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Abstract

Neural network (NN) training is inherently a large-scale matrix optimization problem, yet the

matrix structure of NN parameters has long been overlooked. Recently, the optimizer Muon [28],

which explicitly exploits this structure, has gained significant attention for its strong performance in

foundation model training. A key component contributing to Muon’s success is matrix orthogonalization.

In this paper, we propose low-rank orthogonalization, which explicitly leverages the low-rank nature of

gradients during NN training. Building on this, we propose low-rank matrix-signed gradient descent

and a low-rank variant of Muon. Our numerical experiments demonstrate the superior performance

of low-rank orthogonalization, with the low-rank Muon achieving promising results in GPT-2 and

LLaMA pretraining—surpassing the performance of the carefully tuned vanilla Muon. Theoretically,

we establish the iteration complexity of the low-rank matrix-signed gradient descent for finding an

approximate stationary solution, as well as that of low-rank Muon for finding an approximate stochastic

stationary solution under heavy-tailed noise.

Keywords: Orthogonalization, Muon, foundation model training, iteration complexity, heavy-tailed noise

Mathematics Subject Classification: 49M37, 90C30, 90C90

1 Introduction

Training neural networks (NNs) [32], particularly recent foundation models [8], has consistently posed

challenging large-scale optimization problems. Over the past decade, NN training has been dominated by

vector-variate optimization methods—including SGD [9], AdaGrad [18], RMSprop [25], Adadelta [55],

Adam [29], and AdamW [37]. Nonetheless, these methods disregard the inherent matrix structure of NN

parameters—such as those in multi-layer perceptrons [45], convolutional layers [33], and the query, key,

and value projections in attention mechanisms [52].

Recently, a shift has taken place: optimization methods that exploit matrix structure are receiving

increasing attention and have begun to demonstrate strong performance in foundation model training

[28, 35, 41]. These methods focus on solving the matrix optimization problem:

min
X∈Rm×n

f(X). (1)
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In particular, Shampoo, developed in [5, 21], applies left and right preconditioning matrices as follows:

Xk+1 = Xk − ηk(Lk)−1/4Gk(Rk)−1/4, (2)

where ηk > 0 is the step size, Gk ∈ Rm×n denotes the (stochastic) gradient of f at Xk, and Lk ∈ Rm×m

and Rk ∈ Rn×n are the left and right preconditioning matrices, respectively. Shampoo updates the left

and right preconditioners {Lk} and {Rk} using the second-order statistics of the accumulated gradients,

similarly to AdaGrad, and has demonstrated comparable performance to popular vector-variate optimizers

such as Adam and AdamW on foundation model training. Following Shampoo, other matrix-variate

optimizers that use two-sided preconditioners, such as CASPR [19] and SOAP [53], were also developed.

A preconditioned Riemannian gradient descent method was developed in [7] for low-rank matrix recovery,

which adopts only the diagonal part of the Shampoo preconditioners. Moreover, one-sided preconditioned

variants of Shampoo were developed in [4, 54].

In addition to Shampoo and its variants, another matrix-variate optimizer, Muon [28], has attracted

significant attention for outperforming standard optimizers such as Adam and AdamW in foundation

model training [3, 35]. At each iteration, Muon performs the update:

Mk = (1 − θk−1)M
k−1 + θk−1G(Xk; ξk), Xk+1 = Xk − ηkmsgn(Mk), (3)

where G(·; ξ) is the stochastic gradient of f(·), and msgn(Mk) = Uk(V k)T denotes the matrix sign of

Mk, with Uk and V k being the left and right singular vectors of Mk, respectively. The matrix sign

computation is often referred to as matrix orthogonalization, because calculating msgn(M) is equivalent

to finding the (semi-)orthogonal matrix closest to M with respect to the Frobenius norm (see, e.g., [6,

Proposition 4]). Muon’s empirical success has sparked significant research interest, including efforts to

understand its relationship with other algorithms, establish its convergence guarantees, and propose

new variants (see, e.g., [4, 14, 15, 20, 30, 31, 34, 36, 38, 41, 43, 46, 47, 48]). A popular interpretation of

Muon is from the perspective of a linear minimization oracle with respect to the spectral norm (e.g., see

[6, 14, 20, 30, 31, 43]). That is, the matrix sign computation in (3) can be recast as:

−msgn(Mk) = arg min
∥∆∥≤1

{⟨Mk,∆⟩},

where ∥ · ∥ denotes spectral norm. Based on this interpretation, algorithmic designs leveraging general

matrix-induced norms ∥ · ∥p→q have been discussed in [6, 14, 20, 43]. In addition, Muon is also connected

to earlier algorithms and can be viewed as a special case of Shampoo, despite not explicitly using

preconditioners. As discussed in [28], by taking Lk = Gk(Gk)T and Rk = (Gk)TGk in (2), the Shampoo

updates reduce to the matrix-signed update: Xk+1 = Xk − ηkmsgn(Gk). Furthermore, convergence

guarantees for Muon have been extensively studied (e.g., see [4, 15, 30, 34, 43, 46, 47, 48]), and numerous

new variants—such as SWAN [38], Scion [41], Gluon [43], PolarGrad [31], Dion [1, 2], and AdaMuon

[49]—have been proposed.

Beyond applying orthogonalization, a key innovation of Muon is the use of a more GPU-friendly method—

specifically, Newton-Schulz iterations (typically with five steps)—to perform inexact orthogonalization,

which makes Muon well-suited for modern foundation model training. In fact, several earlier methods,

including spectral gradient descent [10, 11, 12] and orthogonalized gradient descent [51], have applied

orthogonalization using SVD to matrix optimization problems. However, since SVD is not computationally

efficient in GPU environments, these methods fail to scale to foundation model training.

Inspired by Muon and its orthogonalization subroutine, we aim at developing a faster, lightweight

orthogonalization method to be implemented in Muon and its variants. Specifically, our design leverages

the widely observed phenomenon that the gradient matrices of NN parameters are often low-rank (see, e.g.,
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[23, 26, 39, 57]). To exploit this low-rank property, we propose performing low-rank orthogonalization by

incorporating well-known matrix approximation techniques for low-rank matrices [16, 22]. Our approach

first constructs a low-rank projection of the gradient matrix using QR decomposition on a sketched matrix,

and then performs orthogonalization on the projected matrix by leveraging its structure. Our proposed

low-rank orthogonalization offers two main advantages over common orthogonalization:

• Computational efficiency: Orthogonalization can be seen as computing the polar factor of a given

full matrix. In contrast, our low-rank orthogonalization first computes the Q factor of a smaller

sketched matrix, followed by the polar factor of a projected matrix constructed using the Q factor.

Since both the QR decomposition and polar decomposition are performed on much smaller matrices,

our low-rank approach enjoys substantial computational savings for large-scale problems.

• Noise robustness: In the presence of noise, singular vectors associated with small singular values

often vary significantly, leading to instability in orthogonalization via Newton–Schulz iterations.

By contrast, our low-rank orthogonalization method clips these singular vectors to eliminate

unstable estimates of singular vectors associated with small singular values, thereby stabilizing the

orthogonalization process and yielding a robust estimate of the matrix sign.

These advantages will be illustrated in detail in Sections 3.1 and 4. Based on low-rank orthogonalization,

we develop low-rank matrix-signed gradient descent and a low-rank variant of Muon. We also establish

their complexity guarantees under mild assumptions.

Our main contributions are highlighted below.

• We propose low-rank orthogonalization to be incorporated into matrix-variate optimization algorithms

such as Muon. It can be efficiently executed on GPUs and serves as a lightweight substitute for

existing orthogonalization methods such as Newton-Schulz iterations.

• Under mild assumptions, we establish the iteration complexity of low-rank matrix-signed gradient

descent and a low-rank variant of Muon, respectively. To the best of our knowledge, our complexity

analysis of low-rank Muon provides the first result for Muon-type algorithms—including vanilla

Muon—under heavy-tailed noise.

The remainder of this paper is organized as follows. In Section 2, we introduce the notation and

assumptions used throughout the paper. In Section 3, we propose low-rank orthogonalization and, based on

it, develop low-rank matrix-sign gradient descent and low-rank Muon. In Section 4, we present numerical

results. Finally, we provide the proofs of the main results and concluding remarks in Sections 5 and 6,

respectively.

