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Abstract In this paper, we first demonstrate that positive semidefiniteness of
a large well-structured sparse symmetric matrix can be represented via positive
semidefiniteness of a bunch of smaller matrices linked, in a linear fashion, to
the matrix. We derive also the “dual counterpart” of the outlined represen-
tation, which expresses the possibility of positive semidefinite completion of a
well-structured partially defined symmetric matrix in terms of positive semidefi-
niteness of a specific bunch of fully defined submatrices of the matrix. Using the
representations, we then reformulate well-structured large-scale semidefinite
problems into smooth convex–concave saddle point problems, which can be
solved by a Prox-method developed in [6] with efficiency O(ε−1). Implementa-
tions and some numerical results for large-scale Lovász capacity and MAXCUT
problems are finally presented.
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1 Introduction

Consider a semidefinite program

min
x

{Tr(cx) : x ∈ N ∩ S+} , (1)

where S+ is the cone of positive semidefinite matrices in the space S of sym-
metric block-diagonal matrices with a given block-diagonal structure, N is an
affine subspace in S and c ∈ S. The goal of this paper is to investigate the possi-
bility of utilizing favorable sparsity patterns of a large-scale problem (1) (that
is, the sparsity pattern of diagonal blocks in matrices from N ) when solving the
problem by a simple first-order method. To motivate our goal, let us start with
discussing whether it makes sense to solve (1) by first-order methods, given
the breakthrough developments in the theory and implementation of interior
point methods (IPMs) for semidefinite programming (SDP) we have witnessed
during the last decade. Indeed, IPMs are polynomial-time methods and as such
allow to solve SDPs within accuracy ε at a low iteration count (proportional to
ln(1/ε)) and thus capable of producing high-accuracy solutions. Note, however,
that IPMs are Newton-type methods, with an iteration which requires assem-
bling and solving a Newton system of n linear equations with n unknowns,
where n = min

[
dim N , codim N ] is the minimum of the design dimensions of

the problem and its dual. Typically, the Newton system is dense, so that the cost
of solving it by standard linear algebra techniques is O(n3) arithmetic opera-
tions. It follows that in reality the scope of IPMs in SDP is restricted to problems
with n at most few thousands – otherwise a single iteration will “last forever”. At
the present level of our knowledge, the only way to process numerically SDPs
with n of order of 104 or more seems to use simple first-order optimization tech-
niques with computationally cheap iterations. Although all known first-order
methods in the large-scale case exhibit slow – sublinear – convergence and
thus are unable to produce high-accuracy solutions in realistic time, medium-
accuracy solutions are still achievable. Historically, the first SDP algorithm of
the latter type was the spectral bundle method [5] – a version of the well-known
bundle method for nonsmooth convex minimization “tailored” to semidefinite
problems. A strong point of the present method is in its modest requirements
on our abilities to handle matrices from N – all we need is to compute few
largest eigenvalues and associated eigenvectors of such matrices. This task can
be carried out routinely when the largest size ζ of diagonal blocks in matrices
from S is not too large, say, ζ ≤ 1, 000. Note that under this limitation, n still can
be of order of 105, meaning that (1) is far beyond the scope of IPMs. Moreover,
the task in question still can be carried out when ζ is much larger than the above
limit, provided that diagonal blocks in the matrices A ∈ N possess favorable
sparsity patterns. A weak point of the spectral bundle method, at least from
the theoretical viewpoint, is the convergence rate: the inaccuracy in terms of the
objective can decrease with the iteration count t as slowly as O(t−1/2) (this is the
best possible, in the large-scale case, rate of convergence of first-order methods
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on nonsmooth convex programs). Also, theoretical convergence rate results are
not established for the first-order SDP algorithms proposed recently in [1,2].
Recently, novel O(t−1)-converging first-order algorithms, based on smooth sad-
dle-point reformulation of nonsmooth convex programs were developed [6–
8]. Numerical results presented in these papers (including those on genuine
SDP with n as large as 100,000–190,000 [6]) demonstrate high computational
potential of the proposed methods. However, theoretical and computational
advantages exhibited by the O(t−1)-converging methods as compared to algo-
rithms like spectral bundle have their price, specifically, the necessity to operate
with eigenvalue decompositions of the matrices from S rather than computing
a few largest eigenvalues of matrices from N . As a result, the algorithms from
[6–8] as applied to (1) become impractical, when the largest size ζ of diagonal
blocks in the matrices from S exceeds about 1,000.

The goal of this paper is to demonstrate that one can extend the scope of
O(t−1)-converging first-order methods as applied to semidefinite program (1)
beyond the just outlined limits by assuming that diagonal blocks in the matrices
from N possess favorable sparsity patterns. This type of semidefinite program
(1) has also been studied in [3] via matrix completion in the context of IPM. The
outline of the paper is as follows. In Sect. 2, we explain what a “favorable spar-
sity pattern” is and introduce some notation and definitions which will be used
throughout the paper. In Sect. 3, we develop our main tool, specifically, demon-
strate that positive semidefiniteness of a large symmetric matrix A possessing a
favorable sparsity pattern can be represented via positive semidefiniteness of a
bunch of smaller matrices linked, in a linear fashion, to A. We derive also the
“dual counterpart” of the outlined representation, which expresses the possibil-
ity of positive semidefinite completion of a “well-structured” partially defined
symmetric matrix in terms of positive semidefiniteness of a specific bunch of
fully defined submatrices of the matrix.1 In Sect. 4 we utilize the aforemen-
tioned representations to derive saddle point formulations of some large-scale
SDP problems, specifically, those of computing Lovász capacity of a graph and
the MAXCUT problem, with emphasis on the case when the incidence matrix
of the underlying graph possesses a favorable sparsity pattern. We demonstrate
that the complexity of solving these problems within a fixed relative accuracy by
an appropriate O(t−1)-converging first-order method (namely, the Mirror-Prox
algorithm from [6]) is by orders of magnitude less than complexity associated
with IPMs, and show that with our approach, we indeed can utilize a favorable
sparsity pattern in the incidence matrix. In concluding Sect. 5, we illustrate
our constructions by numerical results for the MAXCUT and Lovász capacity
problems on well-structured sparse graphs.

1 This result, which we get “for free”, can be also obtained from general results of [4] on existence
of positive semidefinite completions.
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2 Well-structured sparse symmetric matrices

In this section, we motivate and define the notion of a symmetric matrix with
“favorable sparsity pattern” and introduce notation to be used throughout the
paper.
Motivation. To get an idea what a “favorable sparsity pattern” might be, con-
sider the semidefinite program (1), and let A�, � = 1, . . . , L, be the diagonal
blocks of a generic matrix from N . Assume that these blocks possess certain
sparsity patterns. How could we utilize this sparsity? Our first observation is
that even high sparsity by itself can be of no use. Indeed, consider the simplest
SDP-related computational issue, that is, checking whether a symmetric n × n
matrix A is positive semidefinite. Assuming that we are checking positive semi-
definiteness of a sparse symmetric matrix A by applying Cholesky factorization
algorithm, that is, by trying to represent A as UUT with upper triangular U,
the nonzeros in U will, generically, be the entries i, j with i ≤ j ≤ i + vi, where
vi = 0 when Aii = 0 and i + vi = max{j : Aij �= 0} otherwise. In other words,
when adding to the original pattern of nonzero entries of A all entries i, j with
i ≤ j ≤ i + vi (and all symmetric entries), we do not alter the fill in of the
Cholesky factor. Therefore, we do not lose much by assuming that the original
pattern of nonzeros already was comprised of all super-diagonal entries (i, j)
with i ≤ j ≤ i + vi, with added symmetric entries (by performing reordering
some rows/columns of the matrix if necessary).

We arrive at the notion of a well-structured sparse n×n symmetric matrix with
sparsity pattern given by a nonnegative integral vector vi such that i + vi ≤ n
for all i; the “hard zero” super-diagonal entries i, j (i ≤ j) in such a matrix are
those with j > i + vi. Note that for such a matrix A, the “hard zeros” in the
upper triangular factor U of the Cholesky factorization A = UUT are exactly
the same as hard zeros in the upper triangular part of A. In particular, if A
is a well-structured sparse symmetric matrix with

∑
i vi � n2, then it is rela-

tively easy to check whether or not A � 0; to this end, it suffices to apply to A
the Cholesky factorization algorithm (where the factorization being sought is
A = UUT with upper triangular U).

