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Abstract

We study convex composite optimization problems, where the objective function is given by the sum
of a prox-friendly function and a convex function whose subgradients are estimated under heavy-tailed
noise. Existing work often employs gradient clipping or normalization techniques in stochastic first-
order methods to address heavy-tailed noise. In this paper, we demonstrate that a vanilla stochastic
algorithm—without additional modifications such as clipping or normalization—can achieve optimal
complexity for these problems. In particular, we establish that an accelerated stochastic proximal
subgradient method achieves a first-order oracle complexity that is universally optimal for smooth,
weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization under
heavy-tailed noise. Numerical experiments are further provided to validate our theoretical results.
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1 Introduction
In this paper, we consider a class of convex composite optimization problems of the form

F* = min{F(2) := f(x) + hx)}, 1)
zeR"
where f,h: R" — (—00, 00| are proper lower semicontinuous convex functions such that domh C dom f.
We assume that f satisfies a hybrid of smooth and nonsmooth conditions:

1) = f@) < Lylly = @ll + Hylly — =l1” + My Vf'(y) € 0f(y), f'(x) € 0f (x), 2,y € dom [ (2)

for some constants Ly, Hf, My > 0 and v € (0,1). In addition, we assume that the proximal operator
associated with h can be computed exactly. Clearly, this class of functions f includes Lipschitz smooth,
Hoélder smooth, and Lipschitz continuous functions, as well as any nonnegative combination of functions
from these three subclasses. As recently observed in [25, Example 1], the sum of a Lipschitz smooth
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function and a Holder smooth function is not necessarily a Holder smooth function. Moreover, the sum of
a Holder smooth function and a Lipschitz continuous function is not necessarily a Lipschitz continuous
function. Consequently, the class of problems under consideration is broader than the class of problems
studied in [24] with f satisfying

1f' () = @)l < Hylly — 2" Vf'(y) € 0f(y), f'(x) € 9f(x),2,y € dom f

for some Hy > 0 and v € [0, 1].

With the rise of data science, instances of problem (1) are increasingly common in modern, often
large-scale, applications. As a result, the subgradients of f are typically expensive to compute exactly and
can usually only be approximated using stochastic estimators. Stochastic first-order methods have been
extensively studied for solving (1) and its variants; see, e.g., [1, 2, 4, 6, 15, 17, 18, 21, 22, 23, 27, 28, 30].
Remarkably, an optimal method has been developed in [15] for solving a special case of (1) with Hy =0
and h being the indicator function of a simple closed convex set, under the assumption that the stochastic
subgradient estimator G(-;§) of f(-) is unbiased and has bounded variance—that is, G(+; &) satisfies the
following conditions:

E[G(z;9)] € 0f(x), E[|G(z;€) —E[G(%;9)]|])] <0® Vo eR" (3)

for some o > 0. Under these conditions, it has been shown in [15] that a projected stochastic subgradient
method with Nesterov’s acceleration scheme achieves an optimal first-order oracle complexity of

of(12)! + (M2 of(L2)"+ (Metokty »

€ € €

for finding an e-optimal solution of (1) in expectation, and an e-optimal solution with probability at least
1 — 4, respectively (see Definition 1 for precise definitions). The first complexity bound above recovers the
optimal results achieved by first-order methods for smooth, nonsmooth, and stochastic convex optimization
in a unified manner.

In recent years, with the development of machine learning and related fields, challenging stochastic
optimization problems often extend beyond those satisfying classical assumption imposed in (3). Recent
numerical evidence [12, 31, 32, 36] demonstrates that the stochastic estimator G(+;¢) in these problems
satisfies the following conditions, which include heavy-tailed noise scenarios:

E[G(x;¢)] € 0f(z), E[|G(z;:¢) —E[G(z;9))|%] <%  VzeR”

for some o > 0 and « € (1, 2], generalizing the classical assumptions in (3). Indeed, when a < 2, gradient
estimators G(+; &) can exhibit unbounded variance, which may preclude the applicability of many classic
algorithmic frameworks for them that are specifically developed for problems under condition (3). Notably,
most existing algorithmic developments in stochastic optimization under heavy-tailed noise rely on gradient
clipping [3, 8, 19, 26, 29, 36] or normalization techniques [13, 14, 20, 33], providing theoretical justification
for their empirical success in deep learning. Nevertheless, a recent study [5] shows that vanilla SGD,
without using gradient clipping or gradient normalization, can be applied to a special case of (1) with
H; = 0 and h being an indicator function, achieving a first-order oracle complexity of O(e=/(@=1)) Given
that no acceleration scheme is used in [5], the following natural question arises:

Is an accelerated vanilla stochastic algorithm without clipping or normalization applicable to the general
problem (1) under heavy-tailed noise?

This paper provides an affirmative answer to this question. Specifically, we show that an accelerated
stochastic proximal subgradient method (SPGM) achieves optimal complexity guarantees for solving
problem (1) under heavy-tailed noise. Our main contributions are summarized below.



e We show that a vanilla SPGM and its accelerated counterpart, without any modifications such as
clipping or normalization, can find an approximate optimal solution of (1) both in expectation and
with high probability.

e We show that the vanilla SPGM (Algorithm 1) achieves a first-order oracle complexity of

oL+ (E2)7 + (21)"+ (5)). o

€ € € €

and O(LL 4 (Hryme  (Mey?, (70T (5b)

€ € €

for finding an e-stochastic optimal solution and an (e, d)-stochastic optimal solution, respectively.
In addition, we establish that the accelerated SPGM (Algorithm 2) achieves a first-order oracle
(T

complexity of
o((*)"+ (% 2O (6)
and () b (Hryee (M2 (20T (6b)

€ € €
for finding an e-stochastic optimal solution and an (e, §)-stochastic optimal solution, respectively.

[N

[N

It shall be mentioned that the accelerated SPGM achieves universally optimal complexity results for
smooth, weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization
under heavy-tailed noise. Moreover, for the aforementioned special case of problem (1) studied in [15], our
complexity bounds (5b) and (6b) with o = 2 enjoy an improved dependence on In(1/§) compared to the
bound in (4) obtained in [15].

The rest of this paper is organized as follows. Section 1.1 presents notation and assumptions. In
Sections 2 and 3, we present SPGM and its accelerated counterpart along with their first-order oracle
complexity results for finding an approximate solution of problem (1) under heavy-tailed noise. Section 4
presents preliminary numerical results illustrating the performance of the proposed methods. Finally, we
provide the proof of the main results in Section 5.

1.1 Notation and assumptions

Throughout this section, we use R™ to stand for the n-dimensional Euclidean space, and || - || to denote
the Euclidean norm for vectors. For any proper closed convex function ¢, we denote its subdifferential by
Jp and define the proximal mapping associated with ¢, with parameter n > 0, as

: 1 2
prox,,(z) := argm1n{<p(z)+f||z—x| }
e ) ESING 277 ‘

We denote the domain of ¢ as dom ¢. For any s € R and A C R, we define the Boolean indicator function
L1a(s) to be 1if s € A and 0 otherwise. In addition, we use O(-) to denote the standard big-O notation.
We now make the following assumption throughout this paper.