2 Notation and assumptions

Throughout this paper, we use Rm×n to denote the Euclidean space of m× n real matrices, and Z+ to

denote the set of all nonnegative integers. We use ∥ · ∥ to denote the Euclidean norm of a vector or the

spectral norm of a matrix; ∥ · ∥∗ and ∥ · ∥F to denote the nuclear norm and the Frobenius norm of a

matrix, respectively; and ⟨·, ·⟩ to denote the trace inner product for matrices. For any M ∈ Rm×n, we

use rank(M) to denote its rank, and [M ]k to denote its best rank-k approximation with respect to ∥ · ∥F .

We define the matrix sign of any nonzero matrix M ∈ Rm×n as msgn(M) = UV T , where U ∈ Rm×r and

V ∈ Rn×r are column-orthogonal matrices obtained from the reduced SVD of M . We let ϱ := min{m,n}.

In addition, we use Õ(·) to denote O(·) with logarithmic factors omitted.

We now make the following assumption throughout this paper.
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Assumption 1. (a) There exists a finite flow such that f(X) ≥ flow for all X ∈ Rm×n.

(b) There exists an L∗ > 0 such that ∥∇f(X) −∇f(Y )∥∗ ≤ L∗∥X − Y ∥ for all X,Y ∈ Rm×n.

Assumption 1(a) is standard. Assumption 1(b) is natural in the analysis of Muon-type algorithms and

has been used previously (e.g., see [15, 43, 48]). It follows from Assumption 1(b) that

f(Y ) ≤ f(X) + ⟨∇f(X), Y −X⟩ +
L∗
2
∥Y −X∥2 ∀X,Y ∈ Rm×n. (4)

We next provide a definition for approximate stationary points of problem (1).

Definition 1. For any ϵ ∈ (0, 1), we say that X ∈ Rm×n is an ϵ-nuclear norm stationary point (NSP)

of problem (1) if it satisfies ∥∇f(X)∥∗ ≤ ϵ, and that it is an ϵ-stochastic nuclear norm stationary point

(SNSP) of problem (1) if it satisfies E[∥∇f(X)∥∗] ≤ ϵ.

3 Matrix optimization with low-rank orthogonalization

In this section, we propose algorithms with low-rank orthogonalization for solving (1). In particular, we

first propose low-rank orthogonalization in Section 3.1, which serves as a subroutine in matrix-variate

optimization algorithms. Then, we propose low-rank matrix-signed gradient descent methods in Section 3.2,

and a low-rank variant of Muon in Section 3.3.

3.1 Low-rank orthogonalization

Orthogonalization has attracted increasing attention in recent optimizer designs, as it has shown strong

empirical promise in foundation model training (e.g., see [6, 28, 31, 51]). In this subsection, we develop a

low-rank orthogonalization method, leveraging low-rank matrix approximation techniques, that serves as

a lightweight substitute for the orthogonalization subroutine used in matrix-variate optimizers.

Specifically, our low-rank orthogonalization method, presented in Algorithm 1, is based on Gaussian

sketching [22]. This method first draws a Gaussian random matrix G ∈ Rn×r with r ≪ ϱ, and performs

a QR decomposition on MG to obtain a column-orthogonal Q factor Q ∈ Rm×r. Then, it computes

msgn(QTM) ∈ Rr×n and returns MO = Qmsgn(QTM) as a low-rank approximation for msgn(M). As

will be shown in Theorem 1, MO represents the matrix sign of QQTM , which is a low-rank approximation

of M . Its proof is deferred to Section 5.1.

Algorithm 1 A low-rank orthogonalization method

Input: matrix M ∈ Rm×n, rank trial r ∈ Z+ ∩ [1, ϱ].

Output: approximate matrix sign MO ∈ Rm×n.

Draw a Gaussian random matrix G ∈ Rn×r.

Perform a QR decomposition on MG to obtain a column-orthogonal Q factor Q ∈ Rm×r.

Return MO = Qmsgn(QTM). (On GPUs, msgn(QTM) is recommended to be estimated via Newton-

Schulz iterations.)

Theorem 1. Consider Algorithm 1 with inputs M ∈ Rm×n and r ∈ Z+ ∩ [1, ϱ], where ϱ := min{m,n}.
Let Q ∈ Rm×r be generated by Algorithm 1. Then, for any r∗ satisfying 2 ≤ r∗ ≤ r − 2, it holds that

E[∥(I −QQT )M∥F ] ≤
(

1 +
r∗

r − r∗ − 1

)1/2
∥M − [M ]r∗∥F . (5)
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Moreover, we have

msgn(QQTM) = Qmsgn(QTM). (6)

Remark 1. The relation (5) is adapted from [22, Theorem 10.5], where additional guarantees—such as

those involving different matrix norms and those providing high-probability bounds—can also be found.

In addition, low-rank matrix approximation based on column selection (e.g., see [16, 17]) can also be used

to develop a low-rank orthogonalization method. However, since its approximation guarantee is more

complicated than that of the Gaussian sketching-based approach, we defer the column-selection-based

low-rank orthogonalization method to Algorithm 5 in Appendix A.

Next, we illustrate two major advantages of our low-rank orthogonalization method, namely, computa-

tional efficiency and noise robustness, through synthetic experiments on randomly generated matrices.

Computational efficiency: We compare the computation time on GPUs for calculating inexact matrix

sign of high-dimensional matrices using Newton-Schulz iterations, low-rank orthogonalization based on

Gaussian sketching (Algorithm 1) and column selection (Algorithm 5), and truncated SVD.

For each n ∈ {1000, 2000, 5000, 10000}, we generate 50 random matrices M ∈ Rn×n, with each entry

following the standard Gaussian distribution. We then apply all competing orthogonalization methods to

estimate msgn(M). We implement Newton-Schulz iterations as provided in Muon [28] with 5 iterations.

For our low-rank orthogonalization methods, we set r = 0.1n as the input rank parameter, we use command

torch.linalg.qr to compute the Q factor, and apply 5 iterations of Newton-Schulz scheme following

Muon [28] to compute the matrix sign of QTM . In addition, we use command torch.pca lowrank for

efficiently performing truncated SVD, setting the rank to 0.1n for the truncation.

Figure 1: Left: Comparison of GPU computation time across Newton-Schulz iterations (NS), our low-rank

orthogonalization with Gaussian sketching (GS) and column selection (CS), and truncated SVD (TSVD).

Right: Speedup ratios of our low-rank orthogonalization methods compared to Newton-Schulz iterations.

We present a comparison of the computation time on GPUs for all competing methods in Figure 1,

and the time distribution of our low-rank orthogonalization method with Gaussian sketching in Figure 2.

From Figure 1, we observe that our low-rank orthogonalization method significantly reduces computation

time compared to Newton-Schulz iterations and truncated SVD. Although both truncated SVD and our

low-rank orthogonalization exploit low-rank structure for computation, truncated SVD is not well-suited

to GPU environments and is therefore slower than the Newton-Schulz iterations. From Figure 2, we

observe that in our low-rank orthogonalization method with Gaussian sketching, the QR decomposition

accounts for approximately half of the total time, while the Newton-Schulz iterations and other operations

(such as generating Gaussian random matrices and performing matrix multiplications) each make up

roughly half of the remaining time.
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Figure 2: Time distribution for low-rank orthogonalization with Gaussian sketching, including the QR

decomposition, the Newton-Schulz iterations for computing the matrix sign, and other computations.

Noise robustness: In addition to reducing computation time, our low-rank orthogonalization methods

also produce more robust estimates of the matrix sign for low-rank matrices in the presence of noise. This

robustness is particularly important in foundation model training, where gradients often exhibit low-rank

structure. We now compare the performance of Newton–Schulz iterations and our low-rank methods in

estimating the matrix sign of noisy, low-rank matrices.

For each n ∈ {1000, 2000, 5000, 10000}, we first randomly generate 10 nearly low-rank matrices

M ∈ Rn×n following strategy: the top 0.1n singular values are set to 1, the remaining singular values are

set to 10−4, and the singular vectors are randomly generated orthogonal vectors. For each M , we generate

50 noise matrices N ∈ Rn×n, with each entry drawn from a Gaussian distribution with mean zero and

variance σ2 ∈ {0.1, 1, 10}, and construct noisy matrices MN = M + N . We next apply Newton-Schulz

iterations, and our low-rank orthogonalization method based on Gaussian sketching (Algorithm 1), using

an input rank parameter 0.1n, to estimate msgn(MN ).1 For each M , we compute the trace of the

empirical covariance matrix of the estimates of msgn(MN ) produced by both Newton-Schulz iterations

and Algorithm 1. Both methods are implemented in the same way as in the above synthetic experiments

to illustrate the computational efficiency.

