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Abstract

In this paper we consider a class of constrained optimization problems whose con-
straints involve a cardinality or rank constraint. The penalty formulation based on
a partial regularization has recently been promoted in the literature to approximate
these problems, which usually outperforms the penalty formulation based on a full reg-
ularization in terms of solution quality. Nevertheless, the relation between the penalty
formulation with a partial regularizer and the original problem was not much studied
yet. Under some suitable assumptions, we show that the penalty formulation based on
a partial regularization is an exact reformulation of the original problem in the sense
that they both share the same global minimizers. We also show that a local minimizer
of the original problem is that of the penalty reformulation. These results provide some
theoretical justification for the often-observed superior performance of the penalty model
based on a partial regularizer over a corresponding full regularizer.

Keywords: sparse optimization, low-rank optimization, cardinality constraint, rank
constraint, partial regularization, exact penalty.
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1 Introduction

Nowadays, there are numerous applications in which sparse or low-rank solutions are con-
cerned. For example, in compressed sensing, a large sparse signal is decoded by using a
relatively small number of linear measurements, which can be formulated as finding a sparse
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solution to a system of linear equalities and/or inequalities (e.g., see [32, 24, 38]). The sim-
ilar ideas have also been widely used in sparse inverse covariance selection, sparse logistic
regression, sparse multivariate regression, and image deblurring (e.g., see [33, 43, 48, 12]).
Mathematically speaking, they can be formulated into the following cardinality constrained
problem

min
x
{f(x) : ‖x‖0 ≤ s, x ∈ S} (1)

for some integer s ≥ 0 controlling the sparsity of the solutions, where S is a closed set in <n,
f : <n → < ∪ {∞}, and ‖x‖0 denotes the cardinality of the vector x. In addition, finding
a low-rank solution to a system or an optimization problem has attracted a great deal of
attention in science and engineering. Generally, it can be formulated into the following rank
constrained optimization problem

min
X
{g(X) : rank(X) ≤ r, X ∈ X} (2)

for some integer r ≥ 0 controlling the rank of the solutions, where X is a closed set in <m×n,
g : <m×n → <∪ {∞}, and rank(X) denotes the rank of the matrix X. Numerous application
problems can be modeled by (2), including the low-rank matrix completion problem, the
wireless sensor network localization problem, and the nearest low-rank correlation matrix
problem (e.g., see [15, 4, 36, 20, 28]).

Given that ‖ ·‖0 is an integer-valued, discontinuous and nonconvex function, it is generally
hard to solve problem (1). One common approach in the literature (e.g., see [18, 37, 9, 19,
16, 9, 8, 47, 40, 22, 46]) is to approximate (1) by the problem

min
x∈S

f(x) + λ
n∑
i=1

φ(|xi|), (3)

where λ > 0 is a parameter controlling the sparsity of the solution, and φ is a non-decreasing
regularizer defined on [0,∞) satisfying that φ(0) = 0 and φ(t) > 0 for every t > 0. Some
popular φ’s are listed as follows:

(i) (`1 [37, 10, 7]): φ(t) = t ∀t ≥ 0;

(ii) (`p [18, 19]): φ(t) = tp ∀t ≥ 0;

(iii) (Log [39, 8]): φ(t) = log(t+ ε)− log(ε) ∀t ≥ 0;

(iv) (Capped-`1 [47]): φ(t) =

{
t if 0 ≤ t < ν,
ν if t ≥ ν;

(v) (MCP [46]): φ(t) =

{
λt− t2

2α
if 0 ≤ t < λα,

λ2α
2

if t ≥ λα;
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(vi) (SCAD [16]): φ(t) =


λt if 0 ≤ t ≤ λ,

−t2+2βλt−λ2
2(β−1)

if λ < t < λβ,

(β+1)λ2

2
if t ≥ λβ,

where 0 < p < 1, ε > 0, ν > 0, λ > 0, α > 1 and β > 1 are some parameters.
It is known that

∑n
i=1 φ(|xi|) is generally a biased approximation to ‖x‖0. To neutralize the

bias in
∑n

i=1 φ(|xi|) incurred by some leading entries (in magnitude) of x, the partial regularizer∑n
i=s+1 φ(|x|[i]) has recently been advocated in the literature (e.g., see [27, 23, 1, 34, 30, 2]),

where |x|[i] is the ith largest element in {|x1|, |x2|, . . . , |xn|}. Lu and Li [30] showed that the
partial `p-regularizer for 0 < p ≤ 1 is more capable than the full `p-regularizer in recovering the
sparse solution of a linear system. In addition, the extensive numerical study in [27, 23, 30, 2]
demonstrate that the partial regularizer

∑n
i=s+1 φ(|x|[i]) is usually more effective than the full

regularizer
∑n

i=1 φ(|xi|) in finding a sparse approximate solution. Inspired by these, in this
paper we consider the following less biased approximation to (1):

min
x∈S

f(x) + λ
n∑

i=s+1

φ(|x|[i]). (4)

Under some suitable assumptions, we show that problem (4) is an exact penalty reformulation
of (1) for various φ including the popular ones listed above, that is, problems (1) and (4) share
the same global minimizers. Moreover, we show that a local minimizer of (1) is also that of
(4). We believe that such properties usually do not hold for problem (3) since

∑n
i=1 φ(|xi|) is

generally a biased approximation to ‖x‖0. These results provide some theoretical justification
for the often-observed superior performance of a partial regularizer over a corresponding full
regularizer in finding a sparse approximate solution.

Similar to (1), problem (2) is also generally difficult to solve due to the discontinuity and
non-convexity of the rank function. One popular approach in the literature is to approximate
problem (2) by the problem

min
X∈X

g(X) + λ

q∑
i=1

φ(σi(X)), (5)

where q = min(m,n), σi(X) denotes the ith largest singular value of X, and φ is some regular-
izer mentioned above (e.g., see [17, 44, 6, 28, 31, 41]). It is not hard to see that

∑q
i=1 φ(σi(X))

is generally a biased approximation to rank(X). To neutralize the bias in
∑q

i=1 φ(σi(X))
incurred by some leading singular values of X, the partial regularizer

∑q
i=r+1 φ(σi(X)) has

recently been used in the literature (e.g., see [20, 21, 29]) to approximate the rank function.
Numerical results in [21, 29] show that such a partial regularizer is usually more effective than
the full regularizer

∑q
i=1 φ(σi(X)) in finding a low-rank approximate solution. Inspired by

these, in this paper we consider the following less biased approximation to (2):

min
X∈X

g(X) + λ

q∑
i=r+1

φ(σi(X)). (6)
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Under some suitable assumptions, we show that problem (6) is an exact penalty reformulation
of (2) for various φ including the popular ones mentioned above, namely, problems (2) and
(6) share the same global minimizers. Moreover, we show that a local minimizer of (2) is
also that of (6). We believe that such properties usually do not hold for problem (5) since∑q

i=1 φ(σi(X)) is generally a biased approximation to rank(X). These results provide some
theoretical justification on the often-observed superior performance of a partial regularizer
over a corresponding full regularizer in finding a low-rank approximate solution.