Assumption 1. (a) The function f satisfies (2) for some constants Ly, Hy, My >0 and v € (0,1).
(b) The proximal operator associated with h can be exactly evaluated, and its domain dom h is bounded.

(¢) The stochastic subgradient estimator G : R™ x Z — R"™ satisfies
E[G(z;:€)] € 0f(2), E[|G(;€) — E[G(2; ][] < 0% Va € dom f (7)

for some 0 >0 and a € (1, 2].



We next make some remarks on Assumption 1.

Remark 1. (i) The class of f satisfying Assumption 1(a) is broad, which includes smooth (gradient
Lipschitz continuous), weakly smooth (gradient Hélder continuous), and nonsmooth (Lipschitz continuous)
functions, as well as any nonnegative combination of functions from these subclasses. Problem (1) with
f from these subclasses have been extensively studied in the literature (e.g., [10, 11, 15]). However,
there was no study on problem (1) with f satisfying Assumption 1(a) except a very recent work [25]. In
particular, [25] proposed first-order methods and established complexity guarantees for such problem
under a deterministic first-order oracle, where the exact gradient or an exact subgradient of f is used.
(ii) By a standard argument for deriving the descent inequality, (2) implies

F6) < @) + F@ =)+ Ly =2l + 1Ly 2l + Myl ] 0

holds for all f/(z) € df(z),z,y € dom f. It follows from [24, Lemma 2] that

Ly -2l < L1y ol + 5,
where
2 4N TTe
L(e) == HP <E) e s 0. 9)
This together with (8) implies that
F) < F@)+ P@) )+ 5 Ly + DE) Iy — 2l + Myl — ] + = (10)

holds for any € > 0 and all f'(z) € df(x),x,y € dom f.
(ili) Assumption 1(b) is quite common in stochastic optimization. We define the diameter of dom h as
Dy = max {[lz—y|}. (11)

z,yc€dom h
Moreover, Assumption 1(c) states that G(x;§) is an unbiased estimator of a subgradient of f(x), and its ath
central moment is uniformly bounded. It is weaker than the commonly used variance bounded assumption
corresponding to the case a = 2. When « € (1,2), the stochastic subgradient noise exhibits heavy-tailed
behavior (see, e.g., [36]), a phenomenon commonly encountered in machine learning applications. For ease

of presentation, we introduce two related quantities, A()? and A(6,)?, as follows:

(2

Ae)? == 8(a —1)? <7> a1 (

(0%

81;;1)‘_ R(6,6)? = (1_,_111(;))"1_1/\(5)2 ¥e, 0 >0,  (12)

which will be used to analyze stochastic algorithms under heavy-tailed noise.

We next introduce another assumption, which will be used to establish complexity bounds for finding
approximate solutions of problem (1) with high-probability guarantees.

Assumption 2. The stochastic subgradient estimator G : R" x = — R" satisfies
Elexp{(|G(2; &) — E[G(z; O][%/0%}] <exp{l} Vi € dom f, (13)
where o > 0 and « € (1,2] are given in Assumption 1(c).

We now make some remarks regarding Assumption 2.



Remark 2. Assumption 2 states that the stochastic subgradient noise follows a sub-Weibull distribution
(see, e.g., [35]). This assumption is weaker than the standard sub-Gaussian assumption imposed in [15,
Assumption A2], which corresponds to the case with a = 2. When « € (1, 2), condition (13) implies the
second condition in (7) and indicates that the stochastic subgradient noise has heavy tails.

We next give formal definitions for approximate stochastic optimal solutions of problem (1).

Definition 1. Let €, € (0,1). We say that
e z € R"is an e-stochastic optimal solution of (1) if it satisfies E[F(x) — F*] < ¢; and

e z € R"is an (e, 0)-stochastic optimal solution x of (1) if it satisfying F'(x) — F* < e with probability
at least 1 — 4.

2 A stochastic proximal subgradient method

In this section, we present an SPGM and establish its first-order oracle complexity for solving problem (1)
under heavy-tailed noise.

The SPGM was originally proposed for solving a special case of (1) with H; = 0 under the conditions
(3) (see, e.g., [15, 22]). We now extend it to address the general problem (1) in the presence of heavy-tailed
noise. In particular, the SPGM generates two sequences, {x*} and {z*}. At each iteration k > 0, SPGM

first updates 2*t! by performing a stochastic proximal subgradient step. It then computes z**! as a
weighted average of the past iterates {a:t}f;rll The details of this method are presented in Algorithm 1,

with specific choices of step sizes provided in Theorem 1.

Algorithm 1 A stochastic proximal subgradient method

Input: starting point 2° € dom h, step sizes {nx} C (0, c0).
for k=0,1,2,... do
Update the next iterate:

2"t = prox, j,(a" — npG(2%; &) (14)
Compute the weighted average:
k Lk
= (Zm) met“- (15)
t=0 t=0

end for

The theorem below establishes a complexity bound for Algorithm 1 to compute an e-stochastic optimal
solution and an (e, d)-stochastic optimal solution of (1), respectively. Its proof is deferred to Section 5.1.

Theorem 1. Suppose that Assumption 1 holds. Let €,6 € (0,1) be arbitrarily chosen, and let K be a
pre-chosen mazimum iteration number for running Algorithm 1. Let L(-), Dy, and (A(+), A(+,+)) be defined
in (9), (11), and (12), respectively, Ly, My be given in Assumption 1(a), and let

= min { ! Dh } 7 = min { ! D }
= 4(Ls+ L(e)) 2K (M2 + A()2)]'/2 J = ALy + L) [2K (M3 + A(3,)2)]/2 )
(16)

Then the following statements hold.



(i) Let {z*} be generated by Algorithm 1 with ngy =1 for all k > 0. Then, E[F(25) — F*] < ¢ for all K
satisfying

8D2(Ly + L(e)) 8D} (M +A(€>)271}. (17)

K>max{ , 5
€ €

(ii) Suppose additionally that Assumption 2 holds. Let {z*} be generated by Algorithm 1 with n, =17 for
all k > 0. Then, with probability at least 1 — &, F(z%) — F* < ¢ holds for all K satisfying

8D?(Lys + L(e)) 32D3(M; + A(d,¢))> <<4aDho> = 1us) (a)) In(2/9)

a—1"

szax{ 1}. (18)

€ €2 €

Remark 3. From Theorem 1 and (12), we see that Algorithm 1 achieves a first-order oracle complexity of

O(Lf + L(e) N (Mf + A(e))Q) and O(Lf + L(e) N (Mf + A(0, 6))2)

€ € € €
for finding an e-stochastic optimal solution and an (e, d)-stochastic optimal solution of (1), respectively.
Further, in view of the definitions of L(-) and (A(-), A(-,-)) in (9) and (12), these bounds reduce to (5),
which achieves the optimal dependence on € for nonsmooth convex problems [23] and for stochastic convex
optimization under heavy-tailed noise [5, 19]. However, for smooth and weakly smooth convex problems,
the above bounds are not optimal.