Figure 3: Comparison of variance levels in matrix sign estimation across Newton-Schulz iterations (NS),

and our low-rank orthogonalization methods using Gaussian sketching (GS), applied to nearly low-rank

matrices in the presence of noise.

Figure 3 presents a comparison of the average trace of the covariance matrices across all competing

methods for matrix sign estimation. From this figure, we observe that compared to applying the Newton-

Schulz iterations to the full matrix, our low-rank orthogonalization method yields matrix sign estimates

that are significantly less sensitive to noise. This is because singular vectors associated with small singular

values are more sensitive to noise than those corresponding to large singular values. As a result, our

1We omit low-rank orthogonalization with column selection (Algorithm 5) because its performance is similar to that of the

version with Gaussian sketching.
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low-rank method provides a more stable and robust estimate of the matrix sign function, particularly for

nearly low-rank matrices.

3.2 Low-rank matrix-signed gradient descent

In this subsection, we propose low-rank matrix-signed gradient descent methods, including a fixed-rank

variant and a safeguarded variant with adaptive ranks. Both variants use low-rank orthogonalization as a

subroutine.

Algorithm 2 Low-rank matrix-signed gradient descent

Input: starting point X0 ∈ Rm×n, rank parameter r ∈ Z+ ∩ [1, ϱ], step sizes {ηk} ⊂ (0,∞).

for k = 0, 1, 2, . . . do

Call Algorithm 1 (see Section 3.1) with (M, r) = (∇f(Xk), r) to obtain an approximate matrix sign

Mk
O, such that Mk

O = msgn(Mk
Q), where Mk

Q is a low-rank approximation for ∇f(Xk).

Update the next iterate:

Xk+1 = Xk − ηkM
k
O.

end for

At each iteration k ≥ 0, the fixed-rank variant invokes Algorithm 1 to compute Mk
O = msgn(Mk

Q),

where Mk
Q is a low-rank approximation of ∇f(Xk). Then, the next iterate Xk+1 is obtained by performing

a line search update from Xk along the matrix-signed direction −Mk
O with a suitable step size. Details of

this method are presented in Algorithm 2.

The following theorem provides a convergence guarantee for Algorithm 2, whose proof is deferred to

Section 5.2.

Theorem 2. Suppose that Assumption 1 holds. Let {(Xk,Mk
O)} be the sequence generated by Algorithm 2

with Mk
O = msgn(Mk

Q) for all k ≥ 0 and step sizes {ηk} given by

ηk =
1

(k + 1)1/2
∀k ≥ 0. (7)

Then, it holds that for all K ≥ 3,

min
0≤k≤K−1

{∥∇f(Xk)∥} ≤ f(X0) − flow + L∗ lnK

K1/2
+

2

K1/2

K−1∑
k=0

∥∇f(Xk) −Mk
Q∥∗

(k + 1)1/2
, (8)

where L∗ are defined in Assumption 1.

Remark 2. From Theorem 2, we observe that when {(Xk,Mk
Q)} satisfies

∑K−1
k=0 ∥∇f(Xk) −Mk

Q∥∗(k +

1)−1/2 = Õ(1), it holds that min0≤k≤K−1{∥∇f(Xk)∥∗} = Õ(K−1/2), which matches, up to a logarithmic

factor, the well-established optimal convergence rate for nonconvex optimization (e.g., see [13]). Moreover,

if the gradients {∇f(Xk)} have low rank when k sufficiently large (as is often the case during deep neural

network training [57]), we can tune the rank parameter r such that it is close to the effective rank of the

gradients, making the sequence {∥∇f(Xk) −Mk
Q∥∗} to remain close to zero.

We next describe a safeguarded low-rank matrix-signed gradient descent method with adaptively

updated ranks. At each iteration k ≥ 0, this method invokes Algorithm 1 with (M, r) = (∇f(Xk), rk) to

obtain Mk
O = msgn(Mk

Q), where Mk
Q is a low-rank approximation of ∇f(Xk) such that the approximation

7



error satisfies (9). Then, the next iterate Xk+1 is obtained by performing a line search update from Xk

along the matrix-signed direction −Mk
O, with a suitable step size. Details of this method are provided in

Algorithm 3.

It is noteworthy that the approximation error in (9) holds for some rk ≤ ϱ because when rk = ϱ, the

error ∥Mk
Q−∇f(Xk)∥ is zero. When the matrix is low-rank or has a small effective rank, rk can be chosen

to be much smaller than ϱ. In practice, one can gradually increase the trial ranks to find rk such that (9)

holds.

Algorithm 3 Safeguarded low-rank matrix-signed gradient descent

Input: starting point X0 ∈ Rm×n, initial rank trial r0 ∈ Z+ ∩ [1, ϱ], step sizes {ηk} ⊂ (0,∞), control

errors {δk} ⊂ (0,∞)

for k = 0, 1, 2, . . . do

Call Algorithm 1 (see Section 3.1) with (M, r) = (∇f(Xk), rk) to obtain an approximate matrix sign

Mk
O such that Mk

O = msgn(Mk
Q) and

∥∇f(Xk) −Mk
Q∥∗ ≤ δk. (9)

Update the next iterate:

Xk+1 = Xk − ηkM
k
O.

end for

The following theorem establishes an iteration complexity of Algorithm 3, whose proof is deferred to

Section 5.2.

Theorem 3. Suppose that Assumption 1 holds. Let flow and L∗ be given in Assumption 1, and define

Ugd := f(X0) − flow + L∗ + 4. (10)

Let {Xk} be generated by Algorithm 3 with input parameters {(ηk, δk)} given by

ηk = δk =
1

(k + 1)1/2
∀k ≥ 0. (11)

Then, for any ϵ ∈ (0, 1), it holds that min0≤k≤K−1{∥∇f(Xk)∥∗} ≤ ϵ for all K satisfying

K ≥ max
{(4Ugd

ϵ
ln
(4Ugd

ϵ

))2
, 3
}
.

Remark 3. From Theorem 3, we observe that Algorithm 3 achieves an iteration complexity of Õ(ϵ−2)

for finding an ϵ-NSP of (1). This complexity bound matches, up to a polylogarithmic factor, the lower

complexity bound as established in [13].

3.3 Low-rank Muon

In this subsection, we propose a low-rank variant of Muon [28], and analyze its iteration complexity under

heavy-tailed noise.

This method follows a framework similar to Muon [28], but instead of directly computing the matrix

sign of the momentum update, it computes only its low-rank approximation. Specifically, this method

generates three sequences {Xk}, {Mk}, and {Mk
O}. At each iteration k ≥ 0, it first performs a momentum
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update to generate Mk by aggregating stochastic gradients of f evaluated at X0, . . . , Xk. Then, Algorithm

1 is invoked to obtain Mk
O = msgn(Mk

Q), where Mk
Q is a low-rank approximation of ∇f(Xk) such that the

approximation error satisfies (13). The next iterate Xk+1 is obtained by performing a line search update

from Xk along the matrix-signed direction −Mk
O with a suitable step size. Details of this method are

given in Algorithm 4.

Before analyzing the complexity of Algorithm 4 for computing an approximate solution to (1), we

make the following heavy-tailed noise assumption regarding the stochastic gradient G(·; ξ).

Assumption 2. The stochastic gradient estimator G : Rm×n × Ξ → Rm×n satisfies

E[G(X; ξ)] = ∇f(X), E[∥G(X; ξ) −∇f(X)∥αF ] ≤ σα

for some σ > 0 and α ∈ (1, 2].

Algorithm 4 Low-rank Muon

Input: starting point X0 ∈ Rm×n, initial rank trial r0 ∈ Z+ ∩ [1, ϱ], step sizes {ηk} ⊂ (0,∞), weighting

parameters {θk} ⊂ (0, 1], control errors {δk} ⊂ (0,∞).

