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Abstract

In the practical business environment, portfolio managers often face business-
driven requirements that limit the number of constituents in their tracking
portfolio. A natural index tracking model is thus to minimize a tracking error
measure while enforcing an upper bound on the number of assets in the port-
folio. In this paper we consider such a cardinality-constrained index tracking
model. In particular, we propose an efficient nonmonotone projected gradient
(NPG) method for solving this problem. At each iteration, this method usually
solves several projected gradient subproblems. We show that each subprob-
lem has a closed-form solution, which can be computed in linear time. Under
some suitable assumptions, we establish that any accumulation point of the
sequence generated by the NPG method is a local minimizer of the cardinality-
constrained index tracking problem. We also conduct empirical tests to com-
pare our method with the hybrid evolutionary algorithm [28] and the hybrid
half thresholding algorithm [30] for index tracking. The computational re-
sults demonstrate that our approach generally produces sparse portfolios with
smaller out-of-sample tracking error and higher consistency between in-sample
and out-of-sample tracking errors. Moreover, our method outperforms the other
two approaches in terms of speed.
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1 Introduction

Index tracking aims at replicating the performance and risk profile of a given market
index, and constructs a tracking portfolio such that the performance of the portfolio is
as close as possible to that of the market index. Index tracking problem has received
a great deal of attention in the literature (see, for example, [1, 2, 6, 8, 9, 10, 14, 15,
19, 21, 24, 25, 26, 28, 18]). An obvious approach is by full replication of the index. It,
however, can cause high administrative and transaction costs. Also, in the practical
business environment, portfolio managers often face business-driven requirements that
limit the number of constituents in their tracking portfolio. Therefore, index tracking
can reduce transaction costs and avoid detaining small and illiquid assets for the
index with a large number of constituents.

In this paper we consider a natural model for index tracking, which minimizes
a quadratic tracking error while enforcing an upper bound on the number of assets
in the portfolio. When short selling is not allowed, this model can be formulated
mathematically as

min
x∈∆u

r

TE(x) := ‖y − Rx‖2/T. (1.1)

Here, x ∈ ℜn is the weight vector of n index constituents; y ∈ ℜT is a sample vector of
portfolio returns over a period of length T ; R ∈ ℜT×n consists of the sample returns
of index constituents over the same period,

∆u
r :=

{

x ∈ ℜn :

∑n
i=1 xi = 1, ‖x‖0 ≤ r

0 ≤ xi ≤ u, i = 1, . . . , n

}

, (1.2)

‖x‖0 denotes the number of nonzero entries of x; and u ∈ [1/r, 1] is an upper bound on
the weight of each index constituent. The sum of error squares is used here to measure
the tracking error between the returns of the index and the returns of a portfolio. We
shall mention that another possible tracking error measure is the weighted sum of
error squares. Recently, Gao and Li [18] studied a related but different cardinality
constrained portfolio selection model, which minimizes the variance of the portfolio
subject to a given expected return and a cardinality restriction on the assets. They
developed some efficient lower bounding schemes and proposed a branch-and-bound
algorithm to solve the model.

Index tracking problem (1.1) involves a cardinality constraint and is generally NP-
hard. It is thus highly challenging to find a global optimal solution to this problem.
Recently, Fastrich et al. [16] studied a relaxation of (1.1) by replacing the cardinality
constraint in (1.1) by imposing an upper bound on the lq-norm (0 < q < 1) [12] of the
vector of portfolio weights. Xu et al. [30] considered a special case of this relaxation
with q = 1/2 and proposed a hybrid half thresholding algorithm for solving this l1/2
regularized index tracking model. Lately, Chen et al. [11] proposed a new relaxation
of problem (1.1), which minimizes the lq-norm regularized tracking error. They also
proposed an interior point method to solve the model. On the other hand, a local
optimal solution of (1.1) can be found by the penalty decomposition method and
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the iterative hard thresholding method that were proposed in [22, 23], respectively.
However, they are generic methods for a more general class of cardinality-constrained
optimization problems. When applied to problem (1.1), these methods may not
be efficient since they cannot exploit the specific structure of the feasible region of
problem (1.1).

Nonmonotone projected gradient (NPG) methods have widely been studied in the
literature, which incorporate the nonmonotone line search technique proposed in [20]
into projected gradient methods. For example, Birgin et al. [7] studied the conver-
gence of an NPG method for minimizing a smooth function over a closed convex set.
Dai and Fletcher [13] studied a NPG method for solving a box-constrained quadratic
programming in which Barzilai and Borwein’s scheme [4] is used to choose initial
stepsize. Recently, Francisco and Bazán [17] proposed an NPG method for minimiz-
ing a smooth objective over a general nonconvex set and showed that it converges
a generalized stationary point that is a fixed point of a certain proximal mapping.
It is known that NPG methods generally outperform the classical (monotone) pro-
jected gradient methods in terms of speed and/or solution quality (see, for example,
[7, 13, 3, 27]). In this paper, we propose a simple NPG method for solving problem
(1.1). At each iteration, our method usually solves several projected gradient sub-
problems. By exploiting the specific structure of the feasible region of problem (1.1),
we show that each projected gradient subproblem has a closed-form solution, which
can be computed in linear time. Moreover, we show that any accumulation point of
the sequence generated by our method is an optimal solution of a related convex opti-
mization problem. Under some suitable assumption, we further establish that such an
accumulation point is a local minimizer of problem (1.1). We also conduct empirical
tests to compare our method with the other two approaches proposed in [28, 30] for
index tracking. The computational results demonstrate that our approach generally
produces sparse portfolios with smaller out-of-sample tracking error and higher con-
sistency between in-sample and out-of-sample tracking errors. Moreover, our method
outperforms the other two approaches in terms of speed.