Next, we introduce terminology and notation for dealing with “well-struc-
tured”, in the sense we have just motivated, sparsity patterns.
Simple sparsity structures and associated entities. Let v ∈ Rn be a simple spar-
sity structure – a nonnegative integral vector such that i + vi ≤ n for all i ≤ n.
We associate with structure v the following entities:

1. A subspace S(v) in the space Sn of symmetric n × n matrices; S(v) is com-
prised of all matrices [Aij]n

i,j=1 from Sn such that Aij = 0 for j > i + vi.
2. The set I = {i1 < i2 < · · · < im} of all integers representable as i + vi with

i ≤ n. Note that im = n, since n + vn = n (recall that i + vi ≤ n and vi ≥ 0).
We refer to m as the number of blocks in v.

3. The sets

Jk = {i ≤ ik : i + vi ≥ ik}, J′
k = {i ∈ Jk : i ≤ ik−1}, k = 1, . . . , m, (2)



Saddle point Mirror-Prox algorithm for SDPs 215

where i0 = 0 (that is, J′
1 = ∅). Note that Jk\Jk−1 = {ik−1 + 1, . . . , ik} and

that J′
k = Jk−1 ∩ Jk, where J0 = ∅.

4. The set of occupied cells ij – those with i ≤ j ≤ i + vi. For an occupied cell
ij, both integers i+vi and j+vj are elements of the set I = {i1, . . . , im}; thus,
min[i + vi, j + vj] = ik+ for certain k+ = k+(i, j) ≤ m. Since j ≤ i + vi, we
have j ≤ min[i + vi, j + vj] = ik+ . Therefore, the smallest k, let it be called
k− = k−(i, j), such that j ≤ ik, satisfies k− ≤ k+. Since j + vj is one of is, we
conclude that j+vj ≥ ik− . Note that the segment Dij = {k−, k− +1, . . . , k+}
is exactly the segment of those k for which i and j belong to Jk; we denote
by �(i, j) the cardinality of Dij.

5. Two diagonal matrices L and K defined as

L = Diag{�(1, 1)−1/2, . . . , �(n, n)−1/2}, K = Diag{�(1, 1), . . . , �(n, n)}.
(3)

We now provide an example to illustrate the definitions given above. Con-
sider a subspace of S7, consisting of all symmetric matrices with nonzero entries
specified as below

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

∈ S7.

We observe that the subspace defined above is S(v) with v = (3, 1, 3, 1, 2, 1, 0)T.
We easily see that m = 5, and i1 = 3, i2 = 4, i3 = 5, i4 = 6 and i5 = 7, and hence
I = {3, 4, 5, 6, 7}. Using (2), we have

J1 = {1, 2, 3}, J2 = {1, 3, 4}, J3 = {3, 4, 5}, J4 = {3, 5, 6}, J5 = {5, 6, 7},
J′

1 = ∅, J′
2 = {1, 3}, J′

3 = {3, 4}, J′
4 = {3, 5}, J′

5 = {5, 6}.

Using the definition of Dij, we have

D11 = {1, 2}, D22 = {1}, D33 = {1, 2, 3, 4}, D44 = {2, 3},
D55 = {3, 4, 5}, D66 = {4, 5}, D77 = {5},

and hence,

�(1, 1) = 2, �(2, 2) = 1, �(3, 3) = 4, �(4, 4) = 2, �(5, 5) = 3,

�(6, 6) = 2, �(7, 7) = 1.
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Therefore, we obtain that

L = Diag
{

1√
2

, 1,
1
2

,
1√
2

,
1√
3

,
1√
2

, 1
}

, K = Diag{2, 1, 4, 2, 3, 2, 1}.

Finally, in the sequel λmin(A) (resp., λmax(A)) denotes the minimal (resp., max-
imal) eigenvalue of a symmetric matrix A. δi

j denotes the Kronecker delta. For
a finite set J , we denote its cardinality by |J |.

3 Representation results for well-structured sparse symmetric matrices

Consider again the semidefinite program (1). Assuming that the diagonal blocks
A� in a generic matrix A ∈ N to be sparse, with well-structured sparsity pattern
as defined in Sect. 2, it is relatively easy to verify whether the Linear Matrix
Inequalities (LMIs) are satisfied at a given point (since the Cholesky factor-
ization A� = U�UT

� with upper triangular U� does not increase fill in). This
possibility, however, in many respects is not sufficient. When solving SDPs by
numerous advanced methods, including interior point ones, we would prefer
to deal with many small dense LMIs rather than with few large sparse ones,
at least in the case when the total row size of the former system of LMIs is of
the same order of magnitude as the total row size of the latter system. In this
respect, the following question is of definite interest:

Given a well-structured sparse matrix A, is it possible to express the fact
that A � 0 by a system of relatively small LMIs in variables Aij and perhaps
additional variables?

We are about to give an affirmative answer to this question.

3.1 Positive semidefiniteness of well-structured sparse matrices

In this subsection, we will provide some necessary and sufficient conditions for
a matrix from S(v) to be positive semidefinite. The following notations will be
used throughout the remaining paper.
Notation. Let J ⊂ {1, . . . , n} be an index set with � > 0 elements. We denote by
[Bij]i,j∈J the � × � matrix obtained from B by extracting the rows and columns
with indices in J, and by ]Bij[i,j∈J – the n×n matrix with entries Bij for all i, j ∈ J
and zero entries for the remaining pairs i, j.

The following notations will be used in this subsection and Subsect. 4.2 of
this paper.

Let v ∈ Rn be a simple sparsity structure, and Jk, k = 1, . . . , m, be the corre-
sponding index sets (see Sect. 2). We define B as an Euclidean space comprised

of collections B =
{

Bk =
[
Bk

ij = Bk
ji

]

i,j∈Jk

}m

k=1
of symmetric matrices, i.e.,
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B ≡
{

B = (B1, . . . , Bm) : Bk =
[
Bk

ij = Bk
ji

]

i,j∈Jk
, k = 1, . . . , m

}
,

and equipped with natural linear operations and the norm

‖B‖F =
√√
√√

m∑

k=1

‖Bk‖2
F ,

where ‖Bk‖F is the Frobenius norm of Bk. For B = {Bk = [Bk
ij = Bk

ji]i,j∈Jk}m
k=1 ∈

B, we set

Bk =]Bk
ij[i,j∈Jk∈ S(v), k = 1, . . . , m.

and define the linear mapping S(B) : B → S(v) as

S(B) =
m∑

k=1

Bk.

Proposition 1 (i) A matrix A ∈ S(v) is � 0 if and only if there exists
B = {Bk = [Bk

ij = Bk
ji]i,j∈Jk � 0}m

k=1 ∈ B such that

A = S(B) ≡
m∑

k=1

Bk. (4)

(ii) Whenever B = {Bk = [Bk
ij]i,j∈Jk � 0}m

k=1 satisfies (4), one has, for any n× n
real matrix W,

m∑

k=1

‖WTBkW‖2
F ≤ ‖WTAW‖2

F . (5)

(iii) We have
∀B ∈ B : ‖L1/2S(B)L1/2‖F ≤ ‖B‖F , (6)

where L is given by (3).

Illustration: Overlapping block-diagonal structure. Before proving Proposi-
tion 1, it makes sense to “visualize” its simplest “overlapping block-diagonal”
version. Consider a symmetric block-matrix of the form

A =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎦
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where ∗ marks nonzero blocks. Proposition 1.(i) says that such a matrix is
positive semidefinite if and only if it is the sum of positive semidefinite matrices
of the form

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

,

and similarly when the number of overlapping diagonal blocks is > 3.

