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Abstract

We derive explicit error bounds for first- and second-order approximations for all eigen-

values of a real symmetric matrix by use of techniques from functional calculus of linear

operators. We also apply these results to obtain error bounds for first- and second-order ap-

proximations for singular values of a real matrix. These error bounds are potentially useful

for designing algorithms for solving eigenvalue and singular value optimization problems.
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1 Introduction

Optimization of eigenvalues of real symmetric matrices arises in many applications such as

structural optimization problems in mechanics (see, for example, [4]) and graph-partitioning

problems (see, for example, [2]). We refer interested readers to [12] for discussion of more

applications. As mentioned in [9], sensitivity analysis of eigenvalues plays essential role in

developing efficient algorithms for eigenvalue optimization. This topic has attracted considerable

research interest (see, for example, [3–5,7–11,13–15,17]). Below we only briefly mention several

results most relevant to our work in this paper.

First, it is well-known that when the mth largest eigenvalue λm(X0) has multiplicity one,

λm(X) is an analytic function of X at X0 (see, for example, [7]). On the other hand, when the

multiplicity is not one, λm(X) is not differentiable at X0. Nevertheless, Hiriart-Urruty and Ye [5]

showed that the first-order directional derivative always exists for all eigenvalues of symmetric

matrices, regardless of multiplicity, i.e., the limit

lim
t→0+

λm(X + t∆)− λm(X)

t
=: λ′

m(X;∆) (1)
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exists for all 1 ≤ m ≤ n and X, ∆ ∈ Sn, where Sn denotes the set of all n × n real symmetric

matrices. They also provided an explicit expression for λ′
m(X;∆). Later, Torki [17] made use

of a perturbation result about invariant subspaces from [16] and showed that the second-order

directional derivative also exists, i.e., the limit

lim
t→0+

λm(X + t∆)− λm(X) − tλ′
m(X;∆)

1
2t

2
=: λ′′

m(X;∆) (2)

exists all 1 ≤ m ≤ n and X, ∆ ∈ Sn. And an explicit formula for λ′′
m(X;∆) was also given.

In this paper, we establish error bounds for first- and second-order approximations of eigen-

values of X ∈ Sn by explicitly choosing constants δ, C1, C2 and a matrix Q in terms of X and

m such that
|λm(X +∆)− λm(X)− λ′

m(X;∆)| ≤ C1‖∆‖2,
|λm(X +∆)− λm(X) − λ′

m(X;∆ +∆Q∆)| ≤ C2‖∆‖3

whenever ∆ ∈ Sn and ‖∆‖ < δ. The results (1) and (2) can thus be obtained as byproducts.

We also apply these results to obtain error bounds for first- and second-order approximations

of singular values. Those bounds are potentially useful for designing algorithms for solving

eigenvalue and singular value optimization problems. Our proof techniques differ much from

those in previous works in that we make extensive use of the integral representation of a linear

operator involving the resolvent as in [1].

The rest of this paper is organized as follows. In Section 2, we introduce some notations and

establish some technical preliminaries. In Section 3, we derive error bounds for first- and second-

order approximations of eigenvalues, respectively. Finally, we apply these results to obtain error

bounds for first- and second-order approximations of singular values in Section 4.

2 Notations and technical preliminaries

All spaces of this paper are for real vectors or matrices unless explicitly stated otherwise. Let

ℜn denote the n-dimensional Euclidean space. For a vector v ∈ ℜn, the Euclidean norm of v

is denoted by ‖v‖, and Diag(v) denotes a diagonal matrix with v along its diagonal. Let Sn

denote the space of all n × n symmetric matrices. For any X ∈ Sn, all n eigenvalues of X are

denoted by λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X). Let ℜp×q denote the space of all p× q matrices. For

a Z ∈ ℜp×q, the spectral norm of Z is denoted by ‖Z‖. The identity matrix is denoted by I,

whose dimension should be clear from the context.

For an X ∈ Sn and each 1 ≤ m ≤ n, we define the integers im and jm as the number of

eigenvalues ranking before m that equal λm(X) and the number of eigenvalues ranking strictly

after m that equal λm(X), respectively. Hence,

λ1(X) ≥ · · · ≥ λm−im(X) > λm−im+1(X) = · · · = λm(X)

= λm+1(X) = · · · = λm+jm(X) > λm+jm+1(X) ≥ · · · ≥ λn(X).

In addition, we define λ0(X) = ∞, λn+1(X) = −∞, and

rm :=
1

2
min{λm−im(X)− λm(X), λm(X)− λm+jm+1(X)}. (3)
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We can immediately observe that rm > 0.

