

view of (2.9) and Proposition 1, we have that x̄ is a D-stationary point of (1.1). tu

From Propositions 2 and 3, one can see that an (α, η)-D-stationary point is generally stronger

than an ordinary D-stationary point. Therefore, it is of interest to develop algorithms converging

(subsequentially) to an (α, η)-D-stationary point of (1.1) rather than just an ordinary D-stationary

point. In the subsequent sections, we will propose such algorithms for (1.1). Though our proposed

algorithms converge (subsequentially) to an (α, η)-D-stationary point of (1.1), in practical computa-

tion one has to terminate them at some approximate (α, η)-D-stationary point. We next introduce

the concept of approximate (α, η)-D-stationary point and study some properties of it.

Definition 2 (ε-approximate (α, η)-D-stationary point of (1.1)). Given any ε, η ≥ 0, α > 0, we

say that x̄ is an ε-approximate (α, η)-D-stationary point of problem (1.1) if it satisfies that

F (x̄) ≤ f(x)− ψ(x̄, y)− 〈∇xψ(x̄, y), x− x̄〉+
1

2α
‖x− x̄‖2 + ε, ∀x ∈ Rn, ∀y ∈ A(x̄, η). (2.13)

Proposition 4. Suppose that x̄ is an ε-approximate (α, η)-D-stationary point of (1.1) for some ε ≥ 0,

α > 0 and η ≥ 0. Then, it holds that

‖x̄− proxαf (x̄+ α∇xψ(x̄, y)) ‖ ≤
√

2α(g(x̄)− ψ(x̄, y) + ε), ∀y ∈ A(x̄, η). (2.14)

Consequently, we have

‖x̄− proxαf (x̄+ α∇xψ(x̄, y)) ‖ ≤

{ √
2αε, if y ∈ A(x̄);√
2α(η + ε), if y ∈ A(x̄, η) \ A(x̄).

(2.15)
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Proof. Let y ∈ A(x̄, η) be arbitrarily chosen, and let x+ = proxαf (x̄ + α∇xψ(x̄, y)). It then follows

from the same arguments as those in the proof of Proposition 3 that (2.12) holds. Since x̄ is an

ε-approximate (α, η)-D-stationary point of (1.1), it follows from (2.13) with x = x+ that

f(x̄)− g(x̄) ≤ f(x+)− ψ(x̄, y)− 〈∇xψ(x̄, y), x+ − x̄〉+
1

2α
‖x+ − x̄‖2 + ε.

Summing up the above inequality and (2.12) yields ‖x+ − x̄‖ ≤
√

2α(g(x̄)− ψ(x̄, y) + ε). Using this

and the same arguments as those in the proof of Proposition 3, we can conclude that (2.14) and (2.15)

hold. tu

Before ending this section, we establish a lemma that will be used subsequently.

Lemma 1. Suppose that Assumption 1 is satisfied, and let x̄ ∈ Ω and η > 0 be arbitrarily given. Then,

for any η̄ ∈ [0, η), there exists a scalar γ > 0 such that A(x̄, η̄) ⊆ A(x, η) whenever ‖x− x̄‖ ≤ γ.

Proof. Suppose for contradiction that the statement is not true. Then there must exist an η̄ ∈ [0, η)

and a sequence {(xt, yt)}t≥0 such that limt→∞ x
t = x̄, yt ∈ A(x̄, η̄) but yt /∈ A(xt, η) for all t.

By Assumption 1 (c) and (1.9), one can observe that A(x̄, η̄) is compact. Hence, by passing to a

subsequence if necessary, we assume for convenience that limt→∞ y
t = ȳ for some ȳ ∈ A(x̄, η̄), which

implies ψ(x̄, ȳ) ≥ g(x̄)−η̄. On the other hand, by yt /∈ A(xt, η) and (1.9), one has ψ(xt, yt) < g(xt)−η.

Passing to the limit and using the continuity of ψ and g, it follows that ψ(x̄, ȳ) ≤ g(x̄) − η, which

contradicts ψ(x̄, ȳ) ≥ g(x̄)− η̄ due to η > η̄. The proof is then completed. tu

3 An inexact enhanced DCA for DC problem with finite supremum

In this section we consider problem (1.1) in which g is defined as the supremum of a finite number of

smooth convex functions, namely, the associated Y in (1.2) is a finite set. For the sake of convenience,

throughout this section we assume that

Y = {1, . . . , I}, ψ(x, i) = ψi(x), ∀i ∈ Y. (3.1)

It follows from (1.2) that for such Y and ψ(·, ·), g can be rewritten as

g(x) = max
1≤i≤I

ψi(x), ∀x ∈ Rn. (3.2)

Recently, Pang et al. [13] proposed a novel enhanced DCA (EDCA) for solving problem (1.1) with

g given in (3.2). They showed that any accumulation point of the sequence generated by EDCA is

a D-stationary point of problem (1.1). As mentioned in Section 1, EDCA is, however, generally not

implementable because it requires the exact solution of its subproblems. In this section, we propose

an inexact EDCA (iEDCA), which only requires a suitable approximate solution of its subproblems.

Moreover, we show that any accumulation point of the sequence generated by the proposed algorithm

is an (α, η)-D-stationary point of problem (1.1) for some α > 0 and η ≥ 0.

The details of iEDCA are presented as follows.

Algorithm 1 (The inexact enhanced DCA (iEDCA)).
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0. Input x0 ∈ dom(F ), η̃ > 0 and a sequence {δk} ⊂ R+ such that B :=
∑∞

k=0 δ
2
k <∞. Set k ← 0.

1. For each index i ∈ A(xk, η̃), find an approximate solution x̂k,i of the problem

min
x∈Rn

{
Qk,i(x) := f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+

1

2
‖x− xk‖2

}
(3.3)

such that

dist
(

0, ∂Qk,i(x̂
k,i)
)
≤ δk. (3.4)

2. Let î ∈ Argmin
i∈A(xk,η̃)

{
F (x̂k,i) + 1

2‖x̂
k,i − xk‖2

}
and set xk+1 = x̂k,̂i.

3. Set k ← k + 1 and go to Step 1.

End.

Remark 1. The above approximate solution x̂k,i of (3.3) can be found by some iterative methods

such as proximal gradient method. In addition, Algorithm 1 reduces to EDCA if δk ≡ 0.

In what follows, we conduct convergence analysis for Algorithm 1.

Theorem 1. Suppose that the function g is in the form of (3.2) and x0 is a point such that the level

set {x ∈ Rn : F (x) ≤ F (x0) + B/2} is bounded. Let {xk} be the sequence generated by Algorithm 1.

Then the following statements hold.

(i) The sequence {xk} is bounded.

(ii) limk→∞ ‖xk − xk−1‖ = 0.

(iii) limk→∞ F (xk) exists and limk→∞ F (xk) = F (x∞) for any accumulation point x∞ of {xk}.

(iv) Any accumulation point of {xk} is an (α, η)-D-stationary point of (1.1) for any α ∈ (0, 1] and

η ∈ [0, η̃).

Proof. (i) For any k ≥ 0 and i ∈ A(xk, η̃), it follows from (3.4) that there exists some s ∈ ∂Qk,i(x̂k,i)
such that ‖s‖ ≤ δk. Moreover, one can observe that Qk,i(x) is strongly convex with modulus 1. Hence,

we have

Qk,i(x) ≥ Qk,i(x̂k,i) + sT (x− x̂k,i) +
1

2
‖x− x̂k,i‖2, ∀x ∈ Rn,

which leads to

Qk,i(x) ≥ min
z

{
Qk,i(x̂

k,i) + sT (z − x̂k,i) +
1

2
‖z − x̂k,i‖2

}
= Qk,i(x̂

k,i)− ‖s‖
2

2
, ∀x ∈ Rn.