3 An accelerated stochastic proximal subgradient method

In this section, we present an accelerated SPGM and show that it achieves a universally optimal first-
order oracle complexity for solving smooth, weakly smooth, and nonsmooth convex problems, as well as
stochastic convex problems under heavy-tailed noise.

Algorithm 2 An accelerated stochastic proximal subgradient method

Input: starting point 2° = 20 € dom h, step sizes {n;} C (0, 00), weighting parameters {v;} C (0, 1].
for k=0,1,2,... do
Compute the intermediate point:

yF = (1—)z" + e (19)
Update the next iterate:
e = prox,,, (a* —mG(y*: &), (20)
Compute the weighted average:
2P = (1 — ) 2F 4 paf L (21)

end for

The accelerated SPGM was originally proposed in [15] for solving a special case of problem (1) with
Hy = 0 under conditions (3). We now extend it to handle the general problem (1) under heavy-tailed
noise. The accelerated SPGM can be viewed as a stochastic variant of Nesterov’s accelerated proximal
gradient method [34, Algorithm 1], obtained by replacing the deterministic gradient with a stochastic



subgradient. Specifically, the method generates three sequences, {z*}, {y*}, and {z¥}. The sequence {z*}
represents the main iterates, updated via a proximal operator. The sequence {z*} denotes the aggregated
iterates, where each z¥ is a weighted average of {#'}¥_,. The sequence {y*} serves as an intermediate
sequence, with each y* computed as an average of z* and z*. The complete description of the method is
given in Algorithm 2, and the specific choices of step sizes are provided in Theorem 2.

The next theorem establishes a complexity bound for Algorithm 2 to compute an e-stochastic optimal
solution and an (e, d)-stochastic optimal solution of (1), respectively. Its proof is deferred to Section 5.2.

Theorem 2. Suppose that Assumption 1 holds. Let €,6 € (0,1) be arbitrarily chosen, and let K be a
pre-chosen maximum iteration number for running Algorithm 2. Let L(-), Dy, and (A(:), A(-,-)) be defined
in (9), (11), and (12), respectively, Ly, My be given in Assumption 1(a), and let

- 1 6 2
7 = min { Ly + L(e/K))’ ((MJ? FAOY) 2K 1 3)(K 1 2)K> Dh}’ (22)

1 2 2
1 = min , = Dy, 3. 23
! {4(Lf + L(e/K)) ((MJ% + A(S,€)2)(K + 2)2K) h} (23)
Then the following statements hold.
(i) Let {z*} be generated by Algorithm 2 with (g, mx) = (2/(k 4+ 2), (k 4+ 2)n/2) for all k > 0. Then,
E[F(25) — F*] < € for all K satisfying

A8D2L N\ % /48D?L L (24D)2 (M + A€))?
KZmax{( h f)z?( h (6)>1+37( h) (3;“" (6)) ,2}.
€ € €

(24)

(ii) Suppose additionally that Assumption 2 holds. Let {z*} be generated by Algorithm 2 with (yg, m) =
(2/(k +2), (k +2)77/2) for all k > 0. Then, with probability at least 1 — §, F(25) — F* < ¢ holds for
all K satisfying

64D?Ly\3 (64DFL(e)\ 13 2(16Dp)2(My + A(6, €))?
K = max {( € ) ’ ( € ) ’ €2 ’

((M>ﬁ + I[(1,2)(04))  In(2/9) 2}. (25)

€ a—1"

Remark 4. From Theorem 2 and (12), we see that Algorithm 2 achieves a first-order oracle complexity of
of(22)}+ (H0) 5 . (XYY g o ()} 4 (H)FE (et H0y)
€ € € € € €
for finding an e-stochastic optimal solution and an (e, §)-stochastic optimal solution of (1), respectively.
Further, by virtue of the definitions of L(-) and (A(-), A(-,-)) in (9) and (12), these bounds reduce to
the ones in (6), which match the universal optimal bound for smooth, weakly smooth, and nonsmooth
convex problems [7, 23, 24], as well as for stochastic convex optimization with heavy-tailed noise [5, 19].
Moreover, for a special case of problem (1) with H; = 0, the complexity bounds in (6) with o = 2 have

an improved dependence on log(1/d) compared to the ones in (4) obtained in [15].

4 Numerical experiments

In this section, we present preliminary numerical experiments to evaluate the performance of Algorithms 1
and 2, where Algorithm 2 is referred to as SPGM-A. We also compare these methods with the clipped
version of SPGM, denoted as SPGM-C. All algorithms are implemented in MATLAB, and all computations
are conducted on a laptop equipped with an Intel Core i9-14900HX processor (2.20 GHz) and 32 GB of
RAM.



4.1 (-regularized (,-/, regression with box constraints

In this subsection, we consider the ¢;-regularized f2-£, regression with box constraints:

min 54z = b+~ Az = bl + Al (26)
where A € R™™"™ b e R", u = —] = —100-1 with 1 being the all-ones vector, p = 1.5, and A = 1. We
simulate noisy gradient evaluations by setting the stochastic gradient estimator as G(x; &) = V f(x) + p&,
where p > 0 is a deterministic scalar, and £ € R™ has independently distributed coordinates, each following
a heavy-tailed distribution with density function p(t) = w/(2(1 + [¢t|)1T%). One can verify that such G(-;¢)
satisfies Assumption 1(c) for every a € (1,w), and that the ath central moment of G(+;¢) is unbounded
for all o > w.

For each triple (n, p,w), we randomly generate 10 instances of problem (26). In particular, we first
randomly generate A with all its elements sampled from the standard normal distribution. We then
randomly generate z*, with all its components sampled from the standard normal distribution, and
construct a sparse solution z* by randomly setting half of its components to zero. Finally, we set b = Ax*.

We apply SPGM, SPGM-A, and SPGM-C to problem (26) to find an approximate solution z* such
that its relative objective value gap (F(z*) — F*)/(F(2°) — F*) is less than 10~%, where F* is estimated
by CVX [9]. All methods are initialized at the zero vector. Other algorithmic parameters are selected to
suit each method well in terms of computational performance.