The rest of the paper is organized as follows. In section 2 we propose a non-
monotone projected gradient method for solving a class of optimization problems
that include problem (1.1) as a special case and establish its convergence. In section
3 we conduct empirical tests to compare our method with the other two existing
approaches for index tracking. We present some concluding remarks in section 4.

2 Nonmonotone projected gradient method

In this section we propose a nonmonotone projected gradient (NPG) method for
solving the problem

min
x∈∆u

r

f(x), (2.1)
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where ∆u
r is defined in (1.2) and f : ℜn → ℜ is Lipschitz continuously differentiable,

that is, there is a constant Lf > 0 such that

‖∇f(x)−∇f(y)‖ ≤ Lf ‖x− y‖ ∀x, y ∈ ℜn. (2.2)

Throughout this paper, ‖ · ‖ denotes the standard Euclidean norm. It is clear to
see that problem (2.1) includes (1.1) as a special case. Therefore, the NPG method
proposed below can be suitably applied to solve problem (1.1).

Nonmonotone projected gradient (NPG) method for (2.1)

Let 0 < Lmin < Lmax, τ > 1, c > 0, integer M ≥ 0 be given. Choose an arbitrary
x0 ∈ ∆u

r and set k = 0.

1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.

1a) Solve the subproblem

xk+1 ∈ Arg min
x∈∆u

r

{

∇f(xk)T (x− xk) +
Lk

2
‖x− xk‖2

}

(2.3)

1b) If

f(xk+1) ≤ max
[k−M ]+≤i≤k

f(xi)−
c

2
‖xk+1 − xk‖2 (2.4)

is satisfied, then go to step 2).

1c) Set Lk ← τLk and go to step 1a).

2) Set k ← k + 1 and go to step 1).

end

Remark.

(i) When M = 0, the sequence {f(xk)} is monotonically decreasing. Otherwise,
it may increase at some iterations and thus the above method is generally a
nonmonotone method.

(ii) A popular choice of L0
k is by the following formula proposed by Barzilai and

Borwein [4] (see also [7]):

L0
k = max

{

Lmin,min

{

Lmax,
(sk)Tyk

‖sk‖2

}}

,

where sk = xk − xk−1, yk = ∇f(xk)−∇f(xk−1).

We first show that for each outer iteration of the above NPG method, the number
of its inner iterations is finite.
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Theorem 2.1 For each k ≥ 0, the inner termination criterion (2.4) is satisfied after
at most

max

{⌊

log(Lf + c)− log(Lmin)

log τ
+ 1

⌋

, 1

}

inner iterations.

Proof. Let L̄k denote the final value of Lk at the kth outer iteration, and let nk

denote the number of inner iterations for the kth outer iteration. We divide the proof
into two separate cases.

Case 1): L̄k = L0
k. It is clear that nk = 1.

Case 2): L̄k < L0
k. Let H(x) denote the objective function of (2.3). By the

definition of xk+1, we know that H(xk+1) ≤ H(xk), which implies that

∇f(xk)T (xk+1 − xk) +
Lk

2
‖xk+1 − xk‖2 ≤ 0.

In addition, it follows from (2.2) that

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
Lf

2
‖xk+1 − xk‖2.

Combining these two inequalities, we obtain that

f(xk+1) ≤ f(xk)−
Lk − Lf

2
‖xk+1 − xk‖2.

Hence, (2.4) holds whenever Lk ≥ Lf + c. This together with the definition of L̄k

implies that L̄k/τ < Lf + c, that is, L̄k < τ(Lf + c). In view of the definition of nk,
we further have

Lminτ
nk−1 ≤ L0

kτ
nk−1 = L̄k < τ(Lf + c).

Hence, nk ≤
⌊

log(Lf+c)−log(Lmin)

log τ
+ 1

⌋

.

Combining the above two cases, we see that the conclusion holds.

We next establish convergence of the outer iterations of the NPG method.

Theorem 2.2 Let {xk} be the sequence generated by the above NPG method. There
hold:

(1) {f(xk)} converges and {‖xk − xk−1‖} → 0.

(2) Let x∗ be an arbitrary accumulation point of {xk} and J∗ = {j : x∗j 6= 0}. Then
x∗ is a stationary point of the problem

min
x

f(x)

s.t.
∑n

i=1 xi = 1, 0 ≤ xj ≤ u, j ∈ J∗;
xj = 0, j /∈ J∗.

(2.5)

Suppose further that f is convex. Then
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(2a) x∗ is a local minimizer of problem (2.1) if ‖x∗‖0 = r;

(2b) x∗ is a minimizer of problem (2.5) if ‖x∗‖0 < r.

Proof. (1) Notice that f is continuous in ∆ = {x ∈ ℜn :
∑n

i=1 xi = 1, 0 ≤ xi ≤
u ∀i}. Since {xk} ⊂ ∆, it follows that {f(xk)} is bounded below. Let ℓ(k) be an
integer such that [k −M ]+ ≤ ℓ(k) ≤ k and

f(xℓ(k)) = max
[k−M ]+≤i≤k

f(xi).