Proof of Proposition 1. (i) Induction in m. For m = 1 the statement is evident.
Assuming that the statement is valid for m − 1, let us prove it for m. The “if”
part is evident; thus, assume that A ∈ S(v) is � 0, and let us prove the existence

of the required Bk. Let A =
[

P Q
QT R

]
with im−1 × im−1 block P. For ε ≥ 0, let

Aε =
[

P Q
QT R + εI

]
and Bε =

[
Q(R + εI)−1QT Q

QT R + εI

]
. We easily see that

Bε � 0. By the Schur Complement Lemma, we have Aε − Bε � 0, thus, Bε

remains bounded as ε → +0. Thus, we can find a sequence εt → +0, t → ∞,
and a matrix Bm such that

Bm = lim
t→∞ Bεt . (7)

Observe that both Bm and A − Bm are � 0. By construction, Bm =]Bm
ij [i,j∈Jm ;

besides this, the rows i and the columns j in C = A − Bm with i, j > im−1 are
zero. Removing these rows and columns, we get an im−1 × im−1 matrix C̄ ∈ S(v′),
where v′

i = min[im−1 − i, vi], 1 ≤ i ≤ im−1 = dim v′. Clearly, the number of
blocks in v′ is m − 1, and the corresponding index sets Jk, 1 ≤ k ≤ m − 1, are
the same as for v. Applying to C̄ the inductive hypothesis, we can find m − 1

matrices Bk =]Bk
ij[i,j∈Jk� 0, k = 1, . . . , m − 1, such that C =

m−1∑

k=1
Bk, whence

A = C + Bm =
m∑

k=1
Bk with Bk � 0 of the required structure. The induction is

over.
(ii) For matrices B, C � 0, one has Tr(BC) ≥ 0. It follows that under the

premise of (ii) one has ‖∑
k

WTBkW‖2
F ≥∑

k
‖WTBkW‖2

F .
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(iii) Let A = S(B), so that Aij = ∑

k:i,j∈Jk

Bk
ij. Recall from Sect. 2 that �(i, j) =

|{k : i, j ∈ Jk}| for every i, j. We have

‖L1/2AL1/2‖2
F = ∑

i,j
A2

ij�
−1/2(i, i)�−1/2(j, j)

= ∑

i,j

(
∑

k:i,j∈Jk

Bk
ij

)2

�−1/2(i, i)�−1/2(j, j)

≤ ∑
i,j

∑

k:i,j∈Jk

(Bk
ij)

2 �(i,j)√
�(i,i)�(j,j)

≤
(

max
i,j

�(i,j)√
�(i,i)�(j,j)

)
∑

i,j

∑

k:i,j∈Jk

(Bk
ij)

2

=
(

max
i,j

�(i,j)√
�(i,i)�(j,j)

)
‖B‖2

F ;

thus, in order to prove (iii) it suffices to verify that

�(i, j) ≤ √�(i, i)�(j, j)

for every i, j. This is evident due to

�(i, j) = |{k : i, j ∈ Jk}| ≤ min
[|{k : i ∈ Jk}|, |{k : j ∈ Jk}|] = min[�(i, i), �(j, j)].

��
Proposition 1(i) establishes a characterization for positive semidefiniteness

of matrices from S(v), but it does not give the explicit formulas for the matrices
Bk = [Bk

ij = Bk
ji]i,j∈Jk . We next develop an equivalent reformulation of positive

semidefiniteness of matrices from S(v) by introducing some additional variables.

Lemma 1 Let m > 1. A matrix A ∈ S(v) is � 0 if and only if there exists a matrix
�m−1 = (�m−1)T = [�m−1

ij ]i,j∈J′
m

such that the matrices

B ≡ Bm(A, �m−1) = [Bij
]

i,j∈Jm
: Bij =

{
Aij, i �∈ J′

m or j �∈ J′
m

�m−1
ij , i, j ∈ J′

m
(8)

and

C ≡ Cm(A, �m−1) = [Cij
]im−1

i,j=1 : Cij =
{

Aij, i �∈ J′
m or j �∈ J′

m
Aij − �m−1

ij , i, j ∈ J′
m

(9)

are positive semidefinite.
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Proof A is the sum of matrices obtained from B and C by adding a number of
zero rows and columns; thus, if B and C are � 0, so is A. Conversely, assuming
A � 0, let us prove that there exists �m−1 such that the corresponding matrices
B, C are � 0. Let Bm be defined in (7). Recall from the proof of Proposition 1(i)

that Bm � 0 and A − Bm � 0. Now, let �m−1 =
[
Bm

ij

]

i,j∈J′
m

. From the construc-

tion of Bm, we see that B defined as in (8) satisfies B =
[
Bm

ij

]

i,j∈Jm
, and hence

B � 0. Similarly, C defined as in (9) is actually the North-Western im−1 × im−1
block in A − Bm, and hence C � 0. ��

Observing that matrix C = Cm(A, �m−1) belongs to S(v′), where v′ = (v′
1, . . . ,

v′
im−1

)T , where v′
i = min[vi, im−1 − i], 1 ≤ i ≤ im−1, and applying Lemma 1

recursively, we arrive at the following result.

Theorem 1 Let v ∈ Rn be an integral nonnegative vector such that i + vi ≤ n
for all i, let I = {i1 < i2 < · · · < im} be the image of {1, 2, . . . , n} under the
mapping i �→ i + vi, and let the sets Jk, J′

k be defined by (2). A matrix A ∈ S(v)

is � 0 if and only if this matrix can be extended, by properly chosen matrices

�k = [�k]T =
[
�k

ij

]

i,j∈J′
k+1

, k = 1, 2, . . . , m−1, to a solution of an explicit system

S of m LMIs

Bk(A, �) � 0, k = 1, . . . , m

given by the following recurrence:
Initialization: Set k = m, Cm = A. Step k, m ≥ k ≥ 1: Given matrix Ck ∈
S(vk), with vk

i = min[ik − i, vi], i = 1, 2, . . . , ik, set

Bk(A, �) = [Bk
ij]i,j∈Jk : Bk

ij =
{

Ck
ij , i ∈ Jk\J′

k or j ∈ Jk\J′
k

�k−1
ij , i, j ∈ J′

k

If k = 1, terminate, otherwise set

Ck−1 =
[
Ck−1

ij

]ik−1

i,j=1
: Ck−1

ij =
{

Ck
ij , i �∈ J′

k or j �∈ J′
k

Ck
ij − �k−1

ij , i, j ∈ J′
k

replace k with k − 1 and loop.

From the construction of Bk ≡ Bk(A, �) above, we see that each cell ij with
i ≤ j belongs to Bk exactly for all k ∈ Dij and for those k the corresponding
entry ij in Bk is

Bk
ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Aij, k−(i, j) = k = k+(i, j)

Aij −
k+(i,j)−1∑

ν=k−(i,j)
�ν

ij, k−(i, j) = k < k+(i, j)

�k−1
ij , k−(i, j) < k ≤ k+(i, j)

(10)
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Note that �k is the principal sub-matrix in Bk+1 corresponding to i, j ∈ J′
k+1,

and that A is the sum of matrices obtained from B1, . . . , Bm by adding zero rows
and columns. We arrive at the following result.

Theorem 2 A matrix A ∈ S(v) is � 0 if and only if there exist matrices �k =
[�k]T = [�k

ij]i,j∈J′
k+1

, 1 ≤ k ≤ m − 1, such that the matrices Bk = Bk(A, �) =
[Bk

ij]i,j∈Jk given by (10) are � 0. Whenever this is the case, one has

�k � 0, k = 1, . . . , m − 1
m−1∑

k=1
Tr(�k) ≤ Tr(A).

Let v ∈ Rn be a simple sparsity structure, and Jk, J′
k, k = 1, . . . , m, be the cor-

responding index sets (see Sec. 2). We define � as an Euclidean space comprised
of collections � = {�k = [�k]T = [�k

ij]i,j∈J′
k+1

}m−1
k=1 , i.e.,

� ≡
{
� = {�k = [�k]T = [�k

ij]i,j∈J′
k+1

}m−1
k=1

}
.

Let �ρ be a subset of � defined as

�ρ =
⎧
⎨

⎩
� ∈ � : �k � 0, k = 1, . . . , m − 1,

m−1∑

k=1

Tr(�k) ≤ ρ

⎫
⎬

⎭
. (11)

We denote by Bk(A, �) = [Bk
ij(A, �)]i,j∈Jk the linear matrix-valued functions of

A ∈ S(v), � ∈ � defined by (10). Finally, let

λmin(A, �) = min
1≤k≤m

λmin(Bk(A, �)).