CPU time (seconds) Iterations

n p w || SPGM SPGM-A SPGM-C || SPGM SPGM-A SPGM-C
500 1 1.8 3.15 1.50 3.16 | 2602.2 1284.0 2606.8
500 1 1.5 3.54 1.65 3.68 || 2734.8 1280.3 2727.6
500 1 12 3.53 1.73 3.76 || 2810.5 1311.6 2825.6
500 100 1.8 3.28 1.57 3.24 || 2528.1 1233.8 2520.5
500 100 1.5 4.38 2.22 3.90 || 3226.5 1711.5 2689.3
500 100 1.2 4.65 3.16 3.22 || 4158.1 2740.8 2872.0
1000 1 1.8 18.82 8.11 19.40 || 5006.9 2130.6 5040.6
1000 1 1.5 20.97 8.99 21.69 || 4952.5 2149.6 5059.7
1000 1 1.2 21.14 8.77 22.52 || 5085.2 21754 5322.0
1000 100 1.8 || 20.90 8.95 21.68 || 5154.1 2174.9 5355.7
1000 100 1.5 24.09 9.32 22.72 || 5695.5 2167.0 5048.7
1000 100 1.2 | 24.85 19.08 22.41 || 6779.0 5165.0 6106.3

Table 1: Numerical results for problem (26).

The computational results of SPGM, SPGM-A, and SPGM-C for solving (26) are presented in Table 1.
Specifically, the first three columns list the values of n, p, and w, respectively, while the remaining columns
report the average CPU time and the average number of iterations for each triple (n, p,w). We observe
that, except for the case (p,w) = (100, 1.2), SPGM-A substantially outperforms both SPGM and SPGM-C.
When (p,w) = (100, 1.2), the performance gap between SPGM-A and SPGM-C becomes much smaller,
although both methods still outperform SPGM. These observations suggest that when the noise level is
not too high, the accelerated SPGM can achieve significantly faster convergence than the vanilla SPGM
and the clipped SPGM, which is consistent with our theoretical findings.



4.2 (y-l)-l; regression with /,-ball constraint

In this subsection, we consider the f3-f,-f1 regression with f2-ball constraint:

o1
min —

1
min S|4z = b [ Az — bl + X Az ~ bl (27)

where A € R™*"™ b€ R", u =100, p = 1.5, and A = 0.1. We simulate the noisy gradient evaluations by
setting the stochastic gradient estimator as G(z;§) = V f(z) + p&, where p > 0 is a deterministic scalar,
and £ € R” has independently distributed coordinates, each following a heavy-tailed distribution with
density function p(t) = w/(2(1 + [¢[)}T*). One can verify that such G(-; &) satisfies Assumption 1(c) for
every a € (1,w), and that the ath central moment of G(+;&) is unbounded for all o > w.

For each triple (n, p,w), we randomly generate 10 instances of problem (27). In particular, we first
randomly generate A with all its elements sampled from the standard normal distribution. We then
randomly generate x*, with all its components sampled from the standard normal distribution, and set
b= Ax*.

We apply SPGM, SPGM-A, and SPGM-C to problem (27) to find an approximate solution z* such
that its relative objective value gap F(z*)/F(x°) is less than 10~* (note that F* = 0 due to the data
generation setup). All methods are initialized at the zero vector. Other algorithmic parameters are
selected to suit each method well in terms of computational performance.

CPU time (seconds) Iterations

n p w || SPGM SPGM-A SPGM-C | SPGM SPGM-A SPGM-C
500 1 1.8 18.00 9.65 26.80 9772.6 3640.0 9374.6
500 1 1.5 12.10 4.11 11.76 9126.5 3167.2 8659.1
500 1 12 12.02 3.95 11.85 8838.4 2936.4 8319.8
500 100 1.8 13.30 5.06 13.42 9671.7 3594.2 9411.8
500 100 1.5 16.32 5.19 13.11 || 12190.4 3828.9 9640.9
500 100 1.2 21.36 12.54 13.00 || 15843.0 9051.7 9730.7
1000 1 1.8 | 48.61 18.62 59.23 | 8524.6 2769.9 8512.5
1000 1 1.5 39.42 13.03 39.54 8305.2 2753.9 8300.3
1000 1 1.2 50.64 12.66 40.22 || 10454.3 2700.5 8386.8
1000 100 1.8 40.62 13.83 43.13 8126.3 2638.7 8119.6
1000 100 1.5 82.54 24.76 77.66 || 10729.2 2871.3 9076.5
1000 100 1.2 || 124.10 52.07 80.57 || 17992.7 8854.2 9496.5

Table 2: Numerical results for problem (27).

The computational results of SPGM, SPGM-A, and SPGM-C for solving (27) are presented in Table 2.
The first three columns list the values of n, p, and w, respectively, while the remaining columns report the
average CPU time and the average number of iterations for each triple (n, p,w). We observe that, except
for the case (p,w) = (100, 1.2), SPGM-A significantly outperforms both SPGM and SPGM-C. When
(p,w) = (100, 1.2), the performance gap between SPGM-A and SPGM-C narrows, although both methods
still outperform SPGM. These observations suggest that when the noise level is moderate, the accelerated
SPGM can achieve substantially faster convergence than both the vanilla and clipped versions of SPGM,
which aligns well with our theoretical results.



5 Proof of the main results

In this section, we present the proofs of the main results stated in Sections 2 and 3, namely, Theorems 1
and 2. Throughout this section, let z* denote an arbitrary but fixed optimal solution to (1).

Before proceeding, we establish several technical lemmas below. The following lemma provides a useful
inequality for handling the heavy-tailed noise condition.

Lemma 1. For any o € (1,2], it holds that

co®pe—l < _ L § = e & A
N < (a—1)coT 6 a1 —|—8 Ve,o,1m,e > 0. (28)

Proof. When « = 2, this inequality holds trivially. We next prove (28) for the case when « € (1,2). By

Young’s inequality, one has that 7s < 7P /p+s?/q holds for all 7, s > 0 and p, ¢ > 1 satisfying 1/p+1/q = 1.

Letting 7 = co®® /s, p=1/(a — 1), and ¢ = 1/(2 — ), we obtain that

(a _ 1)01/(04—1)0.04/(04—1)77
81/(&—1)

Further, let s > 0 be such that /8 = (2 — a)s'/(>~®) . Then, one has s"/(*~1) = (¢/(8(2 — a)))Z~)/(a=1),

Combining these and the above inequality, and using (o — 2)*~2 < 1, we conclude that (28) holds. [

ara—1 S

co®n + (2 — a)st/ (),

The next lemma will be used to derive the complexity bounds.

Lemma 2. Let a,b,c > 0 be given, t* = min{c, (a/b)"/?}, and p(t) = a/t + bt fort € (0,00). Then, it
holds that

min o(t) = o(t*) < a/c + 2(ab)*/?. (29)
te(0,c]

Proof. Tt is easy to see that the first relation in (29) holds. We now prove the second relation in (29) by
considering two separate cases. If ¢ < (a/b)'/?, one has (t*) = a/c + be < a/c + (ab)'/2. On the other
hand, if ¢ > (a/b)/2, one has @(t*) = 2(ab)'/? < a/c + 2(ab)'/?. Combining these cases, we conclude that
the second relation in (29) holds as desired. O

The lemma below provides an inequality that will used to establish a concentration inequality
subsequently.

Lemma 3. Let o € (1,2] be given. Then, ' <t + ell™ holds for all t € R.