Initialize: M−1 = 0m×n and θ−1 = 1.

for k = 0, 1, 2, . . . do

Compute the full-rank search direction:

Mk = (1 − θk−1)M
k−1 + θk−1G(Xk; ξk). (12)

Call Algorithm 1 (see Section 3.1) with (M, r) = (Mk, rk) to obtain an approximate matrix sign

Mk
O such that Mk

O = msgn(Mk
Q) and

∥Mk −Mk
Q∥∗ ≤ δk. (13)

Update the next iterate:

Xk+1 = Xk − ηkM
k
O. (14)

end for

The following theorem establishes the iteration complexity of Algorithm 4, whose proof is deferred to

Section 5.3.

Theorem 4. Suppose that Assumptions 1 and 2 hold. Let flow and L∗ be given in Assumption 1, and σ

and α be given in Assumption 2, and define

Umn := f(X0) − flow + σα + 2L∗ + 4 + 2(α− 1)(2ϱ1/2/α)α/(α−1) + 6Lα
∗ + 4σα. (15)

Let {Xk} be generated by Algorithm 4 with input parameters {(ηk, θk, δk)} given by

ηk =
1

(k + 1)(2α−1)/(3α−2)
, θk =

1

(k + 1)α/(3α−2)
, δk =

1

(k + 1)(α−1)/(3α−2)
∀k ≥ 0. (16)

Then, for any ϵ ∈ (0, 1), it holds that E[∥∇f(XιK )∥∗] ≤ ϵ for all K satisfying

K ≥ max
{(2(3α− 2)Umn

(α− 1)ϵ
ln
(2(3α− 2)Umn

(α− 1)ϵ

))(3α−2)/(α−1)
, 3
}
,

where ιK is uniformly drawn from {0, . . . ,K − 1}.
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Remark 4. From Theorem 4, one can observe that Algorithm 4 achieves an iteration complexity of

Õ(ϵ−(3α−2)/(α−1)) for finding an ϵ-SNSP of problem (1), which matches the optimal dependence on ϵ in

the complexity results for vector-variate stochastic first-order methods under heavy-tailed noise (see, e.g.,

[24, 56]). To the best of our knowledge, our result is the first to show that the Muon-type algorithm can

achieve an iteration complexity with optimal dependence on ϵ when applied to matrix-variate optimization

under heavy-tailed noise.

4 Numerical experiments

In this section, we present numerical experiments to evaluate the performance of low-rank Muon (Algo-

rithm 4) and compare our method with vanilla Muon, AdamW, and SGD. The experiments are conducted

on a synthetic matrix regression problem (Section 4.1) and foundation model pretraining with GPT-2

(Section 4.2) and LLaMA (Section 4.3). All experiments are executed on a server with two NVIDIA A100

GPUs (80 GB).

4.1 Matrix regression

In this subsection, we consider the matrix regression problem:

min
X∈Rn×n

{
f(X) =

1

2
∥AXB − C∥2F

}
, (17)

where A ∈ Rp×n, B ∈ Rn×p, and C ∈ Rp×p are given data matrices. We simulate low-rank structure for

the gradients ∇f(X) by choosing n ≫ p = 100. For each n ∈ {103, 5 × 103, 104}, we set A = UAΣAV
T
A

and B = UBΣBV
T
B , where ΣA = ΣB = Diag([2, . . . , 2p]), and UA, VA, UB, and VB are randomly generated

column-orthogonal matrices. We also generate a ground truth solution X∗ with all entries independently

drawn from the standard Gaussian distribution, and set C = AXB + 10−3E, where all entries of E are

independently drawn from the standard Gaussian distribution.

Figure 4: Objective values (top row) and gradient Frobenius norms (bottom row) for all methods during

the first 2 × 104 iterations. Results for n = 103, 5 × 103, and 104 are shown in the left, middle, and right

columns, respectively. The computation times on GPUs are displayed in the legend for each plot.
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We apply low-rank Muon, Muon, AdamW, and SGD to solve (17). We implement two low-rank Muon

variants with rank parameters 50 and 100, abbreviated as LR-Muon50 and LR-Muon100, respectively. All

methods are implemented with full-batch (deterministic) gradients and initialized from the zero matrix.

We compare their performance based on the objective values and the Frobenius norm of the gradient for

problem (17), evaluated over the first 2 × 104 iterations. The algorithmic parameters are selected to suit

each method well in terms of computational performance.

For each n, we plot the objective values and the gradient Frobenius norms in Figure 4 to illustrate the

convergence behavior of all methods. Figure 4 demonstrates that our low-rank Muon achieves performance

comparable to vanilla Muon in iteration count, while significantly outperforming both SGD and AdamW. In

addition, SGD fails to converge effectively for problem (17). Furthermore, our low-rank Muon demonstrates

significantly faster computation times on GPUs compared to other variants, highlighting the advantages

of our low-rank orthogonalization procedures for computational efficiency.

Figure 5: Singular value distributions of the Q, K, and V matrices: across layers at iteration 300 (top

row) and over training iterations at layer 16 (bottom row) during GPT-2 pretraining.

4.2 GPT-2 pretraining

In this subsection, we consider pretraining GPT-2 [42], a transformer-based language model. We experiment

with GPT-2 models of sizes 60M, 135M, 350M, and 1B on the same three datasets tested in the Muon

GitHub repository [28]: FineWeb10B, FineWeb100B, and FineWebEdu10B.

We apply low-rank Muon, Muon, AdamW, and SGD with momentum (SGDM) for GPT-2 pretraining.

We implement two low-rank Muon variants with rank parameters 100 and 200, abbreviated as LR-

Muon100 and LR-Muon200, respectively. Following the experiments in [27, 31], we use AdamW to train

the embedding and head layers for Muon and low-rank Muon. We initialize all methods with the same

weights from pretrained GPT-2 models, and terminate all methods after one training epoch, consisting of

5000 iterations. We compare all methods using validation perplexity, a standard metric in foundation

model training (e.g., [42, 50, 52]), which is defined as the exponential of the validation loss and serves to

amplify performance differences. The algorithmic parameters are carefully tuned to suit each method well

in terms of computational performance. More details about the experimental setups including algorithm

and GPT-2 model parameters are deferred to Appendix B.
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Figure 6: Comparison of validation perplexity versus computational time for all competing methods in

training GPT-2 models.
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Table 1: Comparison of validation perplexity and computational time for all competing methods on GPT-2

pretraining.

Dataset Method
Validation Perplexity Computational Time

60M 135M 350M 1B 60M 135M 350M 1B

FineWeb10B

SGDM 48.85 48.85 31.54 27.86 2.51e3 7.08e3 1.20e4 2.70e5

AdamW 43.56 43.56 25.72 21.58 2.52e3 7.08e3 1.21e4 2.69e5

Muon 32.89 32.99 28.48 20.99 2.76e3 7.57e3 1.32e4 3.04e5

LR-Muon100 35.21 28.83 27.32 21.70 2.69e3 7.49e3 1.25e4 2.90e5

LR-Muon200 33.98 27.34 25.64 20.69 2.79e3 7.54e3 1.26e4 2.91e5

FineWeb100B

SGDM 51.48 51.48 77.50 29.75 2.69e3 7.25e3 1.04e4 2.52e5

AdamW 43.52 43.51 27.47 23.53 2.70e3 7.21e3 1.05e4 2.56e5

Muon 34.04 33.02 32.76 20.75 2.79e3 7.70e3 1.19e4 3.09e5

LR-Muon100 35.78 30.19 27.59 21.76 2.77e3 7.62e3 1.09e4 2.87e5

LR-Muon200 34.02 28.31 25.86 20.45 2.80e3 7.69e3 1.10e4 2.91e5

FineWebEdu10B

SGDM 50.92 77.50 31.54 25.49 2.56e3 7.09e3 1.20e4 2.53e5

AdamW 43.56 26.45 21.01 22.45 2.59e3 7.09e3 1.20e4 2.56e5

Muon 32.88 23.89 22.23 19.54 2.80e3 7.63e3 1.33e4 3.05e5

LR-Muon100 35.60 23.50 22.39 19.97 2.74e3 7.53e3 1.26e4 2.85e5

LR-Muon200 33.93 22.37 20.96 18.85 2.83e3 7.59e3 1.29e4 2.87e5

We visualize the top 100 singular values of the momentum updates {Mk} associated with the Q, K,

and V matrices for a 350M GPT-2 model trained by Muon on the FineWeb100B dataset in Figure 5. The

first and second rows of the figure display the top 100 singular values across different training iterations

and neural network layers, respectively. This visualization partly supports the low-rank nature of the

momentum updates.