The following proposition will be used in Sect. 4.

Proposition 2 Let A ∈ S(v), � ∈ � be such that λmin(A, �) = −λ < 0. Then
A � −λK, where K is given by (3).

Proof Let �̂k
ij =

{
�k

ij, i �= j
�k

ij + λ, i = j
, and let Â = A + λK. By (10), we have

i, j ∈ Jk ⇒ Bk
ij(Â, �̂) − Bk

ij(A, �) = λδi
j ,

whence Bk(Â, �̂) � 0, and Â = A + λK � 0. ��
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Sizes of S. We have expressed positive semidefiniteness of A ∈ S(v) as solvabil-
ity of an explicit system S (see Theorem 1) of LMIs in matrix A and additional
matrix variables �k, k = 1, . . . , m − 1. The sizes of S are as follows:

1. Number and sizes of LMIs. S contains m LMIs Bk(A, �) � 0 of row sizes
Sk = |Jk|, k = 1, . . . , m.

2. Number of additional variables. Let dk = ik − ik−1, k = 1, . . . , m. Clearly,
step k ≥ 2 of our construction adds Vk = (|Jk|−dk)(|Jk|−dk+1)

2 additional vari-
ables, and step k = 1 does not add new variables. Thus, the total number of
additional variables is

V =
m∑

k=2

(|Jk| − dk)(|Jk| − dk + 1)

2
.

Example: staircase structure. Before ending this subsection, we present an
example for positive semidefinite staircase matrices to illustrate the result estab-
lished in Theorem 2.

Let d = (d0, d1, . . . , dµ) be a staircase structure – collection of integers with
d0 ≥ 0 and d1, . . . , dµ > 0, and let |d| = d0 + · · · + dµ. Let S[d] be the subspace
of d-staircase symmetric matrices in S|d|, which is comprised of (µ+1)× (µ+1)

block matrices [Aij]µi,j=0 with di × dj blocks Aij such that A = AT and Aij = 0
for 0 < i < j − 1:

A ∈ S[d] ⇔ A =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

A0,0 A0,1 A0,2 . . . A0,µ−1 A0,µ

AT
0,1 A1,1 A1,2 0 0 0

AT
0,2 AT

1,2 A2,2 A2,3 0 0
... 0

. . .
. . .

. . . 0
AT

0,µ−1 0 0 AT
µ−2,µ−1 Aµ−1,µ−1 Aµ−1,µ

AT
0,µ 0 0 0 AT

µ−1,µ Aµ,µ

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

In view of the definition of simple sparsity structure, we easily see that
A ∈ S[d] iff A ∈ S(v), where v is a simple sparsity structure defined as

vi =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|d| − i, i ≤ d0

k+1∑

j=0
dj − i,

k−1∑

j=0
dj < i ≤

k∑

j=0
dj for k = 1, . . . , µ − 1

|d| − i,
µ−1∑

j=0
dj < i ≤ |d|

We also see that there are m = µ − 1 elements i1 < · · · < im in I given

by ik =
k+1∑

j=0
dj for k = 1, · · · , m. Using Theorem 2, we immediately have the

following result.
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Proposition 3 A d-staircase matrix A = [Aij]µi,j=0 is positive semidefinite if and
only if there exists

� =
{

�j =
[

�
j
0,0 �

j
0,1

[�j
0,1]T �

j
1,1

]

: �
j
0,0 ∈ Sd0 , �j+1

1,1 ∈ Sdj

}µ−2

j=1

such that

⎡

⎢⎢⎢
⎣

A0,0 −
µ−2∑

j=1
�

j
0,0 A0,1 A0,2 − �1

0,1

AT
0,1 A1,1 A1,2

AT
0,2 − [�1

0,1]T AT
1,2 A2,2 − �1

2,2

⎤

⎥⎥⎥
⎦

� 0,

⎡

⎢⎢
⎣

�
j−1
0,0 �

j−1
0,1 A0,j+1 − �

j
0,1

[�j−1
0,1 ]T �

j−1
1,1 Aj,j+1

AT
0,j+1 − [�j

0,1]T AT
j,j+1 Aj+1,j+1 − �

j
1,1

⎤

⎥⎥
⎦ � 0, j = 2, . . . , µ − 2

⎡

⎢
⎣

�
µ−2
0,0 �

µ−2
0,1 A0,µ

[�µ−2
0,1 ]T �

µ−2
1,1 Aµ−1,µ

AT
0,µ AT

µ−1,µ Aµ,µ

⎤

⎥
⎦ � 0.

3.2 Positive semidefinite completion of matrices from S(v)

Let C(v) be the cone of matrices Z from S(v) admitting positive semidefi-
nite completion, that is, those Z which can be made positive semidefinite
by replacing “hard zero” entries ij (those with j > i + vi or i > j + vj)
with appropriate, perhaps nonzero, entries. Also, let S(v)

+ = S(v) ∩ Sn+,
S(v)

⊥ = {
Z ∈ Sn : Tr(XZ) = 0 ∀X ∈ S(v)

}
, and C = {

Z ∈ S(v) : Tr(XZ) ≥ 0∀
X ∈ S(v)

+
}

. We claim that C(v) = C. Indeed, we easily observe that for any

Z ∈ C,

min
{

Tr(XZ) : X ∈ S(v)
+
}

= 0. (12)

Since the subspace S(v) clearly intersects the interior of Sn+, the dual of (12) is

solvable and hence the dual feasible region
{

Y ∈ S(v)
⊥ : Z − Y � 0

}
�= ∅, which

immediately implies that Z ∈ C(v), and hence C ⊆ C(v). The converse C(v) ⊆ C
is evident. Thus, C(v) = C =

{
Z ∈ S(v) : Tr(XZ) ≥ 0 ∀X ∈ S(v)

+
}

, and C(v) can

be viewed as the dual cone of the cone S(v)
+ in the space S(v). This together with

Proposition 1 implies the following result.
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Proposition 4 A matrix Z = [
Zij
]n

i,j=1 ∈ S(v) belongs to C(v) if and only if all

matrices
[
Zij
]

i,j∈Jk
, k = 1, 2, . . . , m, are � 0.

Proof Since C = C(v), we see that Z ∈ C(v) iff Tr(XZ) ≥ 0 for any X ∈ S(v)
+ .

Invoking Proposition 1, we conclude that Z ∈ C(v) if and only if the optimal
value in the optimization problem

min
{]Xk

ij [i,j∈Jk�0}m
k=1

{

Tr

(

Z
m∑

k=1

]Xk
ij [i,j∈Jk

)}

is ≥ 0. Clearly, this is so if and only if

min
]Xk

ij [i,j∈Jk�0

{
Tr
(
]Zk

ij[i,j∈Jk ]Xk
ij [i,j∈Jk

)}
≥ 0, k = 1, . . . , m,

which implies that ]Zk
ij[i,j∈Jk� 0 for k = 1, . . . , m due to a well-known result

that, for a real symmetric matrix A, minX�0 Tr(AX) ≥ 0 if and only if A � 0. In
other words, Z ∈ C(v) if and only if [Zij]i,j∈Jk � 0, k = 1, . . . , m. ��
Remark 1 Alternatively to our exposition, the result stated in Proposition 4
can be obtained directly from the necessary and sufficient conditions, found
in [4], for a partially defined symmetric matrix to admit positive semidefinite
completion.

Corollary 1 For A ∈ S(v) one has

λmax(A) = max
Y

{
Tr(AY) : Y ∈ S(v), Tr(Y) = 1,

[
Yij
]

i,j∈Jk
� 0, k = 1, 2, . . . , m

}
.

(13)

Indeed, for A ∈ Sn we have λmax(A) = max
Y

{
Tr(AY) : Y ∈ Sn+, Tr(Y) = 1

}
;

when A ∈ S(v), the latter formula clearly can be rewritten as λmax(A) =
max

Y

{
Tr(AY) : Y ∈ C(v), Tr(Y) = 1

}
. Invoking Proposition 4, we arrive at (13).