Proof. We prove this inequality by considering three separate cases.
Case 1) t € (1,00). This along with a > 1 implies that e < ' = el!l*, and hence e! <t + el” holds.
Case 2) t € [—1,1]. By this and « € (1, 2], one has

oo ts o0 1 o0 1
t __ v 2 - 2 - _ _ 2
e—1+t+§2ﬂ§1+t+tEzﬂ—1+t+t(§0ﬂ 2)_1+t+@ 2)t
S= S= S=

<1Ht+12<T4t+ [t <t

where the first and third inequalities follow from ¢ € [—1,1] and « < 2, and the last inequality is due to
the convexity of the exponential function.
Case 3) t € (—o0,—1). Using this and « € (1, 2], we have

e >et>1 -t >et —t,

where the first and last inequalities are due to ¢ < —1 and « > 1, and the second inequality follows from
the convexity of the exponential function.
Combining the above three cases, we conclude that e* <t + el holds for all ¢ € R. O
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The next lemma provides a concentration inequality for a martingale difference sequence of sub-Weibull
random variables, which generalizes the result established in [16, Lemma 2] for sub-Gaussian random
variables. It will be used to establish high-probability complexity bounds.

Lemma 4. Let {{;} be a sequence of i.i.d. random variables, ¢ > 0 and « € (1,2] be given, and {px(-)}
be a sequence of deterministic functions. Define ¢F = br (&) with iy = {&}5 o for allk=0,1,..., and

let B[ [€-1]] == Eeg,[-]. Suppose that Ee, [¢* |€—1] = 0 and B¢, [exp{|¢* /<|*} [£x—1]] < exp{1} hold for
allk =1,2,.... Then, we have

P<§¢k>ﬂcffé><exp{(1—a)(g>a°11} VQ>(),K>max{1,]1(172)(a)<2>aa_1}. (30)

Proof. When « = 2, (30) holds due to [16, Lemma 2]. It remains to show that (30) holds for any « € (1, 2).
To this end, we first show that

Eg, [exp{r¢*} |{—)] < exp{max{(r<)®, (rc)*'}}  Vr >0,k >0, (31)

where o/ = a/(a — 1). Indeed, for notational convenience, we denote ¢* = ¢* /¢ for all k > 0. Then, one
has Ee¢, [0 [£,_1)] = 0 and Eg, [exp{|¢¥|*} [jp—1]] < exp{1} for all k > 0. By Jensen’s inequality and the
concavity of 1(s) = s? for any 8 € [0, 1], one has that
Ee, [exp{B16"*} [¢-1)] = Eg, [(exp{|6"[* 1) €]
< (Be, [expf{|6"*} [gp—y])” <exp{8} VB[O, 1]k>0, (32

where the last inequality follows from Eg, [exp{|¢*|*} |¢,_1j] < exp{1}. Using this and Lemma 3 with
t = \¢¥, we obtain that

Ee, [exp{ A"} |€p—1)] < Ee, [M" 1)) + Ee [ exp{IA¥|°} |€e—1)] < exp{A*} VA €[0,1],k >0,
(33)

where the last inequality is due to Ee, [¢" |£_1)] = 0 and (32) with 3 = A*. In addition, by o/ = a/(a—1)
and Young’s inequality, one has ts < [t|*/a + |s|* /o for all s,t € R. It follows from this and (32) with
B =1/« that

_ _ RN >) ,
Ee, [exp{A¢"} |€oy] < Ee, [exp{|0*|*/a} |&pe—y)] - exp{A* /a'} < exp{l/a+ A" /a'}
<exp{(1/a+1/a)A*} =exp{A¥}  VA>1,k>0, (34)

where the third inequality is due to o/ > 0 and A > 1, and the last relation follows from 1/a 4+ 1/a/ = 1.
Using (33) and (34), we obtain that E¢, [exp{A¢*} ‘ﬁ[k,l]] < exp{max{\* \*'}} for all A > 0 and k > 0.
Substituting ¢F = ¢* /¢ into this inequality, and rearranging the terms, we obtain that

Ee, [exp{rqﬁk} |f[k—1]] =, [exp{quz_ﬁk} lf[k_l]] < exp{max{(7¢)?, (Tg)o‘/}} Vr>0,k>0,

and hence (31) holds as desired.
Further, using (31) and the definition of @F for all k > 0, we obtain that for all 7> 0 and K > 1,

K-1 K-1
o S Y] e o 5 o
k=0 k=0

11



cbk} ‘B, [exp {7¢" '} |5[K—21]}
— E[exp {TKZ_:ng’“} ‘B, [exp {r¢" 7'} ’5[1(—2]]]

< E[exp {T ¢k}] - exp{max{ (), (7¢)*'}}.

This recursion implies that

E[exp {T§¢k}] < exp { max{(1¢)%, (r<)*}K}  Vr>0,K >1.

Using this and Markov’s inequality, we have that for all 7 > 0, Q@ > 0, and K > 1,
K-1 K-1
]P’< Z oF > Qchlv> = P(exp {7‘ Z qﬁk} > exp {TQ{Ki}>
k=0 k=0
K-1
<exp{ - TQCK}*}E[QXP {7' Z ¢k}] < exp { max{(7¢)?, (1)} K — QK & }. (35)
k=0

bet 7 = (Q/a)l/(a_l)/(d{l/a)' It follows that 7¢ <1 for all X' > (Q/a)a/(a_l)7 which together with
o > o implies that max{(7¢)%, (7<)} = (7¢)®. By this, (35), and the expression of 7, one has that for
all Q > 0 and K > max{1, (Q/a)®/(@= D},

K-1
O\ a7
P(EI&>Qd¢>é@mﬂmWK—ﬂkKH:wm{u—w() i
k=0
Hence, (30) also holds for any a € (1,2). O

5.1 Proof of the main results in Section 2

In this subsection, we first establish a lemma and then use it to prove Theorem 1.

Lemma 5. Suppose that Assumption 1 holds. Let € € (0,1) be arbitrarily chosen, Ly, My, o, and o be
given in Assumption 1, and L(-) be defined in (9). Let {x*} be the sequence generated by Algorithm 1
with step sizes {ny} satisfying ny € (0, m] for all k > 0. Then, it holds that for all k > 0,

e(F (@) = F*) < (% = 2|2 = (2" = 2)%) /2 + Mo + mAw

8(a — 1))@ 1 D2y

a 8’

where
Ay = (B[G(z"; )] — G(a*: &) (=" —2%), & = |E[G(";&)] — G="; &) VE>0.  (37)
Proof. Fix any k > 0. By the optimality condition of (14), there exists h'(z**1) € Oh(z**1) such that

Gz &) + gt (" — 2P + 1 (2™ =0,

12



which along with the convexity of A implies that

h(.’l}‘k+1) < h(:l,‘*) + h/(karl)T(karl . CC*) — h(a:*) + G(l‘k;fk)T(x* . karl) +77k;_1($k+1 . :L“k)T(.%‘* _ karl)
= (@) + G2 &) (" — ) + (2m) T (l2* — 2 — (|l = 2 — [|l2FT = 2F)?). (38)