We present a comparison of the validation perplexity and computational time in Table 1. From this

table, we observe that for GPT-2 with a model size of 60M, our low-rank Muon achieves validation

perplexity worse than Muon but better than AdamW and SGDM. For GPT-2 models with larger sizes,

our low-rank Muon achieves better validation perplexity than all other competing methods. We also

observe that the computational time of our low-rank Muon improves upon that of vanilla Muon, though all

Muon-type methods remain slower than SGDM and AdamW. These observations show that our low-rank

orthogonalization enables obtaining more generalizable GPT-2 models when the model size is large, but

may be less effective for smaller models. In addition, our low-rank orthogonalization saves computational

time compared to orthogonalization by Newton-Schulz iterations, but the gain is not as significant as

those discussed in Sections 3.1 and 4.1, since the forward and backward passes of neural networks account

for the majority of the computational time.

We plot the convergence behavior of validation perplexity versus training iterations in Figure 6. From

this figure, we observe that for each model size, the competing methods exhibit similar performance

patterns across the three datasets. For the model size of 60M, we observe that all Muon-type methods

consistently outperforms AdamW and SGDM, while our low-rank Muon performs slightly worse than

the vanilla Muon. For the 135M model size, we observe that our low-rank Muon outperforms the vanilla

Muon and other training methods. The vanilla Muon performs similarly to AdamW, and all methods

show a large improvement compared to SGDM. For the model size of 350M, we see that our low-rank

Muon has slightly better performance than AdamW, while outperforming Muon and SGDM by a larger

margin. These observations support that our low-rank Muon improves upon Muon in GPT-2 training and

13



is more effective for models with larger sizes.

With all the above observations and discussions, we conclude that our low-rank Muon is a viable

alternative to existing training methods and is particularly more effective than other methods for training

GPT-2 models with larger sizes.

4.3 LLaMA pretraining

In this subsection, we consider pretraining LLaMA [50], a transformer-based language model with a more

refined architecture than GPT-2. We experiment with LLaMA models of sizes 60M, 135M, 350M, and 1B

on the same three datasets tested in the Muon GitHub repository [28]: FineWeb10B, FineWeb100B, and

FineWebEdu10B.

Figure 7: Singular value distributions of the Q, K, and V matrices: across layers at iteration 300 (top

row) and over training iterations at layer 16 (bottom row) during LLaMA pretraining.

We apply low-rank Muon, Muon, AdamW, and SGD with momentum (SGDM) for pretraining LLaMA.

Similar to Section 4.2, we implement two versions of low-rank Muon with rank parameters 100 and 200,

and we use AdamW to train the embedding and head layers for Muon and low-rank Muon. We initialize

all methods with the same weights from pretrained LLaMA models, and terminate all methods after one

training epoch, consisting of 5000 iterations. We compare all methods using validation perplexity. The

algorithmic parameters are carefully tuned to suit each method well in terms of computational performance.

More details about the experimental setups including algorithm and LLaMA model parameters are deferred

to Appendix B.

We visualize the top 100 singular values of the momentum updates {Mk} associated with the Q, K,

and V matrices for a 350M LLaMA model trained by Muon on the FineWeb100B dataset in Figure 7. The

first and second rows of the figure display the top 100 singular values across different training iterations

and neural network layers, respectively. This visualization partly supports the low-rank nature of the

momentum updates.

We present a comparison of the validation perplexity and computational time in Table 2. From this

table, we observe that our low-rank Muon consistently achieves better validation perplexity compared to

Muon for the majority of model sizes and tested datasets, while vastly improving upon the validation

14



Table 2: Comparison of validation perplexity and computational time for all competing methods on

LLaMA pretraining.

Dataset Method
Validation Perplexity Computational Time

60M 135M 350M 1B 60M 135M 350M 1B

FineWeb10B

SGDM 94.90 86.99 86.49 44.71 2.49e3 5.27e3 1.20e4 2.77e5

AdamW 50.51 40.17 35.76 24.14 2.46e3 5.27e3 1.21e4 2.78e5

Muon 36.68 37.96 36.43 20.99 2.59e3 5.69e3 1.35e4 3.18e5

LR-Muon100 37.33 34.08 33.54 21.70 2.69e3 5.66e3 1.28e4 2.79e5

LR-Muon200 36.05 34.37 32.37 20.69 2.70e3 5.70e3 1.30e4 2.91e5

FineWeb100B

SGDM 81.59 77.50 87.49 37.56 2.60e3 5.44e3 1.05e4 2.65e5

AdamW 41.49 40.54 35.47 23.89 2.61e3 5.47e3 1.06e4 2.69e5

Muon 38.49 37.66 36.66 21.76 2.58e3 5.63e3 1.07e4 3.16e5

LR-Muon100 37.68 34.58 33.71 22.86 2.63e3 5.55e3 1.10e4 2.79e5

LR-Muon200 36.26 34.20 32.73 20.98 2.75e3 5.69e3 1.11e4 2.88e5

FineWebEdu10B

SGDM 82.63 73.48 73.48 47.56 2.57e3 5.27e3 1.20e4 2.76e5

AdamW 41.82 32.96 29.12 22.54 2.60e3 5.29e3 1.20e4 2.78e5

Muon 28.57 30.72 29.47 22.67 2.68e3 5.84e3 1.33e4 3.25e5

LR-Muon100 30.52 27.72 27.24 21.36 2.72e3 5.66e3 1.24e4 2.88e5

LR-Muon200 29.29 27.65 26.87 19.54 2.81e3 5.70e3 1.26e4 2.98e5

Figure 8: Comparison of validation perplexity and computational time for all competing methods in

training LLaMA models.
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perplexity achieved by AdamW and SGDM. We also observe that the computational time of our low-

rank Muon improves upon that of vanilla Muon, though all Muon-type methods remain slower than

SGDM and AdamW. These observations demonstrate that our low-rank orthogonalization produces more

generalizable LLaMA models across all tested model sizes and datasets. Moreover, it reduces computational

time compared to the Newton-Schulz iterations for orthogonalization, although the improvement is less

significant than the gains discussed in Sections 3.1 and 4.1. This is because most of the computational

time is dominated by the forward and backward passes of the neural networks.

We plot the convergence behavior of validation perplexity versus training iterations in Figure 8. From

this figure, we observe that for the model size of 60M, we observe that all Muon-type methods significantly

outperforms AdamW and SGDM, while our low-rank Muon has similar performance compared to the

vanilla Muon. For the 135M and 350M model size, we observe that our low-rank Muon significantly

outperforms the vanilla Muon and other training methods. These observations support that our low-rank

Muon consistently outperforms all other methods for training LLaMA models.

Based on the above observations, we conclude that our low-rank Muon improves upon existing methods

for training LLaMA models across the model sizes and datasets we tested.

5 Proof of the main results

In this section, we provide the proofs of our main results presented in Section 3, specifically Theorems 1

to 4.

We first provide three technical lemmas, whose proofs can be found in [24, Lemmas 1 to 3] and are

therefore omitted here. The next lemma provides an expansion for the α-power of the Frobenius norm,

generalizing the well-known identity ∥U + V ∥2F = ∥U∥2F + 2⟨U, V ⟩ + ∥V ∥2F and inequality ∥U + V ∥2F ≤
(1 + c)∥U∥2F + (1 + 1/c)∥V ∥2F for all U, V ∈ Rm×n and c > 0.

Lemma 1. For any α ∈ (1, 2], it holds that

∥U + V ∥αF ≤ ∥U∥αF + α∥U∥α−2
F ⟨U, V ⟩ + 2∥V ∥αF ∀U, V ∈ Rm×n, (18)

∥U + V ∥αF ≤ (1 + c)∥U∥αF + (2 + (α− 1)α−1c1−α)∥V ∥αF ∀U, V ∈ Rm×n, c > 0. (19)

The next lemma provides an estimation of the partial sums of series.

Lemma 2. Let ζ(·) be a convex univariate function. Then we have
∑b

r=a ζ(r) ≤
∫ b+1/2
a−1/2 ζ(τ)dτ for any

integers a, b satisfying [a− 1/2, b + 1/2] ⊂ dom ζ. Consequently, one has

b∑
r=a

1

rβ
≤

{
ln
(
b + 1

2

)
− ln

(
a− 1

2

)
if β = 1,

1
1−β

((
b + 1

2

)1−β −
(
a− 1

2

)1−β)
if β ∈ (0, 1) ∪ (1,+∞).