The following lemmas will be used subsequently. The first lemma can be found in [6,

Page 198].

Lemma 1. If X,∆ ∈ Sn, then

|λi(X +∆)− λi(X)| ≤ ‖∆‖ ∀i = 1, ..., n.

Lemma 2. If ∆ ∈ Sn and ‖∆‖ < rm/2, then

|λi(X +∆)− λm(X)| > 3rm
2

∀i /∈ {m− im + 1, ...,m, ...,m + jm}, (4)

|λi(X +∆)− λm(X)| < rm
2

∀i ∈ {m− im + 1, ...,m, ...,m + jm}. (5)

Proof. First, from Lemma 1 and the assumption on ∆, we see that

λm−im(X +∆) ≥ λm−im(X) − ‖∆‖ > λm−im(X) − rm
2
, (6)

λm+jm+1(X +∆) ≤ λm+jm+1(X) + ‖∆‖ < λm+jm+1(X) +
rm
2
. (7)

Using (3) and (6), we obtain that, for any 1 ≤ i ≤ m− im,

λi(X +∆)− λm(X) ≥ λm−im(X +∆)− λm(X)

> λm−im(X)− λm(X)− rm
2

≥ 2rm − rm
2

=
3rm
2

. (8)

Similarly, using (3) and (7), we obtain that, for any m+ jm + 1 ≤ i ≤ n,

λm(X)− λi(X +∆) >
3rm
2

. (9)

It follows from (8) and (9) that (4) holds. Finally, using Lemma 1, we obtain that, form−im+1 ≤
i ≤ m+ jm,

|λi(X +∆)− λm(X)| = |λi(X +∆)− λi(X)| ≤ ‖∆‖ <
rm
2
,

and hence (5) holds.

In this paper, we will make extensive use of the representation of a linear operator in terms

of a contour integral involving its resolvent function. We now review a few basic facts below

and refer the readers to [7] for further details.

For any W ∈ Sn, the resolvent function λ 7→ (λI −W )−1 is an (entrywise) analytic function

on C\{λ1(W ), ..., λn(W )}. Thus, for any simple closed curve C not passing through any of the

eigenvalues of W , one can define

Π
C
(W ) :=

1

2πι

∮

C
(λI −W )−1dλ,
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where ι denotes the imaginary unit, i.e., ι2 = −1. Let W =
∑n

i=1 λi(W )uiu
T
i be the eigenvalue

decomposition of W . Then (λI −W )−1 =
∑n

i=1
1

λ−λi(W )uiu
T
i and thus

Π
C
(W ) =

1

2πι

∮

C

n∑

i=1

1

λ− λi(W )
uiu

T
i dλ =

n∑

i=1

(
1

2πι

∮

C

1

λ− λi(W )
dλ

)
uiu

T
i =

∑

i: λi(W )∈int(C)

uiu
T
i ,

where int(C) denotes the interior of the simple closed curve C. Similarly, one can show that

WΠ
C
(W ) =

∑

i: λi(W )∈int(C)

Wuiu
T
i =

∑

i: λi(W )∈int(C)

λi(W )uiu
T
i =

1

2πι

∮

C
λ(λI −W )−1dλ. (10)

The following result provides an integral representation of the difference between WΠ
C
(W )

and (W +∆)Π
C
(W +∆).

Lemma 3. Let W , ∆ ∈ Sn and C be a simple closed curve that does not pass through any

eigenvalues of W +∆ and W . Then

(W +∆)Π
C
(W +∆)−WΠ

C
(W )

=
1

2πι

∮

C
λ(λI −W )−1∆(λI −W )−1dλ+

1

2πι

∮

C
λ(λI −W )−1∆(λI −W )−1∆(λI −W −∆)−1dλ

(11)

=
1

2πι

∮

C
λ(λI −W )−1∆(λI −W )−1dλ+

1

2πι

∮

C
λ(λI −W )−1∆(λI −W )−1∆(λI −W )−1dλ

+
1

2πι

∮

C
λ(λI −W )−1∆(λI −W )−1∆(λI −W )−1∆(λI −W −∆)−1dλ (12)

Proof. First, notice that for any λ ∈ C, we have

(λI −W −∆)−1 − (λI −W )−1 = (λI −W )−1 [λI −W − (λI −W −∆)] (λI −W −∆)−1

= (λI −W )−1∆(λI −W −∆)−1. (13)

Hence, we obtain that

(λI −W −∆)−1 = (λI −W )−1 + (λI −W )−1∆(λI −W −∆)−1. (14)

Substituting this equality into the right-hand side of (13), we have

(λI−W−∆)−1−(λI−W )−1 = (λI−W )−1∆(λI−W )−1+(λI−W )−1∆(λI−W )−1∆(λI−W−∆)−1.