The rest of this paper is organized as follows. In Section 2 we establish some exact penalty
results for a general optimization problem. In Section 3 we show that under some suitable
assumptions, problem (4) is an exact penalty reformulation of problem (1). In Section 4 we
show that under some suitable assumptions, problem (6) is an exact penalization for problem
(2). Finally we make some concluding remarks in Section 5.

1.1 Notations

In this paper the set of all nonnegative real numbers is denoted by <+. The nonnegative
orthant of <n is denoted by <n+. For any x ∈ <n, ‖x‖0 and ‖x‖ denote the cardinality (i.e.,
the number of nonzero entries) and the Euclidean norm of x, respectively. For any p > 0, let
‖x‖p := (

∑n
i=1 |xi|p)1/p. In addition, x[i] denotes the ith largest entry of x for i = 1, . . . , n, and

|x| stands for the n-dimensional vector whose ith entry is |xi| for all i. For any J ⊆ {1, . . . , n},
xJ denotes the subvector of x indexed by J , Jc stands for the complement of J in {1, . . . , n},
and |J | denotes the cardinality of J . Given any X ∈ <m×n, rank(X) and ‖X‖ stand for the
rank and the spectral norm of X, respectively; σi(X) denotes the ith largest singular value of
X. The nuclear norm of X is denoted by ‖X‖∗, that is, ‖X‖∗ =

∑
i σi(X). In addition, D(X)

is the m× n matrix whose ith diagonal entry is σi(X) for all i and off-diagonal entries are 0,
that is, [D(X)]ii = σi(X) for 1 ≤ i ≤ q and [D(X)]ij = 0 for all i 6= j, where q = min(m,n).
Let U be a normed vector space equipped with a norm ‖ · ‖. Given any u ∈ U , B(u; ε) stands
for a closed ball in U centered at u with radius ε, that is, B(u; ε) = {v ∈ U : ‖v − u‖ ≤ ε}.

2 Some general penalization results

Exact penalization is an important technique for converting some sophisticated constrained
optimization problems into simpler ones (e.g., see [13, 5, 42]). In this section we develop some
results regarding exact penalization for a general optimization problem in the form of

min
u∈Ω1∩Ω2

h(u) (7)

for some function h : U → < ∪ {∞}, where Ω1 and Ω2 are two nonempty closed sets in a
normed vector space U . These results are a generalization of the ones presented in [11], and
will be used in the subsequent sections to study exact penalization for problems (1) and (2).
To this end, assume throughout this section that problem (7) has at least one optimal solution
and that Φ : U × U → <+ is a function satisfying the following assumption.
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Assumption 1. (a) Ω1 ∩ Argmin
v∈Ω2

Φ(u, v) 6= ∅ for all u ∈ Ω1.

(b) min
v∈Ω2

Φ(u, v) = 0 if and only if u ∈ Ω2.

We next show that under some suitable assumptions, the following problem

min
u∈Ω1

{
h(u) + λmin

v∈Ω2

Φ(u, v)

}
(8)

for some λ > 0 is an exact penalty reformulation of problem (7). For convenience, we denote
the objective function of (8) by Hλ(u), that is, Hλ(u) = h(u) + λminv∈Ω2 Φ(u, v).

Theorem 2.1. Suppose that the function Φ satisfies Assumption 1, and problem (7) has at
least one optimal solution. Additionally, assume that there exists some constant L > 0 such
that

|h(u)− h(ũ)| ≤ LΦ(u, ũ) ∀u, ũ ∈ Ω1. (9)

Then the following statements hold.

(i) Any global minimizer of problem (7) is a global minimizer of problem (8) whenever
λ ≥ L.

(ii) Any global minimizer of problem (8) is a global minimizer of problem (7) whenever
λ > L.

Proof. (i) Suppose that λ ≥ L. Let u∗ be a global minimizer of problem (7) and u ∈ Ω1 be
arbitrarily chosen. It then follows from Assumption 1(a) that Ω1 ∩ Argminv∈Ω2

Φ(u, v) 6= ∅.
Let ũ ∈ Ω1 ∩ Argminv∈Ω2

Φ(u, v) be arbitrarily chosen. By this and the definition of Hλ, one
has

Hλ(u) = h(u) + λmin
v∈Ω2

Φ(u, v) = h(u) + λΦ(u, ũ). (10)

In addition, since ũ ∈ Ω1 and u∗ is a global minimizer of (7), we have h(ũ) ≥ h(u∗). By
u∗ ∈ Ω2 and Assumption 1(b), one has minv∈Ω2 Φ(u∗, v) = 0 and hence Hλ(u

∗) = h(u∗). It
then follows that h(ũ) ≥ Hλ(u

∗). Using this and (9), we obtain that

Hλ(u
∗) ≤ h(ũ) ≤ h(u) + LΦ(u, ũ),

which together with (10), λ ≥ L and the nonnegativity of Φ yields Hλ(u) ≥ Hλ(u
∗). By this,

u∗ ∈ Ω1 and the arbitrariness of u ∈ Ω1, one can conclude that u∗ is a global minimizer of
problem (8).

(ii) Suppose that λ > L. Let u∗ be a global minimizer of problem (8). Then u∗ ∈ Ω1.
In view of this and Assumption 1(a), we know that Ω1 ∩ Argminv∈Ω2

Φ(u∗, v) 6= ∅. Let
ũ∗ ∈ Ω1 ∩ Argminv∈Ω2

Φ(u∗, v). Clearly, Hλ(u
∗) ≤ Hλ(ũ

∗) and ũ∗ ∈ Ω1 ∩ Ω2. The latter
relation together with Assumption 1(b) yields minv∈Ω2 Φ(ũ∗, v) = 0. It follows from this
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and the definition of Hλ that Hλ(ũ
∗) = h(ũ∗). In addition, one can observe that Hλ(u

∗) =
h(u∗) + λΦ(u∗, ũ∗). By these, u∗, ũ∗ ∈ Ω1 and (9), one has

Hλ(ũ
∗) = h(ũ∗) ≤ h(u∗) + LΦ(u∗, ũ∗) = Hλ(u

∗) + (L− λ)Φ(u∗, ũ∗),

which, together with λ > L, Hλ(u
∗) ≤ Hλ(ũ

∗) and the nonnegativity of Φ, implies that

0 ≤ Φ(u∗, ũ∗) ≤ (Hλ(u
∗)−Hλ(ũ

∗))/(λ− L) ≤ 0.

Hence, Φ(u∗, ũ∗) = 0, which leads to minv∈Ω2 Φ(u∗, v) = 0. By this and Assumption 1(b),
one can conclude u∗ ∈ Ω2 and hence u∗ ∈ Ω1 ∩ Ω2. Notice from the definition of Hλ and
Assumption 1(b) that Hλ(u) = h(u) for all u ∈ Ω1 ∩ Ω2. By these and the fact that u∗ is a
global minimizer of (8), we have that

h(u) = Hλ(u) ≥ Hλ(u
∗) = h(u∗), ∀u ∈ Ω1 ∩ Ω2.