(20)

We next give a lemma that will be used to derive complexity bounds for our methods.

Lemma 3. Let β ∈ (0, 1) and u ∈ (0, e−1) be given. Then, it holds that v−β ln v ≤ 2uβ−1 for all

v ≥ (u−1 ln(u−1))1/β.

We next establish a descent property for f along a matrix-signed direction.

Lemma 4. Suppose that Assumption 1 holds. Let X,M ∈ Rm×n and η > 0 be given, and let X+ =

X − ηmsgn(M). Then we have

f(X+) ≤ f(X) − η∥∇f(X)∥∗ + 2η∥∇f(X) −M∥∗ +
L∗η

2

2
, (21)

where L∗ is given in Assumption 1.
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Proof. By the definition of the matrix-sign function, one has ∥msgn(M)∥ ≤ 1, and ⟨M,msgn(M)⟩ = ∥M∥∗.

It then follows from these and (4) with Y = X+ that

f(X+)
(4)

≤ f(X) + ⟨∇f(X), X+ −X⟩ +
L∗
2
∥X+ −X∥2

= f(X) + ⟨M,X+ −X⟩ + ⟨∇f(X) −M,X+ −X⟩ +
L∗
2
∥X+ −X∥2

≤ f(X) − η⟨M,msgn(M)⟩ + η∥∇f(X) −M∥∗∥msgn(M)∥ +
L∗η

2

2
∥msgn(M)∥2

= f(X) − η∥M∥∗ + η∥∇f(X) −M∥∗ +
L∗η

2

2

≤ f(X) − η∥∇f(X)∥∗ + 2η∥∇f(X) −M∥∗ +
L∗η

2

2
,

where the second inequality is due to X+ = X − ηmsgn(M) and the trace Hölder inequality, the second

equality is due to ∥msgn(M)∥∗ ≤ 1 and ⟨M,msgn(M)⟩ = ∥M∥∗, and the last inequality follows from the

triangular inequality. Hence, the conclusion (21) holds as desired.

5.1 Proof of the main results in Section 3.1

In this subsection, we prove Theorem 1.

Proof of Theorem 1. The proof of (5) can be found in [22, Theorem 10.5]. Next, we prove (6). Let

QTM = UQΣV T be the reduced SVD of QTM and UQ, V , and Q have orthogonal columns, and Σ

is diagonal. Denote U = QUQ. Since Q and UQ have orthogonal columns, we obtain that U also

has orthogonal columns; thus, QQTM = UΣV T is a reduced SVD of QQTM . Therefore, we have

msgn(QQTM) = UV T = QUQV
T = Qmsgn(QTM).

5.2 Proof of the main results in Section 3.2

In this subsection, we provide proofs of Theorems 2 and 3.

Proof of Theorem 2. Recall from Algorithm 2 that Mk
O = msgn(Mk

Q) for all k ≥ 0. Using this and

Lemma 4 with (X,X+,M, η) = (Xk, Xk+1,Mk
Q, ηk), we obtain that for all k ≥ 0,

f(Xk+1) ≤ f(Xk) − ηk∥∇f(Xk)∥∗ + 2ηk∥∇f(Xk) −Mk
Q∥∗ +

L∗η
2
k

2
. (22)

Summing (22) over k = 0, . . . ,K − 1 and using f(XK) ≥ flow, we obtain that for all K ≥ 1,

flow ≤ f(XK)
(22)

≤ f(X0) −
K−1∑
k=0

ηk∥∇f(Xk)∥∗ +

K−1∑
k=0

(
2ηk∥∇f(Xk) −Mk

Q∥∗ +
L∗η

2
k

2

)
≤ f(X0) − ηK−1

K−1∑
k=0

∥∇f(Xk)∥∗ +
K−1∑
k=0

(
2ηk∥∇f(Xk) −Mk

Q∥∗ +
L∗η

2
k

2

)
, (23)

where the last inequality is due to the fact that {ηk} is nonincreasing. Rearranging this inequality and

using (7), we obtain that for all K ≥ 3,

1

K

K−1∑
k=0

∥∇f(Xk)∥∗
(23)

≤ f(X0) − flow
KηK−1

+
1

KηK−1

K−1∑
k=0

(
2ηk∥∇f(Xk) −Mk

Q∥∗ +
L∗η

2
k

2

)
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(7)
=

f(X0) − flow
K1/2

+
1

K1/2

K−1∑
k=0

(2∥∇f(Xk) −Mk
Q∥∗

(k + 1)1/2
+

L∗
2(k + 1)

)
≤ f(X0) − flow + L∗ lnK

K1/2
+

2

K1/2

K−1∑
k=0

∥∇f(Xk) −Mk
Q∥∗

(k + 1)1/2
,

where the last inequality follows from
∑K−1

k=0 1/(k + 1) ≤ ln(2K + 1) ≤ 2 lnK for all K ≥ 3 due to (20).

Hence, the conclusion (8) holds as desired.

Proof of Theorem 3. Using (9), (10), (11), and the same arguments as for proving (8), we obtain that

for all K ≥ 3,

min
0≤k≤K−1

{∥∇f(Xk)∥}
(8)(9)

≤ (f(X0) − flow + L∗) lnK

K1/2
+

2

K1/2

K−1∑
k=0

δk
(k + 1)1/2

(11)
=

(f(X0) − flow + L∗) lnK

K1/2
+

2

K1/2

K−1∑
k=0

1

k + 1

≤ (f(X0) − flow + L∗ + 4) lnK

K1/2

(10)
=

Ugd lnK

K1/2
, (24)

where the last inequality follows from
∑K−1

k=0 1/(k + 1) ≤ ln(2K + 1) ≤ 2 lnK for all K ≥ 3 due to (20).

In addition, by Lemma 3 with (β, u, v) = (1/2, ϵ/(4Ugd),K), one can see that

K−1/2 lnK ≤ ϵ

Ugd
∀K ≥

(4Ugd

ϵ
ln

(4Ugd

ϵ

))2
,

which along with (24) implies that Theorem 3 holds.

5.3 Proof of the main results in Section 3.3

In this subsection, we begin by establishing some technical lemmas and use them to prove Theorem 4.

For convenience, we define a sequence of potentials for Algorithm 4 as follows:

Pk := f(Xk) + pk∥∇f(Xk) −Mk∥αF ∀k ≥ 0, (25)

where the sequence {(Xk,Mk)} is generated by Algorithm 4, and {pk} is a sequence of positive scalars that

will be specified separately later. The following lemma presents a recurrence relation for the estimation

error of the gradient estimators {Mk} generated by Algorithm 4.

Lemma 5. Suppose that Assumptions 1 and 2 hold. Let {(Xk,Mk)} be generated by Algorithm 4 with

input parameters {(ηk, θk)}. Then we have

Eξk+1 [∥Mk+1 −∇f(Xk+1)∥αF ] ≤ (1 − θk)∥Mk −∇f(Xk)∥αF + 3Lα
∗ θ

1−α
k ηαk + 2σαθαk ∀k ≥ 0, (26)

where L∗ is given in Assumption 1, and σ and α are given in Assumption 2.

