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Abstract

We study a class of nonconvex–nonconcave minimax problems in which the inner maximization
problem satisfies a local Kurdyka– Lojasiewicz (KL) condition that may vary with the outer minimiza-
tion variable. In contrast to the global KL or Polyak– Lojasiewicz (PL) conditions commonly assumed
in the literature—which are significantly stronger and often too restrictive in practice—this local
KL condition accommodates a broader range of practical scenarios. However, it also introduces new
analytical challenges. In particular, as an optimization algorithm progresses toward a stationary point
of the problem, the region over which the KL condition holds may shrink, resulting in a more intricate
and potentially ill-conditioned landscape. To address this challenge, we show that the associated
maximal function is locally Hölder smooth. Leveraging this key property, we develop an inexact
proximal gradient method for solving the minimax problem, where the inexact gradient of the maximal
function is computed by applying a proximal gradient method to a KL-structured subproblem. Under
mild assumptions, we establish complexity guarantees for computing an approximate stationary point
of the minimax problem.

Keywords: nonconvex–nonconcave minimax, local KL condition, local Hölder smoothness, inexact
proximal gradient method, first-order oracle complexity

Mathematics Subject Classification: 90C26, 90C30, 90C47, 90C99, 65K05

1 Introduction

In this paper, we consider a nonconvex–nonconcave minimax problem of the form

min
x

max
y
{f(x, y) + p(x)− q(y)} , (1)

where f is a smooth function that is nonconvex in x and nonconcave in y, and p and q are possibly
nonsmooth, closed, and simple convex functions.

Problem (1) arises in a wide range of applications in machine learning and operations research,
including generative adversarial networks [1, 13], reinforcement learning [10, 23], adversarial training [20,
26], and distributionally robust optimization [3, 4, 25]. Despite its broad applicability, problem (1)
remains computationally challenging due to its inherent nonconvex–nonconcave structure. For instance,
computing a global Nash equilibrium—an important special case of (1)—is generally NP-hard (see,
e.g., [15]).

In recent years, significant progress has been made under specific structural assumptions on prob-
lem (1). For example, several studies focus on the special case where q = 0 and impose the global
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Polyak- Lojasiewicz (PL) condition on the inner maximization problem of (1), which is generally weaker
than the strong concavity assumption. Under this condition, gradient descent–ascent type methods have
been developed, and complexity guarantees have been established for finding approximate stationary
points. Remarkably, these guarantees match those obtained under the stronger assumption of concavity
in the inner maximization problem of (1) (see, e.g., [14, 22, 28, 29]). In addition, first-order methods
have been developed for problem (1) from a variational inequality perspective, typically assuming the
existence of a weak Minty variational inequality solution (see, e.g., [5, 7, 19, 24]).

More recently, [18, 30, 31] studied a class of minimax problems of the form (1), where p and q are
indicator functions of simple convex compact sets and a global Kurdyka- Lojasiewicz (KL) condition is
imposed on the inner maximization problem. They developed gradient descent–ascent-type methods that
alternately update the x and y variables using first-order schemes, and established complexity guarantees
for finding approximate stationary points. Notably, the class of minimax problems considered in
[18, 30, 31] is significantly broader than those studied in [14, 22, 28, 29], since the KL condition generalizes
the PL condition (which corresponds to the KL condition with exponent 1/2) and accommodates
nonsmooth objectives. However, requiring the KL property to hold globally is often too restrictive in
practice, which limits the applicability of the proposed methods. To illustrate this limitation, consider
the following simple minimax problem.

Example 1.
min

1≤x≤2
max

π/4≤y≤π
x(cos y − 1). (2)

One can verify that the global KL condition fails to hold for the inner maximization problem of (2) at any
x ∈ [1, 2]. However, it can be shown that the KL condition holds on the level set Lx = {y ∈ [π/4, π] : 0 <
ϕ∗(x)−ϕ(x, y) ≤

√
2x/2} for all x ∈ [1, 2], where ϕ(x, y) = x(cos y−1) and ϕ∗(x) = maxπ/4≤y≤π ϕ(x, y).

Indeed, one can verify that

C(ϕ∗(x)− ϕ(x, y))θ ≤ dist
(
0,∇yϕ(x, y)−N[π/4,π](y)

)
∀y ∈ Lx

for all x ∈ [1, 2] with C = 21/4 and θ = 1/2, where dist(·, ·) denotes the distance from a point to a set,
and N[π/4,π](·) is the normal cone to [π/4, π] at the given point.

The above observation motivates us to relax the global KL assumption on the inner maximization
problem of (1) that is imposed in the existing literature. Specifically, we assume that for each fixed
outer variable x ∈ dom p, the KL condition holds only on a level set of the inner variable y, where
this level set may depend on x, and its size may vary accordingly (see Assumption 1(iii) for details).
This weaker assumption accommodates a broader range of practical scenarios but also introduces new
analytical challenges. In particular, as an optimization algorithm progresses toward a stationary point
of (1), the region over which the KL condition is valid may shrink, resulting in a more intricate and
potentially ill-conditioned landscape. Moreover, we consider more general functions p and q, beyond the
indicator functions of simple convex compact sets considered in prior works [18, 30, 31], thereby further
broadening the class of minimax problems under consideration.

In this paper, we study problem (1) under the aforementioned local KL condition and other mild
assumptions (see Assumption 1 below). In particular, we show that the maximal function, defined
as F ∗(x) := maxy{f(x, y) − q(y)}, is locally Hölder smooth on the set {x : 0 /∈ ∂Ψ(x)}, where
Ψ(x) := F ∗(x) +p(x) is the value function of problem (1) (see Theorem 1). Leveraging this key property,
we develop an inexact proximal gradient method (Algorithm 2) to solve the problem minx{F ∗(x)+p(x)},
which is equivalent to the original minimax problem (1). Specifically, given the current iterate xk, we apply
a proximal gradient method (Algorithm 1) to approximately solve the subproblem maxy{f(xk, y)−q(y)},
starting from the previous inner iterate yk−1, and obtain an approximate solution yk. We then perform
an inexact proximal gradient step to compute xk+1, using ∇xf(xk, yk) as an approximation of ∇F ∗(xk),
along with a carefully chosen step size. We also establish complexity guarantees for the proposed method
in computing an approximate stationary point of problem (1).

The main contributions of this paper are summarized below.
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• We establish a local Hölder smoothness property for the maximal function F ∗ under a local
KL condition, which plays a crucial role in developing a method for solving problem (1) (see
Theorem 1).

• We propose an inexact proximal gradient method for finding approximate stationary points of prob-
lem (1). Under mild assumptions, we establish that this method achieves an iteration complexity of
Õ
(
ϵ−max{(1−θ)−1, θ−1σ}), and a first-order oracle complexity of Õ

(
ϵ−(1−θ)−1(2θ2−2θ+1)max{(1−θ)−1, θ−1σ}),

measured by the number of gradient evaluations, for finding an O(ϵ)-approximate stationary point
of (1), where θ and σ are the parameters for the local KL condition given in Assumption 1.1

The rest of this paper is organized as follows. Subsection 1.1 introduces the notation, terminology,
and assumptions used throughout the paper. In Section 2, we establish a local Hölder smoothness
property of the maximal function. Section 3 presents a proximal gradient method for minimizing
functions that satisfy the KL property. In Section 4, we propose an inexact proximal gradient method
for solving problem (1) and analyze its complexity. Section 5 presents preliminary numerical results
illustrating the performance of the proposed method. Finally, we provide the proof of the main results
in Section 6.

1.1 Notation, terminology, and assumptions

The following notation will be used throughout the paper. Let Rn denote the n-dimensional Euclidean
space. The standard inner product, ℓ1-norm, ℓ∞-norm, and Euclidean norm are denoted by ⟨·, ·⟩, ∥ · ∥1,
∥ · ∥∞, and ∥ · ∥, respectively. For any two points u, v ∈ Rn, the notation [u, v] denotes the line segment
connecting u and v. Given a point x and a closed set S ⊂ Rn, let dist(x, S) denote the distance between
x and S. The closed ball centered at x ∈ Rn with radius r is denoted by B(x, r). In addition, conv(·)
denotes the convex hull of the associated set.

A function f : Ω ⊂ Rn → R is called Lf -Lipschitz continuous on Ω if |f(x)−f(y)| ≤ Lf∥x−y∥ for all
x, y ∈ Ω, and L∇f -smooth on Ω if ∥∇f(x)−∇f(y)∥ ≤ L∇f∥x− y∥ for all x, y ∈ Ω. More generally, f is
said to be Hölder smooth on Ω if there exist L > 0 and ν ∈ (0, 1] such that ∥∇f(x)−∇f(y)∥ ≤ L∥x−y∥ν
for all x, y ∈ Ω. For an extended real-valued function ϕ : Rn → (−∞,∞], its domain is denoted by
domϕ, i.e., domϕ = {x : ϕ(x) <∞}. For a locally Lipschitz continuous function ϕ, we use ∂ϕ to denote
its Clarke subdifferential, that is,

∂ϕ(x) := conv{v : ∃xk → x such that ∇f(xk)→ v} ∀x ∈ domϕ.

In addition, we use ∂xiϕ to denote the Clarke subdifferential with respect to xi. When ϕ differentiable,
then ∂ϕ coincides with the gradient ∇ϕ. If ϕ is convex, then ∂ϕ corresponds to the classical convex
subdifferential. It is also well-known that ∂(ϕ1 + ϕ2)(x) = ∇ϕ1(x) + ∂ϕ2(x) if ϕ1 is differentiable and
ϕ2 is locally Lipschitz continuous at x (e.g., see [9]).

We now define an approximate stationary point for the problem minx ϕ(x), where ϕ is a locally
Lipschitz continuous function. As will be shown later, under mild assumptions, the minimax problem (1)
can be viewed as a special case of this problem. Consequently, the following definition applies to
problem (1) as well.

Definition 1. Suppose ϕ is a locally Lipschitz continuous function. For any ϵ > 0 and r > 0, a
point x is called an (ϵ, r)-stationary point of the problem minx ϕ(x) if dist(x,Sϵ) ≤ r, where Sϵ = {x :
dist(0, ∂ϕ(x)) ≤ ϵ}.

Before ending this subsection, we introduce additional notation and assumptions for problem (1).

1Õ(·) represents O(·) with logarithmic factors hidden.
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For convenience, we define

X := dom p, Y := dom q, F (x, y) := f(x, y)− q(y), (3)

F ∗(x) := max
y

F (x, y), Y ∗(x) := {y : F (x, y) = F ∗(x)}, (4)

Ψ(x) := F ∗(x) + p(x), Ψ∗ := min
x

Ψ(x). (5)

We assume that problem (1) has at least one optimal solution and satisfies the following assumption.

Assumption 1. (i) For any fixed y ∈ Y, the function f(·, y) is Lf -Lipschitz continuous on an open
set Ω ⊂ Rn containing X . Moreover, the function f : Rn × Rm → R is L∇f -smooth on Ω× Y.

(ii) p : Rn → R∪ {+∞} is proper closed convex, q : Rm → R∪ {+∞} is proper closed convex, and the
proximal operators of p and q can be computed exactly.

(iii) For any fixed x ∈ Ω, maxy F (x, y) has a nonempty solution set and a finite optimal value. The
function F satisfies the following local Kurdyka- Lojasiewicz (KL) condition in y: there exist
constants C > 0, θ ∈ [1/2, 1), and σ > 0 such that for any x ∈ Ω,

C(F ∗(x)− F (x, y))θ ≤ dist(0, ∂yF (x, y)) ∀y ∈ L(x), (6)

where
L(x) := {y : 0 < F ∗(x)− F (x, y) ≤ γ dist(0, ∂Ψ(x))σ}.2 (7)

Remark 1. We refer to condition (6) as a local KL condition because the associated KL inequality
holds only on a level set of the variable y, which may vary with x. This condition is significantly weaker
than the global KL condition imposed in the literature [18, 30, 31], where the KL inequality is required
to hold for all y. In contrast to the global KL condition, the local KL condition applies to a broader
class of minimax problems. For example, the minimax problem in Example (2) satisfies the local KL
condition but not the global one. However, the local KL condition introduces new analytical challenges.
In particular, as an optimization algorithm progresses toward a stationary point of problem (1), the
region over which the KL condition is valid may shrink, leading to a more intricate and potentially
ill-conditioned landscape. As a result, addressing problem (1) under the local KL condition requires
substantially different algorithmic design and analysis.