This together with ‖s‖ ≤ δk implies that

Qk,i(x̂
k,i) ≤ Qk,i(x) +

δ2k
2
, ∀x ∈ Rn. (3.5)
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By (3.2), (3.3), the convexity of ψi(x), and Step 2 of Algorithm 1, we obtain that

Qk,i(x̂
k,i) = f(x̂k,i)− ψi(xk)− 〈∇ψi(xk), x̂k,i − xk〉+

1

2
‖x̂k,i − xk‖2 (3.6)

≥ f(x̂k,i)− ψi(x̂k,i) +
1

2
‖x̂k,i − xk‖2 (3.7)

≥ f(x̂k,i)− g(x̂k,i) +
1

2
‖x̂k,i − xk‖2 (3.8)

= F (x̂k,i) +
1

2
‖x̂k,i − xk‖2 ≥ F (xk+1) +

1

2
‖xk+1 − xk‖2, (3.9)

where (3.7) follows from the convexity of ψi(x), (3.8) is due to (3.2), and (3.9) is by Step 2 of

Algorithm 1. It then follows from (3.5) and (3.9) that for any k ≥ 0 and i ∈ A(xk, η̃),

F (xk+1) +
1

2
‖xk+1 − xk‖2 ≤ Qk,i(x) +

δ2k
2
, ∀x ∈ Rn. (3.10)

By letting i ∈ A(xk) and x = xk in (3.10), we obtain that

F (xk+1) ≤ F (xk+1) +
1

2
‖xk+1 − xk‖2 ≤ Qk,i(xk) +

δ2k
2

= f(xk)− ψi(xk) +
δ2k
2

= F (xk) +
δ2k
2
, (3.11)

where the last equality follows from i ∈ A(xk) and (1.9). Hence, for any k ≥ 0, we have

F (xk) ≤ F (x0) +
1

2

k−1∑
i=0

δ2i ≤ F (x0) +
B

2
,

which together with the boundedness of the level set
{
x ∈ Rn : F (x) ≤ F (x0) +B/2

}
implies that

statement (i) holds.

(ii) It follows from (3.11) that for any k ≥ 0,

‖xk+1 − xk‖2 ≤ 2F (xk)− 2F (xk+1) + δ2k.

Hence, we obtain that for any j ≥ 0,

j∑
k=0

‖xk+1 − xk‖2 ≤ 2F (x0)− 2F (xj+1) +

j∑
k=0

δ2k ≤ 2F (x0)− 2F ∗ +B <∞,

which implies that statement (ii) holds.

(iii) We first show that limk→∞ F (xk) exists. For all i ≥ 0, let ∆i = F (xi+1) − F (xi), ∆+
i =

max(∆i, 0), ∆−i = max(−∆i, 0). It is clear that ∆i = ∆+
i −∆−i for all i ≥ 0. In addition, by (3.11),

one can see that ∆+
i ≤ δ2i /2 for every i ≥ 0, which along with the fact that

∑∞
i=0 δ

2
i <∞ implies that∑∞

i=0 ∆+
i < ∞. By this and ∆+

i ≥ 0 for all i ≥ 0, we have that {
∑k

i=0 ∆+
i } converges as k → ∞.

Also, by ∆i = F (xi+1)− F (xi) and ∆i = ∆+
i −∆−i for all i ≥ 0, we obtain that

k∑
i=0

∆−i =

k∑
i=0

∆+
i −

k∑
i=0

∆i =

k∑
i=0

∆+
i + F (x0)− F (xk+1) ≤

k∑
i=0

∆+
i + F (x0)− F ∗,

which along with
∑∞

i=0 ∆+
i < ∞ implies that

∑∞
i=0 ∆−i < ∞. By this and ∆−i ≥ 0 for all i ≥ 0, we

have that {
∑k

i=0 ∆−i } converges as k →∞. Notice that

F (xk+1) = F (x0) +

k∑
i=0

∆i = F (x0) +

k∑
i=0

∆+
i −

k∑
i=0

∆−i ,
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which together with the convergence of {
∑k

i=0 ∆+
i } and {

∑k
i=0 ∆−i } implies that limk→∞ F (xk) exists.

Let ζ := limk→∞ F (xk), and let x∞ be any accumulation point of {xk}, whose existence is ensured

by statement (i). We next show that F (x∞) = ζ. By (3.3) and (3.10), we have that for any k ≥ 0

and i ∈ A(xk, η̃),

F (xk+1) ≤ Qk,i(x) +
δ2k
2

= f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
1

2
‖x− xk‖2 +

δ2k
2
, ∀x ∈ Rn. (3.12)

Since x∞ is an accumulation point of {xk}, there exists a subsequence K such that limK3k→∞ x
k = x∞.

Let η ∈ [0, η̃) be arbitrarily chosen. It then follows from Lemma 1 that A(x∞, η) ⊆ A(xk, η̃) for

sufficiently large k ∈ K. This together with (3.12) yields that for all k ∈ K sufficiently large,

F (xk+1) ≤ f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
1

2
‖x− xk‖2 +

δ2k
2
, ∀x ∈ Rn, ∀i ∈ A(x∞, η). (3.13)

Notice that limk→∞ δk = 0 due to
∑∞

k=0 δ
2
k <∞. Also, recall that ζ = limk→∞ F (xk) and that ψi and

∇ψi are continuous on the open set Ω containing dom(f). Using these and taking limit of both sides

of (3.13) as K 3 k →∞, we have

ζ ≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
1

2
‖x− x∞‖2, ∀x ∈ Rn, ∀i ∈ A(x∞, η). (3.14)

By letting x = x∞ and i ∈ A(x∞) in (3.14) and using (1.9), we have ζ ≤ F (x∞). On the other hand,

by limK3k→∞ x
k = x∞, ζ = limk→∞ F (xk) and the lower-semicontinuity of F , one has F (x∞) ≤ ζ.

Hence, limk→∞ F (xk) = ζ = F (x∞).

(iv) By ζ = F (x∞), one can rewrite (3.14) as

F (x∞) ≤ f(x)− ψi(x∞)− 〈ψi(x∞), x− x∞〉+
1

2
‖x− x∞‖2, ∀x ∈ Rn, ∀i ∈ A(x∞, η).

It then follows from the arbitrarity of η ∈ [0, η̃) and Definition 1 that x∞ is an (α, η)-D-stationary

point of (1.1) for any α ∈ (0, 1] and η ∈ [0, η̃). tu

Remark 2. Since Algorithm 1 includes EDCA as a special case, Theorem 1 also holds for EDCA.

Consequently, it provides some new results for EDCA, particularly, the ones in statements (iii) and

(iv).

4 An enhanced proximal DCA with extrapolation for DC problem

with finite supremum

Though iEDCA generally enjoys stronger convergence than PDCA and PDCAe, its subproblems (1.5)

are, however, generally complicated, which require some iterative method for finding an approximate

solution and render the entire algorithm a doubly iterative method. On the other hand, the sub-

problems (1.3) and (1.4) of PDCA and PDCAe are much simpler, which only require evaluating the

proximal operator associated with fn. Motivated by this, in this section we propose an enhanced

PDCA algorithm, referred to as EPDCA1, for solving problem (1.1) with g given in (3.2), which in-

herits the advantages of iEDCA and PDCAe. In particular, its subproblems are analogous to those of
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PDCAe with extrapolation incorporated for possible acceleration. Moreover, any accumulation point

of the sequence generated by the proposed algorithm is an (α, η)-D-stationary point of problem (1.1).

The details of EPDCA1 are presented as follows.

Algorithm 2 (The first enhanced PDCA with extrapolation (EPDCA1)).

0. Input x0 ∈ dom(F ), η̃, c > 0 and {βt}t≥0 ⊆ [0,
√
c/L) with supt βt <

√
c/L. Set x−1 = x0,

k ← 0.

1. Set zk = xk + βk(x
k − xk−1).

2. For each index i ∈ A(xk, η̃), compute x̂k,i as

x̂k,i = argmin
x∈Rn

{
`k,i(x) +

c

2
‖x− xk‖2 +

L

2
‖x− zk‖2

}
, (4.1)

where

`k,i(x) = fn(x) + fs(z
k) + 〈∇fs(zk), x− zk〉 − ψi(xk)− 〈∇ψi(xk), x− xk〉.

3. Let î ∈ Argmin
i∈A(xk,η̃)

{
F (x̂k,i) + c

2‖x̂
k,i − xk‖2

}
. Set xk+1 = x̂k,̂i.

4. Set k ← k + 1 and go to Step 1.

End.

Before studying its convergence, we make some remarks on Algorithm 2.