Before ending this subsection, we give an example on positive semidefinite
completion of staircase matrices from S[d] to illustrate the result established in
Proposition 4.

Proposition 5 Let d be a staircase structure with µ > 1, and C[d] be the cone of
d-staircase matrices B admitting positive semidefinite completion. Then, a matrix
B ∈ S[d] belongs to C[d] if and only if

⎡

⎢
⎣

B0,0 B0,j B0,j+1
BT

0,j Bj,j Bj,j+1

BT
0,j+1 BT

j,j+1 Bj+1,j+1

⎤

⎥
⎦ � 0, j = 1, . . . , µ − 1.
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4 Using the representations

In this section, we will use the representations presented in Subsects. 3.1 and 3.2
to reformulate some large-scale SDP problems into saddle point problems. The
saddle point problem reformulations for a class of SDPs, and SDP relaxations
of Lovász capacity and MAXCUT problems are given in Subsects. 4.1, 4.2 and
4.3, respectively.

4.1 Semidefinite programs with well-structured sparse constraint matrices

Let v be a simple sparsity pattern. Consider the semidefinite program

Opt = max
x

{
cTx : x ∈ X, A[x] � 0

}
, (14)

where X is a “simple” (see below) convex compact set in RN and A[x] is affine
matrix-valued function on X taking values in S(v).

Throughout this subsection, we make the following assumptions:

A.1. We know a point x̄ ∈ X such that A[x̄] � 0;
A.2. We are given a finite upper bound, Optup, on the optimal value Opt in
(14);
A.3. We are given a finite upper bound, ρ, on the quantity

max
x

{Tr(A[x]) : x ∈ X, A[x] � 0} .

Given a point x̄ mentioned in A.1, let

ν = max {t : A[x̄] � tK} , (15)

where K is defined in (3). We start with the following simple fact (a kind of
“exact penalty” statement):

Lemma 2 Let Y = {Y = {Yk = [Yk
ij ]i,j∈Jk}m

k=1 : Yk � 0,
∑

k
Tr(Yk) ≤ 1}. Given

T ≥ 0, let us associate with (14) the saddle point problem

max
x∈X,�∈�ρ

FT(x, �)

FT(x, �) = min
Y∈Y

[

cTx + T
m∑

k=1
Tr(YkBk(A[x], �))

]
(16)

(for the definition of �ρ , see (11)). Assume that

T ≥ 1
ν
(Opt − cTx̄). (17)
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Let (xε , �ε) be an ε-solution to (16), that is, xε ∈ X, �ε ∈ �ρ and FT(xε , �ε) ≥
max

x∈X,�∈�ρ

FT(x, �) − ε. Then, the point

xε = 1
1 + γ

xε + γ

1 + γ
x̄, γ = max[0, −λmin(A[xε], �ε)]

ν
,

is a feasible ε-solution to (14), i.e., xε ∈ X, A[xε] � 0, and cTxε ≥ Opt − ε.

Proof We clearly have

FT(x, �) = cTx + T min[λmin(A[x], �), 0].

Further, by Theorem 2, A[x] with x ∈ X is � 0 if and only if max
�∈�ρ

λmin(A[x], �) ≥
0; thus, when x is feasible for (14), we have sup

�∈�ρ

FT(x, �) ≥ cTx, so that the

optimal value of (16) is ≥ Opt. Consequently, ε-optimality of xε for (16) implies
that

FT(xε , �ε) ≡ cTxε + T min[λmin(A[xε], �ε), 0] ≥ Opt − ε. (18)

It is possible that λmin(A[xε], �ε) ≥ 0; then xε is feasible for (14) by Theo-
rem 2, xε = xε , and (18) says that xε is a feasible ε-solution to (14). Now let
λmin(A[xε], �ε) = −λ < 0, so that γ = λ/ν. Then (18) implies that

cTxε + γ cTx̄ ≥ Opt − ε + Tλ + γ cTx̄ ≥ Opt(1 + γ ) − ε

where we have used (17) to get Tλ ≥ γ (Opt − cTx̄), whence cTxε ≥ Opt − ε. It
remains to note that A[xε] � −λK by Proposition 2, while A[x̄] � νK; it follows
that

A[xε] = (1 + γ )−1(A[xε] + γ A[x̄]) � (1 + γ )−1
[
−λK + λ

ν
νK
]

= 0.

��
Lemma 2 combines with the results of [6] to yield the following

Theorem 3 Consider problem (14) satisfying Assumptions A.1 – A.3, and let X
be either

(a) the Euclidean ball {x ∈ RN : ‖x‖2 ≤ R}, or the intersection of this ball
with nonnegative orthant,
or

(b) the box {x ∈ RN : ‖x‖∞ ≤ R},
or

(c) the ‖ · ‖1-ball {x ∈ RN : ‖x‖1 ≤ R}, or the full-dimensional simplex
{x ∈ RN : 0 ≤ x,

∑
i xi ≤ R}, or the “flat” simplex {x ∈ RN : 0 ≤ x,

∑
i xi = R}.

Assume that we are given an upper bound χ on the norm of the homogeneous
part of A[·] considered as a linear mapping from (RN , ‖ ·‖X) to (S(v), ‖ ·‖), where
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‖ · ‖X is ‖ · ‖2 in the cases of (a), (b), and is ‖ · ‖1 in the case of (c), while ‖ · ‖ is
the standard matrix norm (the largest singular value) throughout the remaining
part of this subsection.

Under the outlined assumptions, for every ε > 0 one can find a feasible ε-solu-
tion xε to (14) (so that xε ∈ X, A[xε] � 0 and cTxε ≤ Opt + ε) in no more than

N(ε) = O(1)
[Optup − cTx̄]√ln n

νε
×
⎧
⎨

⎩

[χR + ρ
√

ln n], case of (a)
[χR

√
N + ρ

√
ln n], case of (b)

[χR
√

ln(N) + ρ
√

ln n], case of (c)
,

(19)
steps, with computational effort per step dominated by the necessity

• to compute A[x], for a given x;
• to compute, given m symmetric matrices of the row sizes |Jk|, k = 1, . . . , m,

the eigenvalue decompositions of the matrices.

Above, O(1) is an absolute constant, N = dim x, n is the row dimension of A[·],
and ν is given by (15).

Proof Let T = Optup−cTx̄
ν

. By Lemma 2, a feasible ε-solution to (14) is readily
given by an ε-solution to the saddle point problem (16) with T we have just
defined. Now, problem (16) is of the form

max
u=(x,�)∈X×�ρ

min
Y∈Y⊂S

[
lin(u, Y) + T〈A(x) + D(�), Y〉] , (20)

where

• lin(u, Y) is an appropriate affine function of u, Y,
• Y = Diag{Y1, . . . , Ym}, Yk = [Yk

ij ]i,j∈Jk , k = 1, . . . , m, S is the linear space
of all block-diagonal matrices Y of the indicated block-diagonal structure,
and Y = {Y ∈ S : 0 � Y, Tr(Y) ≤ 1};

• A(·) is the linear mapping from RN into S defined as follows. Given x ∈ RN ,
we compute the homogeneous part A = A(x) = A[x] − A[0] of the map-
ping A[·] at x. The k-th diagonal block Ak(x) in A(x), k = 1, . . . , m, is the
contribution of A to Bk(A[x], �), see (10);

• D(·) is the linear mapping from the space Ŝ of block-diagonal matrices
� = Diag{�1, . . . , �m−1}, �� = [��

ij]i,j∈J′
�+1

, � = 1, . . . , m − 1, into S defined

as follows: The k-th diagonal block Dk(�) in D(�) is the contribution of �

to Bk(A[x], �), see (10);
• �ρ is the set of all positive semidefinite matrices from Ŝ with trace ≤ ρ;
• finally, 〈·, ·〉 is the Frobenius inner product on S.

