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Abstract

We study convex composite optimization problems, where the objective function is given by the sum

of a prox-friendly function and a convex function whose subgradients are estimated under heavy-tailed

noise. Existing work often employs gradient clipping or normalization techniques in stochastic first-

order methods to address heavy-tailed noise. In this paper, we demonstrate that a vanilla stochastic

algorithm—without additional modifications such as clipping or normalization—can achieve optimal

complexity for these problems. In particular, we establish that an accelerated stochastic proximal

subgradient method achieves a first-order oracle complexity that is universally optimal for smooth,

weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization under

heavy-tailed noise. Numerical experiments are further provided to validate our theoretical results.

Keywords: Convex composite optimization, heavy-tailed noise, accelerated stochastic proximal subgradient method,

first-order oracle complexity

Mathematics Subject Classification: 49M05, 49M37, 90C25, 90C30

1 Introduction

In this paper, we consider a class of convex composite optimization problems of the form

F ∗ := min
x∈Rn

{F (x) := f(x) + h(x)}, (1)

where f, h : Rn → (−∞,∞] are proper lower semicontinuous convex functions such that domh ⊆ dom f .

We assume that f satisfies a hybrid of smooth and nonsmooth conditions:

∥f ′(y)− f ′(x)∥ ≤ Lf∥y − x∥+Hf∥y − x∥ν +Mf ∀f ′(y) ∈ ∂f(y), f ′(x) ∈ ∂f(x), x, y ∈ dom f (2)

for some constants Lf , Hf ,Mf ≥ 0 and ν ∈ (0, 1). In addition, we assume that the proximal operator

associated with h can be computed exactly. Clearly, this class of functions f includes Lipschitz smooth,

Hölder smooth, and Lipschitz continuous functions, as well as any nonnegative combination of functions

from these three subclasses. As recently observed in [25, Example 1], the sum of a Lipschitz smooth
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function and a Hölder smooth function is not necessarily a Hölder smooth function. Moreover, the sum of

a Hölder smooth function and a Lipschitz continuous function is not necessarily a Lipschitz continuous

function. Consequently, the class of problems under consideration is broader than the class of problems

studied in [24] with f satisfying

∥f ′(y)− f ′(x)∥ ≤ Hf∥y − x∥ν ∀f ′(y) ∈ ∂f(y), f ′(x) ∈ ∂f(x), x, y ∈ dom f

for some Hf > 0 and ν ∈ [0, 1].

With the rise of data science, instances of problem (1) are increasingly common in modern, often

large-scale, applications. As a result, the subgradients of f are typically expensive to compute exactly and

can usually only be approximated using stochastic estimators. Stochastic first-order methods have been

extensively studied for solving (1) and its variants; see, e.g., [1, 2, 4, 6, 15, 17, 18, 21, 22, 23, 27, 28, 30].

Remarkably, an optimal method has been developed in [15] for solving a special case of (1) with Hf = 0

and h being the indicator function of a simple closed convex set, under the assumption that the stochastic

subgradient estimator G(·; ξ) of f(·) is unbiased and has bounded variance—that is, G(·; ξ) satisfies the
following conditions:

E[G(x; ξ)] ∈ ∂f(x), E
[
∥G(x; ξ)− E[G(x; ξ)]∥2

]
≤ σ2 ∀x ∈ Rn (3)

for some σ > 0. Under these conditions, it has been shown in [15] that a projected stochastic subgradient

method with Nesterov’s acceleration scheme achieves an optimal first-order oracle complexity of

O
((Lf

ϵ

) 1
2
+
(Mf + σ

ϵ

)2)
and O

((Lf

ϵ

) 1
2
+
(Mf + σ log(1/δ)

ϵ

)2)
(4)

for finding an ϵ-optimal solution of (1) in expectation, and an ϵ-optimal solution with probability at least

1− δ, respectively (see Definition 1 for precise definitions). The first complexity bound above recovers the

optimal results achieved by first-order methods for smooth, nonsmooth, and stochastic convex optimization

in a unified manner.

In recent years, with the development of machine learning and related fields, challenging stochastic

optimization problems often extend beyond those satisfying classical assumption imposed in (3). Recent

numerical evidence [12, 31, 32, 36] demonstrates that the stochastic estimator G(·; ξ) in these problems

satisfies the following conditions, which include heavy-tailed noise scenarios:

E[G(x; ξ)] ∈ ∂f(x), E
[
∥G(x; ξ)− E[G(x; ξ)]∥α

]
≤ σα ∀x ∈ Rn

for some σ > 0 and α ∈ (1, 2], generalizing the classical assumptions in (3). Indeed, when α < 2, gradient

estimators G(·; ξ) can exhibit unbounded variance, which may preclude the applicability of many classic

algorithmic frameworks for them that are specifically developed for problems under condition (3). Notably,

most existing algorithmic developments in stochastic optimization under heavy-tailed noise rely on gradient

clipping [3, 8, 19, 26, 29, 36] or normalization techniques [13, 14, 20, 33], providing theoretical justification

for their empirical success in deep learning. Nevertheless, a recent study [5] shows that vanilla SGD,

without using gradient clipping or gradient normalization, can be applied to a special case of (1) with

Hf = 0 and h being an indicator function, achieving a first-order oracle complexity of O(ϵ−α/(α−1)). Given

that no acceleration scheme is used in [5], the following natural question arises:

Is an accelerated vanilla stochastic algorithm without clipping or normalization applicable to the general

problem (1) under heavy-tailed noise?

This paper provides an affirmative answer to this question. Specifically, we show that an accelerated

stochastic proximal subgradient method (SPGM) achieves optimal complexity guarantees for solving

problem (1) under heavy-tailed noise. Our main contributions are summarized below.
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• We show that a vanilla SPGM and its accelerated counterpart, without any modifications such as

clipping or normalization, can find an approximate optimal solution of (1) both in expectation and

with high probability.

• We show that the vanilla SPGM (Algorithm 1) achieves a first-order oracle complexity of

O
(Lf

ϵ
+
(Hf

ϵ

) 2
1+ν

+
(Mf

ϵ

)2
+
(σ
ϵ

) α
α−1

)
, (5a)

and O
(Lf

ϵ
+
(Hf

ϵ

) 2
1+ν

+
(Mf

ϵ

)2
+
(σ ln(1/δ)1/α

ϵ

) α
α−1

)
(5b)

for finding an ϵ-stochastic optimal solution and an (ϵ, δ)-stochastic optimal solution, respectively.

In addition, we establish that the accelerated SPGM (Algorithm 2) achieves a first-order oracle

complexity of

O
((Lf

ϵ

) 1
2
+
(Hf

ϵ

) 2
1+3ν

+
(Mf

ϵ

)2
+
(σ
ϵ

) α
α−1

)
, (6a)

and O
((Lf

ϵ

) 1
2
+
(Hf

ϵ

) 2
1+3ν

+
(Mf

ϵ

)2
+
(σ ln(1/δ)1/α

ϵ

) α
α−1

)
(6b)

for finding an ϵ-stochastic optimal solution and an (ϵ, δ)-stochastic optimal solution, respectively.

It shall be mentioned that the accelerated SPGM achieves universally optimal complexity results for

smooth, weakly smooth, and nonsmooth convex optimization, as well as for stochastic convex optimization

under heavy-tailed noise. Moreover, for the aforementioned special case of problem (1) studied in [15], our

complexity bounds (5b) and (6b) with α = 2 enjoy an improved dependence on ln(1/δ) compared to the

bound in (4) obtained in [15].

The rest of this paper is organized as follows. Section 1.1 presents notation and assumptions. In

Sections 2 and 3, we present SPGM and its accelerated counterpart along with their first-order oracle

complexity results for finding an approximate solution of problem (1) under heavy-tailed noise. Section 4

presents preliminary numerical results illustrating the performance of the proposed methods. Finally, we

provide the proof of the main results in Section 5.

1.1 Notation and assumptions

Throughout this section, we use Rn to stand for the n-dimensional Euclidean space, and ∥ · ∥ to denote

the Euclidean norm for vectors. For any proper closed convex function φ, we denote its subdifferential by

∂φ and define the proximal mapping associated with φ, with parameter η > 0, as

proxηφ(x) := argmin
z∈Rn

{
φ(z) +

1

2η
∥z − x∥2

}
.

We denote the domain of φ as domφ. For any s ∈ R and A ⊆ R, we define the Boolean indicator function

1A(s) to be 1 if s ∈ A and 0 otherwise. In addition, we use O(·) to denote the standard big-O notation.

We now make the following assumption throughout this paper.

Assumption 1. (a) The function f satisfies (2) for some constants Lf , Hf ,Mf ≥ 0 and ν ∈ (0, 1).

(b) The proximal operator associated with h can be exactly evaluated, and its domain domh is bounded.