Remark 3. (a) Algorithm 2 is motivated by PDCAe [19]. However, it differs substantially from

PDCAe in two aspects. Firstly, Algorithm 2 solves possibly multiple convex subproblems every

iteration while PDCAe only solves one convex subproblem. Secondly, compared to the subproblem

(1.4) of PDCAe, the subproblem (4.1) of Algorithm 2 has an additional proximal term c‖x −
xk‖2/2. These two new features are crucial for establishing (subsequential) convergence to an

(α, η)-D-stationary point of Algorithm 2.

(b) EDCA can be viewed as a special case of Algorithm 2. Indeed, Algorithm 2 reduces to EDCA

by choosing βt ≡ 0, fs ≡ 0, fn = f , L = 0 and c = 1, assuming 1/0 = ∞. An immediate

consequence of this remark is that any convergence result of Algorithm 2 also holds for EDCA.

(c) The subproblem (4.1) is equivalent to

x̂k,i = prox 1
L+c

fn

(
cxk + Lzk −∇fs(zk) +∇ψi(xk)

L+ c

)
.

Consequently, it has a closed-form solution when the proximal operator of fn admits a simple

calculation (e.g., see Tables 10.2 and 10.3 in [6] for a list of such functions).

(d) The parameters c and {βt}t≥0 can be chosen by the restarting scheme [12]. In particular, one

can set c = τ2L for some τ ∈ [0, 1], and βt = τ(θt−1 − 1)/θt, where

θ−1 = θ0 = 1, θt+1 =
1 +

√
1 + 4θ2t
2

,

and reset θt−1 = θt = 1 when t = T, 2T, 3T, . . . for some positive integer T . It is not hard to

verify that such c and {βt}t≥0 satisfy {βt}t≥0 ⊆ [0,
√
c/L) and supt βt <

√
c/L as desired.
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In the rest of this section we will study the convergence properties of Algorithm 2. In particular, we

first show that any accumulation point of the sequence {xk} generated by Algorithm 2 is an (α, η)-D-

stationary point of problem (1.1) for some α > 0 and η ≥ 0. Secondly, we establish convergence of the

entire sequence {xk} under the so-called Kurdyka- Lojasiewicz (KL) condition. Finally, we derive the

iteration complexity of Algorithm 2 for computing an approximate (α, η)-D-stationary point. Since

EDCA can be viewed as a special case of Algorithm 2, all these theoretical results also hold for EDCA.

4.1 Subsequential convergence to an (α, η)-D-stationary point

In this subsection we show that any accumulation point of the sequence {xk} generated by Algorithm 2

is an (α, η)-D-stationary point of problem (1.1) for some α > 0 and η ≥ 0.

Theorem 2. Suppose that Assumption 1 holds, the function g is in the form of (3.2), and x0 is

a point such that L(x0) is bounded. Let {xk} be the sequence generated by Algorithm 2. Then the

following statements hold.

(i) The sequence {xk} is bounded.

(ii) limk→∞ ‖xk − xk−1‖ = 0.

(iii) limk→∞ F (xk) exists and limk→∞ F (xk) = F (x∞) for any accumulation point x∞ of {xk}.

(iv) Any accumulation point of {xk} is an (α, η)-D-stationary point of (1.1) for any α ∈ (0, (L+c)−1]

and η ∈ [0, η̃).

Proof. (i) By (4.1), the convexity of fs and ψ, the Lipschitz continuity of ∇fs, and Step 3 of Algo-

rithm 2, we have that for all k ≥ 0 and i ∈ A(xk, η̃),

fs(x
k) + fn(xk)− ψi(xk) ≥ fs(zk) + 〈∇fs(zk), xk − zk〉+ fn(xk)− ψi(xk) (4.2)

≥ fs(zk) + fn(x̂k,i) + 〈∇fs(zk), x̂k,i − zk〉 − 〈∇ψi(xk), x̂k,i − xk〉+
L

2
‖x̂k,i − zk‖2

− L

2
‖xk − zk‖2 +

c

2
‖xk − x̂k,i‖2 − ψi(xk) (4.3)

≥ fs(x̂k,i) + fn(x̂k,i)− ψi(xk)− 〈∇ψi(xk), x̂k,i − xk〉 −
L

2
‖xk − zk‖2 +

c

2
‖xk − x̂k,i‖2 (4.4)

≥ fs(x̂k,i) + fn(x̂k,i)− ψi(x̂k,i)−
L

2
‖xk − zk‖2 +

c

2
‖xk − x̂k,i‖2 (4.5)

≥ fs(x̂k,i) + fn(x̂k,i)−max
i∈Y

ψi(x̂
k,i)− L

2
‖xk − zk‖2 +

c

2
‖xk − x̂k,i‖2

= F (x̂k,i)− L

2
‖xk − zk‖2 +

c

2
‖xk − x̂k,i‖2

≥ F (xk+1)− L

2
‖xk − zk‖2 +

c

2
‖xk − xk+1‖2, (4.6)

where (4.2) and (4.5) are respectively due to the convexity of fs and ψ, (4.3) follows from (4.1),

(4.4) is by the Lipschitz continuity of ∇fs and (4.6) is due to Step 3 of Algorithm 2. Notice that

A(xk) ⊆ A(xk, η̃). It follows from (4.6) that for any i ∈ A(xk), we have

F (xk) = fs(x
k) + fn(xk)− ψi(xk) ≥ F (xk+1)− L

2
‖xk − zk‖2 +

c

2
‖xk − xk+1‖2.
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This, together with β̄ := supt βt <
√
c/L and zk = xk + βk(x

k − xk−1), gives us

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ F (xk) +

L

2
‖xk − zk‖2 ≤ F (xk) +

Lβ̄2

2
‖xk − xk−1‖2 (4.7)

≤ F (xk) +
c

2
‖xk − xk−1‖2.

Hence,
{
F (xk) + c

2‖x
k − xk−1‖2

}
is non-increasing. It then follows that for any k ≥ 0,

F (xk) ≤ F (xk) +
c

2
‖xk − xk−1‖2 ≤ F (x0) +

c

2
‖x0 − x−1‖2 = F (x0),

which along with the boundedness of L(x0) implies that {xk} is bounded.

(ii) It follows from (4.7) that for all k ≥ 0,

c− Lβ̄2

2
‖xk+1 − xk‖2 ≤

(
F (xk) +

Lβ̄2

2
‖xk − xk−1‖2

)
−
(
F (xk+1) +

Lβ̄2

2
‖xk+1 − xk‖2

)
,

which together with x−1 = x0 yields that for any integer j ≥ 0,

c− Lβ̄2

2
·

j∑
k=0

‖xk − xk−1‖2 ≤ F (x0)− F (xj) ≤ F (x0)− F ∗, (4.8)

By this and β̄ <
√
c/L, one can see that limk→∞ ‖xk − xk−1‖ = 0.

(iii) Recall that {F (xk)+ c
2‖x

k−xk−1‖2} is non-increasing and bounded below. Hence, limk→∞{F (xk)+
c
2‖x

k − xk−1‖2} exists. This, together with statement (ii), implies that limk→∞ F (xk) exists.