Now, as shown in [6], the Mirror-Prox algorithm from [6] solves problem (20)
within any given accuracy ε > 0 in no more than

N(ε) = O(1)T
LXY

√
�X�Y + L�Y

√
���Y

ε
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steps of the complexity indicated in Theorem 3, where

�X =
⎧
⎨

⎩

R2, case (a)
R2N, case (b)
R2 ln N, case (c)

, �Y = ln n, �� = ρ2 ln n,

LXY is the norm of the linear mapping A considered as a mapping from (RN , ‖ ·
‖X) to (S, ‖ · ‖), and L�Y is the norm of the linear mapping D considered as
the mapping from (̂S, | · |1) to (S, ‖ · ‖), where |�|1 is the sum of modulae of
eigenvalues of � ∈ Ŝ. It remains to evaluate LXY and L�Y . Let x ∈ RN satisfy
‖x‖X ≤ 1, and let A = A(x), so that ‖A‖ ≤ χ . Invoking (10), it is immediately
seen that Ak(x), for every k, is a “border” in A: there exist two principal sub-
matrices in A embedded one into another such that Ak(x) is obtained from the
larger submatrix by replacing the entries belonging to the smaller one by zeros.
By eigenvalue interlacement Theorem, both submatrices are of norm ≤ χ , so
that the “border” is of norm ≤ 2χ , whence ‖A(x)‖ ≤ 2χ . Thus, LXY ≤ 2χ .
Now let us bound L�Y . The extreme points of the unit | · |1-ball D in Ŝ are
block-diagonal matrices with just one nonzero diagonal block, which is a sym-
metric rank 1 matrix of the corresponding size with the only nonzero singular
value equal to 1, or equivalently, is a rank 1 matrix of the Frobenius norm equal
to 1. For such a matrix �, it follows immediately from (10) that the Frobenius
(and then – the matrix) norm of every block in D(�) is at most 2. Since L�Y
is the maximum of the quantities ‖D(�)‖ over the extreme points � of D, we
conclude that L�Y ≤ 2. Combining our observations, we arrive at (19). ��

We have presented a rather general approach to solving SDPs by reduc-
ing them to saddle point problems which are further solved by the O(t−1)-
converging Mirror-Prox algorithm from [6]. In the sequel, we apply this scheme
to the problems of computing Lovász capacity of a graph and to MAXCUT,
with emphasis on utilizing favorable sparsity patterns of the underlying graphs.

4.2 Computing Lovász capacity for a graph with a favorable sparsity pattern

Let v = (v1, v2, . . . , vn+1)
T ∈ Rn+1 be a simple sparsity structure with v1 = n,

and let G be an undirected graph with n nodes, indexed by 2, 3, . . . , n + 1, and
the set of arcs E such that if (i, j) ∈ E and i ≤ j, then j ≤ i + vi. Recall from
Section 2 that, for each entry ij with 1 ≤ i ≤ j ≤ i + vi, �(i, j) is the number of
sets Jk (k = 1, . . . , m) such that i, j ∈ Jk. Let

η = max
2≤i≤n+1

�(i, i). (21)

Consider the Lovász capacity problem
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ϑ(G) = min
X,λ

{
λ : λIn − eeT − X � 0, (i, j) �∈ E ⇒ Xi−1,j−1 = 0

}

= min
X,λ

{
λ :
[

ν
√

νeT√
νe λIn − X

]
� 0, (i, j) �∈ E ⇒ Xi−1,j−1 = 0

}
(22)

where e ∈ Rn is the vector of ones and ν > 0 is a parameter. Note that the
equivalence of the two optimization problems in (22) is given by the Schur
Complement Lemma. Let M be the affine subspace in S(v) comprised of all

matrices of the form
[

ν
√

νeT√
νe Z

]
with Z constrained by the requirements

Z11 = Z22 = · · · = Znn; (i < j & (i, j) �∈ E) ⇒ Zi−1,j−1 = 0.

We equip S(v) (and thus M) with the Euclidean structure given by the inner
product

〈A, B〉L = 〈L1/2AL1/2, L1/2BL1/2〉,

where 〈P, Q〉 is the Frobenius inner product and L = Diag
{
{�−1/2(i, i)}n+1

i=1

}
(cf.

(3)). The norm on S(v) corresponding to the inner product 〈·, ·〉L will be denoted
‖ · ‖L. We denote by P the orthogonal projector of S(v) onto M, so that for any
A ∈ S(v) one has

P(A) =
[

ν
√

νeT
√

νe γ (A)In + Â

]
,

where γ (A) =
(∑n+1

i=2 �−1(i, i)Aii

) (∑n+1
i=2 �−1(i, i)

)−1
and the matrix Â is ob-

tained from the South-Eastern n×n angular block of A by replacing all diagonal
entries and all entries ij with (i, j) �∈ E with zeros.

Given an upper bound θ̂ ≤ n on the Lovász capacity, consider the following
optimization problem:

Opt = min
B={Bk=BT

k =[Bk
ij]i,j∈Jk }m

k=1

×
⎧
⎨

⎩
λ(B) + T‖S(B) − P(S(B))‖L :

Bk � 0, k = 1, . . . , m
m∑

k=1
Tr(B2

k) ≤ R2

⎫
⎬

⎭

S(B) =
m∑

k=1
Bk, Bk =]Bk

ij[i,j∈Jk

λ(B)=
(

n+1∑

i=2
�−1(i, i)(S(B))ii

)(
n+1∑

i=2
�−1(i, i)

)−1

=(P(S(B)))jj, j = 2, 3, . . . , n+1,

R =
√

θ̂ 2(n + 2|E|) + ν2 + 2νn,
(23)
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where T ≥ 1.
Observe that

Opt ≤ ϑ(G). (24)

Indeed, let X∗ be the X-component of the optimal solution to (22). Then the

matrix Y∗ =
[

ν
√

νeT√
νe ϑ(G)In − X∗

]
is � 0 and belongs to S(v); by Proposition

1, this matrix is S(B∗) for certain B∗ ∈ B with components B∗
k � 0. From the

latter fact and (5) it follows
∑

k ‖B∗
k‖2

F ≤ ‖Y∗‖2
F ≤ R2, with the latter inequality

readily given by the fact that |(X∗)ij| ≤ ϑ(G) due to Y∗ � 0. Thus, B∗ is fea-
sible for (23); at this feasible solution, the objective of (23) clearly is equal to
λ(B∗) = ϑ(G), and (24) follows.

Observe also that (23) is nothing but the saddle point problem

min
B∈B

max
Y∈Y

F(B, Y), (25)

where

B = {B ∈ B : Bk � 0, k = 1, . . . , m,
∑

k
‖Bk‖2

F ≤ R2}
Y = {Y ∈ S(v) : ‖Y‖L ≤ 1}

F(B, Y) = λ(B) + T〈Y, S(B) − P(S(B))〉L
(26)

Note that by (6) the norm of the linear part of the affine mapping

B �→ Q(B) = S(B) − P(S(B)),

treated as the mapping from the space B equipped with the norm ‖B‖F =√∑m
k=1 ‖Bk‖2

F to the space S(v) equipped with the norm ‖ · ‖L is ≤ 1.
Since the mapping Q is of norm ≤ 1, from the results of [6] the saddle point

problem (25) can be solved within accuracy ε > 0 in no more than

N(ε) = O(1)
TR
ε

(27)

steps, with the computational effort per step dominated by the necessity to find
eigenvalue decompositions of m symmetric matrices of the sizes |J1|, . . . , |Jm|.
Thus, for all practical purposes computational effort per step does not exceed

C = O(1)

m∑

k=1

|Jk|3. (28)
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Assume that we have found an ε-solution B̃ = {B̃k}m
k=1 ∈ B to (25), so that

λ(B̃) + T ‖
�

︷ ︸︸ ︷
S(B̃) − P(S(B̃)) ‖L︸ ︷︷ ︸

δ

≤ Opt + ε. (29)

and B̃k � 0 for all k, whence S(B̃) � 0. Observe that

P(S(B̃)) =
[

ν
√

νeT
√

νe λ(B̃)In − X

]
, (30)

where X is of the structure required in (22). Since ‖�‖L ≡ ‖L1/2�L1/2‖F = δ

(where �, δ are defined as in (29)), we have L1/2�L1/2 � δIn+1, whence � �
δL−1. This combined with S(B̃) � 0 results in P(S(B̃)) � −δL−1. This together
with (3), (21) and (30) implies that

[
ν + m1/2δ

√
νeT

√
νe [λ(B̃) + η1/2δ]In − X

]
� 0,

whence

[
ν

√
νeT

√
νe ν+m1/2δ

ν
[λ(B̃) + η1/2δ]In − ν+m1/2δ

ν
X

]

� 0.