(c) The stochastic subgradient estimator G : Rn × Ξ → Rn satisfies

E[G(x; ξ)] ∈ ∂f(x), E[∥G(x; ξ)− E[G(x; ξ)]∥α] ≤ σα ∀x ∈ dom f (7)

for some σ > 0 and α ∈ (1, 2].
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We next make some remarks on Assumption 1.

Remark 1. (i) The class of f satisfying Assumption 1(a) is broad, which includes smooth (gradient

Lipschitz continuous), weakly smooth (gradient Hölder continuous), and nonsmooth (Lipschitz continuous)

functions, as well as any nonnegative combination of functions from these subclasses. Problem (1) with

f from these subclasses have been extensively studied in the literature (e.g., [10, 11, 15]). However,

there was no study on problem (1) with f satisfying Assumption 1(a) except a very recent work [25]. In

particular, [25] proposed first-order methods and established complexity guarantees for such problem

under a deterministic first-order oracle, where the exact gradient or an exact subgradient of f is used.

(ii) By a standard argument for deriving the descent inequality, (2) implies

f(y) ≤ f(x) + f ′(x)T (y − x) +
Lf

2
∥y − x∥2 +

Hf

1 + ν
∥y − x∥1+ν +Mf∥y − x∥ (8)

holds for all f ′(x) ∈ ∂f(x), x, y ∈ dom f . It follows from [24, Lemma 2] that

Hf

1 + ν
∥y − x∥1+ν ≤ 1

2
L(ε)∥y − x∥2 + ε

8
,

where

L(ε) := H
2

1+ν

f

(4
ε

) 1−ν
1+ν ∀ε > 0. (9)

This together with (8) implies that

f(y) ≤ f(x) + f ′(x)T (y − x) +
1

2

(
Lf + L(ε)

)
∥y − x∥2 +Mf∥y − x∥+ ε

8
(10)

holds for any ε > 0 and all f ′(x) ∈ ∂f(x), x, y ∈ dom f .

(iii) Assumption 1(b) is quite common in stochastic optimization. We define the diameter of domh as

Dh := max
x,y∈domh

{∥x− y∥}. (11)

Moreover, Assumption 1(c) states that G(x; ξ) is an unbiased estimator of a subgradient of f(x), and its αth

central moment is uniformly bounded. It is weaker than the commonly used variance bounded assumption

corresponding to the case α = 2. When α ∈ (1, 2), the stochastic subgradient noise exhibits heavy-tailed

behavior (see, e.g., [36]), a phenomenon commonly encountered in machine learning applications. For ease

of presentation, we introduce two related quantities, Λ(ε)2 and Λ̃(δ, ε)2, as follows:

Λ(ε)2 := 8(α− 1)2
(σ
α

) α
α−1

(8Dh

ε

) 2−α
α−1

, Λ̃(δ, ε)2 :=
(
1 + ln

(2
δ

)) 1
α−1

Λ(ε)2 ∀ε, δ > 0, (12)

which will be used to analyze stochastic algorithms under heavy-tailed noise.

We next introduce another assumption, which will be used to establish complexity bounds for finding

approximate solutions of problem (1) with high-probability guarantees.

Assumption 2. The stochastic subgradient estimator G : Rn × Ξ → Rn satisfies

E[exp{∥G(x; ξ)− E[G(x; ξ)]∥α/σα}] ≤ exp{1} ∀x ∈ dom f, (13)

where σ > 0 and α ∈ (1, 2] are given in Assumption 1(c).

We now make some remarks regarding Assumption 2.
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Remark 2. Assumption 2 states that the stochastic subgradient noise follows a sub-Weibull distribution

(see, e.g., [35]). This assumption is weaker than the standard sub-Gaussian assumption imposed in [15,

Assumption A2], which corresponds to the case with α = 2. When α ∈ (1, 2), condition (13) implies the

second condition in (7) and indicates that the stochastic subgradient noise has heavy tails.

We next give formal definitions for approximate stochastic optimal solutions of problem (1).

Definition 1. Let ϵ, δ ∈ (0, 1). We say that

• x ∈ Rn is an ϵ-stochastic optimal solution of (1) if it satisfies E[F (x)− F ∗] ≤ ϵ; and

• x ∈ Rn is an (ϵ, δ)-stochastic optimal solution x of (1) if it satisfying F (x)− F ∗ ≤ ϵ with probability

at least 1− δ.

2 A stochastic proximal subgradient method

In this section, we present an SPGM and establish its first-order oracle complexity for solving problem (1)

under heavy-tailed noise.

The SPGM was originally proposed for solving a special case of (1) with Hf = 0 under the conditions

(3) (see, e.g., [15, 22]). We now extend it to address the general problem (1) in the presence of heavy-tailed

noise. In particular, the SPGM generates two sequences, {xk} and {zk}. At each iteration k ≥ 0, SPGM

first updates xk+1 by performing a stochastic proximal subgradient step. It then computes zk+1 as a

weighted average of the past iterates {xt}k+1
t=1 . The details of this method are presented in Algorithm 1,

with specific choices of step sizes provided in Theorem 1.

Algorithm 1 A stochastic proximal subgradient method

Input: starting point x0 ∈ domh, step sizes {ηk} ⊂ (0,∞).

for k = 0, 1, 2, . . . do

Update the next iterate:

xk+1 = proxηkh(x
k − ηkG(x

k; ξk)). (14)

Compute the weighted average:

zk+1 =
( k∑

t=0

ηt

)−1
k∑

t=0

ηtx
t+1. (15)

end for

The theorem below establishes a complexity bound for Algorithm 1 to compute an ϵ-stochastic optimal

solution and an (ϵ, δ)-stochastic optimal solution of (1), respectively. Its proof is deferred to Section 5.1.

Theorem 1. Suppose that Assumption 1 holds. Let ϵ, δ ∈ (0, 1) be arbitrarily chosen, and let K be a

pre-chosen maximum iteration number for running Algorithm 1. Let L(·), Dh, and (Λ(·), Λ̃(·, ·)) be defined

in (9), (11), and (12), respectively, Lf ,Mf be given in Assumption 1(a), and let

η = min

{
1

4(Lf + L(ϵ))
,

Dh

[2K(M2
f + Λ(ϵ)2)]1/2

}
, η̃ = min

{
1

4(Lf + L(ϵ))
,

Dh

[2K(M2
f + Λ̃(δ, ϵ)2)]1/2

}
.

(16)

Then the following statements hold.
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(i) Let {zk} be generated by Algorithm 1 with ηk ≡ η for all k ≥ 0. Then, E[F (zK)− F ∗] ≤ ϵ for all K

satisfying

K ≥ max

{
8D2

h(Lf + L(ϵ))

ϵ
,
8D2

h(Mf + Λ(ϵ))2

ϵ2
, 1

}
. (17)

(ii) Suppose additionally that Assumption 2 holds. Let {zk} be generated by Algorithm 1 with ηk ≡ η̃ for

all k ≥ 0. Then, with probability at least 1− δ, F (zK)− F ∗ ≤ ϵ holds for all K satisfying

K ≥ max

{
8D2

h(Lf + L(ϵ))

ϵ
,
32D2

h(Mf + Λ̃(δ, ϵ))2

ϵ2
,
((4αDhσ

ϵ

) α
α−1

+ 1(1,2)(α)
)
· ln(2/δ)
α− 1

, 1

}
. (18)

Remark 3. From Theorem 1 and (12), we see that Algorithm 1 achieves a first-order oracle complexity of

O
(Lf + L(ϵ)

ϵ
+
(Mf + Λ(ϵ)

ϵ

)2)
and O

(Lf + L(ϵ)

ϵ
+
(Mf + Λ̃(δ, ϵ)

ϵ

)2)
for finding an ϵ-stochastic optimal solution and an (ϵ, δ)-stochastic optimal solution of (1), respectively.

Further, in view of the definitions of L(·) and (Λ(·), Λ̃(·, ·)) in (9) and (12), these bounds reduce to (5),

which achieves the optimal dependence on ϵ for nonsmooth convex problems [23] and for stochastic convex

optimization under heavy-tailed noise [5, 19]. However, for smooth and weakly smooth convex problems,

the above bounds are not optimal.

3 An accelerated stochastic proximal subgradient method

In this section, we present an accelerated SPGM and show that it achieves a universally optimal first-

order oracle complexity for solving smooth, weakly smooth, and nonsmooth convex problems, as well as

stochastic convex problems under heavy-tailed noise.