Let x∞ be any accumulation point of {xk}, whose existence is guaranteed by statement (i). We

next show that F (x∞) = limk→∞ F (xk). By (4.1), (4.3) and (4.6), we have that for all i ∈ A(xk, η̃),

F (xk+1) ≤ F (xk+1) +
c

2
‖xk − xk+1‖2

≤ fs(zk) + fn(x̂k,i) + 〈∇fs(zk), x̂k,i − zk〉 − 〈∇ψi(xk), x̂k,i − xk〉+
L

2
‖x̂k,i − zk‖2

+
c

2
‖xk − x̂k,i‖2 − ψi(xk) (4.9)

≤ fs(zk) + fn(x) + 〈∇fs(zk), x− zk〉 − 〈∇ψi(xk), x− xk〉+
L

2
‖x− zk‖2

+
c

2
‖xk − x‖2 − ψi(xk), ∀x ∈ Rn, (4.10)

where (4.9) follows from (4.3) and (4.6), and (4.10) is due to (4.1). Since x∞ is an accumulation point of

{xk}, there exists a subsequence K such that limK3k→∞ x
k = x∞. By this, zk = xk + βk(x

k − xk−1),
βk ∈ [0,

√
c/L) and statement (ii), one has limK3k→∞ x

k+1 = x∞ and limK3k→∞ z
k = x∞. Let

η ∈ [0, η̃) be arbitrarily chosen. It then follows from Lemma 1 that A(x∞, η) ⊆ A(xk, η̃) for sufficiently

large k ∈ K. This together with (4.10) yields that for all k ∈ K sufficiently large,

F (xk+1) ≤ fs(zk) + fn(x) + 〈∇fs(zk), x− zk〉 − 〈∇ψi(xk), x− xk〉+
L

2
‖x− zk‖2

+
c

2
‖xk − x‖2 − ψi(xk), ∀x ∈ Rn, ∀i ∈ A(x∞, η). (4.11)

14



Notice from Assumption 1 that fs, ∇fs, ψi and ∇ψi are continuous on the open set Ω containing

dom(fn). Using this and taking limit of both sides of (4.11) as K 3 k →∞, we obtain

ζ ≤ fs(x∞) + fn(x) + 〈∇fs(x∞)−∇ψi(x∞), x− x∞〉+
L+ c

2
‖x− x∞‖2 − ψi(x∞)

≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
L+ c

2
‖x− x∞‖2, ∀x ∈ Rn, ∀i ∈ A(x∞, η), (4.12)

where ζ := limk→∞ F (xk) and (4.12) follows from the convexity of fs and the relation f = fs + fn.

Letting x = x∞ in (4.12), we have ζ ≤ f(x∞) − ψi(x
∞), ∀i ∈ A(x∞), which along with (1.9)

yields ζ ≤ F (x∞). On the other hand, by limK3k→∞ x
k = x∞, ζ = limk→∞ F (xk) and the lower-

semicontinuity of F , one has F (x∞) ≤ ζ. Hence, limk→∞ F (xk) = ζ = F (x∞).

(iv) By ζ = F (x∞), one can rewrite (4.12) as

F (x∞) ≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
L+ c

2
‖x− x∞‖2, ∀x ∈ Rn, ∀i ∈ A(x∞, η).

It then follows from the arbitrarity of η ∈ [0, η̃) and Definition 1 that x∞ is an (α, η)-D-stationary

point of (1.1) for any α ∈ (0, (L+ c)−1] and η ∈ [0, η̃). tu

4.2 Convergence of the entire sequence

In this subsection we study the convergence of the entire sequence {xk} generated by Algorithm 2

based on the following concept of Kurdyka- Lojasiewicz (KL) property.

Definition 3. (KL property) A lower-semicontinuous function h is said to be a KL function if for

any x̃ ∈ dom(∂h)‡, there exists a scalar κ ∈ (0,∞], a neighborhood U of x̃ and a continuous concave

function ϕ : [0, κ)→ R+ such that:

(i) ϕ is continuously differentiable on (0, κ) with ϕ′ > 0;

(ii) For any x ∈ U with h(x̃) < h(x) < h(x̃) + κ, it holds that

ϕ′(h(x)− h(x̃)) · dist(0, ∂h(x)) ≥ 1.

It is known that the KL property holds for a wide range of functions in applications. For example,

any proper closed semialgebraic function is a KL function. Moreover, with the aid of the KL property,

the convergence of the entire sequence can be established for various iterative algorithms (see, for

example, [2] for more discussion).

To establish the convergence of {xk}, inspired by [19] we introduce the following auxiliary function

H : Rn × Rn → (−∞,+∞]:

H(x, y) := F (x) +
c

2
‖x− y‖2 = fs(x) + fn(x)− g(x) +

c

2
‖x− y‖2. (4.13)

We first prove the following lemma that will be used subsequently.

‡dom(∂h) = {x ∈ dom(h) : ∂h(x) 6= ∅}.
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Lemma 2. Let {xk} be the sequence generated by Algorithm 2. Suppose that H is a KL function and

the premise of Theorem 2 holds. If there exist a scalar ν0 > 0 and K such that

dist
(

(0, 0), ∂H(xk, xk−1)
)
≤ ν0

(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
∀k ≥ K, (4.14)

then the entire sequence {xk} converges.

Proof. Let Γ denote the set of accumulation points of {xk}, and let wk = (xk, xk−1) for all k ≥ 0. By

Theorem 2 (i) and the definition of Γ, one can easily see that Γ is a compact set. In view of (4.7) and

(4.13), β̄ = supt βt <
√
c/L and wk = (xk, xk−1), one has

H(wk+1) + ν1‖xk − xk−1‖2 ≤ H(wk), ∀k ≥ 0, (4.15)

where ν1 = (c − Lβ̄2)/2 > 0. Hence, {H(wk)} is non-increasing. In addition, one can observe from

(4.13) and Theorem 2 (ii) and (iii) that limk→∞H(wk) = ζ, where ζ = limk→∞ F (xk). Also, recall

from Theorem 2 (ii) that limk→∞ ‖xk − xk−1‖ = 0. In view of this, it is not hard to show that the set

of accumulation points of {wk}, denoted as Γ̄, is given by Γ̄ = {(x, x) : x ∈ Γ} and is compact. This

together with Theorem 2 (iii) implies that H(w) = ζ for any w ∈ Γ̄.

Recall from above that {H(wk)} is non-increasing and limk→∞H(wk) = ζ. Therefore, one of the

following two cases must occur:

Case (a): there exists some K1 > 0 such that H(wk) = ζ for all k ≥ K1.

Case (b): H(wk) > ζ for all k ≥ 0.

To prove that the entire sequence {xk} converges, it suffices to show that
∑∞

k=0 ‖xk−xk−1‖ <∞.

We next prove this by considering the above two cases separately.

Suppose that Case (a) holds. By (4.15), we have ‖xk − xk−1‖ = 0 for all k ≥ K1. Then it is clear

that
∑∞

k=0 ‖xk − xk−1‖ <∞.

Suppose that Case (b) holds. Recall that Γ̄ is a compact set, H is constant on Γ̄ and H is a

KL function. It follows from these and [4, Lemma 6] that H satisfies the so-called uniformized KL

property. That is, there exist some scalars δ > 0, κ > 0 and a function ϕ that is continuous concave

nonnegative in [0, κ) and continuously differentiable on (0, κ) with ϕ′ > 0 such that

ϕ′(H(w)− ζ) · dist(0, ∂H(w)) ≥ 1 (4.16)

for all w satisfying

dist(w, Γ̄) < δ, ζ < H(w) < ζ + κ. (4.17)

Since Γ̄ is the set of accumulation points of {wk} and Γ̄ is compact, it is not hard to see that

limk→∞ dist(wk, Γ̄) = 0. Also, notice that limk→∞H(wk) = ζ and H(wk) > ζ for all k ≥ 0. Hence,

there exists K2 such that wk satisfies (4.17) for all k ≥ K2, which implies that (4.16) holds at wk for

all k ≥ K2. In addition, by the concavity of ϕ and (4.15), we have that for any k ≥ 0,

ϕ(H(wk)− ζ)−ϕ(H(wk+1)− ζ) ≥ ϕ′(H(wk)− ζ)[H(wk)−H(wk+1)] ≥ ν1ϕ′(H(wk)− ζ)‖xk−xk−1‖2,

where the first inequality follows from the concavity of ϕ and the second one is due to (4.15). This,

together with the KL inequality (4.16), leads to

1 ≤ ϕ′(H(wk)− ζ) · dist(0, ∂H(wk)) ≤ ϕ(H(wk)− ζ)− ϕ(H(wk+1)− ζ)

ν1‖xk − xk−1‖2
· dist(0, ∂H(wk)),
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for any k ≥ K2 such that ‖xk − xk−1‖ 6= 0. By this relation and (4.14), one has that for any

k ≥ K0 := max{K,K2} such that ‖xk − xk−1‖ 6= 0,

‖xk − xk−1‖2 ≤ ν0
ν1

(
ϕ(H(wk)− ζ)− ϕ(H(wk+1)− ζ)

)(
‖xk − xk−1‖+ ‖xk−1 − xk−2‖

)
≤ 1

4

[
2ν0
ν1

(
ϕ(H(wk)− ζ)− ϕ(H(wk+1)− ζ)