Denote f'(z%) = E¢, [G(a¥;&)]. It follows from (7) that f'(z*) € 0f(z*). By this, (10), and the convexity
of f, one has

(10) L L
f(karl) < f(xk) +f/(xk)T(xk+1 . xk) + f+2(6)ka+1 . kaZ + % —|—MfokH . ka

< f(l‘*) + f’(:Ek)T(IEk+1 _ .T*) + Lf +L(€) ||£L‘k+1 _ kaQ + E

Using this, (37), and (38), we obtain that

(37)(38)

F(z*) < F(a*)+ Ak + (f/( M) = G(aF; &) (2" — 2P + 2np) TH([|2F - 22 - |2 - 27)?)
L L
+< fJr 5 )ka-&-l 2| + 8+Mmek+1 |
k
< F(x*) + Ak + (f'(z") — G(a" ))T(ﬂclﬁrl — 2% + 2m) T (Jab — 2|2 = 2P — 2*)?)
Ly + L(e 1 Rl _ k)2
+ (FL5EE m)ux 2+ 5 + M. (39)

where the last inequality follows from M|+ — zF| < ||2F+1 — 2F|2/(4nx) + M?ﬁk:- In addition, let
o = a/(a —1). Observe that o/ > 2 due to a € (1,2]. This together with (11) and z*+!, 2% € domh
implies that [|z*1 — 2¥(|*" < D®'=2||zk+1 — 2|2, Using this, (37), and Young’s inequality, we have

! !
o A\ ki k) 8D "2y \1/e' @
= |z z"|| b M) Gy,
SDS Nk + o
o «

(f'(2") = G(a"; &) (@1 = a¥) <

|l — 2 L (Bla— D)* Dy g oy flat - ot L (Bla— D)* D ng o
8Dp 1 at - 81k ao ’

By this inequality, (39), Lemma 1, and 7y € (O, m}, we obtain that

F(ah) = F(a*) < (2m) 7 ([l2* = 2|1 — |27 — 2*|*) + M + Ay,

— 2—a, a—1
+ (Lf + L(E) - L)”1"’“‘1 _ Z‘k”Q + (8(a - 1))(1 th U 6]? + €

2 877k a® 8
_ 8(a — 1)) 1D t5e ¢
< @) (et — 2| ) M Ay SOT D T O e
Hence, the conclusion (36) holds. 0

We are now ready to provide a proof of Theorem 1.

Proof of Theorem 1. Using (15), (36), and the convexity of f, we obtain that

L, (15 S L P(akt! .
F(ZK) _F S k=0 K_l( ) _ F Z ,)7 k+1 _F )
k=0 "k k 0 Mk k=0

13



W 1o~ | Bla= 1) D T R M i Sy e
T2y a® 315 S0 e S0 e

We now prove statement (i) of Theorem 1. By (12) and Lemma 1 with ¢ = (8(a — 1))*"!D?" /a2,
N =mn, and € = €, one has

(8(a —1))*'DF @ 2 (ON\EST (8D €2,
. ape < — — _— —_ = —.
o oS- A(T) (T T g A g
In addition, recall from (37) and Assumption 1(c) that E¢, [Ag] = 0 and E¢, [07] < 0®. Using these, (11),

(16), (29), (41), n. =7 for all k, and taking expectation on (40) with respect to {&x}1', we obtain that
for all £ > 0,

+ g (40)

(41)

2 — P, (8(a— 1) DF
- 2Kn a?®
(11)(41) D2 € (16)

. D2 A 1 €
< %+<Mf+A())n+Z = H%?m{QKTI (Mf+A())n:ne<0’M]}+47

M 1/2 _ 2D%(Ly + L(e)) +\/§Dh(Mf+A(€))+f
K - K K1/2 4’

€
. O'a’l]a_l +M]%77+ g

(9 2D2(L; + L(e)
- K

+\@Dh<

+
B~ o

where the third inequality follows from (29) with (a,b,c) = (2K, M2 + A(e)?, m) Then, by this,
one can see that E[F(25) — F*] < ¢/4 + ¢/2 + ¢/4 = ¢ holds for all K satisfying (17). Hence, statement
(i) of Theorem 1 holds.

We next prove statement (ii) of Theorem 1. Recall from the definition of Ay in (37) and Assumption
1(c) that E¢, [Ag] = 0. In addition, by z*,2* € dom h, (11), and (37), one has

Ak D (Gt &) - BlGER; &) T (28 — 27)| < Dil|Gab; &) — BIGGH;&)] Yk >0,

which along with Assumption 2 implies that

Ee, [exp{|An/(0D4)|"}] < Be, [exp{]|G(a*; &) — E[G(; €))7 /0°}] < exp{1}  VE > 0.

Hence, the assumptions of Lemma 4 hold with ¢* = A, and ¢ = ¢ Dy,. It then follows from Lemma 4 with
Q= a(In(2/6)/(a — 1))@=/ that for any § € (0,1) and K > max{1, L19)(a) In(2/6) /(o — 1)},

P ZAk e ’f/a'<h;(2/f))aal)§§. (42

In addition, it follows from the convexity of the exponential function and Assumption 2 that for all K > 1,

oot S Y] < £ 5 afen )] <ewtr

k=0

Using this and Markov’s inequality, we obtain that for all § € (0,1) and K > 1,
P([l(l(z_:lé,? > <1 +In (;))go‘) = (exp {K Z ja } > exp {1 +In (;) })
k=0 k=0
< exp{ —1—1In (%)} -E[exp{;{ Z i’z}] < exp{ —1—In (%)} -exp{l} = g (43)



In view of (42) and (43), we can see that for all K > max{1, 1(;9)(a)In(2/6)/(a — 1)},

({ ZAk af’i"/a(h;(z_/f))%‘l}u{[l(lg(sp(1+1n(§))ga}><5,

which implies that

({ Z Ay < Kaf}i(?a : (12(2#?)31}“{[1{[;2:55 < (1+1n (?))w}) >1-06.  (44)

On the other hand, by (12) and (28) with ¢ = (8(a — 1))*~'D?~%(1 + In(2/4))/a®, /) = 7}, and & = ¢, one

has that
(Ba=1))*'DF (1 +1n(2/6)) (28) ( ) <8Dh>i ( Hn(z))a%m
5
+

[e]
1

aﬁo‘1<8a—1

(12) %

ool ™

219

aOé

A(6, €)% (45)

Oo\m

In view of (11), (16), (29), (44), (45), and (40) with n, = 7 for all k, we have that for all K >
max{1l, 1(1 9)(a)In(2/d)/(a — 1)}, it holds that with probability at least 1 — 4,

. (40) HxO _ x*HZ (8(cx — 1))a—1D2—a o K-1 1 K-1 .
F(X) - F* < oKn o T D 0 o D Akt M+
k=0 k=0

ool m

@) P2 (8(a — 1)) DI (1 + In(2/4)) Do (In(2/8)\ "%
< h h Coopel h 27
S 2Kn s 7 K(a—l)/a( a—1 ) Mt