It is not hard to observe from (2.4) that f(xℓ(k)) is decreasing. Hence, limk→∞ f(xℓ(k)) =
f̂ for some f̂ ∈ ℜ. Using this relation, (2.4), and a similar induction argument as
used in [29], one can show that for all j ≥ 1,

lim
k→∞

dl(k)−j = 0, lim
k→∞

f(xl(k)−j) = f̂ ,

where dk = xk+1−xk for all k ≥ 0. In view of these equalities, the uniform continuity
of f over ∆, and a similar argument in [29], we can conclude that {f(xk)} converges
and {‖xk − xk−1‖} → 0.

(2) Let x∗ be an arbitrary accumulation point of {xk}. Then there exists a sub-
sequence K such that {xk}K → x∗, which together with ‖xk − xk−1‖ → 0 implies
that {xk−1}K → x∗. By considering a convergent subsequence of K if necessary, as-
sume without loss of generality that there exists some index set J such that xkj = 0
for every j /∈ J, k ∈ K and xkj > 0 for all j ∈ J, k ∈ K. Let L̄k denote the final
value of Lk at the kth outer iteration. From the proof of Theorem 2.1, we know that
L̄k ∈ [Lmin, τ(Lf + c)]. By the definition of xk, one can see that xk is a minimizer of
the problem

min
x∈∆u

r

{

∇f(xk−1)T (x− xk−1) +
L̄k−1

2
‖x− xk−1‖2

}

.

Using this fact and the definition of J , one can observe that xk is also the minimizer
of the problem

min
x∈Ω

{

∇f(xk−1)T (x− xk−1) +
L̄k−1

2
‖x− xk−1‖2

}

, (2.6)

where

Ω =

{

x ∈ ℜn :

∑n
i=1 xi = 1, 0 ≤ xj ≤ u, j ∈ J,

xj = 0, j /∈ J.

}

.

By the first-order optimality conditions of (2.6), we have

−∇f(xk−1)− L̄k−1(x
k − xk−1) ∈ NΩ(x

k) ∀k ∈ K, (2.7)

where NΩ(x) denotes the normal cone of Ω at x. Using L̄k−1 ∈ [Lmin, τ(Lf + c)],
{xk−1}K → x∗, ‖xk−xk−1‖ → 0, outer continuity of NΩ(·), and taking limits on both
sides of (2.7) as k ∈ K →∞, one can obtain that

−∇f(x∗) ∈ NΩ(x
∗). (2.8)
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Let Ω̃ be the feasible region of problem (2.5). Clearly, J∗ ⊆ J and hence Ω̃ ⊆ Ω, which
implies that NΩ(x

∗) ⊆ NΩ̃(x
∗). It then follows from (2.8) that −∇f(x∗) ∈ NΩ̃(x

∗).
Hence, x∗ is a stationary point of problem (2.5).

We next prove statements (2a) and (2b) under the assumption that f is convex.
(2a) Suppose that ‖x∗‖0 = r and f is convex. We will show that x∗ is a local

minimizer of problem (2.1). Let ǫ = min{x∗j : j ∈ J
∗},

Õ(x∗; ǫ) = {x ∈ Ω̃ : ‖x− x∗‖ < ǫ}, O(x∗; ǫ) = {x ∈ ∆u
r : ‖x− x∗‖ < ǫ},

where Ω̃ is defined above. Since f is convex and x∗ is a stationary point of (2.5), one
can conclude that x∗ is a minimizer of problem (2.5), which implies that f(x) ≥ f(x∗)
for all x ∈ Õ(x∗; ǫ). In addition, using the definition of ǫ and |J∗| = r, it is not
hard to observe that O(x∗; ǫ) = Õ(x∗; ǫ). It then follows that f(x) ≥ f(x∗) for all
x ∈ O(x∗; ǫ), which implies that x∗ is a local minimizer of problem (2.1).

(2b) Suppose that ‖x∗‖0 < r and f is convex. Recall from above that x∗ is a
stationary point of (2.5). Moreover, notice that problem (2.5) becomes a convex
optimization problem when f is convex. Therefore, the conclusion of this statement
immediately follows.

One can observe that problem (2.3) is equivalent to

xk+1 ∈ Arg min
x∈∆u

r

{

∥

∥

∥

∥

x−

(

xk −
1

Lk
∇f(xk)

)
∥

∥

∥

∥

2
}

,

which is a special case of a more general problem

min
x∈∆u

r

‖x− a‖2 (2.9)

for some a ∈ ℜn. In the remainder of this section we will show that problem (2.9)
has a closed-form solution, and moreover, it can be found in linear time. Before
proceeding, we review a technical lemma established in [22].

Lemma 2.1 Let Xi ⊆ ℜ and φi : ℜ → ℜ for i = 1, . . . , n be given. Suppose that
r is a positive integer and 0 ∈ Xi for all i. Consider the following l0 minimization
problem:

min

{

φ(x) =

n
∑

i=1

φi(xi) : ‖x‖0 ≤ r, x ∈ X1 × · · · × Xn

}

. (2.10)

Let x̃∗i ∈ Argmin{φi(xi) : xi ∈ Xi} and I∗ ⊆ {1, . . . , n} be the index set corresponding
to the r largest values of {v∗i }

n
i=1, where v

∗
i = φi(0)−φi(x̃

∗
i ) for i = 1, . . . , n. Then x∗

is an optimal solution of problem (2.10), where x∗ is defined as follows:

x∗i =

{

x̃∗i if i ∈ I∗;
0 otherwise,

i = 1, . . . , n.
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We are now ready to establish that problem (2.9) has a closed-form solution that
can be computed efficiently.