Proof. Fix any k ≥ 0. It follows from (12) that

Mk+1 −∇f(Xk+1)
(12)
= (1 − θk)Mk + θkG(Xk+1; ξk+1) −∇f(Xk+1)

= (1 − θk)(Mk −∇f(Xk)) + (1 − θk)(∇f(Xk) −∇f(Xk+1)) + θk(G(Xk+1; ξk+1) −∇f(Xk+1)). (27)
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Notice from (13) that Mk
O = msgn(Mk

Q), which along with (14) implies that ∥Xk+1−Xk∥ = ηk∥msgn(Mk
Q)∥ ≤

ηk. Also, it follows from Assumption 1 that Eξk+1 [G(Xk+1; ξk+1)−∇f(Xk+1)] = 0, Eξk+1 [∥G(Xk+1; ξk+1)−
∇f(Xk+1)∥αF ] ≤ σα, and ∥∇f(Xk) −∇f(Xk+1)∥F ≤ ∥∇f(Xk) −∇f(Xk+1)∥∗ ≤ L∗ηk. Using these, (18),

(19), and (27), we obtain that for all c > 0,

Eξk+1 [∥Mk+1 −∇f(Xk+1)∥αF ]

(27)
= Eξk+1 [∥(1 − θk)(Mk −∇f(Xk)) + (1 − θk)(∇f(Xk) −∇f(Xk+1)) + θk(G(Xk+1; ξk+1) −∇f(Xk+1))∥αF ]

(18)

≤ ∥(1 − θk)(Mk −∇f(Xk)) + (1 − θk)(∇f(Xk) −∇f(Xk+1))∥αF + 2Eξk+1 [∥θk(G(Xk+1; ξk+1) −∇f(Xk+1))∥αF ]

(19)

≤ (1 + c)(1 − θk)α∥Mk −∇f(Xk)∥αF + (2 + (α− 1)α−1c1−α)(1 − θk)α∥∇f(Xk) −∇f(Xk+1)∥αF + 2σαθαk

≤ (1 + c)(1 − θk)α∥Mk −∇f(Xk)∥αF + Lα
∗ (2 + (α− 1)α−1c1−α)(1 − θk)αηαk + 2σαθαk , (28)

where the first inequality is due to (18) and Eξk+1 [G(Xk+1; ξk+1)−∇f(Xk+1)] = 0, the second inequality is

due to (19) and Eξk+1 [∥G(Xk+1; ξk+1)−∇f(Xk+1)∥αF ] ≤ σα, and the last inequality is due to ∥∇f(Xk)−
∇f(Xk+1)∥F ≤ L∗ηk.

When θk = 1, (26) clearly holds. For θk ∈ (0, 1), letting c = (1 − θk)1−α − 1 in (28), and using the fact

that α ∈ (1, 2], we have

c1−α = ((1 − θk)1−α − 1)1−α =
( 1

(1 − θk)α−1
− 1

)1−α
≤

( 1

1 − (α− 1)θk
− 1

)1−α

=
(1 − (α− 1)θk

(α− 1)θk

)α−1
≤ ((α− 1)θk)1−α,

where the first inequality follows from (1 − τ)β ≤ 1 − βτ for all τ ∈ (−∞, 1) and β ∈ [0, 1]. Combining

this inequality with (28), one has

Eξk+1 [∥Mk+1 −∇f(Xk+1)∥αF ] ≤ (1 − θk)∥Mk −∇f(Xk)∥αF + Lα
∗ (2 + θ1−α

k )(1 − θk)αηαk + 2σαθαk ,

which along with θk ∈ (0, 1] and α ∈ (1, 2] implies that (26) holds as desired.

The following lemma establishes a descent property for the potential sequence {Pk} defined below.

Lemma 6. Suppose that Assumptions 1 and 2 hold. Let {(Xk,Mk)} be generated by Algorithm 4 with

input parameters {(ηk, θk, δk)}, L∗ be given in Assumption 1, σ and α be given in Assumption 2, and

ϱ := min{m,n}, and let {Pk} be defined in (25) for {(Xk,Mk)} and any nonincreasing positive sequence

{pk}. Then, it holds that

Eξk+1 [Pk+1] ≤ Pk − ηk∥∇f(Xk)∥∗ + 2ηkδk +
L∗η

2
k

2

+
(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk ∀k ≥ 0. (29)

Proof. Fix any k ≥ 0. Recall from Algorithm 4 that Mk
O = msgn(Mk

Q) and ∥Mk −Mk
Q∥∗ ≤ δk. Using

these and (21) with (X+, X,M, η) = (Xk+1, Xk,Mk
Q, ηk), we obtain that

f(Xk+1) ≤ f(Xk) − ηk∥∇f(Xk)∥∗ + 2ηk∥∇f(Xk) −Mk
Q∥∗ +

L∗η
2
k

2

≤ f(Xk) − ηk∥∇f(Xk)∥∗ + 2ηk∥∇f(Xk) −Mk∥∗ + 2ηkδk +
L∗η

2
k

2
. (30)
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Combining this with (25) and (26), we obtain that

Eξk+1 [Pk+1]
(25)
= Eξk+1 [f(Xk+1) + pk+1∥∇f(Xk+1) −Mk+1∥αF ]

(26)(30)

≤ f(Xk) − ηk∥∇f(Xk)∥∗ + 2ηk∥∇f(Xk) −Mk∥∗ + 2ηkδk +
L∗η

2
k

2

+ (1 − θk)pk+1∥Mk −∇f(Xk)∥αF + 3Lα
∗ θ

1−α
k ηαk pk+1 + 2σαθαk pk+1

≤ f(Xk) − ηk∥∇f(Xk)∥∗ + 2ηkϱ
1/2∥∇f(Xk) −Mk∥F + 2ηkδk +

L∗η
2
k

2

+ (1 − θk)pk∥Mk −∇f(Xk)∥αF + 3Lα
∗ θ

1−α
k ηαk pk + 2σαθαk pk, (31)

where the second inequality follows from ∥U∥∗ ≤ ϱ1/2∥U∥F for all U ∈ Rm×n, and the fact that {pk} is

nonincreasing. In addition, letting α′ = α/(α− 1) and using the Young’s inequality, we obtain that

2ηkϱ
1/2∥∇f(Xk) −Mk∥F ≤

(
(αθkpk)1/α∥∇f(Xk) −Mk∥F

)α
α

+
(2ϱ1/2ηk/(αθkpk)1/α)α

′

α′

= θkpk∥∇f(Xk) −Mk∥αF +
(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
.

This along with (31) implies that

Eξk+1 [Pk+1] ≤ f(Xk) + pk∥∇f(Xk) −Mk∥αF − ηk∥∇f(Xk)∥∗ + 2ηkδk +
L∗η

2
k

2

+
(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk.

The conclusion (29) then follows from this and (25).

We are now ready to prove Theorem 4.

Proof of Theorem 4. Let {(Xk,Mk)} be generated by Algorithm 4 with {(ηk, θk, δk)} given in (16),

and {Pk} be defined in (25) with such {(Xk,Mk)} and the following {pk}:

pk = (k + 1)(α
2−3α+2)/(3α−2) ∀k ≥ 0. (32)

Since α ∈ (1, 2], one can see that {pk} is nonincreasing. Also, observe from (16) that {ηk} ⊂ (0, 1] and

{θk} ⊂ (0, 1]. Hence, {(ηk, θk, pk)} satisfies the assumptions in Lemma 6 and Algorithm 4. In addition, by

(25) and (32), one has that

E[P0] = f(X0) + p0E[∥M0 −∇f(X0)∥αF ] = f(X0) + E[∥G(X0; ξ0) −∇f(X0)∥αF ] ≤ f(X0) + σα, (33)

E[PK ] = E[f(XK) + pK∥MK −∇f(XK)∥αF ] ≥ E[f(XK)] ≥ flow. (34)

Taking expectation on both sides of (29) with respect to {ξi}k+1
i=0 , we have

E[Pk+1] ≤ E[Pk] − ηkE[∥∇f(Xk)∥∗]

+ 2ηkδk +
L∗η

2
k

2
+

(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk ∀k ≥ 0.

Summing up this inequality over k = 0, . . . ,K − 1, and using (33) and (34), we obtain that for all K ≥ 1,

flow
(34)

≤ E[PK ]
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≤ E[P0] −
K−1∑
k=0

ηkE[∥∇f(Xk)∥∗]

+
K−1∑
k=0

(
2ηkδk +

L∗η
2
k

2
+

(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk

)
(33)

≤ f(X0) + σα − ηK−1

K−1∑
k=0

E[∥∇f(Xk)∥∗]

+

K−1∑
k=0

(
2ηkδk +

L∗η
2
k

2
+

(α− 1)(2ϱ1/2ηk)α/(α−1)

αα/(α−1)(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk

)
, (35)

where the last inequality follows from (33) and the fact that {ηk} is nonincreasing. Rearranging the terms

in (35), and using (15), (16), and (32), we obtain that for all K ≥ 3,

1

K

K−1∑
k=0

E[∥∇f(Xk)∥∗]
(35)

≤ f(X0) − flow + σα

KηK−1

+
1

KηK−1

K−1∑
k=0

(
2ηkδk +

L∗η
2
k

2
+

(α− 1)(2ϱ1/2/α)α/(α−1)η
α/(α−1)
k

(θkpk)1/(α−1)
+ 3Lα

∗ θ
1−α
k ηαk pk + 2σαθαk pk

)
(16)(32)