)
+

1

2
‖xk − xk−1‖+

1

2
‖xk−1 − xk−2‖

]2
,

where the second inequality follows from the fact that ab ≤ (a + b)2/4 for any a and b. Taking the

square root of both sides of this relation and rearranging the term ‖xk − xk−1‖, we obtain that for

any k ≥ K0 such that ‖xk − xk−1‖ 6= 0,

‖xk − xk−1‖ ≤ 2ν0
ν1

(
ϕ(H(wk)− ζ)− ϕ(H(wk+1)− ζ)

)
+

1

2
‖xk−1 − xk−2‖ − 1

2
‖xk − xk−1‖. (4.18)

Recall that ϕ′ > 0 on (0, κ). This together with {H(wk)} non-increasing and ζ < H(wk) < ζ + κ for

all k ≥ K0 yields that ϕ(H(wk)− ζ)−ϕ(H(wk+1)− ζ) ≥ 0 for all k ≥ K0, which further implies that

(4.18) also holds for any k ≥ K0 such that ‖xk−xk−1‖ = 0. Hence, (4.18) holds for all k ≥ K0. Notice

that ϕ is nonnegative in [0, κ) and ζ < H(wk) < ζ+κ for all k ≥ K0. It follows that ϕ(H(wk)−ζ) ≥ 0

for all k ≥ K0. Summing up the inequality (4.18) from k = K0 to ∞ yields

∞∑
k=K0

‖xk − xk−1‖ ≤ 2c

c1
· ϕ(H(wK0)− ζ) +

1

2
‖xK0−1 − xK0−2‖,

which implies that
∑∞

k=0 ‖xk − xk−1‖ <∞ also holds for Case (b). The proof is then completed. tu

Equipped with Lemma 2, we are now ready to establish the convergence of the entire sequence

{xk} generated by Algorithm 2.

Theorem 3. Let {xk} be the sequence generated by Algorithm 2 and Γ the set of accumulation points

of {xk}. Suppose that the premise of Theorem 2 holds. Then the entire sequence {xk} converges to

an (α, η)-D-stationary point of (1.1) for any α ∈ (0, (L + c)−1] and η ∈ [0, η̃) if one of the following

additional conditions holds:

(i) One of the elements of Γ is isolated.

(ii) The function H defined in (4.13) is a KL function and ∇ψi(x) is locally Lipschitz continuous

for all i ∈ Y. Moreover, for each x ∈ Γ, A(x) is a singleton and satisfies

g(x)− max
i∈A◦(x)

ψi(x) > 2η̃, (4.19)

where A◦(x) = Y \ A(x).

Proof. In view of Theorem 2, it suffices to show that the entire sequence {xk} converges.

We know from Theorem 2 that limk→∞ ‖xk−xk−1‖ = 0. Suppose that one of the elements of Γ is

isolated. By this, limk→∞ ‖xk − xk−1‖ = 0, and a similar argument as in [7, Proposition 8.3.10], one

can show that {xk} is convergent.

Suppose that the condition (ii) in the statement of Theorem 3 holds. In view of Lemma 2, it

suffices to show that (4.14) holds for some ν0 and K. Let x̄ ∈ Γ be arbitrarily chosen. Due to our
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assumption that A(x̄) is a singleton, A(x̄) = {̃i} for some ĩ ∈ Y. Since ψi is continuous for each

i ∈ Y and Y is a finite set, there exists δ > 0 such that |ψi(x)− ψi(x̄)| ≤ η̃/2 for all i ∈ Y whenever

‖x− x̄‖ ≤ 2δ. This, together with (4.19) and A(x̄) = {̃i}, implies that

A(x) = {̃i}, g(x)− max
i∈A◦(x)

ψi(x) > η̃, whenever ‖x− x̄‖ ≤ 2δ. (4.20)

Recall from Theorem 2 that {xk} is bounded and limk→∞ ‖xk − xk−1‖ = 0. It follows from this and

[7, Theorem 8.3.9] that Γ is compact and connected. By this, (4.20) and a standard argument based

on the Heine-Borel theorem, one can conclude that there exists δ̄ > 0 such that

A(x) = {̃i}, g(x)− max
i∈A◦(x)

ψi(x) > η̃, whenever dist(x,Γ) ≤ 2δ̄. (4.21)

It then follows that g(x) = ψĩ(x) for all x satisfying dist(x,Γ) ≤ 2δ̄. By this, (4.21), the compactness

of Γ, and the assumption that ψĩ is continuously differentiable and ∇ψĩ is locally Lipschitz continuous,

we see that g is continuously differentiable and∇g is Lipschitz continuous onN := {x : dist(x,Γ) ≤ δ̄}.
Recall from the proof of Lemma 2 that limk→∞ dist(xk,Γ) = 0, which implies that there exists some

K such that xk ∈ N for all k ≥ K. Hence, A(xk) = {̃i}, g is continuously differentiable at xk and

g(xk)−maxi∈A◦(xk) ψi(x
k) > η̃ for all k ≥ K. It follows that A(xk, η̃) = A(xk) for all k ≥ K. By this

and the updating scheme (4.1), one has that for all k ≥ K, xk+1 = x̂k,̃i and moreover,

0 ∈ ∂fn(xk+1) +∇fs(zk)−∇ψĩ(x
k) + c(xk+1 − xk) + L(xk+1 − zk). (4.22)

Since A(xk) = {̃i} for all k ≥ K, one has that ∇ψĩ(xk) = ∇g(xk) for all k ≥ K. In view of this and

(4.22), we have

−∇fs(zk) +∇g(xk)− c(xk+1 − xk)− L(xk+1 − zk) ∈ ∂fn(xk+1), ∀k ≥ K. (4.23)

In addition, since g is continuously differentiable at xk for all k ≥ K, it follows from [16, Exercise

8.8(c)] that for all k ≥ K,

∂H(xk+1, xk) =
{
vk+1 +∇fs(xk+1)−∇g(xk+1) + c(xk+1 − xk) : vk+1 ∈ ∂fn(xk+1)

}
×{c(xk−xk+1)}.

Combining this with (4.23), we obtain that for all k ≥ K.

dist((0, 0), ∂H(xk+1, xk)) ≤ ‖ −∇fs(zk) +∇g(xk)− L(xk+1 − zk) +∇fs(xk+1)−∇g(xk+1)‖

+ c‖xk − xk+1‖.

By this and the Lipschitz continuity of ∇fs and ∇g on N , we obtain that

dist((0, 0), ∂H(xk+1, xk)) ≤ ν
(
‖xk+1 − xk‖+ ‖xk+1 − zk‖

)
, ∀k ≥ K

for some ν > 0. This together with zk = xk + βk(x
k − xk−1) and βk ∈ [0,

√
c/L) implies that there

exists ν0 > 0 such that

dist((0, 0), ∂H(xk+1, xk)) ≤ ν0
(
‖xk+1 − xk‖+ ‖xk − xk−1‖

)
, ∀k ≥ K

and hence (4.14) holds as desired. The proof is then completed. tu

Recall that EDCA is a special case of Algorithm 2. As a consequence of Theorem 3, the sequence

generated by EDCA also converges under the same assumption.
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Corollary 1. Let {xk} be the sequence generated by EDCA. Suppose that the premise of Theorem 3

holds except that F instead of H is a KL function. Then the entire sequence {xk} converges to an

(α, η)-D-stationary point of (1.1) for any α ∈ (0, 1] and η ∈ [0, η̃).

4.3 Iteration complexity for computing an approximate (α, η)-D-stationary point

In this subsection we study the iteration complexity of Algorithm 2 for computing an ε-approximate

((2L+ c)−1, η̃)-D-stationary point of problem (1.1).

Theorem 4. Let ε > 0 be arbitrarily given, β̄ = supt βt, and {xk} generated by Algorithm 2. Suppose

that the premise of Theorem 2 holds and F is Lipschitz continuous on L(x0) with Lipschitz constant

L0. Then the following statements hold.

(i) If (xk−1, xk, xk+1) satisfies

‖xk+1 − xk‖+ ‖xk − xk−1‖ ≤ min

{
1,

ε

Lβ̄2
,
ε

L0

}
(4.24)

for some k ≥ 0, then xk is an ε-approximate ((2L+ c)−1, η̃)-D-stationary point of (1.1).