Theorem 2.3 Given any a ∈ ℜn, let I∗ ⊆ {1, . . . , n} be the index set corresponding
to the r largest values of {ai}ni=1. Suppose that λ∗ ∈ ℜ is such that

∑

i∈I∗

Π[0,u](ai + λ∗) = 1, (2.11)

where

Π[0,u](t) =







0 if t ≤ 0;
t if 0 < t < u;
u if t ≥ u

∀t ∈ ℜ.

Then x∗ is an optimal solution of problem (2.9), where x∗ is defined as follows:

x∗i =

{

Π[0,u](ai + λ∗) if i ∈ I∗;
0 otherwise,

i = 1, . . . , n.

Proof. Let d(x) and d∗ denote the objective function and the optimal value of (2.9),
respectively, and x∗ be defined above. We can observe that ‖x∗‖0 ≤ r,

∑n
i=1 x

∗
i = 1

and 0 ≤ x∗j ≤ u for all j, which implies that x∗ is a feasible solution of (2.9), namely,
x∗ ∈ ∆u

r . Hence, d(x
∗) ≥ d∗. Let ψ(t) = t2 − (t−Π[0,u](t))

2 for every t ∈ ℜ. It is not
hard to see that ψ is differentiable, and moreover,

ψ′(t) = 2t− 2(t−Π[0,u](t)) = 2Π[0,u](t) ≥ 0.

Hence, ψ(t) is increasing in (−∞,∞). Let φi(xi) = (xi − ai − λ∗)2, Xi = [0, u],
x̃∗i = argmin{φi(xi) : xi ∈ Xi} and v∗i = φi(0) − φi(x̃

∗
i ) for all i. One can observe

that x̃∗i = Π[0,u](ai + λ∗) and v∗i = ψ(ai + λ∗) for all i. By the definition of I∗ and
the monotonicity of ψ, we conclude that I∗ is the index set corresponding to the r
largest values of {v∗i }

n
i=1. In view of Lemma 2.1 and the definitions of x∗ and x̃∗, one

can see that x∗ is an optimal solution to the problem

d∗ = min
0≤x≤u,‖x‖0≤r

{

‖x− a‖2 − 2λ∗(

n
∑

i=1

xi − 1)

}

,

and hence,

d∗ = ‖x∗ − a‖2 − 2λ∗(

n
∑

i=1

x∗i − 1) = ‖x∗ − a‖2 = d(x∗).

In addition, we can observe that d∗ ≥ d∗. It then follows that d∗ ≥ d(x∗). Recall that
d(x∗) ≥ d∗. Hence, we have d(x∗) = d∗. Using this relation and x∗ ∈ ∆u

r , we conclude
that x∗ is an optimal solution of problem (2.9).

We next show that a λ∗ satisfying (2.11) can be computed in linear time, which
together with Theorem 2.3 implies that problem (2.9) can be solved in linear time as
well.
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Theorem 2.4 For any a ∈ ℜn and u ≥ 1/n, the equation

h(λ) :=

n
∑

i=1

Π[0,u](ai + λ)− 1 = 0. (2.12)

has at least a root λ∗, and moreover, it can be computed in O(n) time.

Proof. One can observe that h is continuous in (−∞,∞), and moreover, h(λ) = −1
when λ is sufficiently small and h(λ) = nu−1 ≥ 0 when λ is sufficiently large. Hence,
(2.12) has at least a root λ∗.

We next show that a root λ∗ to (2.12) can be computed in O(n) time. Indeed,
it is not hard to observe that h is a piecewise linear increasing function in (−∞,∞)
with breakpoints {−a1, . . . ,−an,−a1+u, . . . ,−an+u}. Suppose that only k of these
breakpoints are distinct and they are arranged in strictly increasing order {λ1 <
. . . < λk}. The value of h at each λi and the slope of each piece of h can be evaluated
iteratively. Indeed, let λ0 = −∞. Observe that h(λ) = −1 for all λ ≤ λ1. Hence,
h has slope s0 = 0 in (−∞, λ1] and h(λ1) = −1. Suppose that h has slope si−1 in
(λi−1, λi], and that h(λi) is already computed, and also that there are mi number of
{−a1, . . . ,−an} and ni number of {−a1+u, . . . ,−an+u} equal to λi. Then the slope
of h in (λi, λi+1] is si = si−1 +mi − ni, which yields h(λi+1) = h(λi) + si(λi+1 − λi)
for i = 1, . . . , k − 1. Since h(λ1) = −1, h(λk) = nu− 1 ≥ 0 and h is increasing, there
exists some 1 ≤ j < k such that h(λj) < 0 and h(λj+1) ≥ 0. If h(λj+1) = 0, then
λ∗ = λj+1 is a root to (2.12). Otherwise, λ∗ ∈ (λj , λj+1) and h(λ

∗) = 0. Using these
facts and the relation h(λ) = h(λj) + sj(λ− λj) for λ ∈ (λj, λj+1), we can have

λ∗ = λj − h(λj)/sj.

In addition, one can observe that the arithmetic operation cost of this root-finding
procedure is O(n).

3 Numerical results

In this section, we conduct numerical experiments to compare the performance of the
NPG method proposed in Section 2 with the hybrid evolutionary algorithm [28] and
the hybrid half thresholding algorithm [30] for solving index tracking problems. It
shall be mentioned that the NPG method solves the l0 constrained model (1.1) with
u = 0.5 while the hybrid evolutionary algorithm solves a mixed integer programming
model and the hybrid half thresholding algorithm [30] solves an l1/2 regularized index
tracking model. These three methods were coded in Matlab, and all computations
were performed on a HP dx7408 PC (Intel core E4500 CPU, 2.2GHz,1GB RAM) with
Matlab 7.9 (R2009b).