Multiplying both sides of this relation by λ, integrating along C and using (10), we obtain (11).

Substituting the equality (14) into (11), we further see that (12) holds.

Lemma 4. Suppose A ∈ ℜn×n, B ∈ ℜk×n, C ∈ ℜk×k. Then
∥∥∥∥∥

(
A BT

B C

)∥∥∥∥∥ ≤ ‖A‖+ ‖C‖+ 2‖B‖.
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Proof. We observe that
∥∥∥∥∥

(
A BT

B C

)∥∥∥∥∥ = max
‖x‖2+‖y‖2≤1

∥∥∥∥∥

(
A BT

B C

)(
x

y

)∥∥∥∥∥ = max
‖x‖2+‖y‖2≤1

√
‖Ax+BTy‖2 + ‖Bx+ Cy‖2

≤ max
‖x‖2+‖y‖2≤1

(‖Ax+BT y‖+ ‖Bx+ Cy‖) ≤ ‖A‖ + ‖C‖+ 2‖B‖.

The following lemma can be readily obtained from [16, Page 230, Theorem 2.1]. A variant

of this lemma has been used in [17] to establish (2).

Lemma 5. Let X ∈ Sn and X =
∑n

i=1 λi(X)uiu
T
i be its eigenvalue decomposition. Let

Um :=
(
um−im+1 · · · um+jm

)
, Ũm :=

(
u1 · · · um−im um+jm+1 · · · un

)
. (15)

Then, for any ‖∆‖ < rm/2, there exists a matrix P ∈ ℜ(n−im−jm)×(im+jm) with ‖P‖ ≤ 2‖∆‖/rm
such that the image of V1 and V2 are invariant subspaces of X +∆, where V1 and V2 are given

by

V1 = (Um + ŨmP )(I + P TP )−
1

2 , V2 = (Ũm − UmP T )(I + PP T )−
1

2 . (16)

3 Error bounds for first- and second-order approximations of

eigenvalues

In this section, we establish error bounds for first- and second-order approximations for the mth

eigenvalue of a symmetric matrix X ∈ Sn for any 1 ≤ m ≤ n. Throughout this section, we

assume that X =
∑n

i=1 λi(X)uiu
T
i is the eigenvalue decomposition of X, and that Um and Ũm

are defined as in (15). In addition, we define im, jm and rm as in Section 2.

3.1 Error bounds for first-order approximation of eigenvalues

The following proposition will be used subsequently to establish our main theorem of this sub-

section.

Proposition 1. Let Cm be the circle centered at the origin with radius rm, and let W =

X − λm(X)I and Um be defined in (15). Then we have

‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m‖ ≤ 2

rm
‖∆‖2

whenever ∆ ∈ Sn and ‖∆‖ < rm/2.

Proof. Suppose ∆ ∈ Sn such that ‖∆‖ < rm/2. Notice that the eigenvalues of W and W + ∆

are {λi(X) − λm(X) : i = 1, ..., n} and {λi(X + ∆) − λm(X) : i = 1, ..., n}, respectively. By

the definition of im, jm and rm, we see that

λi(W ) = λi(X)− λm(X) = 0, m− im + 1 ≤ i ≤ m+ jm,

|λi(W )| = |λi(X)− λm(X)| ≥ 2rm, i ≤ m− im or i > m+ jm.
(17)

5



Using (17) and Lemma 2, we observe that Cm does not go through any eigenvalue of W and

W + ∆, and moreover, the eigenvalues {λi(W )} and {λi(W + ∆)} lie in the interior of Cm

precisely when m− im + 1 ≤ i ≤ m+ jm. Hence, we have

1

2πι

∮

Cm

λ(λI −W )−1∆(λI −W )−1dλ =
∑

i,j

(
1

2πι

∮

Cm

λ uiu
T
i ∆uju

T
j

[λ− λi(W )][λ− λj(W )]
dλ

)

=
∑

(i,j)∈Im

uiu
T
i ∆uju

T
j = UmUT

m∆UmUT
m, (18)

where Im = {(i, j) : λi(W ) = λj(W ) = 0}. In addition, it follows from (10) and (17) that

WΠ
Cm

(W ) =
∑

i: λi(W )∈int(Cm)

λi(W )uiu
T
i =

m+jm∑

i=m−im+1

λi(W )uiu
T
i = 0. (19)