(43 D? aDpo (In(2/8)\ & e
< —
= 2K7 (M + A(3.9%)7 + K(a—l)/a< a—1 ) 3

a—1
(16) D; o 1 aDpo (In(2/6)\"= €
= mln{ K7 (Mf+A(5 €) )n'n6(0’4(Lf+L(e))]}+K(a1)/a<oz—1 +4
(29) 2D2(Ls + L(e)) M2 +A(6.€°\1/2  aDyo (In(2/0)\ " e
2) 2D (Ly ! €
= K +‘/§Dh< K ) K(a—l)/a<a_1) "1
< 2DRLs + L) | VEDL(M; + A(5e) | aDyo <ln(2/5)> e

= K K1/2 K(a—1)/a + 4’

ool m

a—1

where the fourth inequality is due to (29) with (a,b,c) = (2[%,]\42 + A(3,€)2, m) It then follows
that F(2K) — F* < €/4 +¢/4+ ¢/4 + ¢/4 = € holds with probability at least 1 — ¢ for all K satisfying
(18). Hence, statement (ii) of Theorem 1 holds. O
5.2 Proof of the main results in Section 3

In this subsection, we first establish a lemma and then use it to prove Theorem 2.

Lemma 6. Suppose that Assumption 1 holds. Let € € (0,1) be arbitrarily chosen, Ly, My, o, and o
be given in Assumption 1, and L(-) be defined in (9). Let {(x*,y*, %)} be the sequence generated by

Algorithm 2 with input parameters {(ng, vi)} satisfying 4(L ¢+ L(ev))meve < 1 and 77k+1(7k_4i1 -1) < nk*yk_l
for all k > 0. Then, it holds that for all k > 0,

Mot (Ve — DEE) = F) < iyt = DFES) = F) + (Ja* — 2| — [l2™ —2%)%) /2
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(8(a — 1))~ D=5 L

a® 8 (46)

+ Mini + melg +

where
Ap = (BIGW" &) — G &) (aF —2%), 6 = |EBIG(Y"; &) — G &)l Yk > 0. (47)

Proof. Fix any k > 0. Using (20) and similar arguments as for deriving (38) with z* replaced by y*, we
can deduce that

R < h(a*) + Gy* &) (2% — 2" + (2m) TN (2 — 27| — (|2 — 2P = [la* - 5.
By this, (21), and the convexity of h, one has
meve BT < me(yt = DR(F) + mh ()
< (et = DR+ mph(a®) + (2 - 2|® = 2" — %)) = [|l2* — 2% /2
+mGy"; &) (2F — 2. (48)

In addition, notice from (19) and (21) that 281 — y# = 4 (21 — o). Denote f/(y*) = E¢, [G(y*; &) Tt
follows from (7) that f'(y*) € df(y*). By these and (10) with (y,z) = (2**1,¢*), one has that

_ - Ly + L(evk) Yk
mev ) < o (£ + £ T E =) 2Ly SR R — )

_ (L + L(evi))mve €Nk
= v HF WP + £ T = k) + L 5 2Pt — 2R + = T Mgy ||=F 1t — 2.

(49)
Also, it follows from (21) and the convexity of f that

e {FS) + F T E =) Bt = DGR + PR ER - b))

+ne(fN) + M@ =)
< (vt = DFER) +me(FO8) + N =)
= (v = DFES) + e (FOF) + )T (@ = o))

+oef (5 (@ = 2%)
< eyt = DFER) +mef (@) + e f (05T (@5 - 27),

where the first and second inequalities are due to the convexity of f. This along with (49) implies that

(49)
v F Y < eyt = D FGER) + e (@) + e ()T (@ — 2)

(Ly + Lev))mek
+ 2

Ja* = a2 4 S Myl - 2.
By this, (21) and (48), one has that

e FE) < m(pt = DFER) F P () + (|2 = 22 = (2" —2%)1%) /2 + My |+ — 2¥)|

n ((Lf + L(;’Yk))ﬂk’)% _ %) ”:L'k—H o l‘k”Q + nk(f,(yk) N G(yk;ék))T(xk—i-l B x*) + %

< iyt = DFGER) P () + (Ja* — 2™ = ]2 —a*)1%) /2 + ey + Mg
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L L 1
N (( £+ Lew) e 1)kaﬂ B

: 24 () - Gt )T @ —ab) + S

where the last inequality is due to (47) and Mpng[la"+! — ¥ || < [|a*+! — %2 /4 + M7ng. In addition, let
o = a/(a —1). Observe that o/ > 2 due to a € (1,2]. This together with (11) and z**!, 2% € domh
implies that [|zF1 — 2F||*" < D,‘i‘/_QchkJrl — 2%||2. Using this, (47), and the Young’s inequality, we obtain

that
o\ o w2 N1l
") — Gl €0)T (25 — 2) < (<8D§/*2n,€) A+ — a:k||> . ((SDho/an)l/ 5k)

o o

/

R M o= 1) DR et P (8(a = 1) DY g
B 8Dz/_2’l7k o - 877k a’ .

This along with (50) and 4(L¢ + L(evk))neye < 1 implies that

Mg (P () = F*) < (= D(E (D) = F) + (|2 — 272 = [a** — 2% 1) /2 + ey, + M7

(Ly+ L( G’Yk Ve )ka-&-l — 22+ (8(a = 1)~ 'Di~apnp 4 I

8 o 8

< (' - >< (%) = F*) + (% — 2% = 2" — 27)2) /2 + ey, + M}
(8(a — 1)) 1D2 oy N Nk

a® ?

+

This inequality together with 71 (7, jl —1) < g, * implies that the conclusion (46) holds. O
We are now ready to provide a proof of Theorem 2.

Proof of Theorem 2. Summing up (46) over k =0, ..., K — 1, and rearranging terms, we obtain that

r —Xx 2
mie (e — D(FER) = F) < mo(i = DEE) — 71y + 12222 Z DAy + M2 Z .