2 Local Hölder smoothness of the maximal function

In this section, we establish a local Hölder smoothness property of the maximal function F ∗, which will
play a crucial role in developing a first-order method for solving problem (1).

As our goal is to develop a first-order method for computing an O(ϵ)-stationary point of problem
(1), it is important to characterize the behavior of the objective function Ψ over the following subset of
nonstationary points:

Uϵ := {x ∈ Ω : dist(0, ∂Ψ(x)) > ϵ} ∀ϵ > 0. (8)

Given that p is a simple component of Ψ, it suffices to study the behavior of the more sophisticated
component F ∗ on Uϵ.

For a special case of problem (1), where q = 0 and the inner maximization problem of (1) satisfies
a global PL condition (i.e., a global KL condition with exponent 1/2), the work [22] shows that the
maximal function F ∗ is globally Lipschitz smooth. The following theorem extends this result to a more
general setting, in which q is a possibly nonsmooth convex function and the inner maximization problem

2Under Assumption 1(i), it can be shown that F ∗ is Lipschitz continuous on Ω (see Lemma 1). Consequently, ∂F ∗ is
well-defined and bounded on Ω. In addition, by convention, we set ∂p(x) = ∅ for any x /∈ dom p. Combining these facts
with the definition of Ψ in (5), it follows that ∂Ψ is well-defined on Ω. We also adopt the convention that dist(0, ∅) = ∞.
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of (1) satisfies only a local KL condition as described in Assumption 1(iii). Specifically, it establishes
that the maximal function F ∗ is locally Hölder smooth on Uϵ. This property will play a key role in
developing an inexact proximal gradient method for solving problem (1). The proof of this result, which
relies on an error bound for F (x, ·), is deferred to Subsection 6.1.

Theorem 1. Let ϵ > 0 be given and Uϵ be defined in (8). Suppose that Assumption 1 holds. Then, F ∗

is differentiable on Uϵ and

∇F ∗(x) = ∇xf(x, y∗) ∀x ∈ Uϵ, y∗ ∈ Y ∗(x). (9)

Moreover, for any x, x′ ∈ Uϵ satisfying ∥x− x′∥ ≤ γϵσ/(2Lf ), we have

∥∇F ∗(x)−∇F ∗(x′)∥ ≤ L∇f∥x− x′∥+ (1− θ)−1C−1/θL
1/θ
∇f ∥x− x

′∥
1−θ
θ . (10)

Remark 2. As a consequence of Theorem 1, the maximal function F ∗ is differentiable on the set
{x ∈ X : 0 /∈ ∂Ψ(x)}. Moreover, in view of Theorem 1 and the outer semicontinuity of ∂Ψ, it is not
hard to observe that F ∗ is locally Hölder smooth on this set.

3 A proximal gradient method for minimizing KL function

In this section, we consider a composite optimization problem under a KL condition:

h∗ = min
z
{h(z) := g(z) + q(z)}, (11)

where q : Rn → R∪ {∞} is closed and convex, and g is L-smooth on dom q. Additionally, h satisfies the
following KL condition:

C(h(z)− h∗)θ ≤ dist(0, ∂h(z)) ∀z with h∗ < h(z) ≤ h∗ + δ (12)

for some constants C > 0, θ ∈ [1/2, 1), and δ > 0.
Under a KL condition, general algorithmic frameworks for solving problem (11) and analyzing their

convergence properties have been extensively studied in the literature (see, e.g., [2, 12, 17]). Inspired
by these works, we now propose a proximal gradient method with backtracking line search for solving
problem (11), which will subsequently serve as a subroutine for solving problem (1). Specifically, at each
iteration, the method performs multiple proximal gradient steps along with a backtracking line search to
ensure sufficient reduction in the objective function h. The method terminates once the change between
consecutive iterates becomes sufficiently small. The proposed method is detailed in Algorithm 1.

Algorithm 1 A proximal gradient method for problem (11)

Input: z0 ∈ {z : h(z) ≤ h∗ + δ}, λ > 0, ρ ∈ (0, 1), and τ > 0.
1: for k = 0, 1, 2, . . . do
2: for i = 0, 1, 2, . . . do
3: λk,i = λρi.

4: zk+1,i = arg minz

{
⟨∇g(zk), z⟩+ 1

2λk,i
∥z − zk∥2 + q(z)

}
.

5: if h(zk+1,i) + 1
2λk,i
∥zk+1,i − zk∥2 ≤ h(zk) then

6: zk+1 = zk+1,i, λk = λk,i.
7: break
8: end if
9: end for

10: if ∥zk+1 − zk∥ ≤ τ then
11: return zk+1.
12: end if
13: end for

5



The following result establishes bounds on λk and on the number of inner iterations performed
during each outer iteration k. As a consequence, it justifies the well-definedness of Algorithm 1. The
proof of this result is deferred to Subsection 6.2.

Theorem 2. Let L be the Lipschitz smoothness constant of g, λ, ρ be given in Algorithm 1, and

i =

⌈
log(Lλ)

log ρ−1

⌉
+

.

Then it holds that the number of inner iterations of Algorithm 1 at each outer iteration k is at most
i+ 1. Moreover,

min{ρ/L, λ} ≤ λk ≤ λ. (13)

The following theorem establishes that Algorithm 1 terminates in a finite number of iterations and
yields a desired approximate solution to problem (11). The proof is deferred to Subsection 6.2.

Theorem 3. Let C, δ, θ be given in (12), λ, ρ, τ be given in Algorithm 1, and let

λ = min{ρ/L, λ}, β =
C2

2λ

(
L+ λ−1

)−2
, β =

C2

2λ

(
L+ λ

−1)−2
, (14)

C ′ = min

{
1

2
,

(2
2θ−1
2θ − 1)δ1−2θ

(2θ − 1)β

}
, Kθ :=


⌈
1+β

β log(2λδτ−2)
⌉
+

+ 1 if θ = 1
2 ,⌈

1
C′(2θ−1)β

(
2λτ−2

)2θ−1
⌉

+ 1 if θ ∈ (12 , 1).
(15)

Then Algorithm 1 terminates in at most Kθ iterations, and outputs a point zk+1 satisfying ∥zk+1−zk∥ ≤ τ
for some k < Kθ. Moreover, it holds that

h(zk+1)− h∗ ≤
(
C−1(L+ λ−1)τ

) 1
θ . (16)

4 An inexact proximal gradient method for problem (1)

In this section, we propose an inexact proximal gradient method for solving problem (1) and analyze its
complexity for finding an (ϵ, γϵσ/(4Lf ))-stationary point of (1) for ϵ > 0.

Before proceeding, we introduce some additional notation below. Given any ϵ > 0, let

Xϵ := {x ∈ X : dist(0,Ψ(x)) ≤ ϵ}, X c
ϵ := {x ∈ X : dist(x,Xϵ) > γϵσ/(4Lf )}, (17)

r := γϵσ/(4Lf ), M := (1− θ)−1C−1/θL
1/θ
∇f , ν := θ−1(1− θ), (18)

where C, θ, γ, σ, Lf are given in Assumption 1.
To propose a method for finding an (ϵ, r)-stationary point of problem (1), we first make some

key observations. Suppose x′ ∈ X c
ϵ , that is, x′ is not an (ϵ, r)-stationary point of (1). Given any

x ∈ X ∩ B(x′, r), we observe that [x′, x] ⊆ X and moreover dist(0,Ψ(z)) > ϵ for all z ∈ [x′, x]. In view
of these and X ⊂ Ω, one can see that [x′, x] ⊆ Uϵ, where Uϵ is defined in (8). Using this and Theorem 1,
we can show that

F ∗(x)
(10)

≤ F ∗(x′) + ⟨∇F ∗(x′), x− x′⟩+
1

2
L∇f∥x− x′∥2 +

M

1 + ν
∥x− x′∥1+ν ∀x ∈ X ∩ B(x′, r).

In addition, notice from θ ∈ [1/2, 1) and (18) that ν ∈ (0, 1]. It then follows from [21, Lemma 2] that

M(1 + ν)−1∥x− x′∥1+ν ≤
(
δ

ν−1
1+νM

2
1+ν ∥x− x′∥2 + δ

)
/2 ∀δ > 0.

6



Combining the above two inequalities, and using the fact Ψ(·) = F ∗(·) + p(·), we obtain that

F ∗(x) ≤ F ∗(x′) + ⟨∇F ∗(x′), x− x′⟩+
1

2

(
L∇f + δ

ν−1
1+νM

2
1+ν
)
∥x− x′∥2 +

δ

2
∀x ∈ X ∩ B(x′, r), (19)

Ψ(x) ≤ F ∗(x′) + ⟨∇F ∗(x′), x− x′⟩+
1

2

(
L∇f + δ

ν−1
1+νM

2
1+ν
)
∥x− x′∥2 + p(x) +

δ

2
∀x ∈ X ∩ B(x′, r).

As a result, when x′ ∈ X is not an (ϵ, r)-stationary point of (1), Ψ is bounded above by a much simpler
function that is the sum of a simple quadratic function and p(·) in a neighborhood of x′.

Based on the above observation, it is natural to propose a proximal gradient (PG) type method to
find an (ϵ, r)-stationary point of problem (1), which generates the sequence {xk} according to

xk+1 = arg min
x∈B(xk,r)

{
⟨∇F ∗(xk), x⟩+

1

2
Lk∥x− xk∥2 + p(x)

}
(20)

with Lk = L∇f + δ
(ν−1)/(1+ν)
k M2/(1+ν) for a suitable choice of δk > 0, and terminates when xk is an

(ϵ, r)-stationary point of (1) for some k ≥ 0. However, this method faces a practical limitation: the
exact value of ∇F ∗(xk) is typically unavailable, since F ∗ is a maximal function.

To address this issue, we propose an inexact PG method for solving problem (1). Specifically, we
replace ∇F ∗(xk) in (20) with its approximation ∇xf(xk, yk), where yk is an approximate solution to the
subproblem maxy{f(xk, y)− q(y)}, or equivalently, miny{−f(xk, y) + q(y)}, obtained via Algorithm 1
(see lines 4 and 5 of Algorithm 2).

We now present an inexact PG method for solving problem (1).

Algorithm 2 An inexact proximal gradient method for problem (1)

Input: Lf , L∇f , C, θ, γ, σ from Assumption 1; ϵ > 0, λ > 0, ρ ∈ (0, 1), and (x0, y0) ∈ X ×Y satisfying
F ∗(x0)− F (x0, y0) ≤ min{γϵσ/2, 1} and dist(y0, Y ∗(x0)) ≤ (C(1− θ))−1 min{(γ/2)1−θϵσ(1−θ), 1}.

1: Set r = γϵσ/(4Lf ), λ = min{ρ/L∇f , λ}, M = (1− θ)−1C−1/θL
1/θ
∇f , ν = θ−1(1− θ).

2: for k = 0, 1, 2, . . . do

3: Set δk = 1/(k + 1), ηk = 1/(k + 1), Lk = L∇f + δ
(ν−1)/(1+ν)
k M2/(1+ν).

4: Compute

xk+1 = arg min
x∈B(xk,r)

{
⟨∇xf(xk, yk), x⟩+

Lk

2
∥x− xk∥2 + p(x)

}
. (21)

5: Call Algorithm 1 with g(·) ← −f(xk+1, ·), q(·) ← q(·), λ ← λ, ρ ← ρ, z0 ← yk, τ ←
C

L∇f+λ−1 min
{

(12γϵ
σ)θ, η

θ
2(1−θ)

k+1

}
, and denote its output as yk+1.

6: end for

Remark 3. (i) For the initial point (x0, y0), Algorithm 2 requires that y0 be a nearly optimal solution to
the problem maxy F (x0, y). Although the inner maximization problem maxy F (x, y) in (1) is generally
nonconcave for arbitrary x, there often exists a particular point x0 ∈ X such that maxy F (x0, y) becomes
a concave problem in y. In such cases, y0 can be efficiently computed by solving this concave maximization
problem. Moreover, even when maxy F (x0, y) is nonconcave, it may still be efficiently solvable for some
x0 ∈ X , depending on the structure of the problem.