In view of (17) and Lemma 2, we have that for any λ ∈ Cm,

‖(λI −W )−1‖ = max
1≤i≤n

1

|λ− λi(W )| =
1

|λ| =
1

rm
, (20)

‖(λI −W −∆)−1‖ = max
1≤i≤n

1

|λ− λi(W +∆)| ≤ max
1≤i≤n

1

||λ| − |λi(W +∆)|| ≤ 2

rm
. (21)

Lemma 3 together with (18)–(21) yields

‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m‖

=

∥∥∥∥(W +∆)Π
Cm

(W +∆)−WΠ
Cm

(W )− 1

2πι

∮

Cm

λ(λI −W )−1∆(λI −W )−1dλ

∥∥∥∥

=

∥∥∥∥
1

2πι

∮

Cm

λ(λI −W )−1∆(λI −W )−1∆(λI −W −∆)−1dλ

∥∥∥∥

≤ 1

2π

∮

Cm

|λ|‖(λI −W )−1‖2‖∆‖2‖(λI −W −∆)−1‖|dλ| ≤ 2

rm
‖∆‖2.

This completes the proof.

We are now ready to establish the main theorem of this subsection.

Theorem 1. For any ∆ ∈ Sn such that ‖∆‖ < rm/2, we have

|λm(X +∆)− λm(X)− λim(U
T
m∆Um)| ≤ 4

rm
‖∆‖2, (22)

where Um is defined in (15).

Proof. For simplicity of notation, let W = X − λm(X)I. We first observe that the polynomials

∆ 7→ det(W +∆) and ∆ 7→ det(UT
m∆Um) are not identically zero. Thus, the set

Ξ =
{
∆ ∈ Sn : ‖∆‖ <

rm
2
, det(W +∆) 6= 0, det(UT

m∆Um) 6= 0
}
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is dense in {∆ ∈ Sn : ‖∆‖ < rm/2}. By the continuity of eigenvalues, it thus suffices to show

that (22) holds on Ξ. We now assume that ∆ is an arbitrary matrix in Ξ. Notice that λi(W +∆)

and λj(U
T
m∆Um) are nonzero for all 1 ≤ i ≤ n and 1 ≤ j ≤ im + jm. Let Cm be the circle

centered at the origin with radius rm. Recall from the proof of Proposition 1 that Cm does not

go through any λi(W +∆), and moreover, the eigenvalues {λi(W +∆)} lie in the interior of Cm

precisely when m− im + 1 ≤ i ≤ m+ jm. Define

R = (W +∆)Π
Cm

(W +∆), S = UmUT
m∆UmUT

m.

We observe from (10) that R has exactly im + jm nonzero eigenvalues, which are

{λi(W +∆) : m− im + 1 ≤ i ≤ m+ jm}.

In addition, since UT
mUm = 1, it follows from [6, Theorem 1.3.20] that S and UT

m∆Um share

identical nonzero eigenvalues. Using this observation and the assumption ∆ ∈ Ξ, we conclude

that S has exactly im + jm nonzero eigenvalues, which are

{λi(U
T
m∆Um) : 1 ≤ i ≤ im + jm}.

Also, it follows from Proposition 1 and Lemma 1 that for all i,

|λi(R)− λi(S)| ≤ ‖R− S‖ = ‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m‖ ≤ 2

rm
‖∆‖2. (23)

We next show that (22) holds for ∆ ∈ Ξ by considering the following four cases.

Case 1. λm(W +∆) > 0 and λim(U
T
m∆Um) > 0. In this case, one can observe that

λim(R) = λm(W +∆) and λim(S) = λim(U
T
m∆Um),

which together with (23) implies that

|λm(X +∆)− λm(X)− λim(U
T
m∆Um)| = |λm(W +∆)− λim(U

T
m∆Um)|

= |λim(R)− λim(S)| ≤ 2

rm
‖∆‖2.

Case 2. λm(W +∆) < 0 and λim(U
T
m∆Um) < 0. In this case, we can observe that

λn−jm(R) = λm(W +∆) and λn−jm(S) = λim(U
T
m∆Um).

Using these relations and (23), we obtain that

|λm(X +∆)− λm(X) − λim(U
T
m∆Um)| = |λm(W +∆)− λim(U

T
m∆Um)|

= |λn−jm(R)− λn−jm(S)| ≤ 2

rm
‖∆‖2.
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Case 3. λm(W +∆) > 0 and λim(U
T
m∆Um) < 0. In this case, we have

λim(R) = λm(W +∆) > 0 and λn−jm(S) = λim(U
T
m∆Um) < 0.