L Ba—1)ipie

oa h Zé e + = an (51)

We now prove statement (i) of Theorem 2. Recall that v, = 2/(k + 2) and n,, = (k + 2)n/2 for all
k > 0. Using these, the expression of 1 in (22), and the fact that L(-) is nonincreasing, we obtain that
4(Ly + Levi))neyr = 4(Ly + L(ev))n < 4(Ly + L(e/K))n < 1 holds for all 0 < k < K and K > 2. Also,
one verify that

k+3 k+1 nk+3)(k+1) <n(k+2)2

. - = —1 > 0.
2 2 A 1 KTk Ve =0

M1 (Vs — 1) =1
Hence, the assumptions of Lemma 6 hold for (n, %) given in statement (i) of of Theorem 2. Also, by (12)
and (28) with ¢ = (8(ar — 1))*~1D;*/a®, /) = 1, and € = ¢, one has

) A(e)?m + < Vk20. (52)

Bl DR s By ()7 (D)

€
o 8
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Using this, v0 = 1, (11), (52), Assumption 1(c), and taking expectation on (51) with respect to {fk},ff:_ol,
we obtain that for all K > 2,

K-1
. _ o 2% =2
nk (Vg — DE[F(z5) = F*] < no(vg ' = 1)(F(2°) — F*) + 5 + M7 nf
k=0
8(av — 1 aleQ—a K-1 € K-1
(8 ))a b—.o® M + 3 M
«Q 8
k=0 k=0
(11)(52) -1 0 * szz 2 2 - 2 € =
< mlgt = D) = FY) 4 S (M AR D+ 5 Y
k=0 k=0
D2 K-1 .
_ “h 2 2 2
= 7+(Mf + Ae) )k_oﬁk‘*‘z kz_o%

where the last equality is due to 9 = 1. Further, using this, (22), (28), & = 2/(k + 2), nr = (k + 2)n/2,
and rearranging the terms, we obtain that for all K > 2,

BFGS) - pr < 20 M A0 SS

K-1
k42 (k +2)
S K+)Kn T (K+2K kzo( 27+ K+2KZ +

2D? (M,%+A<e>2><<K+1><K+2><2K+3>/6— D0 (K +1)(K +2)/2— 1)

~ (K +2)Kn (K +2)K 2K +2)K
2D2 (M7 +AMe)*)(2K +3)n ¢
- (K+2)Kn 3 3
(22) mm{ 2D? (M7 + A(e)*)(2K + 3)7)
(

. 1 €
K+ " 3 e <°’ 4<Lf+L<e/K>>”+2’
2 2
@) 8D(Ly + L(e/K) M7+ MA@\ e
- (K +2)K 3K
< 8D? Ly 8DZL(e) 4Dp(Myp+ Ae)) €

- K2 K (1+3v)/(1+v) V3K1/2 2’

2 € 2
where the third inequality follows from (28) with (a,b,c) = ((1(252’21)}(’ (M +A ; )(2K+3), 4(Lf+i(e/K))), and

the last equality is due to (9) and K > 2. It then follows that E[F(2%) — F*] < €/6 +¢/6+¢/6+¢/2 = ¢
holds for all K satisfying (24). Hence, statement (i) of Theorem 2 holds.

We next prove statement (ii) of Theorem 2. Similar to the proof of statement (i), one can show that
the assumptions of Lemma 6 hold for (7, ) defined in statement (ii) of Theorem 2. Recall from the
expression of A in (47) and Assumption 1(c) that E¢, [Ag] = 0. In addition, by 2*,2* € dom h, (11),
(47), and nx = (k + 2)77/2, one has that

ikl 2 (G &) — B &))@ — 2°)| < e Dall GG &) — EGGS &) V0 <k < K,

which along with Assumption 2 implies that

Eg, [ exp{|neAx/(onk Dn)|*}] < Eg [exp{lG(y*; &) — E[G(y":60)]1%/0%}] < exp{l}  VO<k<K.

Hence, the assumptions of Lemma 4 hold with ¢* = Ay, and ¢ = ong Dy. In addition, it follows from
the convexity of the exponential function and Assumption 2 that for all K > 1,

2o {2 5 8Y] < L Sefon (2] ccom

k=0
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Using these and similar arguments as for proving (44), we obtain that for all K' > max{2, 1(; 9)(«) In(2/6)/(a—
1)}, it holds that

K-1

( ank < Kai?hl;a , (lr;(2_/<15)>a°‘1 nK}ﬂ{;( 2 52 < (1+1n (?))UQD >1-4. (53)

On the other hand, by (12) and (28) with ¢ = (8(a — 1))*"'D¥ *(1 +1n(2/48))/a®, i) = nrk, and £ = €,
one has that

(8(a — 1) DI *(1 +1n(2/0)) , o0y @® o\ 327 /8Dy =% 2\\ 751 €
L o s 2() (2 1 (2) s
2R+ ¢ (54)

Using these, (51), 0 = 1, 7 = 2/(k + 2), and n, = (k + 2)7/2, we obtain that for all K >
max{2, 1(; 2y(a)In(2/6)/(a — 1)}, it holds that with probability at least 1 —d,

(K +2)K(F(25) — F*) /4 = ni (v — D(F(z5) — F*)

(51) B . D2 S8(a — 1)) 1D2 «a K— K-1 K-1 6K—l
§770(’701—1)(F(z0)—F)-|-2h+(( )) Z 1%2771%+Z77kﬁk+§277k
k=0 k=0 k=0 k=0
(53 . D2 (8(a—1)""'D¥(1+1n(2/5)) . . =
SUO(Wolfl)(F(zo)—F)Jr—wL(( ) aha ( @/9), ngK + M7y i
k=0
a-l K—-1
aoDy, In(2/9)\ = €
K(a—l)/a'<a—1 ’K”K+8kzo77’“
(54) — % Dy ~ aocD In(2/6 =
SnMN—D@M%F)+;+Mﬁ+MMﬂm&+m%&w<;4» Kk
c K-1
+§( 77k+K77K)
k=0
D? - K +2\? aoDy  (In(2/6)\ T (K+2)K . e(K+2)K7
< Zh 2 2 ~2 ) ‘ ~
- 2 +(Mf+A(5’€))( )K K(a—1)/a <a—1> p 1T 8 ’

where the last inequality is due to v9 = 1 and nx = (k + 2)7/2 for all k£ > 0. Further, by (23), (28), and
rearranging the terms in the above inequality, one has that for all K' > max{2, 1(; 9)(a) In(2/0)/(a — 1)},
it holds that with probability at least 1 — ¢,

[0

9?2 N o
F(5) — F* < 7hn + (M3 + A(5,0)%)(K +2)ij + 2ag Dy <1n(2/5)> T

(K +2)K7 K@ Dja\ a—1 2
(2) _ 208 a4 K(s. e - 1
mm{(K—l—2)K“ (M7 + A6, €)°) (K +2)ij: 7 € 0’4(Lf+L(e/K))
a—1
20Dy, (In(2/6)\ = €

T K@/ ( a1 ty

8D?(Ls + L(e/K)) M2+ A5, €2\1/2 200D In(2/5) .
< h\~f e e S h €
- (K+2)K * 2\[Dh< K ) K-1/a\ -1 + 9
_8DiL; . 8DIL() | 2V2Du(M;+A(3,¢)) = 200Dy (In(2/9) ot L
- K? K(1+3v)/(1+v) K1/2 KoaDja\ a_1 5’
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where the second inequality is due to (28) with (a,b,c) = (m, (M]% + A(6,€)?) (K +2), m)
It then follows that F'(2%) — F* < ¢/8+¢/8+¢/8+¢€/8 +¢/2 = € holds with probability at least 1 —§ for
all K satisfying (25). Hence, statement (ii) of Theorem 2 holds. O
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