The data sets used in our experiments are selected from the standard ones in
OR-library [5] and the CSI 300 index from China Shanghai-Shenzhen stock market.
For the standard data sets, weekly prices of the stocks from 1992 to 1997 of Hang
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Seng (Hong Kong), DAX 100 (Germany), FTSE (Great Britain), Standard and Poor’s
100 (USA), the Nikkei index (Japan), the Standard and Poor’s 500 (USA), Russell
2000 (USA) and Russell 3000 (USA) are used. For CSI 300 index, the daily prices
of 300 stocks from 2011 to 2013 in China stock market are considered. According
to the sample scale, we divide the above data sets into two categories: small data
sets including Hang Seng, DAX 100, FTSE , Standard and Poor’s 100, the Nikkei
index; and large data sets including CSI 300, Standard and Poor’s 500, Russell 2000
and Russell 3000. As in Torrubiano and Alberto [28], each data set is partitioned
into two subsets: a training set and a testing set. The training set, called in-sample
set, consists of the first half of the data and is used to compute the optimal index
tracking portfolio. We also use the in-sample set and the formula for TE given in
(1.1) to calculate the tracking error, which is called in-sample tracking error (TEI) of
the portfolio. The testing set, called out-of-sample set, contains the rest of the data
and is used to test the performance of the resulting optimal index tracking portfolio.
In particular, we use the formula for TE in (1.1) with (R, y) replaced by the out-of-
sample set to calculate the tracking error, which is called out-sample tracking error
(TEO) of the portfolio. In addition, we denote the true sparsity of the optimal output
generated by each method by Strue.

For the NPGmethod, we set Lmin = 10−8, Lmax = 108, τ = 2, c = 10−4, andM = 3
for small data sets and M = 5 for large data sets. For the hybrid half thresholding
algorithm, the lower and upper bounds are chosen to be 0 and 0.5, respectively. We
terminate these methods when the absolute change of the approximate solutions over
two consecutive iterations is below 10−6 or the maximum iteration is 10, 000. For the
hybrid evolutionary algorithm, we set the lower bound to 0, the upper bound to 0.5,
initial population size to 100, mutation probability to 1%, cross probability to 50%,
and maximum iterations to 10, 000. In addition, we randomly choose a feasible point
of problem (1.1) as a common initial point for these three methods.

In order to measure the out-of-sample performance and the consistency between
in-sample and out-of-sample, we introduce the following two criteria.

• Consistency: The consistency between in-sample and out-of-sample tracking
errors of a portfolio given by a method A is defined as

Cons(A) = |TEIA − TEOA|,

where TEIA and TEOA are the in-sample and out-of-sample tracking errors of
a portfolio generated by the method A. Clearly, the smaller value of Cons(A)
means that the portfolio by A has more consistency between in-sample and
out-of-sample tracking errors and thus it is more robust (or less sensitive) with
respect to the sample data used for model (1.1).

• Superiority of out-of-sample: We define

SupO(A,B) =
TEOB − TEOA

TEOB
× 100%,
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where TEOA and TEOB are out-of-sample tracking error of the portfolio by
methods A and B, respectively. One can see that if SupO(A,B) > 0, TEOA

is smaller than TEOB, i.e., the portfolio by method A is superior to that by
method B in terms of out-of-sample tracking error; and it is very likely that
the portfolio by A has a smaller expected tracking error and thus it is a better
estimation to the underlying statistical regression model.

3.1 Results on small data sets

In this subsection, we compare the performance of the NPG method with the hybrid
evolutionary algorithm [28] and the hybrid half thresholding algorithm [30] on five
small data sets, which are Hang Seng, DAX 100, FTSE, Standard and Poor’s 100, and
Nikkei 225. For convenience of presentation, we abbreviate these three approaches as
l0, MIP and l1/2 since they are the methods for l0, MIP and l1/2 models, respectively.
In order to compare fairly the performance of these methods, we tailor their model
parameters so that the resulting portfolios have same density (i.e., same number of
nonzero entries).

Numerical results are presented in Tables 1 and 2, where N denotes the number
of assets in a data set. In particular, we report in Table 1 in-sample error and out-of
sample error of the portfolios generated by the aforementioned three methods. In
Table 2, we report the consistency between in-sample and out-of-sample errors, and
the superiority of out-of-sample errors for the portfolios generated by these methods.
The number of nonzero portfolios given by these methods is listed in the column
named “density”. From Table 2, we can make the following observations.

(i) The l0-based method (i.e., NPG method) generally has higher consistency be-
tween in-sample error and out-of-sample error than the MIP- and l1/2-based
methods (namely, hybrid evolutionary and half thresholding algorithms) since
Cons(l0) < Cons(MIP ) holds for 100% (30/30) instances and Cons(l0) <
Cons(l1/2) holds for 77.3% (22/30) instances.

(ii) The l0-based method is generally superior to the MIP- and l1/2-based methods
in terms of out-of-sample error since SupO(l0,MIP ) > 0 holds for 90% (27/30)
instances and SupO(l0, l1/2) > 0 holds for 93.3% (28/30) instances.

3.2 Results on large data sets

In this subsection, we compare the performance of the l0-based method (i.e., NPG
method) with the MIP- and l1/2-based methods (namely, hybrid evolutionary and
half thresholding algorithms) on four large data sets, which are Standard and Poor’s
100, Russell 2000, Russell 3000 and the Chinese index CSI 300. For a fair comparison
of the performance of these methods, we tailor their model parameters so that the
resulting portfolios have same density (i.e., same number of nonzero entries).