It follows that u∗ is a global minimizer of problem (7).

In what follows, we show that under some suitable assumptions, a local minimizer of
problem (7) is also that of problem (8). Before proceeding, we make some further assumptions
on the function Φ below.

Assumption 2. (a) For any ε > 0, there exists some δ > 0 such that ‖u− v‖ ≤ ε for any
u, v ∈ Ω1 satisfying Φ(u, v) ≤ δ.

(b) For any ε > 0, there exists some δ > 0 such that Φ(u, v) ≤ ε for any u, v ∈ Ω1 satisfying
‖u− v‖ ≤ δ.

Theorem 2.2. Suppose that there is a function Φ : U × U → <+ satisfying Assumptions 1
and 2. Let u∗ be a local minimizer of problem (7). Assume that there exist some ε > 0 and
L > 0 such that

|h(u)− h(û)| ≤ LΦ(u, û) ∀u, û ∈ B(u∗; ε) ∩ Ω1. (11)

Then u∗ is a local minimizer of problem (8) whenever λ ≥ L.

Proof. Since u∗ is a local minimizer of problem (7), there exists some ε̃ > 0 such that

h(u) ≥ h(u∗) ∀u ∈ B(u∗; ε̃) ∩ Ω1 ∩ Ω2. (12)

Clearly, u∗ ∈ Ω1 ∩ Ω2. By Assumption 2(a), there exists some δ > 0 such that ‖u − v‖ ≤
min(ε, ε̃)/2 for any u, v ∈ Ω1 satisfying Φ(u, v) ≤ δ. Let u ∈ Ω1 be such that Φ(u, u∗) ≤ δ.
It then follows that ‖u − u∗‖ ≤ min(ε, ε̃)/2. In addition, by Assumption 1(a), we know that
Ω1 ∩Argminv∈Ω2

Φ(u, v) 6= ∅. Let ũ ∈ Ω1 ∩Argminv∈Ω2
Φ(u, v) be arbitrarily chosen. By this,

u∗ ∈ Ω2 and Φ(u, u∗) ≤ δ, one has Φ(u, ũ) ≤ Φ(u, u∗) ≤ δ, which together with u, ũ ∈ Ω1

implies that ‖u− ũ‖ ≤ min(ε, ε̃)/2. Using this and ‖u− u∗‖ ≤ min(ε, ε̃)/2, we have

‖ũ− u∗‖ ≤ ‖u− u∗‖+ ‖u− ũ‖ ≤ min(ε, ε̃).
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By this, (11), (12), ‖u− u∗‖ ≤ min(ε, ε̃)/2, and ũ ∈ Ω1 ∩ Ω2, one can see that

h(u∗) ≤ h(ũ) ≤ h(u) + LΦ(u, ũ).

Using this, λ ≥ L, ũ ∈ Argminv∈Ω2
Φ(u, v), and the nonnegativity of Φ, we obtain that

h(u∗) ≤ h(u) + λΦ(u, ũ) = Hλ(u). (13)

Recall that u∗ ∈ Ω2. It then follows from Assumption 1(b) and the definition of Hλ that
Hλ(u

∗) = h(u∗). Combining this with (13), we conclude that Hλ(u) ≥ Hλ(u
∗) for any u ∈ Ω1

satisfying Φ(u, u∗) ≤ δ. In addition, by Assumption 2(b), there exists some ε̂ > 0 such that
Φ(u, u∗) ≤ δ for any u ∈ B(u∗; ε̂)∩Ω1. It follows that Hλ(u) ≥ Hλ(u

∗) for any u ∈ B(u∗; ε̂)∩Ω1.
This along with u∗ ∈ Ω1 implies that u∗ is a local minimizer of problem (8).

3 Exact penalization for problem (1)

In this section we study the relation between the cardinality constrained problem (1) and
the penalty model (4). Before proceeding, we make a mild assumption on the function φ
associated with problem (4), which will be used frequently in this section. It holds for various
regularizers such as `1, `p, Log, Capped-`1, MCP and SCAD that are presented in Section 1.

Assumption 3. The function φ : <+ → <+ is non-decreasing. Moreover, φ(0) = 0 and
φ(t) > 0 for every t > 0.

The following result shows that under some suitable assumptions, problem (4) is an exact
penalty reformulation of problem (1), that is, they share the same global minimizers.

Theorem 3.1. Suppose that Assumption 3 holds for φ, and moreover,

S ∩ Argmin
‖y‖0≤s

n∑
i=1

φ(|x− y|i) 6= ∅ ∀x ∈ S. (14)

Assume that there exists some constant L > 0 such that

|f(x)− f(y)| ≤ L
n∑
i=1

φ(|x− y|i) ∀x, y ∈ S. (15)

Then the following statements hold.

(i) If x∗ is a global minimizer of problem (1), then x∗ is a global minimizer of problem (4)
whenever λ ≥ L.

(ii) If x∗ is a global minimizer of problem (4), then x∗ is a global minimizer of problem (1)
whenever λ > L.
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Proof. We know from Assumption 3 that φ is non-decreasing on <+. It thus follows that

min
‖y‖0≤s

n∑
i=1

φ(|x− y|i) = min
J⊆{1,...,n}
|J |≤s

{
min
yJc=0

n∑
i=1

φ(|x− y|i)

}
,

= min
J⊆{1,...,n}
|J |≤s

∑
i∈Jc

φ(|x|i) =
n∑

i=s+1

φ(|x|[i]). (16)

Also, we see from Assumption 3 that φ(t) = 0 if and only if t = 0. By this and (16), one can
observe that

min
‖y‖0≤s

n∑
i=1

φ(|x− y|i) = 0⇐⇒
n∑

i=s+1

φ(|x|[i]) = 0⇐⇒ ‖x‖0 ≤ s. (17)

Let Ω1 = S, Ω2 = {x ∈ <n : ‖x‖0 ≤ s}, Φ(x, y) =
∑n

i=1 φ(|x − y|i) for all x, y ∈ <n. In view
of (14) and (17), one can see that Assumption 1 holds for such Φ, Ω1 and Ω2. The conclusion
of this theorem then follows from (15), (16), and Theorem 2.1 with h = f .

Roughly speaking, the condition (14) requires that S satisfy a certain sparsity property,
while the condition (15) requires that f be Lipschitz continuous relative to S. In general, it
may be difficult to verify (14) directly. We next provide a sufficient yet simpler condition for
(14) to hold.

Proposition 3.2. Suppose that the set S satisfies

S ∩ Argmin
‖y‖0≤s

‖x− y‖ 6= ∅ ∀x ∈ S. (18)

Then the condition (14) holds.

Proof. It is not hard to observe from (16) that

Argmin
‖y‖0≤s

‖x− y‖ ⊆ Argmin
‖y‖0≤s

n∑
i=1

φ(|x− y|i), (19)

which together with (18) implies that (14) holds.