(ii) Some of the input parameters required by Algorithm 2 may not be readily available in practice.
It would therefore be worthwhile to develop a parameter-free variant of Algorithm 2. Alternatively, in
practical implementations, one may run the algorithm with a range of trial parameters and continue
adjusting them until the algorithm’s performance stabilizes.

The following theorem establishes an iteration complexity bound for Algorithm 2 to compute an
(ϵ, γϵσ/(4Lf ))-stationary point of problem (1) for any ϵ ∈ (0, 1/e). The proof is deferred to Subsection 6.3.
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Theorem 4. Let Lf , L∇f , σ, θ be given in Assumption 1, M,ν be defined in (18), γ, ϵ be given in
Algorithm 2, and

A = (1− θ)−2C−2L2
∇f , L = L∇f +M2/(1+ν), (22)

a = 8
(
Ψ(x0)−Ψ∗ + 3 + 2AL−1

)
, b = 8

(
3/2 +AL−1

)
, (23)

Ĉ1 =
(

36(1 + ν)ν−1bL⌈log(18(1 + ν)ν−1bL)⌉+ + 72(1 + ν)ν−1bL+ 1
) 1+ν

2ν
, (24)

Ĉ2 =
(4b(1 + ν)(3M)2/ν

M2/(1+ν)

⌈
log
(2b(1 + ν)(3M)2/ν

M2/(1+ν)

)⌉
+

+
8b(1 + ν)(3M)2/ν

νM2/(1+ν)
+ 1
) 1+ν

2
, (25)

Ĉ3 =
(
36La

) 1+ν
2ν +M−1

(
4a(3M)2/ν

) 1+ν
2 , Ĉ4 = 72A, (26)

Ĉ5 =
(144(1 + ν)bL2

∇f

M2/(1+ν)

⌈
log
(72(1 + ν)bL2

∇f

M2/(1+ν)

)⌉
+

+
288(1 + ν)bL2

∇f

M2/(1+ν)
+ 1
) 1+ν

2
, (27)

Ĉ6 = (144aL2
∇f )

1+ν
2 /M, (28)

Ĉ7 =
(64(1 + ν)bL2

f

γ2M2/(1+ν)

⌈
log
(32(1 + ν)bL2

f

γ2M2/(1+ν)

)⌉
+

+
128σ(1 + ν)bL2

f

γ2M2/(1+ν)
+ 1
) 1+ν

2
, (29)

Ĉ8 = (64aL2
f )

1+ν
2 /(γ1+νM), (30)

K̂ϵ =
⌈
Ĉ1ϵ

− 1+ν
ν (log ϵ−1)

1+ν
2ν + Ĉ2ϵ

− 1+ν
ν (log ϵ−1)

1+ν
2 + Ĉ3ϵ

− 1+ν
ν + Ĉ4ϵ

−2

+ Ĉ5ϵ
−(1+ν)(log ϵ−1)

1+ν
2 + Ĉ6ϵ

−(1+ν) + Ĉ7ϵ
−(1+ν)σ(log ϵ−1)

1+ν
2 + Ĉ8ϵ

−(1+ν)σ
⌉
. (31)

Suppose that ϵ ∈ (0, 1/e]. Then Algorithm 2 generates a pair (xk, yk) in at most K̂ϵ iterations such that
xk is an (ϵ, γϵσ/(4Lf ))-stationary point of problem (1) (or equivalently the problem minx Ψ(x)), and yk

satisfies

F ∗(xk)−F (xk, yk) ≤ min
{γϵσ

2
,

1

k + 1

}
, dist

(
yk, Y ∗(xk)

)
≤ 1

C(1− θ)
min

{(γ
2

)(1−θ)
ϵσ(1−θ),

1√
k + 1

}
.

(32)

The next result presents a first-order oracle complexity bound for Algorithm 2, measured by the
number of evaluations of the gradient ∇f , required to generate an (ϵ, γϵσ/(4Lf ))-stationary point of
problem (1) for any ϵ ∈ (0, 1/e]. The proof is deferred to Subsection 6.3.

Theorem 5. Let ϵ ∈ (0, 1/e] be given, K̂ϵ be defined in Theorem 4, L∇f , C, γ, θ, σ be given in Assump-
tion 1, M,ν be defined in (18), ρ, λ, λ be given in Algorithm 2, and let

βf =
C2

2λ
(L∇f + λ−1)−2, βf =

C2

2λ
(L∇f + λ

−1
)−2,

C ′
f = min

{1

2
,

(2
2θ−1
2θ − 1)(γϵσ)1−2θ

(2θ − 1)βf

}
, Λ = max

{
(12γϵ

σ)−2θ, (K̂ϵ + 1)
θ

1−θ

}
,

Kf,θ =


⌈
1+βf

βf
log(2λC−2(L∇f + λ−1)2γϵσΛ)

⌉
+

+ 1 if θ = 1
2 ,⌈

1
C′

f (2θ−1)βf

(
2λC−2(L∇f + λ−1)2Λ

)2θ−1
⌉

+ 1 if θ ∈ (12 , 1),
(33)

N̂ϵ = K̂ϵ

(⌈ log(2L∇fλ)

log ρ−1

⌉
+

+ 1
)
Kf,θ. (34)

Then the total number of evaluations of the proximal operators of p and q, and the gradient ∇f performed
by Algorithm 2 is at most K̂ϵ, N̂ϵ, and K̂ϵ + N̂ϵ, respectively, to generate a pair (xk, yk) such that xk is
an (ϵ, γϵσ/(4Lf ))-stationary point of of problem (1), and yk satisfies (32).
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Remark 4. As shown in Theorem 4, Algorithm 2 enjoys an iteration complexity of

O
(
ϵ−max{ 1

1−θ
, σ
θ }(log ϵ−1)

1
2(1−θ)

)
to compute an (ϵ, γϵσ/(4Lf ))-stationary point of problem (1). Furthermore, as established in Theorem 5,

the algorithm requires O
(
ϵ−max{ 1

1−θ
, σ
θ }(log ϵ−1)

1
2(1−θ)

)
evaluations of the proximal operator of p, and

the following number of evaluations of the proximal operator of q and the gradient ∇f to compute such
an approximate stationary point of (1):

• If θ = 1
2 ,

O
(
ϵ−2max{1, σ}(log ϵ−1)2

)
.

• If θ ∈ (12 , 1),

O
(
ϵ−

2θ2−2θ+1
1−θ

max{ 1
1−θ

, σ
θ }(log ϵ−1)

2θ2−2θ+1

2(1−θ)2

)
.

5 Numerical results

In this section, we conduct preliminary experiments to evaluate the performance of our proposed method
(Algorithm 2).

Consider the following minimax optimization problem:

min
∥x∥≤1

max
∥y∥∞≤2

{
0.01∥x∥1 − ∥(y +Ax)⊙ (y +Bx)∥2 + 0.01 ∥x− c∥2 − 0.1∥y∥1

}
, (35)

where A,B ∈ Rm×n, c ∈ Rn, and ⊙ denotes the Hadamard (elementwise) product.
For each pair (m,n), we randomly generate 10 instances of problem (35) by sampling the entries of A,

B, and c independently from the standard normal distributionN (0, 1). Note that problem (35) is a special
case of problem (1) with f(x, y) = −∥(y+Ax)⊙ (y+Bx)∥2 + 0.01∥x− c∥2, p(x) = 0.01∥x∥1 +IB(0,1)(x),
and q(y) = 0.1∥y∥1 + I[−2,2]m(y), where IB(0,1) and I[−2,2]m denote the indicator functions of the unit
Euclidean ball B(0, 1) and the m-dimensional box [−2, 2]m, respectively.

In order to apply Algorithm 2 to solve problem (35), we need to estimate the Lipschitz constant Lf of
f(·, y) and the Lipschitz constant L∇f of ∇f over the set X ×Y , where X = B(0, 1) and Y = [−2, 2]m. To
this end, let (ai)T and (bi)T denote the ith row vectors of A and B, respectively, and define u = y +Ax,
v = y +Bx, and w = u ⊙ v. Then we obtain that f(x, y) = −

∑m
i=1w

2
i + 0.01∥x− c∥2, and

∇xf(x, y) = −2
m∑
i=1

wi(via
i + uib

i) + 0.02(x− c), ∇yf(x, y) = −2 (u+ v)⊙ w,

∇2
xxf(x, y) = −2

m∑
i=1

[
(via

i + uib
i)(via

i + uib
i)T + wi

(
ai(bi)T + bi(ai)T

)]
+ 0.02I,

∇2
xyf(x, y) = −2

[
AT diag(v2 + 2u⊙ v) +BT diag(u2 + 2u⊙ v)

]
,

∇2
yyf(x, y) = −2 diag((u+ v)2 + 2u⊙ v),

(36)

where z2 := z ⊙ z for any vector z. Let Ma = maxi ∥ai∥, Mb = maxi ∥bi∥, and

Lf = 4m(MaMb + 2Ma + 2Mb + 4)(MaMb +Ma +Mb) + 0.02(1 + ∥c∥),
L∇f = 4m

[
2(MaMb +Ma +Mb)

2 +MaMb(MaMb + 2Ma + 2Mb + 4)
]

+ 2
[
∥A∥(Mb + 2)(2Ma +Mb + 6) + ∥B∥(Ma + 2)(Ma + 2Mb + 6)

]
+ 2
[
(Ma +Mb + 4)2 + 2(Ma + 2)(Mb + 2)

]
+ 0.02,

(37)
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where ∥A∥ and ∥B∥ denote the spectral norms of A and B, respectively. In view of (36) and (37), one
can verify that Lf ≥ max

x∈X , y∈Y
∥∇xf(x, y)∥, and

L∇f ≥ max
x∈X , y∈Y

{
∥∇2

xxf(x, y)∥+ ∥∇2
xyf(x, y)∥+ ∥∇2

yyf(x, y)∥
}
≥ max

x∈X , y∈Y
∥∇2f(x, y)∥.

It then follows that f(·, y) is Lf -Lipschitz continuous on X for any fixed y ∈ Y , and ∇f is L∇f -Lipschitz
continuous on X × Y.

We now apply Algorithm 2 to solve problem (35) on the randomly generated instances described
above. The parameters Lf and L∇f are computed using (37), while the remaining parameters are set as
follows: C = 0.2, θ = 0.5, γ = 0.01, σ = 0.1, λ = 1, ρ = 0.95, and ϵ = 10−2. The algorithm is initialized
at (x0, y0) = (0, 0). Note that for this initialization, y0 = arg maxy f(x0, y), making it a suitable starting
point for y. We run the algorithm for 10,000 iterations and return the final output denoted by (xϵ, yϵ).
Here, xϵ serves as an approximate solution to the outer minimization problem in (35), while yϵ is an
approximate solution to the inner maximization problem max∥y∥∞≤2{f(xϵ, y)− 0.1∥y∥1}.

To evaluate the performance of Algorithm 2, we compute the actual final objective value of prob-
lem (35), defined as

Ψ(xϵ) = max
∥y∥∞≤2

{f(xϵ, y)− 0.1∥y∥1}+ 0.01∥xϵ∥1.

Thanks to the separable structure of the problem, this maximization problem can be decomposed
into m independent scalar subproblems. Each subproblem is solved using the MATLAB subroutine
GlobalSearch, which is a solver for finding global optima of nonconvex problems. In addition, we
compute an approximate final objective value by

Ψ̂(xϵ) = f(xϵ, yϵ)− 0.1∥yϵ∥1 + 0.01∥xϵ∥1,

using the approximate inner solution yϵ returned by the algorithm.
The computational results on the random instances are presented in Table 1. The first two columns

list the values of m and n. For each pair (m,n), the average initial, actual final, and approximate final
objective values over 10 random instances are reported in the remaining columns. From the results,
we observe that the approximate solution xϵ significantly reduces the objective value compared to
the initial point x0, and that yϵ is a good approximate solution to the inner maximization problem
max∥y∥∞≤2{f(xϵ, y)− 0.1∥y∥1}.