Claim that λn−jm(R) ≥ 0 and λim(S) ≤ 0. First, suppose to the contrary that λn−jm(R) < 0.

Then one must have

λ1(R) ≥ · · · ≥ λim(R) > 0 > λn−jm(R) ≥ · · · ≥ λn(R).

It implies that R has at least im + jm + 1 nonzero eigenvalues, which contradicts with the fact

that the number of nonzero eigenvalues of R is im+ jm. Similarly, we can show that λim(S) ≤ 0.

Using these facts and (23), we obtain

|λim(R)| = λim(R) ≤ λim(R)− λim(S) = |λim(R)− λim(S)| ≤
2

rm
‖∆‖2,

|λn−jm(S)| = −λn−jm(S) ≤ λn−jm(R)− λn−jm(S) = |λn−jm(R)− λn−jm(S)| ≤
2

rm
‖∆‖2.

Combining these two relations, we see that

|λm(X +∆)− λm(X) − λim(U
T
m∆Um)| = |λm(W +∆)− λim(U

T
m∆Um)|

= |λim(R)− λn−jm(S)| ≤ 4

rm
‖∆‖2.

Case 4. λm(W +∆) < 0 and λim(U
T
m∆Um) > 0. In this case, we see that

λn−jm(R) = λm(W +∆) < 0 and λim(S) = λim(U
T
m∆Um) > 0.

Using the similar argument as in Case 3, one can show that λim(R) ≤ 0 and λn−jm(S) ≥ 0. By

these inequalities and (23), we obtain that

|λn−jm(R)| = −λn−jm(R) ≤ λn−jm(S)− λn−jm(R) = |λn−jm(R)− λn−jm(S)| ≤
2

rm
‖∆‖2,

|λim(S)| = λim(S) ≤ λim(S)− λim(R) = |λim(R)− λim(S)| ≤
2

rm
‖∆‖2.

By virtue of these two relations, we further obtain that

|λm(X +∆)− λm(X) − λim(U
T
m∆Um)| = |λm(W +∆)− λim(U

T
m∆Um)|

= |λn−jm(R)− λim(S)| ≤ 4

rm
‖∆‖2.

Combining the above four cases, we see that (22) holds for all ∆ ∈ Ξ. This together with the

continuity of eigenvalues and the fact that Ξ is dense in {∆ ∈ Sn : ‖∆‖ < rm/2} leads to the

conclusion of this theorem.

As an immediate consequence, we obtain the first-order directional derivative of eigenvalues

of real symmetric matrices that is established in [5].
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Corollary 1. For any X, ∆ ∈ Sn, the first-order directional derivative λ′
m(X;∆) defined in

(1) is given by

λ′
m(X;∆) = λim(U

T
m∆Um),

where Um is defined in (15).

3.2 Error bounds for second-order approximation for eigenvalues

The following proposition will be used subsequently to establish our main theorems of this

subsection.

Proposition 2. Let Cm be the circle centered at the origin with radius rm, W = X − λm(X)I,

Um and Ũm be defined in (15), and

Λ̃m := Diag (−λ1(W ), . . . ,−λm−im(W ),−λm+jm+1(W ), . . . ,−λn(W )) . (24)

Then we have

‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m − UmUT
m∆ŨmΛ̃−1

m ŨT
m∆UmUT

m‖ ≤ 6

r2m
‖∆‖3 + 8

r3m
‖∆‖4

(25)

whenever ∆ ∈ Sn and ‖∆‖ < rm/2.

Proof. Suppose ∆ ∈ Sn such that ‖∆‖ < rm/2. Recall from the proof of Proposition 1 that Cm

does not go through any eigenvalue of W and W +∆, and moreover, the eigenvalues {λi(W )}
and {λi(W +∆)} lie in the interior of Cm precisely when m− im + 1 ≤ i ≤ m+ jm. Let

Jm = {(i, j, k) : λm(X) = λj(X) = λk(X) 6= λi(X)}.