Remark 1 If φ is strictly increasing on <+ such as `1, the two sets in (19) are equal
and thus the conditons (14) and (18) are equivalent. Otherwise, (18) is stronger than (14),
for example, when φ is Capped-`1, MCP or SCAD. In addition, the condition (18) holds for
numerous sets S. For example, one can verify that it holds for the following sets.

(i) S =
∏n

i=1[ai, bi], where −∞ ≤ ai ≤ 0 ≤ bi ≤ ∞ for i = 1, . . . , n.1

1When bi =∞, [ai, bi] shall be changed to [ai, bi). Similar change shall be made when ai = −∞.
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(ii) S = {x ∈ <n :
∑

i di|xi|p ≤ γ} or {x ∈ <n+ :
∑

i dix
p
i ≤ γ} for p > 0, di > 0 and γ > 0.

(iii) S = {x ∈ <n : ψ(|x1|, . . . , |xn|) ≤ t}, where t ∈ < and ψ : <n+ → < ∪ {∞} is non-
decreasing, i.e., ψ(x) ≥ ψ(y) for all x, y ∈ <n+ satisfying x ≥ y componentwisely. 2

The following result is an immediate consequence of Theorem 3.1 and Proposition 3.2.

Corollary 3.3. Suppose that (15), (18), and Assumption 3 hold. Then the conclusion of
Theorem 3.1 holds.

As another consequence of Theorem 3.1 and Proposition 3.2 with φ(t) = t for all t ∈ <+,
we obtain a result regarding the exact penalization of problem (1) based on the partial `1

regularization.

Corollary 3.4. Suppose that the set S satisfies (18). Assume that f is Lipschitz continuous
on S, that is, there exists some Lf > 0 such that

|f(x)− f(y)| ≤ Lf‖x− y‖1 ∀x, y ∈ S. (20)

Then the following statements hold.

(i) If x∗ is a global minimizer of problem (1), then x∗ is a global minimizer of problem

min
x∈S

f(x) + λ
n∑

i=s+1

|x|[i]. (21)

whenever λ ≥ Lf .

(ii) If x∗ is a global minimizer of problem (21), then x∗ is a global minimizer of problem (1)
whenever λ > Lf .

The following result is a consequence of Corollary 3.3. It holds for the partial regularization
induced by various φ such as `1, `p, Log, Capped-`1, MCP and SCAD.

Corollary 3.5. Suppose that Assumption 3 holds, f satisfies (20), and S is a non-singleton
compact set satisfying (18). Assume additionally that lim inft→0+ φ(t)/t > 0.3 Then the
conclusion of Theorem 3.1 holds with L = Lf/Mφ, where

Mφ = inf
t∈[0,R]

φ(t)

t
, R = max

x,y∈S
‖x− y‖∞.

2The items (i) and (ii) can be viewed as a special case of the item (iii) with t = 0 and ψ being the indicator
function of their set S.

3It is not hard to verify that the regularizers `1, `p, Log, Capped-`1, MCP and SCAD satisfy these as-
sumptions.
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Proof. We first show that (15) holds with L = Lf/Mφ. Indeed, since S is a non-singleton
compact set, it follows that R ∈ (0,∞). Using Assumption 3, we know that φ is non-
decreasing and φ(t) > 0 for all t > 0. By these and lim inft→0+ φ(t)/t > 0, one can easily
verify Mφ ∈ (0,∞). In addition, notice from the definition of R that |x − y|i ≤ R for every
i and x, y ∈ S. By this and the definition of Mφ, one has that φ(|x − y|i) ≥ Mφ|x − y|i for
every i and x, y ∈ S. It follows from this and (20) that

|f(x)− f(y)| ≤ Lf‖x− y‖1 ≤
Lf
Mφ

n∑
i=1

φ(|x− y|i), ∀x, y ∈ S,

and hence (15) holds with L = Lf/Mφ as desired. The conclusion of this corollary then follows
from Corollary 3.3.

We next study some relation between the local minimizers of problem (1) and those of
problem (4). Before proceeding, we make a stronger assumption on φ than Assumption 3,
which holds as well for various regularizers such as `1, `p, Log, Capped-`1, MCP and SCAD
that are presented in Section 1.

Assumption 4. The function φ is non-decreasing on [0,∞) and strictly increasing in a right
neighborhood of 0. Moreover, φ(0) = 0 and φ is right continuous at 0.

The following result shows that under some suitable assumptions, a local minimizer of
problem (1) is also that of problem (4).

Theorem 3.6. Suppose that (14) and Assumption 4 hold for φ. Let x∗ be a local minimizer
of problem (1). Assume that there exist some ε > 0 and L > 0 such that

|f(x)− f(y)| ≤ L
n∑
i=1

φ(|x− y|i) ∀x, y ∈ B(x∗; ε) ∩ S. (22)

Then x∗ is also a local minimizer of problem (4) for any λ ≥ L.

Proof. Let Ω1 = S, Ω2 = {x ∈ <n : ‖x‖0 ≤ s} and Φ(x, y) =
∑n

i=1 φ(|x − y|i) for all
x, y ∈ <n. By (14), Assumption 4, and the same argument as in the proof of Theorem 3.1,
one can see that Assumption 1 holds for such Φ, Ω1 and Ω2. Also, by Assumption 4, we know
that φ(0) = 0 and φ is right continuous at 0. It immediately follows that Assumption 2(b)
holds for such Φ. In addition, since φ is strictly increasing in a right neighborhood of 0, there
exists some ε̄ > 0 such that φ is strictly increasing in [0, ε̄]. Let ε̃ > 0 be arbitrarily chosen,
ε̂ = min(ε̃/

√
n, ε̄)/2 and δ = supt∈[0,ε̂] φ(t). Using these and the monotonicity of φ, we can see

that t ∈ [0, ε̃/
√
n] if φ(t) ≤ δ. By this, the expression of Φ, and the nonnegativity of φ, one

can observe that |x−y|i ≤ ε̃/
√
n if Φ(x, y) ≤ δ. It then follows that ‖x−y‖ ≤ ε̃ if Φ(x, y) ≤ δ.

Hence, Assumption 2(a) holds for the above Φ. The conclusion of this theorem then follows
from (22) and Theorem 2.2 with h = f .

The following result is a consequence of Theorem 3.6 in which the condition (14) is replaced
by a simpler one.

10



Corollary 3.7. Suppose that (18) and Assumption 4 hold. Let x∗ be a local minimizer of
problem (1). Assume that there exist some ε > 0 and L > 0 such that (22) holds. Then x∗ is
also a local minimizer of problem (4) for any λ ≥ L.

Proof. We know from the proof of Corollary 3.3 that (18) implies (14). The conclusion
then follows from Theorem 3.6.

As an immediate consequence of Corollary 3.7, we obtain the following result.

Corollary 3.8. Suppose that (18), Assumption 4, and lim inft→0+ φ(t)/t > 0 hold.4 Let x∗ be
a local minimizer of problem (1). Assume that there exist some ε > 0 and Lf > 0 such that

|f(x)− f(y)| ≤ Lf‖x− y‖1 ∀x, y ∈ B(x∗; ε) ∩ S. (23)

Then x∗ is a local minimizer of problem (4) for any λ ≥ Lf/Mφ, where Mφ = inft∈[0,2ε] φ(t)/t.