Table 1: Numerical results for Algorithm 2

n m Initial objective value Actual final value Approximate final value

100 100 1.03 -224.55 -224.87
100 200 0.98 -228.22 -228.69
100 300 1.05 -260.45 -261.29
200 100 1.95 -808.08 -808.45
200 200 2.03 -816.54 -817.28
200 300 1.95 -837.63 -838.33
300 100 2.95 -1102.26 -1102.51
300 200 2.90 -1082.37 -1082.71
300 300 3.03 -1022.22 -1022.83

6 Proof of the main results

In this section we provide a proof of our main results presented in Sections 2, 3, and 4, which are
particularly Theorems 1-5.
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6.1 Proof of the main results in Section 2

In this subsection we prove Theorem 1. To proceed, we first establish several technical lemmas below.
The following lemma concerns the Lipschitz continuity of F ∗ on Ω.

Lemma 1. Suppose that Assumption 1 holds. Then F ∗ is Lf -Lipschitz continuous on Ω.

Proof. Fix any x, x′ ∈ Ω. Recall from Assumption 1 that f(·, y) is Lf -Lipschitz continuous on Ω for any
y ∈ Y. Using this and the expression of F in (3), we have

F (x, y)− F (x′, y) = f(x, y)− f(x′, y) ≤ Lf∥x− x′∥ ∀y ∈ Y.

This together with the definition of F ∗ in (4) implies that

F ∗(x)
(4)
= max

y∈Y
F (x, y) ≤ max

y∈Y
F (x′, y) + Lf∥x− x′∥ = F ∗(x′) + Lf∥x− x′∥,

and hence F ∗(x)− F ∗(x′) ≤ Lf∥x− x′∥. Similarly, one can show that F ∗(x′)− F ∗(x) ≤ Lf∥x′ − x∥. It
then follows that |F ∗(x)−F ∗(x′)| ≤ Lf∥x− x′∥. By this and the arbitrariness of x, x′ ∈ Ω, we conclude
that F ∗ is Lf -Lipschitz continuous on Ω.

The next result provides a formula for ∇F ∗(x) at a point x where F ∗ is differentiable.

Lemma 2. Suppose that Assumption 1 holds and F ∗ is differentiable at some x ∈ Rn. Then ∇F ∗(x) =
∇xf(x, y) for all y ∈ Y ∗(x).

Proof. Fix any y ∈ Y ∗(x) and d ∈ Rn. Observe from (4) that F ∗(x) = F (x, y) and F ∗(x+td) ≥ F (x+td)
for any t ∈ R. By these, the differentiability of F ∗ at x, and the expression of F , one has

⟨∇F ∗(x), d⟩ = lim
t↓0

F ∗(x+ td)− F ∗(x)

t
≥ lim

t↓0

F (x+ td, y)− F (x, y)

t

= lim
t↓0

f(x+ td, y)− f(x, y)

t
= ⟨∇xf(x, y), d⟩.

Using this and the arbitrariness of d, we conclude that ∇F ∗(x) = ∇xf(x, y).

The following lemma establishes that if F ∗ is Hölder smooth almost everywhere on an open set, then
its differentiability extends to the entire set.

Lemma 3. Let Γ ⊂ Ω be an open set, and S = {x ∈ Ω : F ∗ is differentiable at x}. Suppose that
Assumption 1 holds, and there exist constants c > 0, α > 0, and η > 0 such that

∥∇F ∗(u)−∇F ∗(v)∥ ≤ c∥u− v∥α ∀u, v ∈ S ∩ Γ with ∥u− v∥ ≤ η. (38)

Then F ∗ is differentiable on Γ.

Proof. Fix any x ∈ Γ. Recall from Lemma 1 that F ∗ is Lipschitz continuous on the open set Ω. It
follows from Rademacher’s theorem that the set S differs from Ω only by a set of measure zero. Since
x ∈ Ω, there exists at least one sequence in S that converges to x.

Let {xk} ⊂ S be an arbitrary sequence such that xk → x. Since Γ is an open set and x ∈ Γ, it
follows that xk ∈ S ∩ Γ for all sufficiently large k. Hence, without loss of generality, we assume that
{xk} ⊂ S ∩ Γ. We now claim that {∇F ∗(xk)} converges. Indeed, since {xk} converges, it is a Cauchy
sequence. Hence, there exists K such that ∥xk − xk′∥ ≤ η for all k, k′ > K. By (38), one then has

∥∇F ∗(xk)−∇F ∗(xk
′
)∥ ≤ c∥xk − xk′∥α ∀ k, k′ > K,

which implies that {∇F ∗(xk)} is also a Cauchy sequence and hence converges as claimed. Next, we
show that the limit of {∇F ∗(xk)} is independent of the choice of sequence. To this end, let {x̃k} ⊂ S be
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another sequence such that {x̃k} → x. Interleaving {xk} and {x̃k}, we obtain a sequence {zk} ⊂ S such
that zk → x. It then follows from the above claim that {∇F ∗(zk)} converges. Since both {∇F ∗(xk)}
and {∇F ∗(x̃k)} are subsequences of {∇F ∗(zk)}, they must share the same limit. Hence, the limit of
{∇F ∗(xk)} is independent of the sequence chosen. It follows that the set

conv
{

lim
k→∞

∇F ∗(x̂k) : {x̂k} ⊂ S, x̂k → x
}

is a singleton. Combined with the Lipschitz continuity of F ∗ at x (see Lemma 1), this implies that the
Clarke subdifferential of F ∗ at x is a singleton. By this and [8, Proposition (1.13)], we conclude that F ∗

is differentiable at x.

The following result establishes a local (1−θ)−1-growth property of F (x, ·) for any x ∈ X , which was
previously derived in the proof of [11, Theorem 3.7]. Here, we provide an alternative and self-contained
proof. Our proof generalizes the one used to derive the global quadratic growth result in [16, Appendix
G] for the special case where F (x, ·) satisfies the global KL condition with exponent 1/2—that is, F (x, ·)
satisfies (6) with θ = 1/2, and L(x) replaced by Y for any x ∈ X .

Lemma 4. Suppose that Assumption 1 holds. Then it holds that for any x ∈ Ω,

F ∗(x)− F (x, y) ≥ (C(1− θ))
1

1−θ dist(y, Y ∗(x))
1

1−θ ∀y ∈ L(x). (39)

Proof. Fix any x ∈ Ω and y ∈ L(x). It then follows from the definition of L(x) in (7) that y /∈ Y ∗(x).
Recall from Assumption 1 that f is Lipschitz smooth on Ω× Y. It together with the convexity of q

and the expression of F implies that F (x, ·) is weakly concave on Y. In addition, since y ∈ L(x), one
has y ∈ domF (x, ·). By these and [6, Theorem 13], there exists a unique absolutely continuous curve
Y : [0,∞)→ Rm satisfying

Y (0) = y, Ẏ (t) ∈ ∂yF (x, Y (t)) a.e. t > 0, (40)

d

dt
F (x, Y (t)) = ∥Ẏ (t)∥2 a.e. (η,∞) (41)

for any η > 0, and moreover, F (x, Y (·)) is non-decreasing and continuous on [0,∞). It follows that
Y (t) ∈ L(x) for any t ≥ 0.

Let r(t) = (F ∗(x)−F (x, Y (t)))1−θ. By y /∈ Y ∗(x) and the monotonicity and continuity of F (x, Y (·)),
one can observe that r(0) > 0, and r is non-negative, non-increasing, and continuous on [0,∞). We
next show that

d

dt
r(t) ≤ −C(1− θ)∥Ẏ (t)∥ a.e. (η,∞) (42)

for any η > 0. To this end, let us fix any η > 0 and consider two separate cases below.
Case 1) r(t) > 0 on [0,∞). It follows from this, (6), (40), and (41) that

d

dt
r(t)

(41)
= −(1− θ)

(
F ∗(x)− F (x, Y (t))

)−θ∥Ẏ (t)∥2
(6)

≤ −C(1− θ) dist
(
0, ∂yF (x, Y (t))

)−1∥Ẏ (t)∥2

(40)

≤ −C(1− θ) ∥Ẏ (t)∥−1∥Ẏ (t)∥2 = −C(1− θ) ∥Ẏ (t)∥ a.e. (η,∞),

and hence (42) holds as desired.
Case 2) r(t) = 0 for some t > 0. Since r is continuous on [0,∞), one has that t0 := min{t > 0 :

r(t) = 0} > 0. By this and the nonnegativity and monotonicity of r, we have r(t) = 0 and hence
F (x, Y (t)) = F ∗(x) for all t ≥ t0. It then follows from (41) with η replaced by t0 that ∥Ẏ (t)∥ = 0 almost
everywhere on (t0,∞). Hence, we obtain

d

dt
r(t) ≤ −C(1− θ)∥Ẏ (t)∥ a.e. (t0,∞). (43)
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It follows that (42) holds if η ≥ t0. We now assume that η < t0. Note that r(t) > 0 for all t ∈ [η, t0).
By a similar argument as in Case 1), one can conclude that

d

dt
r(t) ≤ −C(1− θ)∥Ẏ (t)∥ a.e. (η, t0).

Combining this with (43), we see that (42) holds in this case as well.
Fix any T > 0 and δ ∈ (0, T ). By (42), the monotonicity of r, and the absolute continuity of Y (·),

one has

r(T )− r(δ) ≤
∫ T

δ

d

dt
r(t) dt

(42)

≤ −C(1− θ)
∫ T

δ
∥Ẏ (t)∥ dt ≤ −C(1− θ)

∥∥∥∥∫ T

δ
Ẏ (t) dt

∥∥∥∥
= −C(1− θ)∥Y (T )− Y (δ)∥,

where the first inequality follows from the monotonicity of r (e.g., see [27, Chapter 3, Exercise 16]), and
the equality uses the absolute continuity of Y (·). Taking the limit on both sides of the above relation as
δ → 0, and using Y (0) = y and the continuity of r and Y (·), we obtain

r(T )− r(0) ≤ −C(1− θ)∥Y (T )− y∥. (44)

We next show that limT→∞ r(T ) = 0. It clearly holds if there exists some t > 0 such that r(t) = 0,
due to the nonnegativity and monotonicity of r. We now assume that r(t) > 0 for all t ∈ [0,∞). By
this, (6), (40), (41), and the monotonicity of r, one has that for any T > 0 and δ ∈ (0, T ),

r(T )− r(δ) ≤
∫ T

δ

d

dt
r(t) dt

(41)
= −(1− θ)

∫ T

δ
(F ∗(x)− F (x, Y (t)))−θ∥Ẏ (t)∥2 dt

(40)

≤ −(1− θ)
∫ T

δ
(F ∗(x)− F (x, Y (t)))−θ dist(0, ∂yF (x, Y (t)))2 dt

(6)

≤ −C2(1− θ)
∫ T

δ
(F ∗(x)− F (x, Y (t)))θ dt = −C2(1− θ)

∫ T

δ
r(t)

θ
1−θ dt

≤ −C2(1− θ)(T − δ)r(T )
θ

1−θ ,

where the first and last inequalities follow from the monotonicity of r. This relation and r(T ) > 0

imply that −r(δ) ≤ −C2(1 − θ)(T − δ)r(T )
θ

1−θ . Taking the limit on both sides of this relation as

δ → 0, and using the continuity of r, we obtain that −r(0) ≤ −C2(1 − θ)Tr(T )
θ

1−θ , which yields

r(T ) ≤ [r(0)/(C2(1− θ)T )]
1−θ
θ . This along with r(T ) > 0 implies that r(T )→ 0 as T →∞.

By (44) and the nonnegativity of r, one can observe that the range of Y (·) is bounded. In addition,
notice from Assumption 1 that domF (x, ·) is closed. By these facts, there exists a sequence {tk} ⊂ (0,∞)
such that tk →∞ and {Y (tk)} converges to some point y∗ ∈ domF (x, ·). Recall that limt→∞ r(t) = 0,
which along with tk → ∞ implies that r(tk) → 0. It then follows that limk→∞ F (x, Y (tk)) = F ∗(x).
On the other hand, by the upper semicontinuity of F (x, ·) and Y (tk) → y∗ ∈ domF (x, ·), one has
lim supk→∞ F (x, Y (tk)) ≤ F (x, y∗). Combining these relations, we conclude that y∗ ∈ Y ∗(x). Finally,
letting T = tk in (44), one has r(tk)− r(0) ≤ −C(1− θ)∥Y (tk)− y∥. Taking the limit on both sides of
this inequality as k →∞, and using the fact that r(tk)→ 0 and Y (tk)→ y∗ ∈ Y ∗(x), we obtain that

r(0) ≥ C(1− θ)∥y∗ − y∥ ≥ C(1− θ) dist(y, Y ∗(x)),

which together with the expression of r implies that the conclusion (39) holds.

