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Abstract. In this paper, we study the sequential convex programming method with monotone
line search (SCPls) in [46] for a class of difference-of-convex (DC) optimization problems with multiple
smooth inequality constraints. The SCPls is a representative variant of moving-ball-approximation-
type algorithms [6, 10, 13, 54] for constrained optimization problems. We analyze the convergence
rate of the sequence generated by SCPls in both nonconvex and convex settings by imposing suitable
Kurdyka- Lojasiewicz (KL) assumptions. Specifically, in the nonconvex settings, we assume that a
special potential function related to the objective and the constraints is a KL function, while in
the convex settings we impose KL assumptions directly on the extended objective function (i.e.,
sum of the objective and the indicator function of the constraint set). A relationship between these
two different KL assumptions is established in the convex settings under additional differentiability
assumptions. We also discuss how to deduce the KL exponent of the extended objective function
from its Lagrangian in the convex settings, under additional assumptions on the constraint functions.
Thanks to this result, the extended objectives of some constrained optimization models such as
minimizing `1 subject to logistic/Poisson loss are found to be KL functions with exponent 1

2
under

mild assumptions. To illustrate how our results can be applied, we consider SCPls for minimizing
`1−2 [60] subject to residual error measured by `2 norm/Lorentzian norm [21]. We first discuss
how the various conditions required in our analysis can be verified, and then perform numerical
experiments to illustrate the convergence behaviors of SCPls.

1. Introduction. Constrained optimization problems naturally arise when one
attempts to find a solution that minimizes a certain objective under some restrictions,
see [6,8,18,21,29]. Here, we consider the following specific type of difference-of-convex
(DC) constrained optimization problem:

min
x∈IRn

F (x) := f(x) + P1(x)− P2(x) + δg(·)≤0(x),(1.1)

where f : IRn → IR is smooth, P1 : IRn → IR and P2 : IRn → IR are convex continuous
(possibly nonsmooth), and g : IRn → IRm is continuous with {x : g(x) ≤ 0} 6= ∅. In
typically applications, the f in (1.1) arises as measures for data fidelity, g is used
for modeling restrictions on the decision variable x, and P1 − P2 is a regularizer for
inducing desirable structures; see [28, Table 1] for examples of such regularizers. In our
subsequent algorithmic development for (1.1), we also consider the following additional
assumption.

Assumption 1.1. Let f , g and F be as in (1.1).1

(i) f : IRn → IR has Lipschitz continuous gradient with Lipschitz modulus Lf .
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P2 : IRn → IR are convex continuous, and g : IRn → IRm is continuous with {x : g(x) ≤ 0} 6= ∅.

1

ar
X

iv
:2

00
1.

06
99

8v
2 

 [
m

at
h.

O
C

] 
 1

1 
M

ay
 2

02
1

mailto:peiran.yu@connect.polyu.hk
mailto:tk.pong@polyu.edu.hk
mailto:zhaosong@umn.edu


2 PEIRAN YU, TING KEI PONG, AND ZHAOSONG LU

(ii) For the mapping g(x) = (g1(x), ..., gm(x)), each function gi has Lipschitz contin-
uous gradient with Lipschitz modulus Lgi .

(iii) The function F is level-bounded.

Under Assumption 1.1, the solution set of (1.1) is nonempty and inf F > −∞.
To design algorithms for solving (1.1) under Assumption 1.1, one common approach

is to resort to the majorization-minimization (MM) procedure: in this procedure, one
iteratively constructs and minimizes a surrogate function that locally majorizes F ;
see [13,23–25,39,56] for related models and discussions. For (1.1) under Assumption 1.1,
one natural way to construct surrogate function is to make use of the 2nd-order Taylor’s
expansions of f and g: the resulting algorithms are the moving balls approximation
method (MBA) proposed in [6] (for P1 = P2 = 0) and its variants [10, 13]. In each
iteration, these algorithms approximate the constraint g(x) ≤ 0 in (1.1) by