Proof. Notice that |x − y|i ≤ 2ε for every i and x, y ∈ B(x∗; ε) ∩ S. By this, (23) and a
similar argument as in the proof of Corollary 3.5, one can verify that

|f(x)− f(y)| ≤ Lf
Mφ

n∑
i=1

φ(|x− y|i), ∀x, y ∈ B(x∗; ε) ∩ S,

and hence (22) holds with L = Lf/Mφ. The conclusion then follows from Corollary 3.7.

Remark 2 In many applications, f is often Lipschitz continuous on the set S satisfying
(18). It then follows from Corollaries 3.4 and 3.8 that the partial `1 regularized model (21) is an
exact penalty reformulation of problem (1). Further, if S is compact, it follows from Corollaries
3.5 and 3.8 that the partially regularized model (4) for various φ such as `p, Log, Capped-
`1, MCP and SCAD is an exact penalty reformulation of (1). Therefore, Corollaries 3.4,
3.5 and 3.8 provide some theoretical justification for the often-observed superior performance
of a partial regularizer over a corresponding full regularizer in finding a sparse approximate
solution.

4 Exact penalization for problem (2)

Exact penalization technique has recently been studied for rank constrained problems (e.g.,
see [3, 35]). In this section, we study the relation between the rank constrained problem (2)
and the penalty model (6). In particular, under some suitable assumptions, we show that
problem (6) is an exact penalty reformulation of problem (2), that is, they share the same
global minimizers. We also show that a local minimizer of problem (2) is that of problem (6).

Theorem 4.1. Suppose that Assumption 3 holds for φ, and moreover,

X ∩ Argmin
rank(Y )≤r

q∑
i=1

φ(σi(X − Y )) 6= ∅ ∀X ∈ X , (24)

4The regularizers `1, `p, Log, Capped-`1, MCP and SCAD satisfy these assumptions.
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where q = min(m,n). Assume that there exists some L > 0 such that

|g(X)− g(Y )| ≤ L

q∑
i=1

φ(σi(X − Y )) ∀X, Y ∈ X . (25)

Then the following statements hold.

(i) If X∗ is a global minimizer of problem (2), then X∗ is a global minimizer of problem (6)
whenever λ ≥ L.

(ii) If X∗ is a global minimizer of problem (6), then X∗ is a global minimizer of problem (2)
whenever λ > L.

Proof. Let Ω1 = X , Ω2 = {X ∈ <m×n : rank(X) ≤ r} and Φ(X, Y ) =
∑q

i=1 φ(σi(X − Y ))
for all X, Y ∈ <m×n. In view of (24), one can see that Assumption 1(a) holds for such Φ, Ω1

and Ω2. We next show that Assumption 1(b) also holds for them. To this end, we first claim
that

min
rank(Y )≤r

q∑
i=1

φ(σi(X − Y )) ≤
q∑

i=r+1

φ(σi(X)) ∀X ∈ <m×n.5 (26)

Indeed, let X ∈ <m×n be arbitrarily chosen and X =
∑q

i=1 σi(X)uiv
T
i a singular value decom-

position (SVD) of X. Also, let Y =
∑r

i=1 σi(X)uiv
T
i . One can immediately see that

rank(Y ) ≤ r,

q∑
i=1

φ(σi(X − Y )) =

q∑
i=r+1

φ(σi(X)),

which imply that (26) holds as claimed. Now suppose that X ∈ Ω2 is arbitrarily chosen. Then
rank(X) ≤ r and hence σi(X) = 0 for r+ 1 ≤ i ≤ q, which together with Assumption 3 yields∑q

i=r+1 φ(σi(X)) = 0. It follows from this and (26) that min
rank(Y )≤r

∑q
i=1 φ(σi(X − Y )) = 0 for

every X ∈ Ω2. On the other hand, suppose that min
rank(Y )≤r

∑q
i=1 φ(σi(X − Y )) = 0 for some X.

Then
∑q

i=1 φ(σi(X − Y )) = 0 for some Y with rank(Y ) ≤ r. By this and Assumption 3, one
has that σi(X − Y ) = 0 for 1 ≤ i ≤ q. It follows that X = Y and hence rank(X) ≤ r, that is,
X ∈ Ω2. Therefore, Assumption 1(b) also holds for the above Φ and Ω2. We are now ready
to prove statements (i) and (ii).

(i) Suppose that X∗ is a global minimizer of problem (2) and λ ≥ L. It follows from (25)
and Theorem 2.1 with h = g that X∗ is a global minimizer of the following problem

min
X∈X

{
g(X) + λ min

rank(Y )≤r

q∑
i=1

φ(σi(X − Y ))

}
. (27)

5Notice that the relation min
rank(Y )≤r

∑q
i=1 φ(σi(X −Y )) =

∑q
i=r+1 φ(σi(X)) generally does not hold. There-

fore, the conclusion of this theorem cannot follow directly from Theorem 2.1.

12



In addition, notice that rank(X∗) ≤ r, which along with (26) implies that

min
rank(Y )≤r

q∑
i=1

φ(σi(X
∗ − Y )) =

q∑
i=r+1

φ(σi(X
∗)) = 0. (28)

By (26) and (28), one can observe that the objective of (27) is majorized by that of (6), and
moreover, they achieve the same value at X∗. Hence, X∗ is also a global minimizer of problem
(6).

(ii) Suppose that X∗ is a global minimizer of problem (6) and λ > L. Claim that problems
(6) and (27) have the same optimal value. To this end, let X̂∗ be a global minimizer of problem
(27). It follows from (25) and Theorem 2.1 with h = g that X̂∗ is also a global minimizer
of problem (2). By this and λ > L, it follows from statement (i) that X̂∗ is also a global
minimizer of problem (6) and hence rank(X̂∗) ≤ r. Using the latter relation and the same
argument as in the proof of statement (i), we see that (28) holds with X∗ replaced by X̂∗. It
then implies that problems (6) and (27) have equal objective value at X̂∗. By this and the
fact that X̂∗ is a global minimizer of them, we conclude that they share the same optimal
value as claimed. Using this and the supposition that X∗ is a global minimizer of (6), we see
that the optimal value of problems (6) and (27) is g(X∗) + λ

∑q
i=r+1 φ(σi(X

∗)), and hence

g(X∗) + λ min
rank(Y )≤r

q∑
i=1

φ(σi(X
∗ − Y )) ≥ g(X∗) + λ

q∑
i=r+1

φ(σi(X
∗)).

It together with (26) leads to

min
rank(Y )≤r

q∑
i=1

φ(σi(X
∗ − Y )) =

q∑
i=r+1

φ(σi(X
∗)).

Hence, the optimal value of (27) is g(X∗) +λ min
rank(Y )≤r

∑q
i=1 φ(σi(X

∗−Y )), which implies that

X∗ is also a global minimizer of (27). By this, λ > L, (25) and Theorem 2.1 with h = g, we
conclude that X∗ is also a global minimizer of problem (2).