As an immediate consequence of Lemma 4 and Assumption 1, the following lemma establishes an
error bound for F (x, ·). This result, originally derived in [11, Theorem 3.7], provides a relationship
between dist(y, Y ∗(x)) and dist(0, ∂yF (x, y)).
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Lemma 5. Suppose that Assumption 1 holds. Then it holds that for any x ∈ Ω,

dist(y, Y ∗(x)) ≤ (1− θ)−1C− 1
θ dist

(
0, ∂yF (x, y)

) 1−θ
θ ∀y ∈ L(x). (45)

Proof. The relation (45) follows from (6) and (39).

The next result concerns the openness of the set Uϵ.

Lemma 6. Let Uϵ be defined in (8). Suppose that Assumption 1 holds. Then Uϵ is an open set for any
ϵ > 0.

Proof. Fix any ϵ > 0. Recall from (8) and Assumption 1 that Uϵ = {x ∈ Ω : dist(0, ∂Ψ(x)) > ϵ}, and
the set Ω is open. Consequently, to prove the openness of the set Uϵ, it suffices to show that the set
{x ∈ Rn : dist(0, ∂Ψ(x)) > ϵ} is open, or equivalently, C = {x ∈ Rn : dist(0, ∂Ψ(x)) ≤ ϵ} is closed. To
this end, consider any convergent sequence {xk} ⊂ C with xk → x for some x ∈ Rn. Clearly, C ⊆ X and
hence {xk} ⊆ X . It then follows from xk → x and the closedness of X that x ∈ X . Also, since xk ∈ C,
there exists sk ∈ ∂Ψ(xk) with ∥sk∥ ≤ ϵ. Without loss of generality, assume that sk → s for some s with
∥s∥ ≤ ϵ. Recall from Lemma 1 that F ∗ is Lipschitz continuous on an open set containing X , which
implies that ∂F ∗ is bounded on X and hence ∂∞F ∗(z) = {0} for all z ∈ X . By this and Ψ = F ∗ + p,
one has ∂Ψ = ∂F ∗ + ∂p on X . Additionally, notice that ∂F ∗ and ∂p are outer semicontinuous on X .
Hence, ∂Ψ is outer semicontinuous on X , which together with xk → x, sk ∈ ∂Ψ(xk), and sk → s implies
that s ∈ ∂Ψ(x). By this and ∥s∥ ≤ ϵ, we conclude that x ∈ C. Hence, C is closed as desired.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix any ϵ > 0 and x ∈ Uϵ. It follows that x ∈ Ω and dist(0, ∂Ψ(x)) > ϵ. This
together with (7) implies that {y : F ∗(x) > F (x, y) ≥ F ∗(x)− γϵσ} ⊆ L(x). By this and (45), one has

dist(y, Y ∗(x)) ≤ (1− θ)−1C− 1
θ dist(0, ∂yF (x, y))

1−θ
θ ∀y with F ∗(x) > F (x, y) ≥ F ∗(x)− γϵσ. (46)

Clearly, the above relation also holds for any y ∈ Y ∗(x). Now, fix any x′ ∈ Uϵ with ∥x−x′∥ ≤ γϵσ/(2Lf ).
Observe from Assumption 1 that Y ∗(x′) ̸= ∅. Let y∗(x′) ∈ Y ∗(x′) be arbitrarily chosen. Then
F (x′, y∗(x′)) = F ∗(x′). By these, Assumption 1, and Lemma 1, one has

F (x, y∗(x′))− F ∗(x) = F (x, y∗(x′))− F (x′, y∗(x′)) + F ∗(x′)− F ∗(x) ≥ −2Lf∥x− x′∥ ≥ −γϵσ,

where the first inequality uses the Lf -Lipschitz continuity of F ∗ and F (·, y) for each y ∈ Y due to
Assumption 1 and Lemma 1. Hence, it follows from (46) that

dist(y∗(x′), Y ∗(x)) ≤ (1− θ)−1C− 1
θ dist(0, ∂yF (x, y∗(x′)))

1−θ
θ .

Since y∗(x′) ∈ Y ∗(x′), by the first-order optimality condition, one has 0 ∈ ∂yF (x′, y∗(x′)), In addition,
by the expression of F and the smoothness f on Ω× Y, we obtain

∂yF (x, y∗(x′)) = ∇yf(x, y∗(x′))− ∂q(y∗(x′)), ∂yF (x′, y∗(x′)) = ∇yf(x′, y∗(x′))− ∂q(y∗(x′)). (47)

The first relation in (47) and 0 ∈ ∂yF (x′, y∗(x′)) lead to ∇yf(x, y∗(x′)) ∈ ∂q(y∗(x′)), which along with
the second relation in (47) implies that

∇yf(x, y∗(x′))−∇yf(x′, y∗(x′)) ∈ ∂yF (x, y∗(x′)).

Using this and the Lipschitz continuity of ∇yf , we have

dist(0, ∂yF (x, y∗(x′))) ≤ ∥∇yf(x, y∗(x′))−∇yf(x′, y∗(x′))∥ ≤ L∇f∥x′ − x∥.

14



Combining this with (46) yields

dist(y∗(x′), Y ∗(x)) ≤ (1− θ)−1C− 1
θL

1−θ
θ

∇f ∥x
′ − x∥

1−θ
θ .

Notice from Assumption 1 that Y ∗(x) is a nonempty closed set. Hence, there exists y∗(x) ∈ Y ∗(x) such
that ∥y∗(x′)− y∗(x)∥ = dist(y∗(x′), Y ∗(x)). By this and the above relation, one has

∥y∗(x′)− y∗(x)∥ ≤ (1− θ)−1C− 1
θL

1−θ
θ

∇f ∥x
′ − x∥

1−θ
θ . (48)

In addition, notice from Lemma 1 and Uϵ ⊆ Ω that F ∗ is Lipschitz continuous on Uϵ. Moreover, Uϵ is
an open set due to Lemma 6. It then follows that F ∗ is differentiable almost everywhere on Uϵ. Without
loss generality, assume that F ∗ is differentiable at x and x′. Using this, y∗(x) ∈ Y ∗(x), y∗(x′) ∈ Y ∗(x′),
and Lemma 2, we obtain

∇F ∗(x) = ∇xf(x, y∗(x)), ∇F ∗(x′) = ∇xf(x′, y∗(x′)).

By these, (48), θ ∈ [1/2, 1), ∥x− x′∥ ≤ γϵσ/(2Lf ), and the Lipschitz smoothness of f , one has

∥∇F ∗(x′)−∇F ∗(x)∥ = ∥∇xf(x′, y∗(x′))−∇xf(x, y∗(x))∥
≤ ∥∇xf(x′, y∗(x′))−∇xf(x, y∗(x′))∥+ ∥∇xf(x, y∗(x′))−∇xf(x, y∗(x))∥

≤ L∇f∥x′ − x∥+ L∇f∥y∗(x′)− y∗(x)∥
(48)

≤ L∇f∥x′ − x∥+ (1− θ)−1C− 1
θL

1
θ
∇f∥x

′ − x∥
1−θ
θ (49)

≤ L∇f

((
γϵσ/(2Lf )

) 2θ−1
θ + (1− θ)−1C− 1

θL
1−θ
θ

∇f

)
∥x′ − x∥

1−θ
θ , (50)

where the last inequality follows from ∥x − x′∥ ≤ γϵσ/(2Lf ) and θ ∈ [1/2, 1). Hence, inequality (50)
holds for all x, x′ ∈ Uϵ ∩ S with ∥x− x′∥ ≤ γϵσ/(2Lf ), where S is defined in Lemma 3. Using this, the
openness of Uϵ, and Lemma 3, we conclude that F ∗ is differentiable on Uϵ. In addition, the relations (9)
and (10) directly follow from Lemma 2 and (49), respectively.

6.2 Proof of the main results in Section 3

In this subsection, we provide the proofs of Theorems 2 and 3. We begin by proving Theorem 2.

Proof of Theorem 2. Suppose for contradiction that the inner loop runs for more than i+1 iterations
at the kth outer iteration. Then one can observe from Algorithm 1 that

h(zk+1,i) +
1

2λk,i
∥zk+1,i − zk∥2 > h(zk). (51)

By the optimality condition for zk+1,i, one has

⟨∇g(zk), zk+1,i − zk⟩+
1

λk,i
∥zk+1,i − zk∥2 + q(zk+1,i) ≤ q(zk).

In addition, by the L-smoothness of g, we have

g(zk+1,i) ≤ g(zk) + ⟨∇g(zk), zk+1,i − zk⟩+
L

2
∥zk+1,i − zk∥2.

Combining these two inequalities yields

h(zk+1,i) +
( 1

λk,i
− L

2

)
∥zk+1,i − zk∥2 ≤ h(zk). (52)
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By the definition of i and λk,i = λρi, one has L ≤ 1/λk,i. This and (52) imply that

h(zk+1,i) +
1

2λk,i
∥zk+1,i − zk∥2 ≤ h(zk),

which contradicts (51). Hence, the inner loop runs at most i+1 iterations. By this and the definition of

λk, one has min{ρ/L, λ} ≤ λρi ≤ λk ≤ λ. Hence, the conclusion of Theorem 3 holds.

In the remainder of this subsection, we present the proof of Theorem 3. To this end, we first
establish several technical lemmas. The following result provides a bound on dist(0, ∂h(zk+1)) in terms
of ∥zk+1 − zk∥.

Lemma 7. Let zk and zk+1 be generated by Algorithm 1 for some k ≥ 0. Then it holds that

dist(0, ∂h(zk+1)) ≤
(
L+ λ−1

k

)
∥zk+1 − zk∥. (53)

Proof. By the optimality condition for zk+1, one has

0 ∈ ∇g(zk) + λ−1
k (zk+1 − zk) + ∂q(zk+1),

which implies that
∇g(zk+1)−∇g(zk)− λ−1

k (zk+1 − zk) ∈ ∂h(zk+1).

Using this and the L-smoothness of g, we obtain

dist(0, ∂h(zk+1)) ≤ ∥∇g(zk+1)−∇g(zk)− λ−1
k (zk+1 − zk)∥ ≤ (L+ λ−1

k )∥zk+1 − zk∥,

and hence the conclusion holds.

For notational convenience, let

ak =
1

2λk
, bk =

(
L+

1

λk

)−1

. (54)

In view of these, Algorithm 1, Theorem 2, and Lemma 7, one can observe that the following relations
hold:

h(zk+1) + ak∥zk+1 − zk∥2 ≤ h(zk), (55)

bk dist(0, ∂h(zk+1)) ≤ ∥zk+1 − zk∥, (56)

(2λ)−1 ≤ ak ≤ (2λ)−1, (L+ λ−1)−1 ≤ bk ≤ (L+ λ
−1

)−1, (57)

where λ is defined in (14). In addition, by (55) and the choice of z0, we can observe that r0 ≤ δ, and
{rk} is nonincreasing. Consequently, rk ≤ δ holds for all k.

The following lemma establishes a convergence rate for Algorithm 1, following a similar argument as
in [12, Theorem 3.4].

Lemma 8. Let δ, θ, λ, β, β, C ′ and λ be given in (12), (14), (15), (54) and Algorithm 1, respectively.

Suppose that zk is generated by Algorithm 1 for some k ≥ 1. Then the following statements hold.

(i) If θ = 1/2, then

h(zk)− h∗ ≤ δe−
β

1+β
k
. (58)

(ii) If θ ∈ (1/2, 1), then

h(zk)− h∗ ≤
(

1

C ′(2θ − 1)β

) 1
2θ−1

k−
1

2θ−1 . (59)
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Proof. For notational convenience, let rℓ = h(zℓ) − h∗ for all ℓ. Since h(z0) − h∗ ≤ δ and {h(zℓ)} is
nonincreasing, (12) holds with z = zℓ for all ℓ ≥ 0. By this, (55), and (56), one has

rℓ − rℓ+1

(55)

≥ aℓ∥zℓ+1 − zℓ∥2
(56)

≥ aℓb
2
ℓ dist

(
0, ∂h(zℓ+1)

)2 (12)

≥ aℓb
2
ℓC

2r2θℓ+1.