It follows from (17) and (24) that

‖Λ̃−1
m ‖ ≤ 1

2rm
. (26)

Further, we have

1

2πι

∮

Cm

λ(λI −W )−1∆(λI −W )−1∆(λI −W )−1dλ

=
∑

i,j,k

(
1

2πι

∮

Cm

λ uiu
T
i ∆uju

T
j ∆uku

T
k

[λ− λi(W )] [λ− λj(W )] [λ− λk(W )]
dλ

)

=
∑

(i,j,k)∈Jm

uiu
T
i ∆uju

T
j ∆uku

T
k

−λi(W )
+

∑

(j,i,k)∈Jm

uiu
T
i ∆uju

T
j ∆uku

T
k

−λj(W )
+

∑

(k,i,j)∈Jm

uiu
T
i ∆uju

T
j ∆uku

T
k

−λk(W )

= ŨmΛ̃−1
m ŨT

m∆UmUT
m∆UmUT

m︸ ︷︷ ︸
T1

+UmUT
m∆ŨmΛ̃−1

m ŨT
m∆UmUT

m︸ ︷︷ ︸
T2

+UmUT
m∆UmUT

m∆ŨmΛ̃−1
m ŨT

m︸ ︷︷ ︸
T3

.
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Using this relation along with Lemma 3 and (18)–(21), we obtain that

‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m − T1 − T2 − T3‖

≤
∥∥∥∥

1

2πι

∮

Cm

λ(λI −W )−1∆(λI −W )−1∆(λI −W )−1∆(λI −W −∆)−1dλ

∥∥∥∥

≤ 1

2π

∮

Cm

|λ|‖(λI −W )−1‖3‖∆‖3‖(λI −W −∆)−1‖|dλ| ≤ 2

r2m
‖∆‖3. (27)

Let V1, V2 and P be defined in Lemma 5. In view of (16), (26) and the fact that ‖(I +

PP T )−1/2‖ ≤ 1, we have

‖V T
1 T1V1‖ = ‖V T

1 ŨmΛ̃−1
m ŨT

m∆UmUT
m∆UmUT

mV1‖ ≤ ‖P T Λ̃−1
m ŨT

m∆UmUT
m∆Um‖

≤ ‖P‖‖∆‖2‖Λ̃−1
m ‖ ≤ 1

r2m
‖∆‖3.

‖V T
2 T1V2‖ = ‖V T

2 ŨmΛ̃−1
m ŨT

m∆UmUT
m∆UmUT

mV2‖ ≤ ‖Λ̃−1
m ŨT

m∆UmUT
m∆UmP T ‖ ≤ 1

r2m
‖∆‖3.

‖V T
1 T1V2‖ = ‖V T

1 ŨmΛ̃−1
m ŨT

m∆UmUT
m∆UmUT

mV2‖ ≤ ‖P T Λ̃−1
m ŨT

m∆UmUT
m∆UmP T ‖ ≤ 2

r3m
‖∆‖4.

We can observe from (16) that the columns of V1 and V2 form an orthonormal basis. Using this

fact, the above relations and Lemma 4, we obtain that

‖T1‖ =

∥∥∥∥∥

(
V T
1 T1V1 V T

1 T1V2

V T
2 T1V1 V T

2 T1V2

)∥∥∥∥∥ ≤ ‖V T
1 T1V1‖+ ‖V T

2 T1V2‖+ 2‖V T
1 T1V2‖ ≤ 2

r2m
‖∆‖3 + 4

r3m
‖∆‖4,

‖T3‖ = ‖T T
1 ‖ = ‖T1‖ ≤ 2

r2m
‖∆‖3 + 4

r3m
‖∆‖4.

Using these two inequalities and (27), we see that

‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m − UmUT
m∆ŨmΛ̃−1

m ŨT
m∆UmUT

m‖
= ‖(W +∆)Π

Cm
(W +∆)− UmUT

m∆UmUT
m − T2‖

≤ ‖(W +∆)Π
Cm

(W +∆)− UmUT
m∆UmUT

m − T1 − T2 − T3‖+ ‖T1‖+ ‖T3‖

≤ 6

r2m
‖∆‖3 + 8

r3m
‖∆‖4,

which is just (25). This completes the proof.

We are now ready to establish our first main theorem of this subsection.

Theorem 2. For any ∆ ∈ Sn such that ‖∆‖ < rm/2, we have

|λm(X +∆)− λm(X) − λim(U
T
m∆Um + UT

m∆ŨmΛ̃−1
m ŨT

m∆Um)| ≤ 12

r2m
‖∆‖3 + 16

r3m
‖∆‖4, (28)

where Um, Λ̃m and Ũm are defined in (15) and (24) respectively.
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Proof. For simplicity of notation, let W = X − λm(X)I. We first observe that the polynomials