Algorithm 2 An accelerated stochastic proximal subgradient method

Input: starting point x0 = z0 ∈ domh, step sizes {ηk} ⊂ (0,∞), weighting parameters {γk} ⊂ (0, 1].

for k = 0, 1, 2, . . . do

Compute the intermediate point:

yk = (1− γk)z
k + γkx

k (19)

Update the next iterate:

xk+1 = proxηkh(x
k − ηkG(y

k; ξk)). (20)

Compute the weighted average:

zk+1 = (1− γk)z
k + γkx

k+1. (21)

end for

The accelerated SPGM was originally proposed in [15] for solving a special case of problem (1) with

Hf = 0 under conditions (3). We now extend it to handle the general problem (1) under heavy-tailed

noise. The accelerated SPGM can be viewed as a stochastic variant of Nesterov’s accelerated proximal

gradient method [34, Algorithm 1], obtained by replacing the deterministic gradient with a stochastic
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subgradient. Specifically, the method generates three sequences, {xk}, {yk}, and {zk}. The sequence {xk}
represents the main iterates, updated via a proximal operator. The sequence {zk} denotes the aggregated

iterates, where each zk is a weighted average of {xt}kt=0. The sequence {yk} serves as an intermediate

sequence, with each yk computed as an average of xk and zk. The complete description of the method is

given in Algorithm 2, and the specific choices of step sizes are provided in Theorem 2.

The next theorem establishes a complexity bound for Algorithm 2 to compute an ϵ-stochastic optimal

solution and an (ϵ, δ)-stochastic optimal solution of (1), respectively. Its proof is deferred to Section 5.2.

Theorem 2. Suppose that Assumption 1 holds. Let ϵ, δ ∈ (0, 1) be arbitrarily chosen, and let K be a

pre-chosen maximum iteration number for running Algorithm 2. Let L(·), Dh, and (Λ(·), Λ̃(·, ·)) be defined

in (9), (11), and (12), respectively, Lf ,Mf be given in Assumption 1(a), and let

η = min

{
1

4(Lf + L(ϵ/K))
,

(
6

(M2
f + Λ(ϵ)2)(2K + 3)(K + 2)K

) 1
2

Dh

}
, (22)

η̃ = min

{
1

4(Lf + L(ϵ/K))
,

(
2

(M2
f + Λ̃(δ, ϵ)2)(K + 2)2K

) 1
2

Dh

}
. (23)

Then the following statements hold.

(i) Let {zk} be generated by Algorithm 2 with (γk, ηk) = (2/(k + 2), (k + 2)η/2) for all k ≥ 0. Then,

E[F (zK)− F ∗] ≤ ϵ for all K satisfying

K ≥ max

{(48D2
hLf

ϵ

) 1
2
,
(48D2

hL(ϵ)

ϵ

) 1+ν
1+3ν

,
(24Dh)

2(Mf + Λ(ϵ))2

3ϵ2
, 2

}
. (24)

(ii) Suppose additionally that Assumption 2 holds. Let {zk} be generated by Algorithm 2 with (γk, ηk) =

(2/(k + 2), (k + 2)η̃/2) for all k ≥ 0. Then, with probability at least 1− δ, F (zK)− F ∗ ≤ ϵ holds for

all K satisfying

K ≥ max

{(64D2
hLf

ϵ

) 1
2
,
(64D2

hL(ϵ)

ϵ

) 1+ν
1+3ν

,
2(16Dh)

2(Mf + Λ̃(δ, ϵ))2

ϵ2
,((16αDhσ

ϵ

) α
α−1

+ 1(1,2)(α)
)
· ln(2/δ)
α− 1

, 2

}
. (25)

Remark 4. From Theorem 2 and (12), we see that Algorithm 2 achieves a first-order oracle complexity of

O
((Lf

ϵ

) 1
2
+
(L(ϵ)

ϵ

) 1+ν
1+3ν

+
(Mf + Λ(ϵ)

ϵ

)2)
and O

((Lf

ϵ

) 1
2
+
(L(ϵ)

ϵ

) 1+ν
1+3ν

+
(Mf + Λ̃(δ, ϵ)

ϵ

)2)
for finding an ϵ-stochastic optimal solution and an (ϵ, δ)-stochastic optimal solution of (1), respectively.

Further, by virtue of the definitions of L(·) and (Λ(·), Λ̃(·, ·)) in (9) and (12), these bounds reduce to

the ones in (6), which match the universal optimal bound for smooth, weakly smooth, and nonsmooth

convex problems [7, 23, 24], as well as for stochastic convex optimization with heavy-tailed noise [5, 19].

Moreover, for a special case of problem (1) with Hf = 0, the complexity bounds in (6) with α = 2 have

an improved dependence on log(1/δ) compared to the ones in (4) obtained in [15].

4 Numerical experiments

In this section, we present preliminary numerical experiments to evaluate the performance of Algorithms 1

and 2, where Algorithm 2 is referred to as SPGM-A. We also compare these methods with the clipped

version of SPGM, denoted as SPGM-C. All algorithms are implemented in Matlab, and all computations

are conducted on a laptop equipped with an Intel Core i9-14900HX processor (2.20 GHz) and 32 GB of

RAM.
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4.1 ℓ1-regularized ℓ2-ℓp regression with box constraints

In this subsection, we consider the ℓ1-regularized ℓ2-ℓp regression with box constraints:

min
l≤x≤u

1

2
∥Ax− b∥2 + 1

p
∥Ax− b∥pp + λ∥x∥1, (26)

where A ∈ Rn×n, b ∈ Rn, u = −l = −100 · 1 with 1 being the all-ones vector, p = 1.5, and λ = 1. We

simulate noisy gradient evaluations by setting the stochastic gradient estimator as G(x; ξ) = ∇f(x) + ρξ,

where ρ > 0 is a deterministic scalar, and ξ ∈ Rn has independently distributed coordinates, each following

a heavy-tailed distribution with density function p(t) = ω/(2(1 + |t|)1+ω). One can verify that such G(·; ξ)
satisfies Assumption 1(c) for every α ∈ (1, ω), and that the αth central moment of G(·; ξ) is unbounded
for all α ≥ ω.

For each triple (n, ρ, ω), we randomly generate 10 instances of problem (26). In particular, we first

randomly generate A with all its elements sampled from the standard normal distribution. We then

randomly generate x̄∗, with all its components sampled from the standard normal distribution, and

construct a sparse solution x∗ by randomly setting half of its components to zero. Finally, we set b = Ax∗.

We apply SPGM, SPGM-A, and SPGM-C to problem (26) to find an approximate solution xk such

that its relative objective value gap (F (xk)− F ∗)/(F (x0)− F ∗) is less than 10−4, where F ∗ is estimated

by CVX [9]. All methods are initialized at the zero vector. Other algorithmic parameters are selected to

suit each method well in terms of computational performance.

CPU time (seconds) Iterations

n ρ ω SPGM SPGM-A SPGM-C SPGM SPGM-A SPGM-C

500 1 1.8 3.15 1.50 3.16 2602.2 1284.0 2606.8

500 1 1.5 3.54 1.65 3.68 2734.8 1280.3 2727.6

500 1 1.2 3.53 1.73 3.76 2810.5 1311.6 2825.6

500 100 1.8 3.28 1.57 3.24 2528.1 1233.8 2520.5

500 100 1.5 4.38 2.22 3.90 3226.5 1711.5 2689.3

500 100 1.2 4.65 3.16 3.22 4158.1 2740.8 2872.0

1000 1 1.8 18.82 8.11 19.40 5006.9 2130.6 5040.6

1000 1 1.5 20.97 8.99 21.69 4952.5 2149.6 5059.7

1000 1 1.2 21.14 8.77 22.52 5085.2 2175.4 5322.0

1000 100 1.8 20.90 8.95 21.68 5154.1 2174.9 5355.7

1000 100 1.5 24.09 9.32 22.72 5695.5 2167.0 5048.7

1000 100 1.2 24.85 19.08 22.41 6779.0 5165.0 6106.3

Table 1: Numerical results for problem (26).

The computational results of SPGM, SPGM-A, and SPGM-C for solving (26) are presented in Table 1.

Specifically, the first three columns list the values of n, ρ, and ω, respectively, while the remaining columns

report the average CPU time and the average number of iterations for each triple (n, ρ, ω). We observe

that, except for the case (ρ, ω) = (100, 1.2), SPGM-A substantially outperforms both SPGM and SPGM-C.

When (ρ, ω) = (100, 1.2), the performance gap between SPGM-A and SPGM-C becomes much smaller,

although both methods still outperform SPGM. These observations suggest that when the noise level is

not too high, the accelerated SPGM can achieve significantly faster convergence than the vanilla SPGM

and the clipped SPGM, which is consistent with our theoretical findings.
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4.2 ℓ2-ℓp-ℓ1 regression with ℓ2-ball constraint

In this subsection, we consider the ℓ2-ℓp-ℓ1 regression with ℓ2-ball constraint:

min
∥x∥≤u

1

2
∥Ax− b∥2 + 1

p
∥Ax− b∥pp + λ∥Ax− b∥1, (27)

where A ∈ Rn×n, b ∈ Rn, u = 100, p = 1.5, and λ = 0.1. We simulate the noisy gradient evaluations by

setting the stochastic gradient estimator as G(x; ξ) = ∇f(x) + ρξ, where ρ > 0 is a deterministic scalar,

and ξ ∈ Rn has independently distributed coordinates, each following a heavy-tailed distribution with

density function p(t) = ω/(2(1 + |t|)1+ω). One can verify that such G(·; ξ) satisfies Assumption 1(c) for

every α ∈ (1, ω), and that the αth central moment of G(·; ξ) is unbounded for all α ≥ ω.