11



Table 1: The in-sample and out-of-sample tracking errors on small data sets.

Index Density l0 MIP l1/2
TEI TEO Strue TEI TEO Strue TEI TEO Strue

Hang 5 6.23e-5 5.17e-5 5 5.69e-5 8.87e-5 5 8.36e-5 7.07e-5 5
Seng 6 4.29e-5 3.45e-5 6 4.85e-5 7.82e-5 6 8.58e-5 7.19e-5 6

(N=31) 7 2.37e-5 3.83e-5 7 3.26e-5 5.38e-5 7 6.45e-5 4.59e-5 7
8 2.38e-5 2.50e-5 8 2.06e-5 3.09e-5 8 3.20e-5 2.95e-5 8
9 2.00e-5 2.16e-5 9 1.95e-5 2.80e-5 9 3.96e-5 2.44e-5 9
10 1.58e-5 1.55e-5 10 1.86e-5 2.77e-5 10 2.33e-5 2.34e-5 10

DAX 5 4.10e-5 1.08e-4 5 2.21e-5 1.02e-4 5 4.88e-5 1.18e-4 5
(N=85) 6 3.07e-5 1.00e-4 6 1.82e-5 9.43e-5 6 3.86e-5 1.13e-4 6

7 2.56e-5 9.68e-5 7 1.47e-5 1.02e-4 7 2.47e-5 1.04e-4 7
8 1.68e-5 8.71e-5 8 1.48e-5 8.78e-5 8 2.66e-5 9.36e-5 8
9 1.54e-5 8.23e-5 9 1.05e-5 8.63e-5 9 3.44e-5 9.72e-5 9
10 1.88e-5 8.11e-5 10 8.21e-6 7.76e-5 10 2.23e-5 1.03e-4 10

FTSE 5 1.05e-4 8.43e-5 5 6.92e-5 9.87e-5 5 1.22e-4 8.80e-5 5
(N=89) 6 7.29e-5 8.74e-5 6 5.50e-5 9.14e-5 6 1.04e-4 8.78e-5 6

7 6.83e-5 8.18e-5 7 4.15e-5 1.02e-4 7 6.70e-5 9.67e-5 7
8 5.81e-5 6.00e-5 8 3.50e-5 7.44e-5 8 6.11e-5 7.10e-5 8
9 6.51e-5 5.67e-5 9 2.49e-5 8.59e-5 9 7.08e-5 5.72e-5 9
10 6.70e-5 6.94e-5 10 2.18e-5 8.01e-5 10 5.43e-5 7.27e-5 10

S&P 5 8.74e-5 8.94e-5 5 4.50e-5 1.14e-4 5 1.02e-4 1.14e-4 5
(N=98) 6 5.87e-5 8.47e-5 6 3.37e-5 1.01e-4 6 7.93e-5 8.88e-5 6

7 3.51e-5 7.69e-5 7 3.36e-5 8.93e-5 7 6.70e-5 7.58e-5 7
8 5.50e-5 5.75e-5 8 2.51e-5 7.35e-5 8 6.41e-5 6.58e-5 8
9 3.71e-5 5.09e-5 9 2.11e-5 5.92e-5 9 5.78e-5 6.56e-5 9
10 2.93e-5 4.57e-5 10 1.85e-5 5.10e-5 10 5.22e-5 5.07e-5 10

Nikkei 5 1.34e-4 1.32e-4 5 6.02e-5 1.44e-4 5 1.22e-4 1.43e-4 5
(N=225) 6 9.48e-5 9.92e-5 6 5.13e-5 1.20e-4 6 8.26e-5 9.71e-5 6

7 7.72e-5 9.77e-5 7 3.93e-5 1.11e-4 7 6.89e-5 1.11e-4 7
8 9.24e-5 8.70e-5 8 3.12e-5 1.18e-4 8 7.09e-5 9.09e-5 8
9 4.87e-5 7.68e-5 9 2.78e-5 1.18e-4 9 4.52e-5 8.22e-5 9
10 6.39e-5 6.75e-5 10 2.36e-5 8.25e-5 10 5.37e-5 6.77e-5 10

Numerical results are reported in Tables 3 and 4, where N denotes the number of
assets in a data set. In particular, we present in Table 3 in-sample error and out-of
sample error of the portfolios generated by the above three methods. In Table 4, we
present the CPU time of these methods and superiority of out-of-sample errors of
the portfolios given by these methods. The number of nonzero portfolios given by
these methods is listed in the column named “density”. We can have the following
observations from Table 4.

(i) The l0-based method (i.e., NPG method) generally has higher consistency be-
tween in-sample error and out-of-sample error than the MIP- and l1/2-based
methods (namely, hybrid evolutionary and half thresholding algorithms) since
Cons(l0) < Cons(MIP ) holds for 100% (28/28) instances and Cons(l0) <
Cons(l1/2) holds for 89.3% (25/28) instances.

(ii) The l0-based method is generally superior to the MIP- and l1/2-based methods
in terms of out-of-sample error since SupO(l0,MIP ) > 0 holds for all instances
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Table 2: The comparison on small data sets.