Let βℓ := aℓb
2
ℓC

2 for all ℓ. Using (57) and (14), we have

rℓ − rℓ+1 ≥ βℓr2θℓ+1, βℓ ∈ [β, β], (60)

(i) Suppose θ = 1/2. It then follows from (60) that rℓ+1 ≤ (1 + βℓ)
−1rℓ for all ℓ. Hence,

rk ≤ r0
k−1∏
ℓ=0

(1 + βℓ)
−1 ∀k ≥ 0. (61)

By the concavity of log(·), one has that log(1 + t) ≤ t for all t > −1. It follows that

log(1 + βℓ)
−1 = log

(
1− βℓ

1 + βℓ

)
≤ − βℓ

1 + βℓ
.

Using this and βℓ ≥ β for all ℓ, we obtain

k−1∏
ℓ=0

(1 + βℓ)
−1 = exp

( k−1∑
ℓ=0

log(1 + βℓ)
−1
)
≤ exp

(
−

k−1∑
ℓ=0

βℓ
1 + βℓ

)
≤ exp

(
−

kβ

1 + β

)
,

which together with (61) and r0 ≤ δ implies that (58) holds.
(ii) Suppose θ ∈ (1/2, 1). Fix any k ≥ 1. If rk = 0, (59) clearly holds. Now we assume that rk > 0.

It then follows from the monotonicity of {rℓ} that rℓ > 0 for all 0 ≤ ℓ < k. Let ψ(t) = 1
2θ−1 t

1−2θ. Then
we have

ψ(rℓ+1)− ψ(rℓ) =

∫ rℓ+1

rℓ

ψ′(t)dt =

∫ rℓ

rℓ+1

t−2θdt ≥ r−2θ
ℓ (rℓ − rℓ+1) ∀0 ≤ ℓ < k. (62)

For each 0 ≤ ℓ < k, we consider two separate cases below.
Case a): r−2θ

ℓ+1 ≤ 2r−2θ
ℓ . It along with (60) and (62) implies that

ψ(rℓ+1)− ψ(rℓ) ≥
1

2
r−2θ
ℓ+1 (rℓ − rℓ+1)

(60)

≥ 1

2
βℓ.

Case b): r−2θ
ℓ+1 > 2r−2θ

ℓ . It leads to r1−2θ
ℓ+1 > 2

2θ−1
2θ r1−2θ

ℓ . By this, rℓ ≤ δ, βℓ ≥ β, and the expression
of ψ, one has

ψ(rℓ+1)− ψ(rℓ) =
1

2θ − 1
(r1−2θ

ℓ+1 − r
1−2θ
ℓ ) >

1

2θ − 1

(
2

2θ−1
2θ − 1

)
r1−2θ
ℓ

≥ 1

2θ − 1

(
2

2θ−1
2θ − 1

)
δ1−2θ ≥ (2

2θ−1
2θ − 1)δ1−2θ

(2θ − 1)β
βℓ.

Combining the above two cases, and using the definition of C ′ in (14), we obtain that ψ(rℓ+1)−ψ(rℓ) ≥
C ′βℓ for all 0 ≤ ℓ < k. It then follows that

ψ(rk) ≥ ψ(r0) + C ′
k−1∑
ℓ=0

βℓ ≥ C ′
k−1∑
ℓ=0

βℓ.

This and the expression of ψ lead to

rk ≤
(

1

C ′(2θ − 1)

) 1
2θ−1

(
k−1∑
ℓ=0

βℓ

)− 1
2θ−1

≤
(

1

C ′(2θ − 1)β

) 1
2θ−1

k−
1

2θ−1 ,

and hence (59) holds.
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We are now ready to prove Theorem 3.

Proof of Theorem 3. Suppose for contradiction that Algorithm 1 runs for more than Kθ outer
iterations. Then there exists some ℓ ≥ Kθ − 1 such that ∥zℓ+1 − zℓ∥ > τ . By (55) and (57), one has

∥zℓ+1 − zℓ∥
(55)

≤
√
rℓ − rℓ+1

aℓ
≤ a−

1
2

ℓ r
1
2
ℓ

(57)

≤ (2λ)
1
2 r

1
2
ℓ , (63)

where rℓ = h(zℓ)− h∗. We next show that rℓ ≤ τ2/(2λ) by considering two separate cases: θ = 1/2 and
θ ∈ (1/2, 1).

Case (i): θ = 1/2. By this, (15), and ℓ ≥ Kθ − 1, one has ℓ ≥ β−1(1 + β) log(2λδτ−2). Using this

relation and (58), we have rℓ ≤ δe−β(1+β)−1ℓ ≤ τ2/(2λ).

Case (ii): θ ∈ (1/2, 1). Using this, (15), and ℓ ≥ Kθ − 1, we obtain that ℓ ≥ 1
C′(2θ−1)β

(
2λτ−2

)2θ−1
.

By this relation and (59), one has

rℓ ≤
(

1

C ′(2θ − 1)β

) 1
2θ−1

ℓ−
1

2θ−1 ≤ τ2/(2λ).

We thus conclude that rℓ ≤ τ2/(2λ). This together with (63) implies ∥zℓ+1 − zℓ∥ ≤ τ , which leads to a
contradiction. Hence, Algorithm 1 runs at most Kθ outer iterations.

We next show that (16) holds. Notice from (13) and (54) that λk ≥ λ. By this and (53), one has

dist(0, ∂h(zk+1)) ≤
(
L+ λ−1

)
∥zk+1 − zk∥. (64)

Since h(z0)− h∗ ≤ δ and {h(zℓ)} is nonincreasing, it follows that h(zk+1)− h∗ ≤ δ. Using this and (12),
we have

C(h(zk+1)− h∗)θ ≤ dist(0, ∂h(zk+1)).

By this, (64), and ∥zk+1 − zk∥ ≤ τ , one has

h(zk+1)− h∗ ≤ C− 1
θ
(

dist(0, ∂h(zk+1))
) 1

θ ≤
(
C−1(L+ λ−1)

) 1
θ ∥zk+1 − zk∥

1
θ ≤

(
C−1(L+ λ−1)τ

) 1
θ ,

and hence (16) holds as desired.

6.3 Proof of the main results in Section 4

In this subsection we prove Theorems 4 and 5. To proceed, we first establish several technical lemmas
below.

Lemma 9. Let γ, σ, C, θ, L∇f , ϵ,X c
ϵ , and {ηℓ} be given in (17), Assumption 1, and Algorithm 2, respec-

tively. Suppose that {(xℓ, yℓ)}kℓ=0 are generated by Algorithm 2 for some k ≥ 1 such that xℓ ∈ X c
ϵ for all

0 ≤ ℓ < k. Then, for all 0 ≤ ℓ ≤ k, it holds that

F ∗(xℓ)− F (xℓ, yℓ) ≤ min
{
γϵσ/2, ηℓ

}
, dist

(
yℓ, Y ∗(xℓ)

)
≤ 1

C(1− θ)
min

{
(γ/2)1−θϵσ(1−θ), η

1/2
ℓ

}
,

(65)

∥∇F ∗(xℓ)−∇xf(xℓ, yℓ)∥ ≤
L∇f

C(1− θ)
min

{
(γ/2)1−θϵσ(1−θ), η

1/2
ℓ

}
. (66)

Proof. We first show that (65) and (66) hold for ℓ = 0. One can observe from Algorithm 2 that (65)
holds for ℓ = 0. We now show that (66) also holds for ℓ = 0. By the assumption in this lemma,
we know that x0 ∈ X c

ϵ and hence dist(0, ∂Ψ(x0)) > ϵ. This together with x0 ∈ X ⊂ Ω implies that
x0 ∈ Uϵ. It then follows from Theorem 1 that F ∗ is differentiable at x0, and moreover, ∇F ∗(x0) =
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∇xf(x0, y∗), where y∗ ∈ Y ∗(x0) with ∥y∗ − y0∥ = dist(y0, Y ∗(x0)). Using this, dist(y0, Y ∗(x0)) ≤
(C(1− θ))−1 min{(γ/2)1−θϵσ(1−θ), 1}, and the L∇f -smoothness of f , one has

∥∇F ∗(x0)−∇xf(x0, y0)∥ = ∥∇xf(x0, y∗)−∇xf(x0, y0)∥ ≤ L∇f∥y∗ − y0∥

= L∇f dist(y0, Y ∗(x0)) ≤
L∇f

C(1− θ)
min{(γ/2)1−θϵσ(1−θ), 1}.

This together with η0 = 1 implies that (66) holds for ℓ = 0 as desired.
We next show that (65) and (66) hold for 0 < ℓ ≤ k. Notice from Algorithm 2 that yℓ is

an approximate solution of the problem miny{−f(xℓ, y) + q(y)} obtained by Algorithm 1 with the
initial point yℓ−1, and the parameters λ, ρ, τ specified in Algorithm 2. Then it follows from τ =

C
L∇f+λ−1 min

{
(12γϵ

σ)θ, η
θ

2(1−θ)

ℓ

}
, the definitions of F ∗ and F , and Theorem 3 with h(·) = −f(xℓ, ·) + q(·)

that

F ∗(xℓ)− F (xℓ, yℓ) ≤ [C−1(L∇f + λ−1)τ ]
1
θ = min

{1

2
γϵσ, η

1
2(1−θ)

ℓ

}
, (67)

which, together with ηℓ ∈ (0, 1) and θ ∈ [1/2, 1), implies that the first relation in (65) holds for ℓ > 0. In
addition, notice from the assumption that xℓ−1 ∈ X c

ϵ . Also, observe from Algorithm 2 that r = γϵσ/(4Lf )
and ∥xℓ+1−xℓ∥ ≤ r. It then follows that ∥xℓ+1−xℓ∥ ≤ γϵσ/(4Lf ), which together with xℓ−1 ∈ X c

ϵ implies
that dist(0, ∂Ψ(xℓ)) > ϵ. Using this and (67), we obtain that F ∗(xℓ) − F (xℓ, yℓ) ≤ γdist(0, ∂Ψ(xℓ))σ

and hence yℓ ∈ L(xℓ), where L(·) is defined in (7). By this, (67), xℓ ∈ X ⊂ Ω, and Lemma 4, one can
conclude that the second relation in (65) holds for ℓ > 0. Lastly, (66) also holds for ℓ > 0, due to the
second relation in (65) and arguments similar to those used in the case ℓ = 0.