For each triple (n, ρ, ω), we randomly generate 10 instances of problem (27). In particular, we first

randomly generate A with all its elements sampled from the standard normal distribution. We then

randomly generate x∗, with all its components sampled from the standard normal distribution, and set

b = Ax∗.

We apply SPGM, SPGM-A, and SPGM-C to problem (27) to find an approximate solution xk such

that its relative objective value gap F (xk)/F (x0) is less than 10−4 (note that F ∗ = 0 due to the data

generation setup). All methods are initialized at the zero vector. Other algorithmic parameters are

selected to suit each method well in terms of computational performance.

CPU time (seconds) Iterations

n ρ ω SPGM SPGM-A SPGM-C SPGM SPGM-A SPGM-C

500 1 1.8 18.00 9.65 26.80 9772.6 3640.0 9374.6

500 1 1.5 12.10 4.11 11.76 9126.5 3167.2 8659.1

500 1 1.2 12.02 3.95 11.85 8838.4 2936.4 8319.8

500 100 1.8 13.30 5.06 13.42 9671.7 3594.2 9411.8

500 100 1.5 16.32 5.19 13.11 12190.4 3828.9 9640.9

500 100 1.2 21.36 12.54 13.00 15843.0 9051.7 9730.7

1000 1 1.8 48.61 18.62 59.23 8524.6 2769.9 8512.5

1000 1 1.5 39.42 13.03 39.54 8305.2 2753.9 8300.3

1000 1 1.2 50.64 12.66 40.22 10454.3 2700.5 8386.8

1000 100 1.8 40.62 13.83 43.13 8126.3 2638.7 8119.6

1000 100 1.5 82.54 24.76 77.66 10729.2 2871.3 9076.5

1000 100 1.2 124.10 52.07 80.57 17992.7 8854.2 9496.5

Table 2: Numerical results for problem (27).

The computational results of SPGM, SPGM-A, and SPGM-C for solving (27) are presented in Table 2.

The first three columns list the values of n, ρ, and ω, respectively, while the remaining columns report the

average CPU time and the average number of iterations for each triple (n, ρ, ω). We observe that, except

for the case (ρ, ω) = (100, 1.2), SPGM-A significantly outperforms both SPGM and SPGM-C. When

(ρ, ω) = (100, 1.2), the performance gap between SPGM-A and SPGM-C narrows, although both methods

still outperform SPGM. These observations suggest that when the noise level is moderate, the accelerated

SPGM can achieve substantially faster convergence than both the vanilla and clipped versions of SPGM,

which aligns well with our theoretical results.
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5 Proof of the main results

In this section, we present the proofs of the main results stated in Sections 2 and 3, namely, Theorems 1

and 2. Throughout this section, let x∗ denote an arbitrary but fixed optimal solution to (1).

Before proceeding, we establish several technical lemmas below. The following lemma provides a useful

inequality for handling the heavy-tailed noise condition.

Lemma 1. For any α ∈ (1, 2], it holds that

cσαη̂α−1 ≤ (α− 1)c
1

α−1

(8
ε

) 2−α
α−1

σ
α

α−1 η̂ +
ε

8
∀c, σ, η̂, ε > 0. (28)

Proof. When α = 2, this inequality holds trivially. We next prove (28) for the case when α ∈ (1, 2). By

Young’s inequality, one has that τs ≤ τp/p+sq/q holds for all τ, s > 0 and p, q ≥ 1 satisfying 1/p+1/q = 1.

Letting τ = cσαη̂α−1/s, p = 1/(α− 1), and q = 1/(2− α), we obtain that

cσαη̂α−1 ≤ (α− 1)c1/(α−1)σα/(α−1)η̂

s1/(α−1)
+ (2− α)s1/(2−α).

Further, let s > 0 be such that ε/8 = (2− α)s1/(2−α). Then, one has s1/(α−1) = (ε/(8(2− α)))(2−α)/(α−1).

Combining these and the above inequality, and using (α− 2)α−2 ≤ 1, we conclude that (28) holds.

The next lemma will be used to derive the complexity bounds.

Lemma 2. Let a, b, c > 0 be given, t∗ = min{c, (a/b)1/2}, and φ(t) = a/t+ bt for t ∈ (0,∞). Then, it

holds that

min
t∈(0,c]

φ(t) = φ(t∗) ≤ a/c+ 2(ab)1/2. (29)

Proof. It is easy to see that the first relation in (29) holds. We now prove the second relation in (29) by

considering two separate cases. If c ≤ (a/b)1/2, one has φ(t∗) = a/c+ bc ≤ a/c+ (ab)1/2. On the other

hand, if c > (a/b)1/2, one has φ(t∗) = 2(ab)1/2 < a/c+ 2(ab)1/2. Combining these cases, we conclude that

the second relation in (29) holds as desired.

The lemma below provides an inequality that will used to establish a concentration inequality

subsequently.

Lemma 3. Let α ∈ (1, 2] be given. Then, et ≤ t+ e|t|
α
holds for all t ∈ R.

Proof. We prove this inequality by considering three separate cases.

Case 1) t ∈ (1,∞). This along with α > 1 implies that et < et
α
= e|t|

α
, and hence et ≤ t+ e|t|

α
holds.

Case 2) t ∈ [−1, 1]. By this and α ∈ (1, 2], one has

et = 1 + t+

∞∑
s=2

ts

s!
≤ 1 + t+ t2

∞∑
s=2

1

s!
= 1 + t+ t2

( ∞∑
s=0

1

s!
− 2

)
= 1 + t+ (e− 2)t2

< 1 + t+ t2 ≤ 1 + t+ |t|α ≤ t+ e|t|
α
,

where the first and third inequalities follow from t ∈ [−1, 1] and α ≤ 2, and the last inequality is due to

the convexity of the exponential function.

Case 3) t ∈ (−∞,−1). Using this and α ∈ (1, 2], we have

e|t|
α ≥ e−t ≥ 1− t ≥ et − t,

where the first and last inequalities are due to t < −1 and α > 1, and the second inequality follows from

the convexity of the exponential function.

Combining the above three cases, we conclude that et ≤ t+ e|t|
α
holds for all t ∈ R.
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The next lemma provides a concentration inequality for a martingale difference sequence of sub-Weibull

random variables, which generalizes the result established in [16, Lemma 2] for sub-Gaussian random

variables. It will be used to establish high-probability complexity bounds.

Lemma 4. Let {ξk} be a sequence of i.i.d. random variables, ς > 0 and α ∈ (1, 2] be given, and {ϕk(·)}
be a sequence of deterministic functions. Define ϕk = ϕk(ξ[k]) with ξ[k] = {ξt}kt=0 for all k = 0, 1, . . ., and

let Eξ0 [· |ξ[−1]] := Eξ0 [·]. Suppose that Eξk [ϕ
k |ξ[k−1]] = 0 and Eξk [exp{|ϕk/ς|α} |ξ[k−1]] ≤ exp{1} hold for

all k = 1, 2, . . .. Then, we have

P
(K−1∑

k=0

ϕk > ΩςK
1
α

)
≤ exp

{
(1− α)

(Ω
α

) α
α−1

}
∀Ω ≥ 0,K ≥ max

{
1,1(1,2)(α)

(Ω
α

) α
α−1

}
. (30)

Proof. When α = 2, (30) holds due to [16, Lemma 2]. It remains to show that (30) holds for any α ∈ (1, 2).

To this end, we first show that

Eξk

[
exp{τϕk}

∣∣ξ[k−1]

]
≤ exp{max{(τς)α, (τς)α′}} ∀τ ≥ 0, k ≥ 0, (31)

where α′ = α/(α− 1). Indeed, for notational convenience, we denote ϕ̄k = ϕk/ς for all k ≥ 0. Then, one

has Eξk [ϕ̄
k |ξ[k−1]] = 0 and Eξk [exp{|ϕ̄k|α} |ξ[k−1]] ≤ exp{1} for all k ≥ 0. By Jensen’s inequality and the

concavity of ψ(s) = sβ for any β ∈ [0, 1], one has that

Eξk

[
exp{β|ϕ̄k|α}

∣∣ξ[k−1]

]
= Eξk

[
(exp{|ϕ̄k|α})β

∣∣ξ[k−1]

]
≤

(
Eξk

[
exp{|ϕ̄k|α}

∣∣ξ[k−1]

])β ≤ exp{β} ∀β ∈ [0, 1], k ≥ 0, (32)

where the last inequality follows from Eξk [exp{|ϕ̄k|α} |ξ[k−1]] ≤ exp{1}. Using this and Lemma 3 with

t = λϕ̄k, we obtain that

Eξk

[
exp{λϕ̄k}

∣∣ξ[k−1]

]
≤ Eξk

[
λϕ̄k

∣∣ξ[k−1]

]
+ Eξk

[
exp{|λϕ̄k|α}

∣∣ξ[k−1]

]
≤ exp{λα} ∀λ ∈ [0, 1], k ≥ 0,

(33)

where the last inequality is due to Eξk [ϕ̄
k |ξ[k−1]] = 0 and (32) with β = λα. In addition, by α′ = α/(α− 1)

and Young’s inequality, one has ts ≤ |t|α/α+ |s|α′
/α′ for all s, t ∈ R. It follows from this and (32) with

β = 1/α that

Eξk

[
exp{λϕ̄k}

∣∣ξ[k−1]

]
≤ Eξk

[
exp{|ϕ̄k|α/α}

∣∣ξ[k−1]

]
· exp{λα′

/α′}
(32)

≤ exp{1/α+ λα
′
/α′}

≤ exp{(1/α+ 1/α′)λα
′} = exp{λα′} ∀λ ≥ 1, k ≥ 0, (34)

where the third inequality is due to α′ > 0 and λ ≥ 1, and the last relation follows from 1/α+ 1/α′ = 1.