Generally it may not be easy to check the relation (24). We next provide some sufficient
conditions under which (24) holds. Before proceeding, we establish a technical lemma as
follows. It appears that only part of this lemma is known and proved in the literature. We
therefore provide a proof for the rest part, which is quite nontrivial.

Lemma 4.2. Let X ∈ <m×n be given, and q = min(m,n). Then

Argmin
rank(Y )≤r

‖X − Y ‖F =

{
r∑
i=1

σi(X)uiv
T
i :

q∑
i=1

σi(X)uiv
T
i is an SVD of X.

}
, (29)

where ‖ · ‖F is the Frobenius norm.
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Proof. For convenience, let Mr denote the set on the right-hand side of (29). It follows
from Eckart and Young’s Theorem [14] that

Mr ⊆ Argmin
rank(Y )≤r

‖X − Y ‖F , min
rank(Y )≤r

‖X − Y ‖2
F =

q∑
i=r+1

σ2
i (X). (30)

We next show that Argmin
rank(Y )≤r

‖X − Y ‖F ⊆ Mr. To this end, let Ȳ ∈ Argmin
rank(Y )≤r

‖X − Y ‖F

be arbitrarily chosen. Then rank(Ȳ ) ≤ r, which implies σi(Ȳ ) = 0 for i ≥ r + 1. By Weyl’s
Theorem (e.g., see [26, Theorem 3.3.16]), one knows that σi+j−1(A+B) ≤ σi(A) + σj(B) for
any A,B ∈ <m×n and 1 ≤ i, j ≤ q with i + j ≤ q + 1. Letting A = X − Ȳ , B = Ȳ and
j = r + 1, we obtain that

σi+r(X) ≤ σi(X − Ȳ ), i = 1, . . . , q − r. (31)

In addition, it follows from (30) that

q∑
i=1

σ2
i (X − Ȳ ) = ‖X − Ȳ ‖2

F =

q∑
i=r+1

σ2
i (X),

which together with (31) implies that

σi(X − Ȳ ) =

{
σi+r(X) if 1 ≤ i ≤ q − r;
0 otherwise.

(32)

Also, we know from [25, Theorem 7.4.51] that

‖A−B‖′ ≥ ‖D(A)−D(B)‖′ ∀A,B ∈ <m×n (33)

holds for any unitarily invariant norm ‖ · ‖′ on <m×n. Using this, (30), and σi(Ȳ ) = 0 for
i ≥ r + 1, we have

q∑
i=r+1

σ2
i (X) = ‖X − Ȳ ‖2

F ≥
q∑
i=1

(σi(X)− σi(Ȳ ))2 =
r∑
i=1

(σi(X)− σi(Ȳ ))2 +

q∑
i=r+1

σ2
i (X),

which implies σi(Ȳ ) = σi(X) for 1 ≤ i ≤ r. Recall that σi(Ȳ ) = 0 for i ≥ r + 1. Due to these
facts and (32), any SVD of Ȳ and X − Ȳ shall be in the form of

Ȳ =
r∑
i=1

σi(X)ūiv̄
T
i , X − Ȳ =

q∑
i=r+1

σi(X)ūiv̄
T
i (34)

for some unit vectors ūi and v̄i satisfying ūTi ūj = 0 and v̄Ti v̄j = 0 for all 1 ≤ i 6= j ≤ r and
r + 1 ≤ i 6= j ≤ q. Clearly, X =

∑q
i=1 σi(X)ūiv̄

T
i . Claim that

∑q
i=1 σi(X)ūiv̄

T
i is an SVD of
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X. To this end, we first show that ūTi ūj = 0 and v̄Ti v̄j = 0 for all 1 ≤ i ≤ r and r+ 1 ≤ j ≤ q.
Indeed, since Ȳ ∈ Argmin

rank(Y )≤r
‖X − Y ‖F and Ȳ =

∑r
i=1 σi(X)ūiv̄

T
i , it follows that

(ū1, . . . , ūr, v̄1, . . . , v̄r) ∈ Argmin
u,v

∥∥∥∥∥X −
r∑
i=1

σi(X)uiv
T
i

∥∥∥∥∥
2

F

.

Its first-order optimality conditions yield (X−Ȳ )v̄i = 0 and (X−Ȳ )T ūi = 0 for each 1 ≤ i ≤ r.
It follows that v̄i ⊥ R((X − Ȳ )T ) and ūi ⊥ R(X − Ȳ ) for every 1 ≤ i ≤ r, where R(·)
denotes the range space of the associated matrix. Notice from (34) that v̄j ∈ R((X − Ȳ )T )
and ūj ∈ R(X − Ȳ ) for every r + 1 ≤ j ≤ q. We immediately conclude that ūTi ūj = 0 and
v̄Ti v̄j = 0 for every 1 ≤ i ≤ r and r+1 ≤ j ≤ q as claimed. Hence, {ū1, . . . , ūq} and {v̄1, . . . , v̄q}
are two sets of orthonormal vectors, which together with X =

∑q
i=1 σi(X)ūiv̄

T
i implies that∑q

i=1 σi(X)ūiv̄
T
i is an SVD of X. In view of this, Ȳ =

∑r
i=1 σi(X)ūiv̄

T
i and the definition of

Mr, one can see that Ȳ ∈Mr. By the arbitrariness of Ȳ , we have Argmin
rank(Y )≤r

‖X − Y ‖F ⊆Mr.

It together with (30) implies that (29) holds.

We are now ready to provide a sufficient condition under which the relation (24) holds.

Proposition 4.3. Let q = min(m,n). Suppose that Assumption 3 holds and there exists a
strictly increasing function ψ : <+ → < ∪ {∞} such that ‖x‖� := ψ(

∑q
i=1 φ(|xi|)) is a norm

on <q.6 Assume that
X ∩ Argmin

rank(Y )≤r
‖X − Y ‖F 6= ∅ ∀X ∈ X . (35)

Then the relation (24) holds.

Proof. Suppose that ψ : <+ → < ∪ {∞} is a strictly increasing function such that
‖x‖� = ψ(

∑q
i=1 φ(|xi|)) is a norm on <q. Clearly, ‖x‖� = ‖|x|‖� and ‖x‖� = ‖Px‖� for every

x ∈ <q and q × q permutation matrix P . It follows from [26, Definition 3.5.17] that ‖ · ‖� is
a symmetric gauge function. This and [26, Theorem 3.5.18] imply that ‖X‖� is a unitarily
invariant norm on <m×n, where

‖X‖� = ‖σ(X)‖�, σ(X) = (σ1(X), · · · , σq(x))T ∀X ∈ <m×n.

Using this and (33), we obtain that for all X, Y ∈ <m×n,

ψ

(
q∑
i=1

φ(σi(X − Y ))

)
= ‖X − Y ‖� ≥ ‖D(X)−D(Y )‖� = ψ

(
q∑
i=1

φ(|σi(X)− σi(Y )|)

)
.