(ii) The number of iterations of Algorithm 2 for computing an ε-approximate ((2L + c)−1, η̃)-D-

stationary point of (1.1) is no more than

K̄ =

⌈
8(F (x0)− F ∗)

c− Lβ̄2
·max

{
1,
L2β̄4

ε2
,
L2
0

ε2

}⌉
+ 1. (4.25)

Proof. (i) Suppose that (xk−1, xk, xk+1) satisfies (4.24) for some k ≥ 0. It follows from (4.10) that for

any x ∈ Rn and i ∈ A(xk, η̃),

F (xk+1) ≤ fs(zk) + fn(x) + 〈∇fs(zk), x− zk〉 − 〈∇ψi(xk), x− xk〉+
L

2
‖x− zk‖2

+
c

2
‖xk − x‖2 − ψi(xk)

≤ f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
L

2
‖x− zk‖2 +

c

2
‖xk − x‖2

≤ f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
2L+ c

2
‖x− xk‖2 + Lβ2k‖xk − xk−1‖2, (4.26)

where the second inequality follows from the convexity of fs and the third one is due to zk = xk +

βk(x
k − xk−1) and ‖a + b‖2 ≤ 2(‖a‖2 + ‖b‖2) for any a and b. Recall from the proof of Theorem 2

that xk, xk+1 ∈ L(x0). Since F is Lipschitz continuous on L(x0) with Lipschitz constant L0, we have

F (xk)− F (xk+1) ≤ L0‖xk+1 − xk‖.

By this and (4.26), one has that for any x ∈ Rn and i ∈ A(xk, η̃),

F (xk) ≤ f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
2L+ c

2
‖x− xk‖2

+ Lβ2k‖xk − xk−1‖2 + L0‖xk+1 − xk‖. (4.27)
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Since (xk−1, xk, xk+1) satisfies (4.24), it follows that ‖xk − xk−1‖ ≤ 1 and thus

‖xk+1 − xk‖+ ‖xk − xk−1‖2 ≤ ε

max{Lβ̄2, L0}
.

This together with β̄ = supt βt yields

Lβ2k‖xk − xk−1‖2 + L0‖xk+1 − xk‖ ≤ max{Lβ̄2, L0}
(
‖xk − xk−1‖2 + ‖xk+1 − xk‖

)
≤ ε.

In view of this and (4.27), one has that

F (xk) ≤ f(x)− ψi(xk)− 〈∇ψi(xk), x− xk〉+
2L+ c

2
‖x− xk‖2 + ε, ∀x ∈ Rn, ∀i ∈ A(xk, η̃).

Hence, it follows from Definition 2 that xk is an ε-approximate ((2L + c)−1, η̃)-D-stationary point

of (1.1).

(ii) In view of statement (i), it suffices to show that a triplet (xk−1, xk, xk+1) satisfying (4.24) can

be found by Algorithm 2 in at most K̄ iterations, where K̄ is given in (4.25). By (4.8), one has that

for all K > 0,

K∑
i=1

‖xi+1 − xi‖2 ≤ 2

c− Lβ̄2
(F (x0)− F ∗),

K∑
i=1

‖xi − xi−1‖2 ≤ 2

c− Lβ̄2
(F (x0)− F ∗).

Summing up these two inequalities yields

K∑
i=1

‖xi+1 − xi‖2 + ‖xi − xi−1‖2 ≤ 4

c− Lβ̄2
(F (x0)− F ∗).

It thus follows that there exists some k̂ ≤ K such that

‖xk̂+1 − xk̂‖2 + ‖xk̂ − xk̂−1‖2 ≤ 4

(c− Lβ̄2)K
(F (x0)− F ∗).

By this and ‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2), one has

‖xk̂+1 − xk̂‖+ ‖xk̂ − xk̂−1‖ ≤ 2
√

2√
c− Lβ̄2

√
K
·
√
F (x0)− F ∗.

Letting K = K̄ − 1, we can see that there exists k̂ ≤ K̄ − 1 such that (xk̂−1, xk̂, xk̂+1) satisfies (4.24).

Hence, an xk satisfying (4.24) can be found by Algorithm 2 in no more than K̄ iterations. tu

Remark 4. In general, it is not easy to check an ε-approximate (α, η)-D-stationary point according to

Definition 2. One can see from Theorem 4 that (4.24) can be used as a practical termination criterion

for Algorithm 2 for generating an ε-approximate ((2L+ c)−1, η̃)-D-stationary point of (1.1).

By similar arguments as those in the proof of Proposition 4, one can establish the following iteration

complexity of EDCA for computing an approximate (α, η)-D-stationary point, whose derivation is

omitted.

Theorem 5. Let ε > 0 be arbitrarily given and {xk} generated by EDCA. Suppose that the premise

of Theorem 2 holds and F is Lipschitz continuous on L(x0) with Lipschitz constant L0. Then the

following statements hold.
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(i) If (xk, xk+1) satisfies ‖xk+1 − xk‖ ≤ ε/L0 for some k ≥ 0, then xk is an ε-approximate (1, η̃)-

D-stationary point of (1.1).

(ii) The number of iterations of EDCA for computing an ε-approximate (1, η̃)-D-stationary point

of (1.1) is no more than ⌈
2L2

0(F (x0)− F ∗)
ε2

⌉
+ 1.

5 An enhanced proximal DCA with extrapolation for DC problem

with possibly infinite supremum

In Sections 3 and 4 we have considered computing an (α, η)-D-stationary point of problem (1.1) in

which g is defined as the supremum of a finite number of smooth convex functions, namely, the

associated Y in defining g is a finite set. In this section we are interested in finding an (α, η)-D-

stationary point of (1.1) for which the associated Y in defining g is possibly an infinite set. To this

aim, we assume throughout this section that Y in (1.2) is a (possibly infinite) compact set.

As discussed in Section 4, Algorithm 2 can be applied to find an (α, η)-D-stationary point of (1.1)

with a finite set Y. We now check whether it can be directly applied to (1.1) with an infinite set

Y. For the latter problem, it looks natural to simply replace Steps 2 and 3 of Algorithm 2 by the

following two steps, respectively:

1. For each y ∈ A(xk, η̃), compute x̂k(y) as

x̂k(y) = argmin
x∈Rn

{
`k(x, y) +

c

2
‖x− xk‖2 +

L

2
‖x− zk‖2

}
,

where

`k(x, y) = fn(x) + fs(z
k) + 〈∇fs(zk), x− zk〉 − ψ(xk, y)− 〈∇xψ(xk, y), x− xk〉. (5.1)

2. Let ŷ ∈ Argmin
y∈A(xk,η̃)

{F (x̂k(y)) + c
2‖x̂

k(y)− xk‖2}. Set xk+1 = x̂k(ŷ).

When Y is an infinite set, it is generally hard to find ŷ and xk+1. For example, computing ŷ involves

the DC function F , which appears to be impossible when Y is an infinite set. Therefore, such a direct

application of Algorithm 2 is generally not implementable.

Due to the above difficulty of Algorithm 2, we propose an alternative algorithm, which is a

modification of Algorithm 2 but potentially applicable to problem (1.1) with g being the supremum

of infinitely many convex functions.

Algorithm 3 (The second enhanced PDCA with extrapolation (EPDCA2)).

0. Input x0 ∈ dom(F ), c, η̃ > 0, and {βt}t≥0 ⊆ [0,
√
c/L) with supt βt <

√
c/L. Set x−1 = x0 and

k ← 0.

1. Set zk = xk + βk(x
k − xk−1).
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2. Update xk+1 as follows:

xk+1 ∈ Argmin
x∈Rn

{
min

y∈A(xk,η̃)
`k(x, y) +

c

2
‖x− xk‖2 +

L

2
‖x− zk‖2

}
, (5.2)

where `k(x, y) is given in (5.1).

3. Set k ← k + 1 and go to Step 1.

End.

The parameters {βt}t≥0, c, and η̃ in Algorithm 3 can be set identically to those in Algorithm 2.

The key difference between Algorithms 2 and 3 is that at each iteration Algorithm 3 solves a single

optimization problem while Algorithm 2 solves two optimization problems with different objective.

In the rest of this section we first study the convergence of Algorithm 3 and then discuss how to solve

subproblem (5.2).