Using (33) and (34), we obtain that Eξk

[
exp{λϕ̄k}

∣∣ξ[k−1]

]
≤ exp{max{λα, λα′}} for all λ ≥ 0 and k ≥ 0.

Substituting ϕ̄k = ϕk/ς into this inequality, and rearranging the terms, we obtain that

Eξk

[
exp{τϕk}

∣∣ξ[k−1]

]
= Eξk

[
exp{τςϕ̄k}

∣∣ξ[k−1]

]
≤ exp{max{(τς)α, (τς)α′}} ∀τ ≥ 0, k ≥ 0,

and hence (31) holds as desired.

Further, using (31) and the definition of ϕk for all k ≥ 0, we obtain that for all τ ≥ 0 and K ≥ 1,

E
[
exp

{
τ
K−1∑
k=0

ϕk
}]

= Eξ[K−2]

[
EξK−1

[
exp

{
τ
K−1∑
k=0

ϕk
} ∣∣∣∣ξ[K−2]

]]
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= Eξ[K−2]

[
exp

{
τ

K−2∑
k=0

ϕk
}
· EξK−1

[
exp

{
τϕK−1

} ∣∣ξ[K−2]

]]

= E
[
exp

{
τ
K−2∑
k=0

ϕk
}
· EξK−1

[
exp

{
τϕK−1

} ∣∣ξ[K−2]

]]
(31)

≤ E
[
exp

{
τ

K−2∑
k=0

ϕk
}]

· exp{max{(τς)α, (τς)α′}}.

This recursion implies that

E
[
exp

{
τ

K−1∑
k=0

ϕk
}]

≤ exp
{
max{(τς)α, (τς)α′}K

}
∀τ ≥ 0,K ≥ 1.

Using this and Markov’s inequality, we have that for all τ > 0, Ω ≥ 0, and K ≥ 1,

P
(K−1∑

k=0

ϕk > ΩςK
1
α

)
= P

(
exp

{
τ

K−1∑
k=0

ϕk
}
> exp

{
τΩςK

1
α
})

≤ exp
{
− τΩςK

1
α
}
E
[
exp

{
τ
K−1∑
k=0

ϕk
}]

≤ exp
{
max{(τς)α, (τς)α′}K − τΩςK

1
α
}
. (35)

Let τ = (Ω/α)1/(α−1)/(ςK1/α). It follows that τς ≤ 1 for all K ≥ (Ω/α)α/(α−1), which together with

α′ > α implies that max{(τς)α, (τς)α′} = (τς)α. By this, (35), and the expression of τ , one has that for

all Ω ≥ 0 and K ≥ max{1, (Ω/α)α/(α−1)},

P
(K−1∑

k=0

ϕk > ΩςK
1
α

)
≤ exp

{
(τς)αK − τΩςK

1
α
}
= exp

{
(1− α)

(Ω
α

) α
α−1

}
.

Hence, (30) also holds for any α ∈ (1, 2).

5.1 Proof of the main results in Section 2

In this subsection, we first establish a lemma and then use it to prove Theorem 1.

Lemma 5. Suppose that Assumption 1 holds. Let ϵ ∈ (0, 1) be arbitrarily chosen, Lf , Mf , α, and σ be

given in Assumption 1, and L(·) be defined in (9). Let {xk} be the sequence generated by Algorithm 1

with step sizes {ηk} satisfying ηk ∈
(
0, 1

4(Lf+L(ϵ))

]
for all k ≥ 0. Then, it holds that for all k ≥ 0,

ηk(F (x
k+1)− F ∗) ≤ (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2 +M2

f η
2
k + ηk∆k

+
(8(α− 1))α−1D2−α

h ηαk δ
α
k

αα
+
ϵηk
8
, (36)

where

∆k = (E[G(xk; ξk)]−G(xk; ξk))
T (xk − x∗), δk = ∥E[G(xk; ξk)]−G(xk; ξk)∥ ∀k ≥ 0. (37)

Proof. Fix any k ≥ 0. By the optimality condition of (14), there exists h′(xk+1) ∈ ∂h(xk+1) such that

G(xk; ξk) + η−1
k (xk+1 − xk) + h′(xk+1) = 0,
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which along with the convexity of h implies that

h(xk+1) ≤ h(x∗) + h′(xk+1)T (xk+1 − x∗) = h(x∗) +G(xk; ξk)
T (x∗ − xk+1) + η−1

k (xk+1 − xk)T (x∗ − xk+1)

= h(x∗) +G(xk; ξk)
T (x∗ − xk+1) + (2ηk)

−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − ∥xk+1 − xk∥2). (38)

Denote f ′(xk) = Eξk [G(xk; ξk)]. It follows from (7) that f ′(xk) ∈ ∂f(xk). By this, (10), and the convexity

of f , one has

f(xk+1)
(10)

≤ f(xk) + f ′(xk)T (xk+1 − xk) +
Lf + L(ϵ)

2
∥xk+1 − xk∥2 + ϵ

8
+Mf∥xk+1 − xk∥

≤ f(x∗) + f ′(xk)T (xk+1 − x∗) +
Lf + L(ϵ)

2
∥xk+1 − xk∥2 + ϵ

8
+Mf∥xk+1 − xk∥.

Using this, (37), and (38), we obtain that

F (xk+1)
(37)(38)

≤ F (x∗) + ∆k + (f ′(xk)−G(xk; ξk))
T (xk+1 − xk) + (2ηk)

−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2)

+
(Lf + L(ϵ)

2
− 1

2ηk

)
∥xk+1 − xk∥2 + ϵ

8
+Mf∥xk+1 − xk∥

≤ F (x∗) + ∆k + (f ′(xk)−G(xk; ξk))
T (xk+1 − xk) + (2ηk)

−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2)

+
(Lf + L(ϵ)

2
− 1

4ηk

)
∥xk+1 − xk∥2 + ϵ

8
+M2

f ηk, (39)

where the last inequality follows from Mf∥xk+1 − xk∥ ≤ ∥xk+1 − xk∥2/(4ηk) +M2
f ηk. In addition, let

α′ = α/(α − 1). Observe that α′ ≥ 2 due to α ∈ (1, 2]. This together with (11) and xk+1, xk ∈ domh

implies that ∥xk+1 − xk∥α′ ≤ Dα′−2
h ∥xk+1 − xk∥2. Using this, (37), and Young’s inequality, we have

(f ′(xk)−G(xk; ξk))
T (xk+1 − xk) ≤

((
α′

8Dα′−2
h ηk

)1/α′

∥xk+1 − xk∥
)α′

α′ +

((
8Dα′−2

h ηk
α′

)1/α′

δk

)α

α

=
∥xk+1 − xk∥α′

8Dα′−2
h ηk

+
(8(α− 1))α−1D2−α

h ηα−1
k δαk

αα
≤ ∥xk+1 − xk∥2

8ηk
+

(8(α− 1))α−1D2−α
h ηα−1

k δαk
αα

.

By this inequality, (39), Lemma 1, and ηk ∈
(
0, 1

4(Lf+L(ϵ))

]
, we obtain that

F (xk+1)− F (x∗) ≤ (2ηk)
−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2) +M2

f ηk +∆k

+
(Lf + L(ϵ)

2
− 1

8ηk

)
∥xk+1 − xk∥2 +

(8(α− 1))α−1D2−α
h ηα−1

k δαk
αα

+
ϵ

8

≤ (2ηk)
−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2) +M2

f ηk +∆k +
(8(α− 1))α−1D2−α

h ηα−1
k δαk

αα
+
ϵ

8
.

Hence, the conclusion (36) holds.

We are now ready to provide a proof of Theorem 1.