∆ 7→ det(W +∆) and ∆ 7→ det(UT
m∆Um+UT

m∆ŨmΛ̃−1
m ŨT

m∆Um) are not identically zero. Thus,

the set

Ξ =
{
∆ ∈ Sn : ‖∆‖ <

rm
2
, det(W +∆) 6= 0, det(UT

m∆Um + UT
m∆ŨmΛ̃−1

m ŨT
m∆Um) 6= 0

}

is dense in {∆ ∈ Sn : ‖∆‖ < rm/2}. By the continuity of eigenvalues, it thus suffices to show

that (28) holds on Ξ. We now assume that ∆ is an arbitrary matrix in Ξ. Notice that λi(W +∆)

and λj(U
T
m∆Um +UT

m∆ŨmΛ̃−1
m ŨT

m∆Um) are nonzero for all 1 ≤ i ≤ n and 1 ≤ j ≤ im + jm. Let

Cm be the circle centered at the origin with radius rm. Define

R = (W +∆)Π
Cm

(W +∆), S = Um(UT
m∆Um + UT

m∆ŨmΛ̃−1
m ŨT

m∆Um)UT
m.

We know from the proof of Theorem 1 that R has exactly im + jm nonzero eigenvalues, which

are

{λi(W +∆) : m− im + 1 ≤ i ≤ m+ jm}.
In addition, by a similar argument as in the proof of Theorem 1, one can show that S has exactly

im + jm nonzero eigenvalues, which are

{λi(U
T
m∆Um + UT

m∆ŨmΛ̃−1
m ŨT

m∆Um) : 1 ≤ i ≤ im + jm}.

Also, it follows from Proposition 2 and Lemma 1 that for all i,

|λi(R)− λi(S)| ≤ ‖R− S‖ ≤ 6

r2m
‖∆‖3 + 8

r3m
‖∆‖4. (29)

Proceeding similarly as in the proof of Theorem 1 by using (29) in place of (23) and replacing

UT
m∆Um by UT

m∆Um + UT
m∆ŨmΛ̃−1

m ŨT
m∆Um, one can show that for any ∆ ∈ Ξ,

|λm(X +∆)− λm(X) − λim(U
T
m∆Um + UT

m∆ŨmΛ̃−1
m ŨT

m∆Um)| ≤ 12

r2m
‖∆‖3 + 16

r3m
‖∆‖4.

This together with the continuity of eigenvalues and the fact that Ξ is dense in {∆ ∈ Sn : ‖∆‖ <

rm/2} shows that (28) holds for any ∆ ∈ Sn with ‖∆‖ < rm/2. This completes the proof.

Before stating the next theorem, we introduce some notations. For each ∆ ∈ Sn, consider

the (im + jm) × (im + jm) matrix UT
m∆Um. Let UT

m∆Um =
∑im+jm

i=1 λi(U
T
m∆Um)ūiū

T
i be an

eigenvalue decomposition. We define the integers īm and j̄m as the number of eigenvalues of

UT
m∆Um ranking before im that equal λim(U

T
m∆Um) and the number of eigenvalues ranking

(strictly) after im that equal λim(U
T
m∆Um), respectively. We then define

Ūm =
(
ūim−īm+1 · · · ūim+j̄m

)
, (30)

and

r̄m :=
1

2
min{λim−īm(U

T
m∆Um)− λim(U

T
m∆Um), λim(UT

m∆Um)− λim+j̄m+1(U
T
m∆Um)}.

It is easy to see that r̄m > 0. We are now ready to establish a theorem about the error bound

along a fixed direction of perturbation.
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Theorem 3. Let ∆ ∈ Sn. For any 0 < t < min
{
1, rmr̄m

‖∆‖2 ,
rm

2‖∆‖

}
, we have

|λm(X + t∆)− λm(X)− tλim(U
T
m∆Um)− t2λīm(Ū

T
mUT

m∆ŨmΛ̃−1
m ŨT

m∆UmŪm)|

≤ 12t3

r2m
‖∆‖3 + 16t4

r3m
‖∆‖4 + t3

r2mr̄m
‖∆‖4, (31)

where Um, Λ̃m, Ũm and Ūm are defined in (15), (24) and (30), respectively.

Proof. Fix any 0 < t < min
{
1, rmr̄m

‖∆‖2
, rm
2‖∆‖

}
. Since t‖∆‖ < rm

2 , we see from Theorem 2 that

|λm(X+ t∆)−λm(X)− tλim(U
T
m∆Um+ tUT

m∆ŨmΛ̃−1
m ŨT

m∆Um)| ≤ 12t3

r2m
‖∆‖3+ 16t4

r3m
‖∆‖4. (32)

In addition, using (26) and the fact that t‖∆‖2 < rmr̄m, we obtain

‖tUT
m∆ŨmΛ̃−1

m ŨT
m∆Um‖ ≤ t‖∆‖2‖Λ̃−1

m ‖ <
r̄m
2
.