5.1 Convergence results

Theorem 6. Suppose that Assumption 1 holds, and x0 is a point such that L(x0) is bounded. Let

{xk} be the sequence generated by Algorithm 3. Then the following statements hold.

(i) The sequence {xk} is bounded.

(ii) limk→∞ ‖xk − xk−1‖ = 0.

(iii) limk→∞ F (xk) exists and limk→∞ F (xk) = F (x∞) for any accumulation point x∞ of {xk}.

(iv) Any accumulation point of {xk} is an (α, η)-D-stationary point of (1.1) for any α ∈ (0, (L+c)−1]

and η ∈ [0, η̃).

Proof. By (5.2), the convexity of fs and ψ(·, y) and the Lipschitz continuity of ∇fs, we have that for

any ỹ ∈ A(xk, η̃),

fn(xk) + fs(x
k)− ψ(xk, ỹ)

≥ min
y∈A(xk,η̃)

fn(xk) + fs(x
k)− ψ(xk, y)

≥ min
y∈A(xk,η̃)

fs(z
k) + 〈∇fs(zk), xk − zk〉+ fn(xk)− ψ(xk, y)

≥ min
y∈A(xk,η̃)

{
fs(z

k) + 〈∇fs(zk), xk+1 − zk〉+ fn(xk+1) + c
2‖x

k+1 − xk‖2

−ψ(xk, y)− 〈∇xψ(xk, y), xk+1 − xk〉+ L
2 ‖x

k+1 − zk‖2 − L
2 ‖x

k − zk‖2

}
(5.3)

≥ min
y∈A(xk,η̃)

fs(x
k+1) + fn(xk+1)− ψ(xk+1, y)− L

2
‖xk − zk‖2 +

c

2
‖xk+1 − xk‖2

≥ F (xk+1)− L

2
‖xk − zk‖2 +

c

2
‖xk − xk+1‖2, (5.4)

where the second inequality is by the convexity of fs, the third one is due to (5.2), the fourth one is

by Lipschitz continuity of ∇fs and convexity of ψ(·, y), and the last one is by the definition of F . It

then follows from (5.4) that for every ỹ ∈ A(xk),

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ f(xk)− ψ(xk, ỹ) +

L

2
‖xk − zk‖2 = F (xk) +

L

2
‖xk − zk‖2.
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This, together with the definition of zk and β̄ = supt βt, gives us

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ F (xk) +

Lβ̄2

2
‖xk − xk−1‖2.

By this, β̄ ∈ [0,
√
c/L) and the same arguments as those in the proof of Theorem 2, one can have

that (i) and (ii) hold, and moreover

ζ := lim
k→∞

F (xk) = lim
k→∞

F (xk) +
c

2
‖xk − xk−1‖2 (5.5)

exists. It follows from (5.3), (5.4) and the convexity of fs that

F (xk+1) ≤ F (xk+1) +
c

2
‖xk+1 − xk‖2

≤ min
y∈A(xk,η̃)

{
fs(z

k) + 〈∇fs(zk), xk+1 − zk〉+ fn(xk+1)− ψ(xk, y)

−〈∇xψ(xk, y), xk+1 − xk〉+ c
2‖x

k+1 − xk‖2 + L
2 ‖x

k+1 − zk‖2

}

≤ min
y∈A(xk,η̃)

{
fs(z

k) + 〈∇fs(zk), x− zk〉+ fn(x)− ψ(xk, y)

−〈∇xψ(xk, y), x− xk〉+ c
2‖x− x

k‖2 + L
2 ‖x− z

k‖2

}
, ∀x ∈ Rn

≤ fs(x) + fn(x)− ψ(xk, y)− 〈∇xψ(xk, y), x− xk〉

+
c

2
‖x− xk‖2 +

L

2
‖x− zk‖2, ∀x ∈ Rn, ∀y ∈ A(xk, η̃), (5.6)

where the second inequality follows from (5.3) and (5.4), and the third one is due to (5.2) and last

one is by the convexity of fs. Let x∞ be any accumulation point and {xk}k∈K be a subsequence

converging to x∞. By ‖xk+1 − xk‖ → 0, zk = xk + βk(x
k − xk−1) and βk ∈ [0,

√
c/L), one has

limK3k→∞ x
k+1 = x∞ and limK3k→∞ z

k = x∞. Let η ∈ [0, η̃) be arbitrarily chosen. It then follows

from Lemma 1 that A(x∞, η) ⊆ A(xk, η̃) for sufficiently large k ∈ K. This together with (5.6) yields

that for all k ∈ K sufficiently large, we have

F (xk+1) ≤ f(x)−ψ(xk, y)−〈∇xψ(xk, y), x−xk〉+ c

2
‖x−xk‖2+

L

2
‖x−zk‖2, ∀x ∈ Rn, ∀y ∈ A(x∞, η).

Taking the limit on both sides as K 3 k →∞, and using (5.5) as well as the continuity of ψ and ∇xψ
on the open set Ω containing dom(fn), we obtain

ζ ≤ f(x)− ψ(x∞, y)− 〈∇xψ(x∞, y), x− x∞〉+
L+ c

2
‖x− x∞‖2, ∀x ∈ Rn, ∀y ∈ A(x∞, η). (5.7)

By (5.5), limK3k→∞ x
k = x∞ and the lower-semicontinuity of F , one has F (x∞) ≤ ζ. Letting x = x∞

and y ∈ A(x∞) in (5.7) and using the definition of A(x∞), we have ζ ≤ F (x∞). It thus follows that

F (x∞) = ζ, which together with (5.7) yields

F (x∞) ≤ f(x)− ψ(x∞, y)− 〈∇xψ(x∞, y), x− x∞〉+
L+ c

2
‖x− x∞‖2, ∀x ∈ Rn, ∀y ∈ A(x∞, η).

By this, Definition 1, and the arbitrarity of η ∈ [0, η̃), we conclude that x∞ is an (α, η)-D-stationary

point of (1.1) for any α ∈ (0, (L+ c)−1] and η ∈ [0, η̃). tu

We next study the iteration complexity of Algorithm 3 for computing an approximate (α, η)-D-

stationary point of (1.1).
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Theorem 7. Let ε > 0 be arbitrarily given, β̄ = supt βt, and L0 the Lipschitz constant of F on

L(x0). Let {xk} be generated by Algorithm 3. Suppose that the premise of Theorem 6 holds. Then

the following statements hold.

(i) If (xk−1, xk, xk+1) satisfies

‖xk+1 − xk‖+ ‖xk − xk−1‖ ≤ min

{
1,

ε

Lβ̄2
,
ε

L0

}
for some k ≥ 0, then xk is an ε-approximate ((2L+ c)−1, η̃)-D-stationary point of (1.1).

(ii) The number of iterations of Algorithm 3 for computing an ε-approximate ((2L + c)−1, η̃)-D-

stationary point of (1.1) is no more than

K̄ =

⌈
8(F (x0)− F ∗)

c− Lβ̄2
·max

{
1,
L2β̄4

ε2
,
L2
0

ε2

}⌉
+ 1.

Proof. It follows from (5.6), f = fs + fn and zk = xk + βk(x
k − xk−1) that

F (xk+1) ≤ f(x)−ψ(xk, y)−〈∇x(xk, y), x−xk〉+ 2L+ c

2
‖x−xk‖2+Lβ2k‖xk−xk−1‖2, ∀y ∈ A(xk, η̃).

The rest of the proof follows from this and the same arguments as those in the proof of Theorem 4.

tu

Remark 5. In view of Theorems 6 and 7, we see that Algorithm 3 shares similar theoretical results

with Algorithm 2. However, it is not clear whether the convergence of the entire sequence generated

by Algorithm 3 can be established. We shall leave this to our future study.

5.2 Solving the subproblem (5.2)

Though subproblem (5.2) is nonconvex in general, we show in this subsection that it can be efficiently

solved for some classes of Y.

5.2.1 Y is a finite set

Suppose that Y is a finite set. For the sake of convenience, assume that Y = {1, 2, . . . , I}. The

subproblem (5.2) for such Y can be solved as follows.