Proof of Theorem 1. Using (15), (36), and the convexity of f , we obtain that

F (zK)− F ∗
(15)

≤
∑K−1

k=0 ηkF (x
k+1)∑K−1

k=0 ηk
− F ∗ =

1∑K−1
k=0 ηk

K−1∑
k=0

ηk(F (x
k+1)− F ∗)
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(36)

≤ ∥x0 − x∗∥2

2
∑K−1

k=0 ηk
+

(8(α− 1))α−1D2−α
h

∑K−1
k=0 η

α
k δ

α
k

αα
∑K−1

k=0 ηk
+
M2

f

∑K−1
k=0 η

2
k∑K−1

k=0 ηk
+

∑K−1
k=0 ηk∆k∑K−1
k=0 ηk

+
ϵ

8
. (40)

We now prove statement (i) of Theorem 1. By (12) and Lemma 1 with c = (8(α− 1))α−1D2−α
h /αα,

η̂ = η, and ε = ϵ, one has

(8(α− 1))α−1D2−α
h

αα
· σαηα−1

(28)

≤ 8(α− 1)2
(σ
α

) α
α−1

(8Dh

ϵ

) 2−α
α−1

η +
ϵ

8

(12)
= Λ(ϵ)2η +

ϵ

8
. (41)

In addition, recall from (37) and Assumption 1(c) that Eξk [∆k] = 0 and Eξk [δ
α
k ] ≤ σα. Using these, (11),

(16), (29), (41), ηk ≡ η for all k, and taking expectation on (40) with respect to {ξk}K−1
k=0 , we obtain that

for all k ≥ 0,

E[F (zK)− F (x∗)]
(40)

≤ ∥x0 − x∗∥2

2Kη
+

(8(α− 1))α−1D2−α
h

αα
· σαηα−1 +M2

f η +
ϵ

8
(11)(41)

≤
D2

h

2Kη
+ (M2

f + Λ(ϵ)2)η +
ϵ

4

(16)
= min

η̂

{
D2

h

2Kη̂
+ (M2

f + Λ(ϵ)2)η̂ : η̂ ∈
(
0,

1

4(Lf + L(ϵ))

]}
+
ϵ

4
,

(29)

≤
2D2

h(Lf + L(ϵ))

K
+
√
2Dh

(
M2

f + Λ(ϵ)2

K

)1/2

+
ϵ

4
≤

2D2
h(Lf + L(ϵ))

K
+

√
2Dh(Mf + Λ(ϵ))

K1/2
+
ϵ

4
,

where the third inequality follows from (29) with (a, b, c) =
(D2

h
2K ,M

2
f +Λ(ϵ)2, 1

4(Lf+L(ϵ))

)
. Then, by this,

one can see that E[F (zK)− F ∗] ≤ ϵ/4 + ϵ/2 + ϵ/4 = ϵ holds for all K satisfying (17). Hence, statement

(i) of Theorem 1 holds.

We next prove statement (ii) of Theorem 1. Recall from the definition of ∆k in (37) and Assumption

1(c) that Eξk [∆k] = 0. In addition, by xk, x∗ ∈ dom h, (11), and (37), one has

|∆k|
(37)
=

∣∣(G(xk; ξk)− E[G(xk; ξk)])T (xk − x∗)
∣∣ ≤ Dh∥G(xk; ξk)− E[G(xk; ξk)]∥ ∀k ≥ 0,

which along with Assumption 2 implies that

Eξk

[
exp{|∆k/(σDh)|α}

]
≤ Eξk

[
exp{∥G(xk; ξk)− E[G(xk; ξk)]∥α/σα}

]
≤ exp{1} ∀k ≥ 0.

Hence, the assumptions of Lemma 4 hold with ϕk = ∆k and ς = σDh. It then follows from Lemma 4 with

Ω = α(ln(2/δ)/(α− 1))(α−1)/α that for any δ ∈ (0, 1) and K ≥ max{1,1(1,2)(α) ln(2/δ)/(α− 1)},

P
(

1

K

K−1∑
k=0

∆k >
αDhσ

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

)
≤ δ

2
. (42)

In addition, it follows from the convexity of the exponential function and Assumption 2 that for all K ≥ 1,

E
[
exp

{
1

K

K−1∑
k=0

δαk
σα

}]
≤ 1

K

K−1∑
k=0

E
[
exp

{
δαk
σα

}]
≤ exp{1}.

Using this and Markov’s inequality, we obtain that for all δ ∈ (0, 1) and K ≥ 1,

P
(

1

K

K−1∑
k=0

δαk >
(
1 + ln

(2
δ

))
σα

)
= P

(
exp

{
1

K

K−1∑
k=0

δαk
σα

}
> exp

{
1 + ln

(2
δ

)})

≤ exp
{
− 1− ln

(2
δ

)}
· E

[
exp

{
1

K

K−1∑
k=0

δαk
σα

}]
≤ exp

{
− 1− ln

(2
δ

)}
· exp{1} =

δ

2
. (43)
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In view of (42) and (43), we can see that for all K ≥ max{1,1(1,2)(α) ln(2/δ)/(α− 1)},

P
({

1

K

K−1∑
k=0

∆k >
αDhσ

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

}⋃{
1

K

K−1∑
k=0

δαk >
(
1 + ln

(2
δ

))
σα

})
≤ δ,

which implies that

P
({

1

K

K−1∑
k=0

∆k ≤ αDhσ

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

}⋂{
1

K

K−1∑
k=0

δαk ≤
(
1 + ln

(2
δ

))
σα

})
≥ 1− δ. (44)

On the other hand, by (12) and (28) with c = (8(α− 1))α−1D2−α
h (1 + ln(2/δ))/αα, η̂ = η̃, and ε = ϵ, one

has that

(8(α− 1))α−1D2−α
h (1 + ln(2/δ))

αα
· σαη̃α−1

(28)

≤ 8(α− 1)2
(σ
α

) α
α−1

(8Dh

ϵ

) 2−α
α−1

(
1 + ln

(2
δ

)) 1
α−1

η̃ +
ϵ

8
(12)
= Λ̃(δ, ϵ)2η̃ +

ϵ

8
. (45)

In view of (11), (16), (29), (44), (45), and (40) with ηk ≡ η̃ for all k, we have that for all K ≥
max{1,1(1,2)(α) ln(2/δ)/(α− 1)}, it holds that with probability at least 1− δ,

F (zK)− F ∗
(40)

≤ ∥x0 − x∗∥2

2Kη̃
+

(8(α− 1))α−1D2−α
h

Kαα
· η̃α−1

K−1∑
k=0

δαk +
1

K

K−1∑
k=0

∆k +M2
f η̃ +

ϵ

8

(11)(44)

≤
D2

h

2Kη̃
+

(8(α− 1))α−1D2−α
h (1 + ln(2/δ))

αα
· σαη̃α−1 +

αDhσ

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+M2
f η̃ +

ϵ

8

(45)

≤
D2

h

2Kη̃
+ (M2

f + Λ̃(δ, ϵ)2)η̃ +
αDhσ

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

4

(16)
= min

η̂

{
D2

h

2Kη̂
+ (M2

f + Λ̃(δ, ϵ)2)η̂ : η̂ ∈
(
0,

1

4(Lf + L(ϵ))

]}
+

αDhσ

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

4

(29)

≤
2D2

h(Lf + L(ϵ))

K
+
√
2Dh

(M2
f + Λ̃(δ, ϵ)2

K

)1/2
+

αDhσ

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

4

≤
2D2

h(Lf + L(ϵ))

K
+

√
2Dh(Mf + Λ̃(δ, ϵ))

K1/2
+

αDhσ

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

4
,

where the fourth inequality is due to (29) with (a, b, c) =
(D2

h
2K ,M

2
f + Λ̃(δ, ϵ)2, 1

4(Lf+L(ϵ))

)
. It then follows

that F (zK) − F ∗ ≤ ϵ/4 + ϵ/4 + ϵ/4 + ϵ/4 = ϵ holds with probability at least 1 − δ for all K satisfying

(18). Hence, statement (ii) of Theorem 1 holds.

5.2 Proof of the main results in Section 3

In this subsection, we first establish a lemma and then use it to prove Theorem 2.

Lemma 6. Suppose that Assumption 1 holds. Let ϵ ∈ (0, 1) be arbitrarily chosen, Lf , Mf , α, and σ

be given in Assumption 1, and L(·) be defined in (9). Let {(xk, yk, zk)} be the sequence generated by

Algorithm 2 with input parameters {(ηk, γk)} satisfying 4(Lf+L(ϵγk))ηkγk ≤ 1 and ηk+1(γ
−1
k+1−1) ≤ ηkγ

−1
k

for all k ≥ 0. Then, it holds that for all k ≥ 0,

ηk+1(γ
−1
k+1 − 1)(F (zk+1)− F ∗) ≤ ηk(γ

−1
k − 1)(F (zk)− F ∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2
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+M2
f η

2
k + ηk∆k +

(8(α− 1))α−1D2−α
h δαk η

α
k

αα
+
ϵηk
8
, (46)

where

∆k = (E[G(yk; ξk)]−G(yk; ξk))
T (xk − x∗), δk = ∥E[G(yk; ξk)]−G(yk; ξk)∥ ∀k ≥ 0. (47)

Proof. Fix any k ≥ 0. Using (20) and similar arguments as for deriving (38) with xk replaced by yk, we

can deduce that

h(xk+1) ≤ h(x∗) +G(yk; ξk)
T (x∗ − xk+1) + (2ηk)

−1(∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − ∥xk − xk+1∥2).