Hence, by specializingX and ∆ in Theorem 1 to UT
m∆Um and tUT

m∆ŨmΛ̃−1
m ŨT

m∆Um respectively,

we have

|λim(U
T
m∆Um + tUT

m∆ŨmΛ̃−1
m ŨT

m∆Um)− λim(U
T
m∆Um)− tλīm(Ū

T
mUT

m∆ŨmΛ̃−1
m ŨT

m∆UmŪm)|

≤ 4

r̄m
‖tUT

m∆ŨmΛ̃−1
m ŨT

m∆Um‖2 ≤ t2

r2mr̄m
‖∆‖4, (33)

where we made use of (26) in the last inequality. Adding (32) and (33) and using the triangle

inequality, we obtain (31). This completes the proof.

As a byproduct, the second-order directional derivative of eigenvalues of real symmetric

matrices that is the main result established in [17] directly follows by combining Corollary 1

with Theorem 3.

Corollary 2. For any X, ∆ ∈ Sn, the second-order directional derivative λ′′
m(X;∆) defined in

(2) is given by

λ′′
m(X;∆) = 2λīm(Ū

T
mUT

m∆ŨmΛ̃−1
m ŨT

m∆UmŪm),

where Um, Λ̃m, Ũm and Ūm are defined in (15), (24) and (30), respectively.

4 Error bounds for first- and second-order approximations of

singular values

In this section, we study error bounds for first- and second-order approximations for the mth

singular value of a matrix Z ∈ ℜp×q for any 1 ≤ m ≤ k := min{p, q}. We will make use of the

fact that the singular values of Z correspond to some eigenvalues of the matrix

X :=

(
0 Z

ZT 0

)
∈ ℜ(p+q)×(p+q) (34)
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(see, for example, [16, Page 32, Theorem 4.2]). Indeed, we denote the singular values of Z by

σ1(Z) ≥ σ2(Z) ≥ · · · ≥ σk(Z) ≥ 0.

Let Z =
∑k

i=1 σi(Z)gih
T
i be a singular value decomposition of Z, where {g1, . . . , gk} and

{h1, . . . , hk} are orthonormal vectors, respectively. Let

ui :=
1√
2

(
gi
hi

)
, up+q+1−i :=

1√
2

(
gi
−hi

)
, i = 1, ..., k,

and {ui}p+q−k
i=k+1 be the orthonormal vectors perpendicular to {ui}ki=1 and {up+q+1−i}ki=1. Then,

the eigenvalues {λi(X)}p+q
i=1 of X are

σ1(Z), . . . , σq(Z), 0, . . . , 0,−σq(Z), . . . ,−σ1(Z), (35)

and the corresponding orthonormal eigenvectors are {ui}p+q
i=1 .

For any 1 ≤ m ≤ k, let im, jm and rm be defined as in Section 2 for the above X. In view

of (3) and (35), we have

rm =

{
1
2 min{σm−im(Z)− σm(Z), σm(Z)− σm+jm+1(Z)}, if σm(Z) > 0,
1
2σm−im(Z), if σm(Z) = 0.

(36)

Also, let Um, Ũm and Λ̃m be defined as in (15) and (24), respectively. Finally, for any pertur-

bation E ∈ ℜp×q, define

∆ :=

(
0 E

ET 0

)
. (37)

We are now ready to state our main result about error bounds for first- and second-order

approximation of singular values of Z.

Theorem 4. Let Z ∈ ℜp×q, 1 ≤ m ≤ k := min{p, q}, rm and ∆ be defined in (36) and (37),

respectively.

(i) For any E ∈ ℜp×q with ‖E‖ < rm/2, we have

|σm(Z + E)− σm(Z)− λim(U
T
m∆Um)| ≤ 4

rm
‖E‖2.

(ii) For any E ∈ ℜp×q with ‖E‖ < rm/2, we have

|σm(Z + E)− σm(Z)− λim(U
T
m∆Um + UT

m∆ŨmΛ̃−1
m ŨT

m∆Um)| ≤ 12

r2m
‖E‖3 + 16

r3m
‖E‖4

Proof. In view of (34) and (37), we observe that

λm(X +∆) = σm(Z +E), λm(X) = σm(Z).

Moreover,

‖E‖ ≤ sup
‖x‖2+‖y‖2≤1

√
‖ETx‖2 + ‖Ey‖2 = ‖∆‖ ≤ sup

‖x‖2+‖y‖2≤1

√
‖ET ‖2‖x‖2 + ‖E‖2‖y‖2 = ‖E‖,

which yields ‖E‖ = ‖∆‖. The conclusions of this theorem then immediately follow from Theo-

rems 1 and 2.
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