Lemma 10. Let ϵ > 0 be given, M , X c
ϵ be defined in (17) and (18), Lf , L∇f , C, θ, γ, σ, {δℓ}, {ηℓ}, {Lℓ}

be given in Assumption 1 and Algorithm 2, and let

∆k := 8
[
Ψ(x0)−Ψ∗ + ηk+1 +

k∑
ℓ=0

(
1 +

L2
∇f

(1−θ)2C2Lℓ

)
ηℓ +

k∑
ℓ=0

δℓ
2

]
, (68)

Kϵ := max{k ≥ 1 : ∆k/(kL⌈k/2⌉) ≥ γ2ϵ2σ/(16L2
f )}, (69)

Kϵ := max{k ≥ 0 : xk ∈ X c
ϵ }, (70)

ℓ(k) := arg min
⌈k/2⌉≤ℓ≤k

Lℓ∥xℓ+1 − xℓ∥2. (71)

Let Kϵ < k ≤ Kϵ be given. Suppose that {(xℓ, yℓ)}kℓ=0 are generated by Algorithm 2 such that xℓ ∈ X c
ϵ

for all 0 ≤ ℓ ≤ k. Then we have

dist
(
0, ∂Ψ(xℓ(k)+1)

)
≤ L∇f

√
∆k

L⌈k/2⌉k
+

√
Lk∆k

k
+M

( ∆k

L⌈k/2⌉k

) ν
2

+ (1− θ)−1C−1L∇fη
1
2

⌈k/2⌉. (72)

Proof. Notice from the above assumption that Kϵ < k ≤ Kϵ and xℓ ∈ X c
ϵ for all 0 ≤ ℓ ≤ k. We first

show that for all 0 ≤ ℓ ≤ k, it holds that

F (xℓ+1, yℓ+1) + p(xℓ+1) ≤ F (xℓ, yℓ) + p(xℓ)− Lℓ

4
∥xℓ+1 − xℓ∥2 +

(
1 +

L2
∇f

(1− θ)2C2Lℓ

)
ηℓ +

δℓ
2
. (73)

To this end, let us fix any 0 ≤ ℓ ≤ k. By optimality condition of (21), one has

⟨∇xf(xℓ, yℓ), xℓ+1⟩+ Lℓ∥xℓ+1 − xℓ∥2 + p(xℓ+1) ≤ ⟨∇xf(xℓ, yℓ), xℓ⟩+ p(xℓ). (74)

Observe from Algorithm 2 that ∥xℓ+1−xℓ∥ ≤ γϵσ/(4Lf ). Using this relation, xℓ ∈ X c
ϵ , and the definition

of X c
ϵ in (17), we deduce that dist(0, ∂Ψ(x)) > ϵ for any x ∈ [xℓ, xℓ+1]. In addition, by xℓ, xℓ+1 ∈ X ,
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the convexity of X , and X ⊂ Ω, one can see that [xℓ, xℓ+1] ⊆ Ω. It follows from these and (8) that
[xℓ, xℓ+1] ⊆ Uϵ. In view of this, (19), and the definition of Lℓ in Algorithm 2, we have

F ∗(xℓ+1) ≤ F ∗(xℓ) + ⟨∇F ∗(xℓ), xℓ+1 − xℓ⟩+
Lℓ

2
∥xℓ+1 − xℓ∥2 +

δℓ
2
. (75)

In addition, notice that F (xℓ+1, yℓ+1) ≤ F ∗(xℓ+1). Using this, (65), (74), and (75), we obtain that

F (xℓ+1, yℓ+1) + p(xℓ+1) ≤ F ∗(xℓ+1) + p(xℓ+1)

(75)

≤ F ∗(xℓ) + ⟨∇F ∗(xℓ), xℓ+1 − xℓ⟩+
Lℓ

2
∥xℓ+1 − xℓ∥2 + p(xℓ+1) +

δℓ
2

= F (xℓ, yℓ) + ⟨∇xf(xℓ, yℓ), xℓ+1 − xℓ⟩+
Lℓ

2
∥xℓ+1 − xℓ∥2 + p(xℓ+1) + F ∗(xℓ)− F (xℓ, yℓ)

+ ⟨∇F ∗(xℓ)−∇xf(xℓ, yℓ), xℓ+1 − xℓ⟩+
δℓ
2

(65)(74)

≤ F (xℓ, yℓ) + p(xℓ)− Lℓ

2
∥xℓ+1 − xℓ∥2 + ηℓ + ⟨∇F ∗(xℓ)−∇xf(xℓ, yℓ), xℓ+1 − xℓ⟩+

δℓ
2

= F (xℓ, yℓ) + p(xℓ)− Lℓ

4
∥xℓ+1 − xℓ∥2 − Lℓ

4
∥xℓ+1 − xℓ∥2 + ⟨∇F ∗(xℓ)−∇xf(xℓ, yℓ), xℓ+1 − xℓ⟩+ ηℓ +

δℓ
2

≤ F (xℓ, yℓ) + p(xℓ)− Lℓ

4
∥xℓ+1 − xℓ∥2 +

∥∇F ∗(xℓ)−∇xf(xℓ, yℓ)∥2

Lℓ
+ ηℓ +

δℓ
2

(66)

≤ F (xℓ, yℓ) + p(xℓ)− Lℓ

4
∥xℓ+1 − xℓ∥2 +

(
1 +

L2
∇f

(1− θ)2C2Lℓ

)
ηℓ +

δℓ
2
,

where the fourth inequality follows from the Young’s inequality ⟨u, v⟩ ≤ α∥u∥2/4 + ∥v∥2/α for all α > 0
and u, v ∈ Rn. By this and the arbitrariness of ℓ, we see that (73) holds for all 0 ≤ ℓ ≤ k.

Summing up (73) over ℓ = 0, . . . , k yields

k∑
ℓ=⌈k/2⌉

Lℓ∥xℓ+1 − xℓ∥2 ≤ 4
[
F (x0, y0) + p(x0)− F (xk+1, yk+1)− p(xk+1) +

k∑
ℓ=0

(
1 +

L2
∇f

(1−θ)2C2Lℓ

)
ηℓ +

k∑
ℓ=0

δℓ
2

]
.

(76)
For notational convenience, let k̂ = ℓ(k). By this, (68), and (71), one has

Lk̂∥x
k̂+1 − xk̂∥2

(71)

≤ 1

⌈k/2⌉

k∑
ℓ=⌈k/2⌉

Lℓ∥xℓ+1 − xℓ∥2

(76)

≤ 4

⌈k/2⌉

[
F (x0, y0) + p(x0)− F (xk+1, yk+1)− p(xk+1) +

k∑
ℓ=0

(
1 +

L2
∇f

(1−θ)2C2Lℓ

)
ηℓ +

k∑
ℓ=0

δℓ
2

]
≤ 8

k

[
Ψ(x0)−Ψ∗ + ηk+1 +

k∑
ℓ=0

(
1 +

L2
∇f

(1−θ)2C2Lℓ

)
ηℓ +

k∑
ℓ=0

δℓ
2

]
(68)
=

∆k

k
, (77)

where the last inequality uses the fact that F (x0, y0) ≤ F ∗(x0), Ψ(·) = F ∗(·) + p(·), Ψ(xk+1) ≥ Ψ∗, and
F ∗(xk+1) − F (xk+1, yk+1) ≤ ηk+1 due to (65). Additionally, by k̂ ≥ ⌈k/2⌉, the monotonicity of {δℓ},
ν ∈ (0, 1], and the definition of Lℓ in Algorithm 2, one has Lk̂ ≥ L⌈k/2⌉. It then together with (77)
implies that

∥xk̂+1 − xk̂∥ ≤

√
∆k

Lk̂k
≤
√

∆k

L⌈k/2⌉k
. (78)

In addition, notice from Algorithm 2 that r = γϵσ/(4Lf ). By this, k > Kϵ, and (69), one has
∆k/(L⌈k/2⌉k) < r2. Using this and (78), we have

∥xk̂+1 − xk̂∥ < r. (79)
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This together with the first-order optimality condition of (21) for xk̂+1 implies that

0 ∈ ∇xf(xk̂, yk̂) + Lk̂(xk̂+1 − xk̂) + ∂p(xk̂+1). (80)

By k̂ ≤ k and the assumption that xℓ ∈ X c
ϵ for all 0 ≤ ℓ ≤ k, one has xk̂ ∈ X c

ϵ . Using this and (79),

we conclude that dist(0, ∂Ψ(xk̂)) > ϵ and dist(0, ∂Ψ(xk̂+1)) > ϵ. By these and xk̂, xk̂+1 ∈ X ⊂ Ω, one

can see that xk̂, xk̂+1 ∈ Uϵ. In view of this, (18), (79), and Theorem 1, we obtain that

∥∇F ∗(xk̂+1)−∇F ∗(xk̂)∥ ≤ L∇f∥xk̂+1 − xk̂∥+M∥xk̂+1 − xk̂∥ν . (81)

In addition, by ⌈k/2⌉ ≤ k̂ ≤ k, the monotonicity of {ηℓ} and {δℓ}, and the definition of Lℓ, one has
ηk̂ ≤ η⌈k/2⌉ and L⌈k/2⌉ ≤ Lk̂ ≤ Lk. Using these, (66), (78), (80), (81), and ∂Ψ(·) = ∇F ∗(·) + ∂p(·), we
have

dist
(
0, ∂Ψ(xk̂+1)

) (80)

≤ ∥∇F ∗(xk̂+1)−∇xf(xk̂, yk̂)− Lk̂(xk̂+1 − xk̂)∥

≤ ∥∇F ∗(xk̂+1)−∇F ∗(xk̂)∥+ ∥∇F ∗(xk̂)−∇xf(xk̂, yk̂)∥+ Lk̂∥x
k̂+1 − xk̂∥

(66)(81)

≤ L∇f∥xk̂+1 − xk̂∥+M∥xk̂+1 − xk̂∥ν + (1− θ)−1C−1L∇fη
1
2

k̂
+ Lk̂∥x

k̂+1 − xk̂∥

(78)

≤ L∇f

√
∆k

Lk̂k
+

√
Lk̂∆k

k
+M

( ∆k

Lk̂k

) ν
2

+ (1− θ)−1C−1L∇fη
1
2

k̂

≤ L∇f

√
∆k

L⌈k/2⌉k
+

√
Lk∆k

k
+M

( ∆k

L⌈k/2⌉k

) ν
2

+ (1− θ)−1C−1L∇fη
1
2

⌈k/2⌉.

This together with k̂ = ℓ(k) implies that the conclusion holds.

The following lemma will be used to prove Theorem 4 subsequently.

Lemma 11. Let ζ, a, b, ω > 0 be given. Then the following statements hold.

(i) If t ≥
⌊
2ζ−1 log(1/ζ)

⌋
+

+1, then t−1 log t < ζ.

(ii) If t ≥ max
{

(2aζ−1)1/ω,
( ⌊

4b(ωζ)−1 log (2b/(ωζ))
⌋
+

+1
)1/ω}

, then t−ω(a+ b log t) < ζ.

Proof. We first prove statement (i). Fix any t ≥
⌊
2ζ−1 log(1/ζ)

⌋
+

+1. Let ϕ(s) = s−1 log s. It can be
verified that ϕ is strictly decreasing on [e,∞) and ϕ(s) ≤ ϕ(e) = 1/e for all s > 0. The latter relation
and t > 0 imply that t−1 log t = ϕ(t) < ζ holds if ζ > 1/e. We now assume ζ ≤ 1/e. It then follows that
t > 2ζ−1 log(1/ζ) ≥ 2e, which along with the strict monotonicity of ϕ on [e,∞) implies that

t−1 log t = ϕ(t) < ϕ(2ζ−1 log(1/ζ)) =
ζ

2

log((2/ζ) log(1/ζ))

log(1/ζ)
=
ζ

2

(
1 +

log(2 log(1/ζ))

log(1/ζ)

)
.

In addition, notice that ζ log(1/ζ) = ϕ(1/ζ) ≤ 1/e < 1/2, which implies that log(2 log(1/ζ)) ≤ log(1/ζ).
By this and the above inequality, one can conclude that statement (i) also holds if ζ ≤ 1/e.

We next prove statement (ii). Fix any t ≥ max{(2aζ−1)1/ω, (⌊4b(ωζ)−1 log (2b/(ωζ))⌋++1)1/ω}.
Since t ≥ (2aζ−1)1/ω, we have t−ωa ≤ ζ/2. In addition, notice that tω ≥ ⌊4b(ωζ)−1 log(2b/(ωζ))⌋++1,
which together with statement (i) implies that t−ω log(tω) < ωζ/(2b). It then follows that bt−ω log t =
bω−1t−ω log(tω) < ζ/2. By this and t−ωa ≤ ζ/2, one has t−ω(a+ b log t) < ζ, and hence statement (ii)
holds as desired.

We are now ready to prove Theorems 4 and 5.
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Proof of Theorem 4. For notational convenience, let k = K̂ϵ. Suppose for contradiction that an
(ϵ, γϵσ/(4Lf ))-stationary point of problem (1) is not generated by Algorithm 2 in k iterations.