By this, (21), and the convexity of h, one has

ηkγ
−1
k h(zk+1) ≤ ηk(γ

−1
k − 1)h(zk) + ηkh(x

k+1)

≤ ηk(γ
−1
k − 1)h(zk) + ηkh(x

∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2 − ∥xk − xk+1∥2)/2

+ ηkG(y
k; ξk)

T (x∗ − xk+1). (48)

In addition, notice from (19) and (21) that zk+1 − yk = γk(x
k+1 − xk). Denote f ′(yk) = Eξk [G(yk; ξk)]. It

follows from (7) that f ′(yk) ∈ ∂f(yk). By these and (10) with (y, x) = (zk+1, yk), one has that

ηkγ
−1
k f(zk+1) ≤ ηkγ

−1
k

(
f(yk) + f ′(yk)T (zk+1 − yk) +

Lf + L(ϵγk)

2
∥zk+1 − yk∥2 + ϵγk

8
+Mf∥zk+1 − yk∥

)
= ηkγ

−1
k (f(yk) + f ′(yk)T (zk+1 − yk)) +

(Lf + L(ϵγk))ηkγk
2

∥xk+1 − xk∥2 + ϵηk
8

+Mfηk∥xk+1 − xk∥.

(49)

Also, it follows from (21) and the convexity of f that

ηkγ
−1
k (f(yk) + f ′(yk)T (zk+1 − yk))

(21)
= ηk(γ

−1
k − 1)(f(yk) + f ′(yk)T (zk − yk))

+ ηk(f(y
k) + f ′(yk)T (xk+1 − yk))

≤ ηk(γ
−1
k − 1)f(zk) + ηk(f(y

k) + f ′(yk)T (xk+1 − yk))

= ηk(γ
−1
k − 1)f(zk) + ηk(f(y

k) + f ′(yk)T (x∗ − yk))

+ ηkf
′(yk)T (xk+1 − x∗)

≤ ηk(γ
−1
k − 1)f(zk) + ηkf(x

∗) + ηkf
′(yk)T (xk+1 − x∗),

where the first and second inequalities are due to the convexity of f . This along with (49) implies that

ηkγ
−1
k f(zk+1)

(49)

≤ ηk(γ
−1
k − 1)f(zk) + ηkf(x

∗) + ηkf
′(yk)T (xk+1 − x∗)

+
(Lf + L(ϵγk))ηkγk

2
∥xk+1 − xk∥2 + ϵηk

8
+Mfηk∥xk+1 − xk∥.

By this, (21) and (48), one has that

ηkγ
−1
k F (zk+1) ≤ ηk(γ

−1
k − 1)F (zk) + ηkF (x

∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2 +Mfηk∥xk+1 − xk∥

+
((Lf + L(ϵγk))ηkγk

2
− 1

2

)
∥xk+1 − xk∥2 + ηk(f

′(yk)−G(yk; ξk))
T (xk+1 − x∗) +

ϵηk
8

≤ ηk(γ
−1
k − 1)F (zk) + ηkF (x

∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2 + ηk∆k +M2
f η

2
k
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+
((Lf + L(ϵγk))ηkγk

2
− 1

4

)
∥xk+1 − xk∥2 + ηk(f

′(yk)−G(yk; ξk))
T (xk+1 − xk) +

ϵηk
8
,

(50)

where the last inequality is due to (47) and Mfηk∥xk+1 − xk∥ ≤ ∥xk+1 − xk∥2/4 +M2
f η

2
k. In addition, let

α′ = α/(α − 1). Observe that α′ ≥ 2 due to α ∈ (1, 2]. This together with (11) and xk+1, xk ∈ domh

implies that ∥xk+1 − xk∥α′ ≤ Dα′−2
h ∥xk+1 − xk∥2. Using this, (47), and the Young’s inequality, we obtain

that

(f ′(yk)−G(yk; ξk))
T (xk+1 − xk) ≤

((
α′

8Dα′−2
h ηk

)1/α′

∥xk+1 − xk∥
)α′

α′ +

((
8Dα′−2

h ηk
α′

)1/α′

δk

)α

α

=
∥xk+1 − xk∥α′

8Dα′−2
h ηk

+
(8(α− 1))α−1D2−α

h δαk η
α−1
k

αα
≤ ∥xk+1 − xk∥2

8ηk
+

(8(α− 1))α−1D2−α
h δαk η

α−1
k

αα
.

This along with (50) and 4(Lf + L(ϵγk))ηkγk ≤ 1 implies that

ηkγ
−1
k (F (zk+1)− F ∗) ≤ ηk(γ

−1
k − 1)(F (zk)− F ∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2 + ηk∆k +M2

f η
2
k

+
((Lf + L(ϵγk))ηkγk

2
− 1

8

)
∥xk+1 − xk∥2 +

(8(α− 1))α−1D2−α
h δαk η

α
k

αα
+
ϵηk
8

≤ ηk(γ
−1
k − 1)(F (zk)− F ∗) + (∥xk − x∗∥2 − ∥xk+1 − x∗∥2)/2 + ηk∆k +M2

f η
2
k

+
(8(α− 1))α−1D2−α

h δαk η
α
k

αα
+
ϵηk
8
.

This inequality together with ηk+1(γ
−1
k+1 − 1) ≤ ηkγ

−1
k implies that the conclusion (46) holds.

We are now ready to provide a proof of Theorem 2.

Proof of Theorem 2. Summing up (46) over k = 0, . . . ,K − 1, and rearranging terms, we obtain that

ηK(γ−1
K − 1)(F (zK)− F ∗) ≤ η0(γ

−1
0 − 1)(F (z0)− F ∗) +

∥x0 − x∗∥2

2
+

K−1∑
k=0

ηk∆k +M2
f

K−1∑
k=0

η2k

+
(8(α− 1))α−1D2−α

h

αα

K−1∑
k=0

δαk η
α
k +

ϵ

8

K−1∑
k=0

ηk. (51)

We now prove statement (i) of Theorem 2. Recall that γk = 2/(k + 2) and ηk = (k + 2)η/2 for all

k ≥ 0. Using these, the expression of η in (22), and the fact that L(·) is nonincreasing, we obtain that

4(Lf + L(ϵγk))ηkγk = 4(Lf + L(ϵγk))η ≤ 4(Lf + L(ϵ/K))η ≤ 1 holds for all 0 ≤ k ≤ K and K ≥ 2. Also,

one verify that

ηk+1(γ
−1
k+1 − 1) = η · k + 3

2
· k + 1

2
=
η(k + 3)(k + 1)

4
≤ η(k + 2)2

4
= ηkγ

−1
k ∀k ≥ 0.

Hence, the assumptions of Lemma 6 hold for (ηk, γk) given in statement (i) of of Theorem 2. Also, by (12)

and (28) with c = (8(α− 1))α−1D2−α
h /αα, η̂ = ηk, and ε = ϵ, one has

(8(α− 1))α−1D2−α
h

αα
· σαηα−1

k

(28)

≤ 8(α− 1)2
(σ
α

) α
α−1

(8Dh

ϵ

) 2−α
α−1

ηk +
ϵ

8

(12)
= Λ(ϵ)2ηk +

ϵ

8
∀k ≥ 0. (52)
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Using this, γ0 = 1, (11), (52), Assumption 1(c), and taking expectation on (51) with respect to {ξk}K−1
k=0 ,

we obtain that for all K ≥ 2,

ηK(γ−1
K − 1)E[F (zK)− F ∗] ≤ η0(γ

−1
0 − 1)(F (z0)− F ∗) +

∥x0 − x∗∥2

2
+M2

f

K−1∑
k=0

η2k

+
(8(α− 1))α−1D2−α

h

αα
· σα

K−1∑
k=0

ηαk +
ϵ

8

K−1∑
k=0

ηk

(11)(52)

≤ η0(γ
−1
0 − 1)(F (z0)− F ∗) +

D2
h

2
+ (M2

f + Λ(ϵ)2)
K−1∑
k=0

η2k +
ϵ

4

K−1∑
k=0

ηk

=
D2

h

2
+ (M2

f + Λ(ϵ)2)
K−1∑
k=0

η2k +
ϵ

4

K−1∑
k=0

ηk,

where the last equality is due to γ0 = 1. Further, using this, (22), (28), γk = 2/(k + 2), ηk = (k + 2)η/2,

and rearranging the terms, we obtain that for all K ≥ 2,

E[F (zK)− F ∗] ≤
2D2

h

(K + 2)Kη
+

(M2
f + Λ(ϵ)2)η

(K + 2)K

K−1∑
k=0

(k + 2)2 +
ϵ

2(K + 2)K

K−1∑
k=0

(k + 2)