Index Density Cons(l0) Cons(MIP ) Cons(l1/2) SupO(l0,MIP ) SupO(l0, l1/2)

Hang 5 1.05e-5 3.18e-5 1.29e-5 41.7 26.8
Seng 6 8.37e-6 2.97e-5 1.39e-5 55.9 52.1

(N=31) 7 1.46e-5 2.13e-5 1.86e-5 28.8 16.4
8 1.23e-6 1.03e-5 2.43e-6 19.0 15.3
9 1.66e-6 8.50e-6 1.52e-5 22.9 11.4
10 3.54e-7 9.15e-6 8.50e-8 44.3 33.9

DAX 5 6.72e-5 7.97e-5 6.94e-5 -6.28 8.47
(N=85) 6 6.95e-5 7.61e-5 7.49e-5 -6.27 11.7

7 7.12e-5 8.69e-5 7.96e-5 4.72 7.26
8 7.03e-5 7.30e-5 6.70e-5 0.79 6.96
9 6.69e-5 7.58e-5 6.28e-5 4.68 15.3
10 6.23e-5 6.94e-5 8.11e-5 -4.52 21.6

FTSE 5 2.11e-5 2.95e-5 3.40e-5 14.6 4.27
(N=89) 6 1.45e-5 3.64e-5 1.66e-5 4.41 0.42

7 1.35e-5 6.05e-5 2.98e-5 19.8 15.4
8 1.85e-6 3.94e-5 9.95e-6 19.3 15.5
9 8.39e-6 6.11e-5 1.36e-5 34.0 0.74
10 2.46e-6 5.83e-5 1.85e-5 13.3 4.52

S&P 5 2.10e-6 6.93e-5 1.17e-5 21.7 21.3
(N=98) 6 2.60e-5 6.70e-5 9.48e-6 15.9 4.66

7 4.18e-5 5.57e-5 8.80e-6 13.9 -1.40

8 2.58e-6 4.83e-5 1.70e-6 21.7 12.6
9 1.38e-5 3.81e-5 7.81e-6 14.0 22.4
10 1.64e-5 3.25e-5 1.49e-6 10.4 9.96

Nikkei 5 2.10e-6 8.39e-5 2.14e-5 8.28 7.81
(N=225) 6 4.38e-6 6.83e-5 1.46e-5 17.0 -2.11

7 2.05e-5 7.16e-5 4.19e-5 11.9 11.8
8 5.40e-6 8.64e-5 2.00e-5 26.1 4.29
9 2.81e-5 8.98e-5 3.70e-5 34.8 6.60
10 3.60e-6 5.89e-5 1.39e-5 18.1 0.23

and SupO(l0, l1/2) > 0 holds for 92.9% (26/28) instances.

(iii) The l0-based method also generally outperforms the MIP- and l1/2-based meth-
ods in terms of speed.

4 Concluding remarks

In this paper we proposed an index tracking model with budget, no-short selling
and a cardinality constraint. Also, we developed an efficient nonmonotone projected
gradient (NPG) method for solving this model. At each iteration, this method usually
solves several projected gradient subproblems. We showed that each subproblem has
a closed-form solution, which can be computed in linear time. Under some suitable
assumptions, we showed that any accumulation point of the sequence generated by
the NPG method is a local minimizer of the cardinality-constrained index tracking
problem. We also conducted empirical tests on the data sets from OR-library [5]
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Table 3: The in-sample and out-of-sample tracking errors on large data sets.

Index Density l0 MIP l1/2
TEI TEO Strue TEI TEO Strue TEI TEO Strue

5 3.34e-5 2.19e-5 5 1.21e-5 2.43e-5 5 2.39e-5 1.99e-5 5
CSI 300 6 2.34e-5 2.11e-5 6 1.17e-5 2.37e-5 6 1.91e-5 2.11e-5 6
(N=300) 7 1.86e-5 1.98e-5 7 7.84e-6 2.36e-5 7 1.51e-5 2.09e-5 7

8 1.67e-5 1.68e-5 8 7.68e-6 2.04e-5 8 1.42e-5 1.92e-5 8
9 1.67e-5 1.54e-5 9 7.23e-6 1.85e-5 9 1.26e-5 1.63e-5 9
10 1.13e-5 1.21e-5 10 6.42e-6 1.51e-5 10 1.32e-5 1.33e-5 10
20 6.29e-6 7.29e-6 20 2.92e-6 7.65e-6 20 6.40e-6 7.64e-6 20
30 3.72e-6 5.14e-6 30 2.07e-6 5.20e-6 30 4.15e-6 5.55e-6 30
40 2.39e-6 4.17e-6 40 1.58e-6 7.63e-6 40 3.05e-6 5.30e-5 40
50 2.87e-6 3.28e-6 50 1.90e-6 5.00e-6 50 2.03e-6 4.53e-6 50

80 2.85e-6 7.82e-5 80 2.65e-6 9.98e-5 80 1.37e-5 9.85e-5 80
S&P 90 2.43e-6 7.52e-5 90 3.01e-6 1.24e-4 90 1.08e-5 9.98e-5 90

(N=457) 100 2.13e-6 7.39e-5 100 2.50e-6 9.69e-5 100 9.08e-6 1.04e-4 100
120 1.66e-6 7.59e-5 120 2.58e-5 1.04e-4 120 6.42e-6 9.35e-5 120
150 1.52e-6 7.95e-5 150 5.64e-6 1.25e-4 150 5.18e-6 1.07e-4 150
200 1.57e-6 7.94e-5 200 2.13e-6 9.80e-5 200 2.72e-6 9.09e-5 200

80 4.02e-6 2.07e-4 80 3.62e-6 2.89e-4 80 2.92e-5 2.34e-4 80
Russell 2000 90 3.51e-6 2.08e-4 90 4.95e-6 2.76e-4 90 2.76e-5 2.45e-4 90
(N=1318) 100 3.18e-6 1.70e-4 100 2.61e-6 2.60e-4 100 2.09e-5 2.13e-4 100