Ḡ(x, y, w) :=

 g1(y) + 〈∇g1(y), x− y〉+ w1

2 ‖x− y‖
2

...
gm(y) + 〈∇gm(y), x− y〉+ wm

2 ‖x− y‖
2

 ≤ 0(1.2)

for some fixed (y, w): the feasible region of the resulting subproblem is an intersection
of m balls. For the sequence generated by MBA, global convergence to a minimizer was
established in [6] when {f, g1, . . . , gm} are in addition convex and the Slater condition
holds. The linear convergence of the sequence generated by MBA was also proved
in [6] when f in (1.1) is additionally strongly convex. In [13], when {f, g1, . . . , gm} are
semi-algebraic and P1 = P2 = 0 in (1.1), the whole sequence generated by an MBA
variant was shown to converge to a critical point and its convergence rate was also
established, under the Mangasarian-Fromovitz constraint qualification (MFCQ).

When the DC function P1 − P2 in (1.1) is nonsmooth (these nonsmooth functions
arise naturally as regularizers in applications such as sparse recovery [21, 28, 60]),
the MBA method is not directly applicable. Moreover, when P2 is nonsmooth, the
multiprox method in [10] and the majorization-minimization procedure in [13, Section 3]
cannot be directly applied to (1.1). Fortunately, under Assumption 1.1, problem (1.1)
has DC objective and DC constraints: indeed, one can write f and each gi in (1.1) as
the difference of two convex functions as follows:

f(x) =
Lf
2
‖x‖2 −

(
Lf
2
‖x‖2 − f(x)

)
and gi(x) =

Lgi
2
‖x‖2 −

(
Lgi
2
‖x‖2 − gi(x)

)
.

DC algorithms (DCA) (see, for example, [36, 38]) can thus be applied. A variant
that specializes in functional constraints is the sequential convex programming (SCP)
method proposed in [46] 2; see also [50, Remark 5]. When applied to (1.1) under As-
sumption 1.1, this method maintains feasibility at each iteration3 and each subproblem
is constrained over an intersection of balls: thus, this method can also be viewed as a
variant of MBA. It was shown that any accumulation point of the sequence generated
by SCP is a stationary point under Slater’s condition. However, convergence and
convergence rate of the whole sequence generated remain unknown.4

2We would like to point out that the methods proposed in [46] (including SCP and its variant)
were designed to solve more general models than (1.1). In particular, they can deal with problems
with constraints involving nonsmooth functions, and allow for nonmonotone line search.

3There are some DCA variants for solving (1.1) under Assumption 1.1 that do not maintain
feasibility throughout. We refer the interested readers to [37,38,43,55,58] for more discussions.

4We point out that convergence of the whole sequence and the convergence rate generated by
some DCA variants were considered in [5, 36] under suitable Kurdyka- Lojasiewicz (KL) assumptions;
however, their problem formulations do not explicitly involve functional constraints as in (1.1).
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For empirical acceleration, a variant of MBA that involves a line search scheme was
proposed in [10], which is called the Multiproximal method with backtracking step sizes
(Multiproxbt). When applied to (1.1) under Assumption 1.1, the sequence generated
by Multiproxbt converges to a minimizer when {f, g1, . . . , gm} are additionally convex,
P1 = P2 = 0 and the Slater condition holds. However, Multiproxbt uses monotone
initial step sizes, i.e., α̃ in [10, Eq. (37)] is nondecreasing as the algorithm progresses,
which rules out widely used choices such as the truncated Barzilai-Borwein step
sizes [7, 9]. On the other hand, the line search variant of SCP proposed in [46] can
incorporate flexible line search schemes like the truncated Barzilai-Borwein step size
and is general enough to be applied to (1.1) under Assumption 1.1 with possibly
nonsmooth P1 − P2. In [46], the well-definedness of the proposed algorithm was
established, and it was also shown that any accumulation point of it is a stationary
point under Slater’s condition. However, convergence of the whole sequence generated
and the corresponding convergence rate is still open.