=
f(X0) − flow + σα

K(α−1)/(3α−2)

+
1

K(α−1)/(3α−2)

K−1∑
k=0

( L∗

2(k + 1)2(2α−1)/(3α−2)
+

2 + (α− 1)(2ϱ1/2/α)α/(α−1) + 3Lα
∗ + 2σα

k + 1

)
≤ (f(X0) − flow + σα + 2L∗ + 4 + 2(α− 1)(2ϱ1/2/α)α/(α−1) + 6Lα

∗ + 4σα) lnK

K(α−1)/(3α−2)

(15)
=

Umn lnK

K(α−1)/(3α−2)
,

where the second inequality follows from
∑K−1

k=0 1/(k+1) ≤ 2 lnK due to (20) and K ≥ 3, and
∑K−1

k=0 1/(k+

1)2(2α−1)/(3α−2) ≤ (3α−2)2α/(3α−2)/α < 4 due to (20) and (3α−2)/α ∈ (1, 2]. Recall that ιK is uniformly

selected from {0, . . . ,K − 1}. It then follows from this and the above inequality that

E[∥∇f(XιK )∥∗] =
1

K

K−1∑
k=0

E[∥∇f(Xk)∥∗] ≤
Umn lnK

K(α−1)/(3α−2)
∀K ≥ 3. (36)

In addition, by Lemma 3 with (β, u, v) = ((α− 1)/(3α− 2), (α− 1)ϵ/(2(3α− 2)Umn),K), one can see that

K−(α−1)/(3α−2) lnK ≤ ϵ

Umn
∀K ≥

(2(3α− 2)Umn

(α− 1)ϵ
ln
(2(3α− 2)Umn

(α− 1)ϵ

))(3α−2)/(α−1)
,

which together with (36) implies that Theorem 4 holds.

6 Concluding remarks

In this paper, we introduce a new low-rank orthogonalization approach as a lightweight substitute for the

popular orthogonalization approach by Newton-Schulz iterations. Based on this low-rank orthogonalization,

we propose low-rank Muon and illustrate its advantages over existing training methods through experiments

on GPT-2 and LLaMA pretraining. Theoretically, we also establish complexity bounds for the proposed

low-rank Muon under heavy-tailed noise.

A key ingredient of our low-rank orthogonalization is the construction of a column-orthogonal matrix

Q, inspired by low-rank matrix approximation techniques. A valuable future research direction is to

explore alternative strategies for constructing Q. Some such alternatives are presented in Appendix A.
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K. Srinivasan, A. Tamkin, R. Taori, A. W. Thomas, F. Tramèr, R. E. Wang, W. Wang, B. Wu, J. Wu,
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A Low-rank orthogonalization procedures

In this part, we introduce two new low-rank orthogonalization methods as alternatives to Algorithm 1.

We first describe a low-rank orthogonalization method based on column selection. This method is

based on the low-rank matrix approximation techniques developed in [16, 17]. For any given M ∈ Rm×n, it

first performs column subsampling on M to select r columns, with r ≪ ϱ, based on the size of each column,

to construct a matrix C ∈ Rm×r. Then, this method performs a QR decomposition on C to obtain a

column-orthogonal matrix Q ∈ Rm×r, and computes msgn(QTM). Finally, it returns MO = Qmsgn(QTM)

as a low-rank approximation for msgn(M). Following the same arguments for proving (6), MO is the
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matrix sign of QQTM , which is a low-rank approximation of M . Details of this method are provided in

Algorithm 5.

The following theorem, adapted from [17, Theorem 4], provides the approximation error of QQTM .

Theorem 5. Consider Algorithm 5 with inputs M ∈ Rm×n and r ∈ Z+ ∩ [1, ϱ], where ϱ := min{m,n}.
Let Q ∈ Rm×r be generated by Algorithm 5. Then, it holds that

E[∥(I −QQT )M∥2F ] ≤ ∥M − [M ]r∥2F + 2∥M∥2F .

Algorithm 5 A low-rank orthogonalization method based on column selection

Input: matrix M ∈ Rm×n, rank trial r ∈ Z+ ∩ [1, ϱ].

Output: approximate matrix sign MO ∈ Rm×n.

Compute sampling probabilities {pi}ni=1 as pi = ∥M(i)∥2/∥M∥2F for i = 1, . . . , n.

for t = 1, 2, . . . , r do

Choose it ∈ {1, . . . , n} with probability P(it = i) = pi for i = 1, . . . , n.

Set C(i) = M(it)/
√
rpit .

end for

Perform a QR decomposition on C to get a column-orthogonal Q factor Q ∈ Rm×r.

Return MO = Qmsgn(QTM).

We next propose a low-rank orthogonalization method based on power iterations. This method is

based on the low-rank matrix approximation techniques developed in [22, 44]. Similar to Algorithm 1, this

method also uses a Gaussian random matrix G ∈ Rm×r with r ≪ ϱ, and performs a QR decomposition

on (MMT )qMG for some q ≥ 0 to obtain a column-orthogonal matrix Q ∈ Rm×r. The method then

computes msgn(QTM) ∈ Rr×n and returns MO = Qmsgn(QTM) as a low-rank approximation of msgn(M).

Following the same arguments used to prove (6), MO represents the matrix sign of QQTM , which is a

low-rank approximation of M . Details of this method are provided in Algorithm 6, and it can be seen

that the method reduces to Algorithm 1 when q = 0.

Algorithm 6 A low-rank orthogonalization procedure based on power iterations

Input: matrix M ∈ Rm×n, rank trial r ∈ Z+ ∩ [1, ϱ], exponent q ∈ Z+.

Output: approximate matrix sign MO ∈ Rm×n.

Generate a Gaussian random matrix G ∈ Rn×r.

Perform a QR decomposition on (MMT )qMG to get a column-orthogonal Q factor Q ∈ Rm×r.

Return MO = Qmsgn(QTM).

The following theorem, adapted from [40, Section 8.2], provides the approximation error of QQTM .

Theorem 6. Consider Algorithm 6 with inputs M ∈ Rm×n, r ∈ Z+ ∩ [1, ϱ], and q ∈ Z+, where

ϱ := min{m,n}. Let Q ∈ Rm×r be generated by Algorithm 5. Then, for any r∗ ≤ r − 2, it holds that

E[∥(I −QQT )M∥2] ≤
(

1 +

√
r∗

r − r∗ − 1
+ e

√
r

r − r∗
·
√
ϱ− r∗

)1/(2q+1)

σr∗+1,

where σr∗+1 is the (r∗ + 1)th largest singular value of M .

B Experimental details

In this part, we present the details for our experiments on pretraining GPT-2 and LLaMA models.
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Table 3 presents the hyperparameter configurations for the GPT-2 and LLaMA models. We employ

hyperparameters aligned with those used in [28, 57]. In addition, we set the maximum training sequence

length to 65,536 tokens, the maximum validation sequence length to 262,144 tokens, and the validation

dataset size to 10,485,760 tokens.

Table 3: Hyperparameter configurations for GPT-2 and LLaMA models.

# Parameters Hidden Dimension Intermediate Dimension # Heads # Layers

60M 512 1376 8 8

130M 768 2048 12 12

350M 1024 2736 16 24

1B 2048 5461 24 32

We present the algorithmic hyperparameter search grids for each method in Table 4, following a

similar choice as in [28, 31]. The best numerical performance for each training method across the grids is

presented in Section 4. In addition, we apply a warm-up schedule for the learning rate during the first

70% of the training iterations, followed by a cosine annealing schedule that reduces the learning rate to

10% of its initial value.

Table 4: Algorithmic hyperparameters. Here, ‘NS’ stands for Newton-Schulz.

Method Hyperparameters Values

SGDM

batch size 2

learning rate {1e-4, 1e-3, 1e-2}
weight decay {0, 1e-3, 1e-2}

AdamW

batch size 2

learning rate {1e-4, 1e-3, 1e-2}
weight decay {0, 1e-3, 1e-2}

Muon

batch size 2

learning rate {1e-2, 2.5e-2, 5e-2, 1e-3}
# NS steps {5, 10, 20}
weight decay 0

Low rank Muon

batch size 2

learning rate {1e-2, 2.5e-2, 5e-2, 1e-3}
rank {100, 200}
# NS steps {5, 10, 20}
weight decay 0
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