This together with the strict monotonicity of ψ implies that

q∑
i=1

φ(σi(X − Y )) ≥
q∑
i=1

φ(|σi(X)− σi(Y )|) ∀X, Y ∈ <m×n. (36)

6It is not hard to see that this assumption holds for φ(t) = tp and ψ(t) = t1/p for all t ≥ 0 and p ≥ 1.
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By Assumption 3 and a similar argument as for (16), it is not hard to observe that

min
rank(Y )≤r

q∑
i=1

φ(|σi(X)− σi(Y )|) =

q∑
i=r+1

φ(σi(X)) ∀X ∈ <m×n.

It follows from this and (36) that

min
rank(Y )≤r

q∑
i=1

φ(σi(X − Y )) ≥
q∑

i=r+1

φ(σi(X)) ∀X ∈ <m×n. (37)

Let X ∈ <m×n be arbitrarily chosen, and let X =
∑q

i=1 σi(X)uiv
T
i be an arbitrary SVD of X.

Also, let Ȳ =
∑r

i=1 σi(X)uiv
T
i . One can immediately see that

rank(Ȳ ) ≤ r,

q∑
i=1

φ(σi(X − Ȳ )) =

q∑
i=r+1

φ(σi(X)),

which together with (37) implies Ȳ ∈ Argmin
rank(Y )≤r

∑q
i=1 φ(σi(X − Y )). By this, Lemma 4.2,

Ȳ =
∑r

i=1 σi(X)uiv
T
i , and the fact that

∑q
i=1 σi(X)uiv

T
i is an arbitrary SVD of X, one can

see that

Argmin
rank(Y )≤r

q∑
i=1

‖X − Y ‖F ⊆ Argmin
rank(Y )≤r

q∑
i=1

φ(σi(X − Y )) ∀X ∈ <m×n.

It then follows from this and (35) that the relation (24) holds.

We next provide another sufficient condition under which the relation (24) holds.

Proposition 4.4. Suppose that φ : <+ → <+ is concave and φ(0) = 0. Assume that the set
X satisfies (35). Then the relation (24) holds.

Proof. Since φ : <+ → <+ is concave and φ(0) = 0, it follows from [45, Theorem 1] that

q∑
i=1

φ(σi(X − Y )) ≥
q∑
i=1

|φ(σi(X))− φ(σi(Y ))| ∀X, Y ∈ <m×n.

It leads to

min
rank(Y )≤r

q∑
i=1

φ(σi(X − Y )) ≥ min
rank(Y )≤r

q∑
i=1

|φ(σi(X))− φ(σi(Y ))| =
q∑

i=r+1

φ(σi(X)),

where the equality is due to the nonnegativity of φ and the fact that rank(Y ) ≤ r if and only
if σi(Y ) = 0 for every i > r. The rest of the proof is the same as that of Proposition 4.3.

Remark 3 The relation (35) holds for numerous sets X . For example, one can verify
that it holds for the following sets with q = min(m,n).
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(i) X = {X ∈ <m×n : σi(X) ≤ bi, i = 1, . . . , q} for bi ∈ [0,∞], i = 1, . . . , q.7

(ii) X = {X ∈ <m×n :
∑q

i=1 di[σi(X)]p ≤ t} for p > 0, t ≥ 0 and di > 0, i = 1, . . . , q.

(iii) X = {X ∈ <m×n : ψ(σ1(X), . . . , σq(X)) ≤ t}, where t ∈ < and ψ : <q+ → < ∪ {∞} is
non-decreasing, that is, ψ(x) ≥ ψ(y) for all x, y ∈ <q+ with x ≥ y.

As a consequence of Theorem 4.1 and Proposition 4.3, we have the following result.

Corollary 4.5. Suppose that (25), (35) and Assumption 3 hold. Assume additionally that
there exists a strictly increasing function ψ : <+ → < ∪ {∞} such that ψ(

∑q
i=1 φ(|xi|)) is a

norm on <q, where q = min(m,n). Then the conclusion of Theorem 4.1 holds.

The following result is an immediate consequence of Theorem 4.1 and Proposition 4.4.

Corollary 4.6. Suppose that (25), (35) and Assumption 3 hold. Assume additionally that φ
is concave in [0,∞). Then the conclusion of Theorem 4.1 holds.

The following result is a consequence of Corollaries 4.5 and 4.6.

Corollary 4.7. Suppose that the set X satisfies (35). Assume that there exist some L > 0
and p > 0 such that

|g(X)− g(Y )| ≤ L

q∑
i=1

[σi(X − Y )]p ∀X, Y ∈ X , (38)

where q = min(m,n). Then the following statements hold.

(i) If X∗ is a global minimizer of problem (2), then X∗ is a global minimizer of problem (6)

min
X∈X

g(X) + λ

q∑
i=r+1

[σi(X)]p (39)

whenever λ ≥ L.

(ii) If X∗ is a global minimizer of problem (39), then X∗ is a global minimizer of problem
(2) whenever λ > L.

Proof. Let φ(t) = tp and ψ(t) = t1/p for all t ≥ 0. We divide the proof into two cases.
Case 1) p ≥ 1. Clearly, ψ(

∑q
i=1 φ(|xi|)) = ‖x‖p is a norm on <q. By this and the

assumptions of this corollary, we see that the assumptions of Corollary 4.5 hold. Therefore,
the conclusion of this corollary follows from Corollary 4.5.

Case 2) 0 < p < 1. Notice that in this case φ is concave in [0,∞). By this and the as-
sumptions of this corollary, we see that the assumptions of Corollary 4.6 hold. The conclusion
of this corollary thus follows from Corollary 4.6.

The following result is a consequence of Corollary 4.6, which holds for various regularizers
φ such as `1, `p, Log, Capped-`1, MCP and SCAD. It can be viewed as a generalization of
Corollary 3.5 from vector to matrix.

7When bi =∞, σi(X) ≤ bi shall be changed to σi(X) < bi.
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Corollary 4.8. Suppose that X is a non-singleton compact set satisfying (35), and φ is
concave on [0,∞) satisfying Assumption 3 and lim inft→0+ φ(t)/t > 0.8 Assume that g is
Lipschitz continuous on X , that is, there exists some Lg > 0 such that

|g(X)− g(Y )| ≤ Lg‖X − Y ‖∗ ∀X, Y ∈ X . (40)

Then the conclusion of Theorem 4.1 holds with L = Lg/Mφ, where

Mφ = inf
t∈[0,R]

φ(t)

t
, R = max

X,Y ∈X
‖X − Y ‖.

Proof. By the definition of R, one can see that for every i,

σi(X − Y ) ≤ ‖X − Y ‖ ≤ R ∀X, Y ∈ X .

By this and a similar argument as in the proof of Corollary 3.5, one has that for every i,

φ(σi(X − Y )) ≥Mφσi(X − Y ) ∀X, Y ∈ X .