Thus, an ε-solution B̃ to (25) can be easily converted to a feasible solution
(̃λ, X̃ = ν+m1/2δ

ν
X) to (22) with the value of the objective

λ̃ = ν+m1/2δ
ν

[λ(B̃) + η1/2δ]
≤ ν+m1/2δ

ν

[
Opt + ε − (T − η1/2)δ

]
[see (29)]

≤ ν+m1/2δ
ν

[
ϑ(G) + ε − (T − η1/2)δ

]
[see (24)]

= ϑ(G) + ε + δ
[

m1/2(ϑ(G)+ε)
ν

− (T − η1/2) ν+m1/2δ
ν

]
.

We arrive at the following result:

Proposition 6 Let η be defined as in (21), and let

T ≥ η1/2 + m1/2(ϑ(G) + ε)

ν
.

Then an ε-solution to (25) induces a feasible ε-solution to (22). The number of
steps required to get such a solution can be bounded by (27), while the computa-
tional effort per step can be bounded by (28).
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Corollary 2 Given an upper bound θ̂ on ϑ(G), let us set

φ(ν) =
(

η1/2 + m1/2θ̂

ν

)√
θ̂2(n + 2|E|) + ν2 + 2νn

and

ν̄ = argmin
ν>0

φ(ν), T̂ = η1/2 + m1/2θ̂

ν̄

With T = T̂, the outlined procedure allows, for every ε, 0 < ε ≤ θ̂ − ϑ(G), to
find a feasible ε-solution to (22) in no more than

N(ε) = O(1)
φ(ν̄)

ε

steps, with the complexity of a step given by (28).

Corollary 3 Let |E| ≥ n. Then, setting

ν = min
[
θ̂
√|E|, θ̂2|E|n−1

]
,

one gets

N(ε) ≤ O(1)
θ̂
√

m|E|
ε

.

Proof Indeed, with ν in question, we clearly have
√

θ̂ 2(n + 2|E|) + ν2 + 2νn ≤
O(1)θ̂

√|E|. Consequently,

φ(ν) ≤ O(1)θ̂
√|E|

⎛

⎜⎜
⎜⎜
⎝

η1/2
︸︷︷︸
≤m1/2

+ max

⎡

⎢⎢
⎢⎢
⎣

m1/2
√|E|
︸ ︷︷ ︸

≤1

,
m1/2n

θ̂ |E|︸ ︷︷ ︸
≤m1/2

⎤

⎥⎥
⎥⎥
⎦

⎞

⎟⎟
⎟⎟
⎠

≤ O(1)θ̂
√

m|E|.

This together with Corollary 2 implies that the conclusion holds. ��
Example: staircase structure Let p, q be positive integers, and n = p(q + 1).
Assume that the incidence matrix of the graph is from S[d], where d ∈ Rq+1

with di = p for i = 0, . . . , q. Then, from (22), we see that

i + vi =
⎧
⎨

⎩

n + 1, 1 ≤ i < 2 + p
1 + (k + 1)p, 2 + (k − 1)p ≤ i < 2 + kp, k = 2, . . . , q
1 + (q + 1)p, 2 + pq ≤ i ≤ n + 1
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In the preceding notation, we have ik = 1+ (k+2)p, k = 1, . . . , q−1, η = q−1,
|Jk| = 3p + 1, |E| ≤ O(1)p2q. Thus,

C = O(1)p3q, φ(ν) ≤ O(1)

(

q1/2 + q1/2θ̂

ν

)(
θ̂2p2q + ν2 + νpq

)1/2
.

Setting ν̂ = θ̂pq1/2, we get

φ( ν̂ ) ≤ O(1)q1/2
(
θ̂ 2p2q + p2q3/2θ̂

)1/2 ≤ O(1)θ̂pq
(

1 + q1/2θ̂−1
)1/2

.

Since the stability number of the corresponding graph clearly is at least O(q),
we have φ(̂ν) ≤ O(1)θ̂pq. Consequently, computing Lovász capacity within
accuracy ε costs at most

O(1)
θ̂pq
ε

× p3q = O(1)
θ̂p4q2

ε

operations. For comparison:

1. Saddle point approach, similar to the above one, as applied to comput-
ing Lovász capacity for a general pq-node graph G with O(p2q) arcs and

ϑ(G) ≤ θ̂ , results in the bound O(1)
θ̂p4q7/2

√
ln(pq)

ε
, see [6];

2. The arithmetic cost of a single interior point iteration in the problem of com-
puting Lovász capacity of a general pq-node graph is as large as O(1)p6q6,
and is at least p6q3 even in the case of graph possessing the structure in
question.

4.3 The MAXCUT problem on a graph with a favorable sparsity pattern

Consider a MAXCUT-type problem

Opt = max
X∈Sn

{
Tr(VX) : X � 0, diag(X) = e

}
(31)

where diag(A) is the diagonal of a square matrix A and e is the vector of ones.
Assume that V ∈ S(v) for a given simple sparsity structure v. By Proposition 4
problem (31) is equivalent to

Opt = max
X∈S(v)

{
Tr(VX) : diag(X) = e, Xk ≡ [Xij]i,j∈Jk � 0, k = 1, . . . , m

}
. (32)
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Let X = {X ∈ S(v) : |Xij| ≤ 1∀i, j, Xii = 1∀i}, Y = {Y = {Yk = [Yk
ij ]i,j∈Jk}m

k=1 :

Yk � 0,
∑

k Tr(Yk) ≤ 1}. Consider the saddle point problem

Opt+ = max
X∈X

�(X) ≡ min
Y∈Y

[

Tr(VX) + T
m∑

k=1

Tr(XkYk)

]

, (33)

where T > 0 is a parameter. Observe that the optimal value in (33) is ≥ Opt.
Indeed, if X∗ is an optimal solution to (32), then clearly X∗ ∈ X , and �(X∗) =
Tr(VX∗). Now let X be an ε-solution to (33), so that X ∈ X and

Tr(VX) − Tλ ≥ Opt+ − ε ≥ Opt − ε,
λ = max[0, −λmin(X1), . . . , −λmin(Xm)].

It is possible that λ = 0, that is, X is feasible for (32); in this case, X is a feasible
ε-solution to the latter problem. Now consider the case when λ > 0, and let
X̃ = (1 + λ)−1(X + λI). Clearly, X̃ is feasible for (32). Setting X̂ = X + λI, we
have

Tr(VX̂) = Tr(VX) + λTr(V) ≥ Opt − ε + λ[Tr(V) + T]
⇒ Tr(VX̃) ≥ (1 + λ)−1[Opt − ε] + λ[Tr(V) + T]

≥ Opt − ε + (1 + λ)−1λ
[
T + Tr(V) − Opt

]
.

We see that if

T ≥ Opt − Tr(V),

then X̃ is a feasible ε-solution to (32). This observation suggests the following
scheme for solving (32): given an upper bound Optup on Opt, we set T =
Optup − Tr(V) and solve saddle point problem (33) within accuracy ε, and then
convert, in the just presented fashion, the resulting X into a feasible ε-solution
to (32).