2a. For each index i ∈ A(xk, η̃), compute x̂k,i as

x̂k,i = argmin
x∈Rn

{
`k,i(x) +

c

2
‖x− xk‖2 +

L

2
‖x− zk‖2

}
,

where

`k,i(x) = fn(x) + fs(z
k) + 〈∇fs(zk), x− zk〉 − ψi(xk)− 〈∇ψi(xk), x− xk〉.

2b. Let î ∈ Argmin
i∈A(xk,η̃)

{
`k,i(x̂

k,i) + c
2‖x̂

k,i − xk‖2 + L
2 ‖x̂

k,i − zk‖2
}

. Set xk+1 = x̂k,̂i.
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It thus follows that Step 2 of Algorithm 3 can be replaced by the above Steps 2a and 2b. Upon such

a replacement, one can observe that similar to Algorithm 2, each iteration of Algorithm 3 also solves

possibly multiple convex subproblems and then executes a selection procedure. The selection of î for

Algorithm 3 is, however, different from the one in Algorithm 2. In particular, Algorithm 2 needs to

evaluate g(x̂k,i) for all i ∈ A(xk, η̃), but Algorithm 3 does not. Given that evaluation of g(x) requires

computing ψj(x) for each j ∈ Y, the computational cost of Algorithm 3 per iteration is generally

cheaper than that of Algoithm 2 when Y is a finite set.

5.2.2 ψ(x, y) is linear of y and fn = 0

Suppose that fn = 0 and ψ(x, y) is a linear function of y. That is, f is continuously differentiable

in Rn and ψ(x, y) = 〈φ(x), y〉 for some φ(x) = (φ1(x), φ2(x), . . . , φm(x))T . Moreover, we assume that

for all i = 1, . . . ,m, φi is continuously differentiable in Rn. It thus follows from (1.2) that g can be

written as

g(x) = max
y∈Y
〈φ(x), y〉. (5.8)

We denote by ∇φ(x) ∈ Rn×m the gradient of φ at x. Under these assumptions, we can show that

subproblem (5.2) is equivalent to a convex maximization problem.

Proposition 5. Consider the subproblem (5.2). Suppose that g is of the form (5.8) and fn = 0. Let

Q =
1

L+ c
∇φ(xk)T∇φ(xk), q = φ(xk)− 1

L+ c
∇φ(xk)T

(
∇f(xk)− L(zk − xk)

)
.

Then a solution xk+1 of (5.2) can be computed by first solving the convex maximization problem

yk+1 ∈ Argmax
y∈Y

1

2
yTQy + 〈q, y〉

s.t. 〈φ(xk), y〉 ≥ g(xk)− η̃,
(5.9)

and then setting

xk+1 =
1

L+ c

(
∇φ(xk)yk+1 −∇f(zk) + Lzk + cxk

)
. (5.10)

Proof. Since fn = 0, the subproblem (5.2) can be simplified as

xk+1 ∈ Argmin
x

{
min

y∈A(xk,η̃)

〈
u−∇φ(xk)y, x

〉
+
L+ c

2
‖x‖2 − 〈v, y〉

}
, (5.11)

where

u = ∇f(zk)− Lzk − cxk, v = φ(xk)−∇φ(xk)Txk.

Upon interchanging x and y in (5.11), one can calculate xk+1 by the following two steps:
yk+1 ∈ Argmin

y∈A(xk,η̃)

{
min
x

〈
u−∇φ(xk)y, x

〉
+
L+ c

2
‖x‖2 − 〈v, y〉

}
,

xk+1 = argmin
x

{〈
u−∇φ(xk)yk+1, x

〉
+
L+ c

2
‖x‖2

}
.
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Notice that in the above two steps, the minimization with respect to x can be solved explicitly. Thus,

the above two steps can be simplified as
yk+1 ∈ Argmin

y∈A(xk,η̃)

{
− 1

2(L+ c)
yT∇φ(xk)T∇φ(xk)y −

〈
v − 1

L+ c
∇φ(xk)Tu, y

〉}
xk+1 =

1

L+ c

(
∇φ(xk)yk+1 − u

)
.

This, together with A(xk, η̃) = {y ∈ Y | 〈φ(xk), y〉 ≥ g(xk)− η̃}, leads to (5.9) and (5.10). tu

In view of Proposition 5, subproblem (5.2) is reduced to (5.9). We next discuss two cases of Y for

which (5.9) can be solved efficiently.

Y is a polyhedral set. Since the objective function of (5.9) is convex, its global optimal value

must be attained at some extreme point of the feasible set. Note that the feasible set of (5.9) is the

intersection of Hk := {y ∈ Rm : 〈φ(xk), y〉 ≥ g(xk)− η̃} with a polyhedral set Y. Suppose that Y has

polynomial number of one-dimensional faces. It is not hard to observe that for such Y, Hk ∩ Y has

polynomial number of vertices and thus (5.9) is solvable in polynomial time. For example, if Y is a

simplex, i.e., Y = {y ∈ Rm :
∑m

i=1 yi = 1, y ≥ 0}, then Hk ∩Y has at most O(m2) number of extreme

points.

Y is an ellipsoid. Suppose that Y = {y ∈ Rm : (y− ȳ)TW (y− ȳ) ≤ 1} for some positive definite

matrix W and ȳ ∈ Rm. To solve (5.9) with such Y, we first transform it to a maximization problem

with ball constraints. Specifically, letting ỹ = W 1/2(y − ȳ), problem (5.9) is equivalent to

max
y

{
1

2
ỹT Q̃ỹ + 〈q̃, ỹ〉 : 〈a, ỹ〉 ≥ b, ‖ỹ‖ ≤ 1

}
, (5.12)

where

Q̃ = W−
1
2QW−

1
2 , q̃ = W−

1
2 (Qȳ + q), a = W−

1
2φ(xk), b = g(xk)− η̃ − 〈φ(xk), ȳ〉.

Notice that (5.12) is an extended trust region subproblem with only one affine inequality constraint,

whose solution can be found by solving the following semidefinite programming relaxation problem

(see, for example, [18, 5]):

max
Ỹ ,ỹ

1

2
tr(Q̃Ỹ ) + 〈q̃, ỹ〉

s.t. ‖bỹ − Ỹ a‖ ≤ b− aT ỹ,

tr(Ỹ ) ≤ 1, Ỹ � ỹỹT .

(5.13)

Suppose that (Ỹ ∗, ỹ∗) is an optimal solution of (5.13). Then ỹ∗ is an optimal solution of (5.12). It

thus follows that yk+1 = ȳ +W−1/2ỹ∗ is an optimal solution of (5.9).

6 Concluding remarks

In this paper we considered a class of structured nonsmooth DC minimization in which the first convex

component is the sum of a smooth and nonsmooth functions while the second convex component is
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the supremum of possibly infinitely many convex smooth functions. In particular, we first proposed an

inexact enhanced DC algorithm for solving this problem in which the second convex component is the

supremum of finitely many convex smooth functions, and showed that every accumulation point of the

generated sequence is an (α, η)-D-stationary point of the problem, which is generally stronger than an

ordinary D-stationary point. In addition, we proposed two proximal DC algorithms with extrapolation

for solving this problem, and showed that every accumulation point of the solution sequence generated

by them is an (α, η)-D-stationary point of the problem. The convergence of the entire sequence was

established under some suitable assumption. We also introduced a concept of approximate (α, η)-D-

stationary point and derived iteration complexity of the proposed proximal DC algorithms for finding

an approximate (α, η)-D-stationary point. In contrast with the DC algorithm [13], our proximal

DC algorithms have much simpler subproblems and also incorporate the extrapolation for possible

acceleration. Moreover, one of our algorithms is potentially applicable to the DC problem in which the

second convex component is the supremum of infinitely many convex smooth functions. In addition,

our algorithms have stronger convergence results than the proximal DC algorithm in [19].

From computational point of view, our algorithm for the DC problem in which the second convex

component in the objective is the supremum of infinitely many convex smooth functions is only

applicable to some special classes of problems. It is worthy of a further research in developing efficient

algorithms for solving D-stationary points of this type of DC problems. In addition, our proximal DC

algorithms use the global Lipschitz constant of the gradient of the smooth function in the objective.

We believe it can be replaced by some suitable quantity obtained by a line search technique that can

improve the efficiency of the algorithms. The numerical implementation of our algorithms and its

comparison with other competitive methods are left as future research.
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