We first prove by induction that {(xℓ, yℓ)}kℓ=0 are successfully generated by Algorithm 2. Indeed,
since (x0, y0) is the initial point, it is generated by Algorithm 2. Now suppose {(xi, yi)}ℓi=0 are generated
by Algorithm 2 for some 0 ≤ ℓ < k. Since none of {xi}ℓi=0 is an (ϵ, γϵσ/(4Lf ))-stationary point of (1), it
follows that xi ∈ X c

ϵ for all 0 ≤ i ≤ ℓ, where X c
ϵ is defined in (17). By this and Lemma 9, one has that

F ∗(xℓ)− F (xℓ, yℓ) ≤ γϵσ/2. In addition, notice from (21) that xℓ+1 is well-defined and thus successfully
generated by Algorithm 2, and moreover, ∥xℓ+1 − xℓ∥ ≤ r = γϵσ/(4Lf ). By these, Lemma 1, and the
Lf -Lipschitz continuity of F (·, y) for each y ∈ Y, we have

F ∗(xℓ+1)− F (xℓ+1, yℓ) = F ∗(xℓ+1)− F ∗(xℓ) + F ∗(xℓ)− F (xℓ, yℓ) + F (xℓ, yℓ)− F (xℓ+1, yℓ)

≤ 2Lf∥xℓ+1 − xℓ∥+ 1
2γϵ

σ ≤ 2Lfr + 1
2γϵ

σ ≤ γϵσ. (82)

In addition, since xℓ ∈ X c
ϵ , ∥xℓ+1 − xℓ∥ ≤ γϵσ/(4Lf ), and xℓ+1 ∈ X ⊂ Ω, one can see from (70) that

dist(0, ∂Ψ(xℓ+1)) > ϵ. This and (6) imply that

C(F ∗(xℓ+1)− F (xℓ+1, y))θ ≤ dist(0, ∂yF (xℓ+1, y)) ∀y with F ∗(xℓ+1) > F (xℓ+1, y) ≥ F ∗(xℓ+1)− γϵσ.

Hence, (12) holds for the function h(·) = −F (xℓ+1, ·) with δ = γϵσ. It follows from this and (82) that
yℓ serves as a suitable initial point for applying Algorithm 1 to solve the problem miny −F (xℓ+1, y), or
equivalently, miny{−f(xℓ+1, y) + q(y)}. In view of Theorem 3, yℓ+1 is then successfully generated by
Algorithm 2 via applying Algorithm 1 to this problem. Hence, the induction is completed.

We next derive a contradiction to the above hypothesis. By the definition of L in (22), ν ∈ (0, 1],
δℓ ≤ 1, and the definition of Lℓ in Algorithm 2, we see that Lℓ ≥ L for all 0 ≤ ℓ ≤ k. In addition,
observe from (24), (25), (31), ϵ ∈ (0, 1/e], and ν ∈ (0, 1] that K̂ϵ ≥ 2, which together with k = K̂ϵ

implies k ≥ 2. In view of these, (68), (22), (23), and the definitions of {δℓ} and {ηℓ}, one has

∆k
(68)(22)

= 8
[
Ψ(x0)−Ψ∗ + ηk+1 +

k∑
ℓ=0

(
1 +

A

Lℓ

)
ηℓ +

k∑
ℓ=0

δℓ
2

]
≤ 8
[
Ψ(x0)−Ψ∗ +

k+1∑
ℓ=0

(
1 +

A

Lℓ

)
ηℓ +

k+1∑
ℓ=0

δℓ
2

]
≤ 8
[
Ψ(x0)−Ψ∗ +

(3

2
+
A

L

) k+1∑
ℓ=0

1

ℓ+ 1

]
≤ 8

[
Ψ(x0)−Ψ∗ +

(3

2
+
A

L

)(
1 +

∫ k+1

0

1

1 + t
dt
)]

= 8
[
Ψ(x0)−Ψ∗ + (3/2 +AL−1)

(
1 + log(k + 2)

)]
≤ 8
[
Ψ(x0)−Ψ∗ + (3/2 +AL−1)(2 + log k)

]
= 8
[
Ψ(x0)−Ψ∗ + 3 + 2AL−1 + (3/2 +AL−1) log k

] (23)
= a+ b log k, (83)

where the last inequality follows from log(k + 2) ≤ log k + 1 due to k ≥ 2. Similarly, one can show that
∆k′ ≤ a+ b log k′ for all k′ ≥ k. Let us fix any k′ ≥ k. Notice from δℓ = 1/(ℓ+ 1) that δ⌈k′/2⌉ ≤ 2/k′,

which along with the definition of Lℓ and ν ∈ (0, 1] implies that L⌈k′/2⌉ ≥ (k′/2)(1−ν)/(1+ν)M2/(1+ν). In
view of these relations and ν ∈ (0, 1], we can see that

∆k′

L⌈k′/2⌉k′
≤ a+ b log k′

(k′/2)
1−ν
1+ν k′M

2
1+ν

≤ 2(a+ b log k′)

k′
2

1+νM
2

1+ν

. (84)

Using this and Lemma 11, we observe that ∆k′/(L⌈k′/2⌉k
′) < γ2ϵ2σ/(16L2

f ), since

k′ ≥ k = K̂ϵ ≥ max
{( 64aL2

f

γ2ϵ2σM2/(1+ν)

) 1+ν
2
,
(⌊ 64(1 + ν)bL2

f

γ2ϵ2σM2/(1+ν)
log
( 32(1 + ν)bL2

f

γ2ϵ2σM2/(1+ν)

)⌋
+

+ 1
) 1+ν

2
}
,

where the last inequality is due to ϵ ∈ (0, 1/e], (29), (30), and (31). It then follows from the arbitrariness
of k′ and the definition of Kϵ in (69) that Kϵ < k.
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In addition, observe from k = K̂ϵ, ϵ ∈ (0, 1/e], (27), (28), and (31) that

k ≥ max
{( 144aL2

∇f

ϵ2M2/(1+ν)

) 1+ν
2
,
(⌊144(1 + ν)bL2

∇f

ϵ2M2/(1+ν)
log
(72(1 + ν)bL2

∇f

ϵ2M2/(1+ν)

)⌋
+

+ 1
) 1+ν

2
}
.

It then follows from (84) and Lemma 11 that ∆k/(L⌈k/2⌉k) ≤ ϵ2/(36L2
∇f ), which implies that

L∇f

√
∆k

L⌈k/2⌉k
≤ ϵ

6
. (85)

Similarly, notice from k = K̂ϵ, ϵ ∈ (0, 1/e], (24), (26), and (31) that

k ≥ max
{(36La

ϵ2

) 1+ν
2ν
,
(⌊36(1 + ν)bL

νϵ2
log
(18(1 + ν)bL

νϵ2

)⌋
+

+ 1
) 1+ν

2ν
}
.

It then follows from (83) and Lemma 11 that ∆k/k
2ν/(1+ν) ≤ ϵ2/(18L). By this, the definitions of Lℓ

and {δℓ}, L = L∇f +M2/(1+ν), ν ∈ (0, 1], and δℓ ≤ 1, we have

Lk∆k

k
=

(L∇f + δ
ν−1
1+ν

k M
2

1+ν )∆k

k
≤

(L∇f +M
2

1+ν )δ
ν−1
1+ν

k ∆k

k
=
L(k + 1)

1−ν
1+ν ∆k

k
≤ 2L∆k

k
2ν
1+ν

≤ ϵ2

9
,

where the second inequality follows from (k + 1)
1−ν
1+ν ≤ 2k

1−ν
1+ν due to k ≥ 2. Hence, we obtain√

Lk∆k

k
≤ ϵ

3
. (86)

Also, by k = K̂ϵ, ϵ ∈ (0, 1/e], (25), (26), and (31), we can see that

k ≥ max
{( 4a(3M)2/ν

M2/(1+ν)ϵ2/ν

) 1+ν
2
,
(⌊4b(1 + ν)(3M)2/ν

M2/(1+ν)ϵ2/ν
log
(2b(1 + ν)(3M)2/ν

M2/(1+ν)ϵ2/ν

)⌋
+

+ 1
) 1+ν

2
}
.

It then follows from (84) and Lemma 11 that ∆k/(L⌈k/2⌉k) ≤ ϵ2/ν/(3M)2/ν , which implies that

M
( ∆k

L⌈k/2⌉k

) ν
2 ≤ ϵ

3
. (87)

Lastly, using k = K̂ϵ, (26) and (31) yields k ≥ ⌈72Aϵ−2⌉. By this and the definition of ηk, one has

A
1
2 η

1
2

⌈k/2⌉ ≤
(

2A

k + 2

) 1
2

≤ ϵ

6
. (88)

Recall from the above hypothesis that none of {xℓ}kℓ=0 is an (ϵ, γϵσ/(4Lf ))-stationary point of (1).
Hence, xℓ ∈ X c

ϵ for all 0 ≤ ℓ ≤ k. Moreover, it follows from this and the definition of Kϵ in (70) that
k ≤ Kϵ. By Kϵ < k ≤ Kϵ and xℓ ∈ X c

ϵ for all 0 ≤ ℓ ≤ k, it follows from Lemma 10 that (72) holds for
such k, which together with the definition of A in (23) leads to

dist
(
0, ∂Ψ(xℓ(k)+1)

)
≤ L∇f

√
∆k

L⌈k/2⌉k
+

√
Lk∆k

k
+M

( ∆k

L⌈k/2⌉k

) ν
2

+A
1
2 η

1
2

⌈k/2⌉.

Combining this with (85), (86), (87), and (88), we obtain that

dist(0, ∂Ψ(xk̂+1)) ≤ ϵ

6
+
ϵ

3
+
ϵ

3
+
ϵ

6
= ϵ.

In addition, notice from Algorithm 2 that ∥xk̂+1 − xk̂∥ ≤ γϵσ/(4Lf ). It follows from these and the

definition of X c
ϵ in (17) that xk̂ /∈ X c

ϵ . Since k̂ ≤ k, this contradicts the assumption that xℓ ∈ X c
ϵ for all

0 ≤ ℓ ≤ k, which is implied by the hypothesis. Hence, Algorithm 2 generates a pair (xk, yk) such that
xk is an (ϵ, γϵσ/(4Lf ))-stationary point of problem (1) for some 0 ≤ k ≤ K̂ϵ. Moreover, it follows from
Lemma 9 that yk satisfies (32).
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We next present the proof of Theorem 5.

Proof of Theorem 5. Let X c
ϵ be defined in (70). The conclusion clearly holds if x0 /∈ X c

ϵ . Hence,
we assume for the remainder of the proof that x0 ∈ X c

ϵ . Given this and ϵ ∈ (0, 1/e], it follows from

Theorem 4 that there exists 0 ≤ k < K̂ϵ such that xℓ ∈ X c
ϵ for all 0 ≤ ℓ ≤ k and xk+1 /∈ X c

ϵ . That is,

the iterates {xℓ}kℓ=0 are not, but xk+1 is, an (ϵ, γϵσ/(4Lf ))-stationary point of problem (1).
We first observe from Algorithm 2 that the number of evaluations of the proximal operator p equals

the number of iterations. By this and k < K̂ϵ, it follows that the total number of evaluations of p to
generate the (ϵ, γϵσ/(4Lf ))-stationary point xk+1 is k + 1 ≤ K̂ϵ.

We next show that the total number of evaluations of the proximal operator of q performed in
Algorithm 2 to generate the (ϵ, γϵσ/(4Lf ))-stationary point xk+1 is at most N̂2. To this end, we analyze
the number of evaluations of the proximal operator of q conducted at each iteration 0 ≤ ℓ′ ≤ k, through
its calls to Algorithm 1. As observed from Algorithm 2 and the proof of Lemma 10, Algorithm 1 is
invoked to solve problem (11) with h(·) = −F (xℓ

′+1, ·), where h satisfies condition (12) with δ = γϵσ.
By this, the definitions of τ and {ηℓ} in Algorithm 2, k < K̂ϵ, and (15), it follows from Theorem 3 that
the number of outer iterations performed in Algorithm 1 at each iteration 0 ≤ ℓ′ ≤ k is at most Kf,θ,
where Kf,θ is defined in (33). Using this and Theorem 2, we can see that at each iteration 0 ≤ ℓ′ ≤ k,
the number of evaluations of q is at most(⌈ log(2L∇fλ)

log ρ−1

⌉
+

+ 1
)
Kf,θ.

By this bound, the fact that the total number of iterations performed by Algorithm 2 to generate
the (ϵ, γϵσ/(4Lf ))-stationary point xk+1 is at most K̂ϵ, and (34), we conclude that the total number
of evaluations of the proximal operator of q performed by Algorithm 2 to generate an (ϵ, γϵσ/(4Lf ))-

stationary point is at most N̂ϵ.
Lastly, notice that the total number of evaluations of ∇f is no more than the sum of the total

number of evaluations of the proximal operators of p and q. It then follows that the total number of
evaluations of ∇f performed in Algorithm 2 to generate an (ϵ, γϵσ/(4Lf ))-stationary point is at most

K̂ϵ + N̂ϵ.
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