It follows from this and (40) that

|g(X)− g(Y )| ≤ Lg‖X − Y ‖∗ ≤
Lg
Mφ

q∑
i=1

φ(σi(X − Y )), ∀X, Y ∈ X ,

and hence (25) holds with L = Lf/Mφ, where q = min(m,n). The conclusion then follows
from Corollary 4.6.

Remark 4 It was established in [3] that problem (6) with φ(t) = t is an exact penalization
of problem (2) with some simple closed set X .

We next establish some relation between the local minimizers of problem (2) and those of
problem (6). In particular, we show that under some suitable assumptions, a local minimizer
of (2) is also that of (6).

Theorem 4.9. Suppose that (24) and Assumption 4 hold. Let X∗ be a local minimizer of
problem (2). Assume that there exist some ε > 0 and L > 0 such that

|g(X)− g(Y )| ≤ L

q∑
i=1

φ(σi(X − Y )) ∀X, Y ∈ B(X∗; ε) ∩ X , (41)

where q = min(m,n). Then X∗ is a local minimizer of problem (6) whenever λ ≥ L.

Proof. Let Ω1 = X , Ω2 = {X ∈ <m×n : rank(X) ≤ r} and Φ(X, Y ) =
∑q

i=1 φ(σi(X − Y ))
for all X, Y ∈ <m×n. In view of (24), Assumption 4 and the same argument as in the proof
of Theorem 4.1, one can see that Assumption 1 holds for such Φ, Ω1 and Ω2. Notice from

8The regularizers `1, `p, Log, Capped-`1, MCP and SCAD satisfy these assumptions.

18



Assumption 4 that φ(0) = 0 and φ is right continuous at 0. Using these and the fact that
σi(·) is a continuous function for each i, we see that Assumption 2(b) holds for such Φ. We
next show that Assumption 2(a) also holds for such Φ. To this end, let ε̃ > 0 be arbitrarily
chosen. By a similar argument as in the proof of Theorem 3.6, there exists some δ > 0 such
that t ∈ [0, ε̃] whenever φ(t) ≤ δ. By this, the expression of Φ, and the nonnegativity of φ,
one can observe that σi(X − Y ) ≤ ε̃ for all i if Φ(X, Y ) ≤ δ, which implies that ‖X − Y ‖ ≤ ε̃
whenever Φ(X, Y ) ≤ δ. Hence, Assumption 2(a) holds for the above Φ. It then follows from
(41) and Theorem 2.2 with h = g that X∗ is also a local minimizer of problem (27). Notice
that rank(X∗) ≤ r. By the same argument as in the proof of Theorem 4.1, one can see that
(28) holds at X∗. From this and the proof of Theorem 4.1, we know that the objective of (27)
is majorized by that of (6) and they achieve the same value at X∗. By these and the result
that X∗ is a local minimizer of (27), one can conclude that X∗ is also a local minimizer of
problem (6).

As a consequence of Theorem 4.9 and Proposition 4.3, we have the following result.

Corollary 4.10. Suppose that (35), (41) and Assumption 4 hold. Assume that there exists a
strictly increasing function ψ : <+ → < ∪ {∞} such that ψ(

∑q
i=1 φ(|xi|)) is a norm on <q,

where q = min(m,n). Then the conclusion of Theorem 4.9 holds.

The following result is an immediate consequence of Theorem 4.9 and Proposition 4.4.

Corollary 4.11. Suppose that (35), (41) and Assumption 4 hold. Assume Additionally that
φ is concave in [0,∞). Then the conclusion of Theorem 4.9 holds.

The following result is a consequence of Corollaries 4.10 and 4.11, whose proof is similar
to that of Corollary 4.7 and thus omitted.

Corollary 4.12. Suppose that the set X satisfies (35). Let X∗ be a local minimizer of problem
(2). Assume that there exist some ε > 0, p > 0, and L > 0 such that

|g(X)− g(Y )| ≤ L

q∑
i=1

[σi(X − Y )]p ∀X, Y ∈ B(X∗; ε) ∩ X .

Then X∗ is a local minimizer of problem (39) whenever λ ≥ L.

The following result is a consequence of Corollary 4.11, which holds for various φ such as
`1, `p, Log, Capped-`1, MCP and SCAD. It can be viewed as a generalization of Corollary 3.8
from vector to matrix.

Corollary 4.13. Suppose that X satisfies (35), and φ is concave on [0,∞) satisfying As-
sumption 4 and lim inft→0+ φ(t)/t > 0.9 Assume that there exist some ε > 0 and Lg > 0 such
that

|g(X)− g(Y )| ≤ Lg‖X − Y ‖∗ ∀X, Y ∈ B(X∗; ε) ∩ X .
Then X∗ is a local minimizer of problem (6) for any λ ≥ Lf/Mφ, where Mφ = inft∈[0,2ε] φ(t)/t.

9The regularizers φ such as `1, `p, Log, Capped-`1, MCP and SCAD satisfy these assumptions.
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Proof. One can observe that for every i,

σi(X − Y ) ≤ ‖X − Y ‖ ≤ ‖X −X∗‖+ ‖Y −X∗‖ ≤ 2ε ∀X, Y ∈ B(X∗; ε) ∩ X .

By this and a similar argument as in the proof of Corollaries 3.8 and 4.8, one can have

|g(X)− g(Y )| ≤ Lg
Mφ

q∑
i=1

φ(σi(X − Y )) ∀X, Y ∈ B(X∗; ε) ∩ X ,

and hence (41) holds with L = Lg/Mφ, where q = min(m,n). The conclusion then follows
from Corollary 4.11.

Remark 5 (i) In many applications, g is often Lipschitz continuous on the set X satisfying
(35). It then follows from Corollaries 4.7 and 4.12 with p = 1 that the partial nuclear-norm
regularized model

min
X∈X

g(X) + λ

q∑
i=r+1

σi(X)

is an exact penalty reformulation of problem (2) for some λ > 0, where q = min(m,n). Further,
if X is compact, it follows from Corollaries 4.8 and 4.13 that the partially regularized model (6)
for various φ such as `p, Log, Capped-`1, MCP and SCAD is an exact penalty reformulation
of (2). Therefore, Corollaries 4.7, 4.8, 4.12 and 4.13 provide some theoretical justification
on the often-observed superior performance of a partial regularizer over a corresponding full
regularizer in finding a low-rank approximate solution.

(ii) Corollaries 4.8 and 4.13 generalize the results of [29] that were developed for the case
where φ(t) = tp with p ∈ (0, 1], X is an semidefinite box, and g is Lipschitz continuous on X .

5 Concluding remarks

In this paper we studied exact penalization for a class of cardinality and rank constrained
optimization problems. In particular, under some suitable assumptions, we showed that the
penalty model based on a partial regularization is an exact reformulation of the original prob-
lem. We also showed that a local minimizer of the latter problem is that of the former one.
These properties, however, generally do not hold for the penalty model based on a full reg-
ularization. Our results provide some theoretical justification for the often-observed superior
performance of a partial regularizer over a corresponding full regularizer. In addition, our
results indicate some dependence of the partial regularizer on the objective of the considered
problem, which can provide some guidance on how to choose a partial regularizer for a given
problem.
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