=
2D2

h

(K + 2)Kη
+

(M2
f + Λ(ϵ)2)((K + 1)(K + 2)(2K + 3)/6− 1)η

(K + 2)K
+
ϵ((K + 1)(K + 2)/2− 1)

2(K + 2)K

≤
2D2

h

(K + 2)Kη
+

(M2
f + Λ(ϵ)2)(2K + 3)η

3
+
ϵ

2

(22)
= min

η̂

{
2D2

h

(K + 2)Kη̂
+

(M2
f + Λ(ϵ)2)(2K + 3)η̂

3
: η̂ ∈

(
0,

1

4(Lf + L(ϵ/K))

]}
+
ϵ

2
,

(28)

≤
8D2

h(Lf + L(ϵ/K))

(K + 2)K
+ 4Dh

(
M2

f + Λ(ϵ)2

3K

)1/2

+
ϵ

2

≤
8D2

hLf

K2
+

8D2
hL(ϵ)

K(1+3ν)/(1+ν)
+

4Dh(Mf + Λ(ϵ))√
3K1/2

+
ϵ

2
,

where the third inequality follows from (28) with (a, b, c) =
( 2D2

h
(K+2)K ,

(M2
f+Λ(ϵ)2)(2K+3)

3 , 1
4(Lf+L(ϵ/K))

)
, and

the last equality is due to (9) and K ≥ 2. It then follows that E[F (zK)− F ∗] ≤ ϵ/6 + ϵ/6 + ϵ/6 + ϵ/2 = ϵ

holds for all K satisfying (24). Hence, statement (i) of Theorem 2 holds.

We next prove statement (ii) of Theorem 2. Similar to the proof of statement (i), one can show that

the assumptions of Lemma 6 hold for (ηk, γk) defined in statement (ii) of Theorem 2. Recall from the

expression of ∆k in (47) and Assumption 1(c) that Eξk [∆k] = 0. In addition, by xk, x∗ ∈ dom h, (11),

(47), and ηk = (k + 2)η̃/2, one has that

|ηk∆k|
(47)
= |ηk(G(yk; ξk)− E[G(yk; ξk)])T (xk − x∗)| ≤ ηKDh∥G(yk; ξk)− E[G(yk; ξk)]∥ ∀0 ≤ k ≤ K,

which along with Assumption 2 implies that

Eξk

[
exp{|ηk∆k/(σηKDh)|α}

]
≤ Eξk

[
exp{∥G(yk; ξk)− E[G(yk; ξk)]∥α/σα}

]
≤ exp{1} ∀0 ≤ k ≤ K.

Hence, the assumptions of Lemma 4 hold with ϕk = ηk∆k and ς = σηKDh. In addition, it follows from

the convexity of the exponential function and Assumption 2 that for all K ≥ 1,

E
[
exp

{
1

K

K−1∑
k=0

δαk
σα

}]
≤ 1

K

K−1∑
k=0

E
[
exp

{
δαk
σα

}]
≤ exp{1}.
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Using these and similar arguments as for proving (44), we obtain that for allK ≥ max{2,1(1,2)(α) ln(2/δ)/(α−
1)}, it holds that

P
(

1

K

K−1∑
k=0

ηk∆k ≤ αDhσ

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

· ηK
}⋂{

1

K

K−1∑
k=0

δαk ≤
(
1 + ln

(2
δ

))
σα

})
≥ 1− δ. (53)

On the other hand, by (12) and (28) with c = (8(α − 1))α−1D2−α
h (1 + ln(2/δ))/αα, η̂ = ηK , and ε = ϵ,

one has that

(8(α− 1))α−1D2−α
h (1 + ln(2/δ))

αα
· σαηα−1

K

(28)

≤ 8(α− 1)2
(σ
α

) α
α−1

(8Dh

ϵ

) 2−α
α−1

(
1 + ln

(2
δ

)) 1
α−1

ηK +
ϵ

8
(12)
= Λ̃(δ, ϵ)2ηK +

ϵ

8
. (54)

Using these, (51), γ0 = 1, γk = 2/(k + 2), and ηk = (k + 2)η̃/2, we obtain that for all K ≥
max{2,1(1,2)(α) ln(2/δ)/(α− 1)}, it holds that with probability at least 1− δ,

η̃(K + 2)K(F (zK)− F ∗)/4 = ηK(γ−1
K − 1)(F (zK)− F ∗)

(51)

≤ η0(γ
−1
0 − 1)(F (z0)− F ∗) +

D2
h

2
+

(8(α− 1))α−1D2−α
h

αα
ηαK

K−1∑
k=0

δαk +M2
f

K−1∑
k=0

η2k +
K−1∑
k=0

ηk∆k +
ϵ

8

K−1∑
k=0

ηk

(53)

≤ η0(γ
−1
0 − 1)(F (z0)− F ∗) +

D2
h

2
+

(8(α− 1))α−1D2−α
h (1 + ln(2/δ))

αα
σαηαKK +M2

f

K−1∑
k=0

η2k

+
ασDh

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

·KηK +
ϵ

8

K−1∑
k=0

ηk

(54)

≤ η0(γ
−1
0 − 1)(F (z0)− F ∗) +

D2
h

2
+ (M2

f + Λ̃(δ, ϵ)2)Kη2K +
ασDh

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

·KηK

+
ϵ

8

(K−1∑
k=0

ηk +KηK

)
≤
D2

h

2
+ (M2

f + Λ̃(δ, ϵ)2)
(K + 2

2

)2
Kη̃2 +

ασDh

K(α−1)/α
·
(
ln(2/δ)

α− 1

)α−1
α

· (K + 2)K

2
η̃ +

ϵ(K + 2)Kη̃

8
,

where the last inequality is due to γ0 = 1 and ηk = (k + 2)η̃/2 for all k ≥ 0. Further, by (23), (28), and

rearranging the terms in the above inequality, one has that for all K ≥ max{2,1(1,2)(α) ln(2/δ)/(α− 1)},
it holds that with probability at least 1− δ,

F (zK)− F ∗ ≤
2D2

h

(K + 2)Kη̃
+ (M2

f + Λ̃(δ, ϵ)2)(K + 2)η̃ +
2ασDh

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

2

(23)
= min

η̂

{
2D2

h

(K + 2)Kη̂
+ (M2

f + Λ̃(δ, ϵ)2)(K + 2)η̂ : η̂ ∈
(
0,

1

4(Lf + L(ϵ/K))

]}
+

2ασDh

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

2
,

≤
8D2

h(Lf + L(ϵ/K))

(K + 2)K
+ 2

√
2Dh

(M2
f + Λ̃(δ, ϵ)2

K

)1/2
+

2ασDh

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

2

≤
8D2

hLf

K2
+

8D2
hL(ϵ)

K(1+3ν)/(1+ν)
+

2
√
2Dh(Mf + Λ̃(δ, ϵ))

K1/2
+

2ασDh

K(α−1)/α

(
ln(2/δ)

α− 1

)α−1
α

+
ϵ

2
,
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where the second inequality is due to (28) with (a, b, c) =
( 2D2

h
(K+2)K , (M

2
f + Λ̃(δ, ϵ)2)(K + 2), 1

4(Lf+L(ϵ/K))

)
.

It then follows that F (zK)−F ∗ ≤ ϵ/8 + ϵ/8 + ϵ/8 + ϵ/8 + ϵ/2 = ϵ holds with probability at least 1− δ for

all K satisfying (25). Hence, statement (ii) of Theorem 2 holds.
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[31] U. Simsekli, M. Gürbüzbalaban, T. H. Nguyen, G. Richard, and L. Sagun. On the heavy-tailed theory

of stochastic gradient descent for deep neural networks. arXiv preprint arXiv:1912.00018, 222, 2019.

[32] U. Simsekli, L. Sagun, and M. Gurbuzbalaban. A tail-index analysis of stochastic gradient noise in

deep neural networks. In International Conference on Machine Learning, pages 5827–5837, 2019.

[33] T. Sun, X. Liu, and K. Yuan. Gradient normalization provably benefits nonconvex SGD under

heavy-tailed noise. arXiv preprint arXiv:2410.16561, 2024.

[34] P. Tseng. On accelerated proximal gradient methods for convex-concave optimization. Manuscript,

May 2008.

[35] M. Vladimirova, S. Girard, H. Nguyen, and J. Arbel. Sub-Weibull distributions: Generalizing

sub-Gaussian and sub-exponential properties to heavier tailed distributions. Stat, 9(1):e318, 2020.

[36] J. Zhang, S. P. Karimireddy, A. Veit, S. Kim, S. Reddi, S. Kumar, and S. Sra. Why are adaptive

methods good for attention models? In Advances in Neural Information Processing Systems,

volume 33, pages 15383–15393, 2020.

21