120 2.32e-6 1.68e-4 120 2.80e-6 2.49e-4 120 1.71e-5 2.61e-4 120
150 1.99e-6 1.94e-4 150 1.16e-5 2.68e-4 150 1.20e-5 2.66e-4 150
200 9.83e-7 2.28e-4 200 1.42e-6 3.31e-4 200 6.89e-6 3.18e-4 200

80 6.24e-6 1.34e-4 80 3.90e-6 1.70e-4 80 2.62e-5 1.64e-4 80
Russell 3000 90 5.49e-6 1.14e-4 90 3.33e-6 1.21e-4 90 1.99e-5 1.47e-4 90
(N=2151) 100 4.10e-6 1.05e-4 100 3.48e-6 1.05e-4 100 1.87e-5 1.37e-4 100

120 2.78e-6 9.82e-5 120 3.01e-6 1.06e-4 120 1.66e-5 1.26e-4 120
150 1.63e-6 1.00e-4 150 2.48e-6 1.10e-4 150 1.46e-5 1.23e-4 150
200 1.41e-6 1.06e-4 200 3.22e-6 1.09e-4 200 1.03e-5 1.57e-4 200

and the CSI 300 index from China Shanghai-Shenzhen stock market to compare our
method with the hybrid evolutionary algorithm [28] and the hybrid half thresholding
algorithm [30] for index tracking. The computational results demonstrate that our
approach generally produces sparse portfolios with smaller out-of-sample tracking
error and higher consistency between in-sample and out-of-sample tracking errors.
Moreover, our method outperforms the other two approaches in terms of speed.

We shall mention that the proposed NPG method in this paper can be used
to solve the subproblems arising in the penalty method or augmented Lagrangian
method when applied to solve more general problem

min
x∈∆u

r

f(x)

s.t. g(x) ≤ 0, h(x) = 0

for some g : ℜn → ℜp and h : ℜn → ℜq, where ∆u
r is given in (1.2).
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Table 4: The comparison on large data sets.

Index Density Time Cons(l0) Cons(MIP ) Cons(l1/2) SupO SupO
l0 MIP l1/2 (l0,MIP ) (l0, l1/2)

5 0.0114 26.7 1.96 4.05e-6 1.22e-5 5.65e-6 18.2 -5.24

CSI 300 6 0.0113 36.0 2.17 2.32e-6 1.20e-5 1.96e-6 10.9 -0.08

(N=300) 7 0.0039 42.1 2.31 1.22e-6 1.58e-5 5.83e-6 16.3 5.41
8 0.0097 13.5 2.18 1.91e-7 1.27e-5 4.94e-6 17.3 12.1
9 0.0078 17.1 2.50 1.35e-6 1.12e-5 3.66e-6 16.7 5.44
10 0.0053 14.6 2.71 7.95e-7 8.67e-6 1.28e-7 19.7 8.72
20 0.0078 2.84 4.30 1.00e-6 4.73e-6 1.23e-6 4.65 4.49
30 0.0060 1.97 6.47 1.42e-6 3.13e-6 1.40e-6 1.21 7.43
40 0.0064 2.20 6.85 1.78e-7 6.05e-6 2.25e-6 45.4 21.4
50 0.0083 1.76 7.65 4.10e-7 3.11e-6 2.50e-6 34.5 27.8

80 0.0271 63.6 8.64 7.53e-5 9.72e-5 8.48e-5 21.7 20.7
S&P 90 0.0207 49.0 10.2 7.28e-5 1.21e-4 8.90e-5 39.1 24.6

(N=457) 100 0.0199 77.0 15.3 7.17e-5 9.44e-5 9.47e-5 23.7 28.8
120 0.0187 86.9 13.3 7.42e-5 1.02e-4 8.71e-5 27.3 18.8
150 0.0184 58.7 13.5 7.80e-5 1.20e-4 1.01e-4 36.6 25.4
200 0.0197 689.3 13.7 7.78e-5 9.58e-5 8.82e-5 19.0 12.7

80 0.153 577.7 35.7 2.03e-4 2.85e-4 2.05e-4 28.3 11.6
Russell 2000 90 0.137 352.6 27.5 2.04e-4 2.71e-4 2.17e-4 24.7 15.0
(N=1318) 100 0.148 657.8 38.4 1.67e-4 2.58e-4 1.92e-4 34.6 20.1

120 0.149 449.1 47.2 1.65e-4 2.46e-4 2.44e-4 32.6 35.6
150 0.113 50.6 56.5 1.92e-4 2.56e-4 2.54e-4 27.6 27.3
200 0.095 1352.7 46.4 2.27e-4 3.29e-4 3.11e-4 30.9 28.2

80 0.626 861.1 37.1 1.28e-4 1.66e-4 1.38e-4 21.0 18.6
Russell 3000 90 0.267 1039.5 47.9 1.08e-4 1.18e-4 1.27e-4 6.00 22.3
(N=2151) 100 0.269 913.1 48.5 1.01e-4 1.02e-4 1.19e-4 0.05 23.5

120 0.248 658.7 88.0 9.54e-5 1.03e-4 1.09e-4 7.26 21.8
150 0.216 878.7 74.9 9.83e-5 1.08e-4 1.09e-4 9.34 18.9
200 0.342 1999.9 97.9 1.05e-4 1.05e-4 1.47e-4 2.30 32.4
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