By [6], generating an ε-solution to (33) costs O(1)T
√

dim S(v)
√

ln n
ε

steps, with
the computational effort per step dominated by the necessity to find eigenvalue
decompositions of m matrices Xk, k = 1, . . . , m, where Xk is defined as in (32)
for X ∈ X . We arrive at the following result:

Proposition 7 Let an upper bound Optup on the optimal value in (31) be given.
For every ε > 0, a feasible ε-solution to problem (31) with V ∈ S(v) can be found
in no more than

N(ε) = O(1)
[Optup − Tr(V)]√ln n

√∑n
i=1(1 + vi)

ε
(34)

steps of Mirror-Prox algorithm [6], with O(1)
∑m

k=1 |Jk|3 operations per step.
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Table 1 Computational result for the Lovász capacity problem

(q,p) Nodes Edges LwBnd UpBnd Iter CPU

(4999,2) 10000 44988 2.497e3 2.516e3 11757 3h55′16′′
(9999,2) 20000 89988 4.996e3 5.045e3 17238 11h50′58′′
(14999,2) 30000 134988 7.484e3 7.545e3 30162 32h58′22′′
(19999,2) 40000 179988 9.952e3 1.004e4 34833 51h49′3′′
(3333,3) 10002 69987 1.660e3 1.676e3 10770 4h22′41′′
(6666,3) 20001 139980 3.329e3 3.358e3 20097 16h28′4′′
(9999,3) 30000 209973 4.998e3 5.046e3 24615 33h5′22′′
(13333,3) 40002 279987 6.643e3 6.708e3 29154 51h2′55′′
(2499,4) 10000 94952 1.249e3 1.259e3 8313 4h11′37′′
(4999,4) 20000 189952 2.491e3 2.514e3 17412 17h52′14′′
(7499,4) 30000 284952 3.747e3 3.784e3 21315 34h10′7′′
(9999,4) 40000 379952 4.972e3 5.022e3 28737 61h11′53′′
(1999,5) 10000 119925 9.970e2 1.001e3 9792 5h43′27′′
(3999,5) 20000 239925 1.995e3 2.013e3 13041 15h29′2′′
(5999,5) 30000 359925 2.989e3 3.016e3 23625 42h46′4′′
(7999,5) 40000 479925 3.990e3 4.022e3 27381 75h41′56′′
(1666,6) 10002 144921 8.301e2 8.382e2 9999 6h56′21′′
(3333,6) 20004 289950 1.659e3 1.676e3 14205 20h27′42′′
(4999,6) 30000 434892 2.496e3 2.517e3 17403 46h12′42′′
(6666,6) 40002 579921 3.331e3 3.364e3 21621 62h33′58′′

Remark 2 When V is a diagonal-dominated matrix: Vii ≥∑j �=i |Vij| (as it is the
case in the true MAXCUT problem), one clearly has Tr(V) ≤ Opt ≤ 2Tr(V).
In this case, one can set Optup = 2Tr(V), thus converting (34) into the bound

N(ε) ≤ O(1)
Tr(V)

ε

√
ln n
√∑n

i=1(1 + vi).

Example: staircase structure Let p, q be positive integers, and n = p(q + 1).
Consider the staircase structure d = (p, . . . , p) ∈ Rq+1, and assume that we
are given an n-node graph G with incidence matrix belonging to S[d]. Given

a matrix A of nonnegative weights of arcs in G, let Vij = 1
4

{−Aij, i �= j∑
j Aij, i = j ,

so that (31) becomes the standard MAXCUT problem associated with (A, G).
By Remark 2, the outlined scheme allows to solve the latter problem within

any accuracy ε > 0 at the arithmetic cost of O(1)
Opt

ε
p4q3/2

√
ln(pq) opera-

tions. Note that the arithmetic cost of a single interior point iteration as applied
to the “most economical”, in terms of the design dimension, dual reformula-
tion of (31), is O(1)p3q3. It follows that when a “moderate” relative accuracy
ε/Opt, say, ε/Opt = 0.01 is sought and q3/2 � p

√
ln(pq), the Mirror-Prox algo-

rithm as applied to the MAXCUT problem by far outperforms Interior Point
techniques. The difference becomes even more significant when we compare
the complexity bound for Mirror-Prox with the theoretical complexity bound

of O(1)
√

pq ln
(Opt

ε

)
p3q3 operations for IPMs (the factor O(1)

√
pq ln

(Opt
ε

)
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Table 2 Computational results for the MAXCUT problem

(q,p) Nodes Edges LwBnd UpBnd Iter CPU

(4999,2) 10000 44988 1.921e5 1.940e5 2604 51′22′′
(9999,2) 20000 89988 3.859e5 3.898e5 3711 2h20′40′′
(14999,2) 30000 134988 5.775e5 5.833e5 3963 3h50′19′′
(19999,2) 40000 179988 7.725e5 7.802e5 4137 5h10′46′′
(39999,2) 80000 359988 1.545e6 1.560e6 5622 13h53′19′′
(3333,3) 10002 69987 2.862e5 2.891e5 3447 1h29′56′′
(6666,3) 20001 139980 5.717e5 5.775e5 3765 3h14′50′′
(9999,3) 30000 209973 8.574e5 8.660e5 4536 5h58′23′′
(13333,3) 40002 279987 1.146e6 1.157e6 5355 9h4′41′′
(26666,3) 80001 559980 2.291e6 2.314e6 7260 24h24′51′′
(2499,4) 10000 94952 3.783e5 3.821e5 2673 1h21′31′′
(4999,4) 20000 189952 7.585e5 7.660e5 3531 3h36′46′′
(7499,4) 30000 284952 1.137e6 1.148e6 4317 6h49′26′′
(9999,4) 40000 379952 1.515e6 1.530e6 4773 9h42′54′′
(19999,4) 80000 759952 3.028e6 3.058e6 6393 25h53′39′′
(1999,5) 10000 119925 4.703e5 4.750e5 3012 1h53′49′′
(3999,5) 20000 239925 9.423e5 9.517e5 3177 3h53′26′′
(5999,5) 30000 359925 1.417e6 1.431e6 3741 9h6′1′′
(7999,5) 40000 479925 1.885e6 1.904e6 4338 10h32′40′′
(15999,5) 80000 959925 3.771e6 3.809e6 5508 26h32′50′′
(1666,6) 10002 144921 5.645e5 5.701e5 2487 1h44′37′′
(3333,6) 20004 289950 1.127e6 1.138e6 3153 4h23′17′′
(4999,6) 30000 434892 1.694e6 1.711e6 3558 9h42′34′′
(6666,6) 40002 579921 2.257e6 2.279e6 4263 11h53′27′′
(13333,6) 80004 1159950 4.514e6 4.559e6 5619 31h17′50′′

is the theoretical bound on the number of IPM iterations required to get an
ε-solution).

5 Numerical implementation

In this section, we present the results of numerical experiments with the Lovász
capacity problem (22) and the (semidefinite relaxation of the) MAXCUT prob-
lem (31). These problems were solved by the first-order Mirror-Prox algorithm
from [6] as applied to the saddle point reformulations (25), respectively, (33),
of the problems.

In our experiments, the incidence matrix has staircase structure with d =
(p, . . . , p) ∈ Rq+1 for some q > 0, with dense p × p blocks allowed by the struc-
ture. Note that the number of nodes in such a graph is n = (q + 1)p, while the

number of arcs is p2(5q−1)−p(q+1)
2 . For our computations, we generated graphs

with p = 2, 3, . . . , 6 and n ranging from about 10,000 to about 80,000 (so that
the number of arcs varied from about 50,000 to about 1,100,000). We terminate
the computations when the relative error, as given by valid on-line inaccuracy
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bounds generated by the Mirror-Prox algorithm, became less than 1% for both
problems. Our code is written in ANSI C. All computations are performed on
Supermicro dual−2.66 GHz Intel Xeon server with 2 GB RAM.
Lovász capacity problem When solving this problem according to the scheme
developed in Sect. 4.2, one needs an a priori upper bound θ̂ on ϑ(G). Using
the well-known result that Lovász capacity number of a graph G is bounded
above by the chromatic number of the complement graph, it easy to see that
for the graphs we are generating one can take θ̂ = q, and these were the upper
bounds used in our computations. The results are presented in Table 1. In Table
1, the first three columns report the sizes of our generated graphs. The fourth
and the fifth columns present the valid upper, respectively, lower bounds on
ϑ(G) as reported by the Mirror-Prox algorithm. The last two columns report
the number of steps and the CPU time.
Semidefinite relaxation of MAXCUT The graphs used in our experiments
have the same structure as in the case of Lovász capacity problems. The weights
of the arcs were picked at random from the uniform distribution in [1, 11]. The
results are presented in Table 2; the structure of Table 2 is identical to the one
of Table 1.
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