In this paper, we further study the line search variant of the SCP method proposed
in [46] with its line search being monotone, i.e., M in [46, Eq. (22)] being 0. We call
this variant SCPls; see Algorithm 2.1 below. We analyze the convergence properties
of the sequence generated by SCPls for solving (1.1) under Assumption 1.1. The
main convergence rate analysis of SCPls is presented in Section 3. We derive global
convergence rate of the sequence generated by SCPls in the following two scenarios:

• F in (1.1) is possibly nonconvex with each gi being twice continuously differ-
entiable and P2 being Lipschitz continuously differentiable on an open set Γ
that contains the set of stationary points of F .
Our analysis is based on the following specially constructed potential function:

F̄ (x, y, w) = f(x) + P1(x)− P2(x) + δḠ(·)≤0(x, y, w),(1.3)

where Ḡ is defined as in (1.2). Under MFCQ, we characterize the local
convergence rate of the sequence generated by SCPls according to the Kurdyka-
 Lojasiewicz (KL) exponent of F̄ . Note the mapping (x, y) 7→ F̄ (x, y, L) with
P2 = 0 and L being a constant positive vector (related to the step size) was
used previously in [13] for establishing the convergence of an MBA variant
when P2 = 0 and {f, g1, . . . , gm} in (1.1) are semi-algebraic. This kind of
potential functions was called “value function” in [49] and was used there for
deducing the global convergence properties of the composite Gauss-Newton
method for composite optimization problems. Our potential function F̄ allows
us to deal with more flexible stepsize rules than those studied in [13,49].

• {f, g1 . . . , gm} in (1.1) are convex and P2 = 0.
This same convex setting was considered in [10, Section 3.2.3]. In this setting,
we impose KL assumptions directly on F in (1.1) (instead of on F̄ ). In
particular, a local linear convergence rate is established when F is a KL
function with exponent 1

2 , under MFCQ. This is different from many existing
analysis (see, for example, [3, 13, 41, 47]), which typically make use of the KL
property of a potential function constructed out of F instead of F itself.

In Section 4.1, we study a relationship between the KL property of F̄ in (1.3) and
that of F in (1.1). Then, we present a “calculus rule” that deduces the KL exponent
of F in (1.1) from its Lagrangian in the convex settings, under some mild assumptions.
This enables us to deduce that the function F corresponding to minimizing `1 subject
to logistic/Poisson loss is a KL function with exponent 1

2 under mild conditions.
In Section 5, we discuss some concrete models to which SCPls can be applied.

Specifically, we consider models of the following form:
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(1.4)
min
x

‖x‖1 − µ‖x‖
s.t. `(Ax− b) ≤ δ,

where µ ∈ [0, 1], A ∈ IRq×n has full row rank, b ∈ IRq, ` : IRq → IR+ is analytic with
Lipschitz continuous gradient and satisfies `(0) = 0, and δ ∈ (0, `(−b)). This model
arises in compressed sensing where the measurements b may be corrupted by different
types of noise; see [20]. We focus on two concrete choices of `: the square of norm (for
noise following Gaussian distribution) and the Lorentzian norm (for noise following
Cauchy distribution). For these two choices, we provide suitable conditions on the
problem data so that the assumptions in our convergence results are satisfied. Then
we perform numerical tests on solving (1.4) with ` being either the square of norm or
the Lorentzian norm via two methods: SCPls and SCP [46]. We observe that SCPls
appears to converge linearly and is much faster.

2. Notation and preliminaries. In this paper, we let IR denote the set of real
numbers and IN+ denote the set of positive integers. The n-dimensional Euclidean
space is denoted by IRn, and the nonnegative orthant is denoted by IRn

+. For two
vectors x and y ∈ IRn, we write x ≥ y if xi ≥ yi for all i. The Euclidean norm of x is
denoted by ‖x‖, the inner product of x and y is denoted by 〈x, y〉, and the `1 norm
of x is denoted by ‖x‖1. For x ∈ IRn and r ≥ 0, we let B(x, r) denote the closed ball
centered at x with radius r, i.e., B(x, r) = {y : ‖x− y‖ ≤ r}.

We say that an extended-real-valued function f : IRn → (−∞,∞] is proper if its
domain domf := {x : f(x) <∞} 6= ∅. A proper function f is said to be closed if it
is lower semicontinuous. For a proper function f , the regular subdifferential of f at
x ∈ domf is defined by

∂̂f(x) :=

{
ζ : lim inf

z→x,z 6=x

f(z)− f(x)− 〈ζ, z − x〉
‖z − x‖

≥ 0

}
.

The (limiting) subdifferential of f at x ∈ domf is defined by

∂f(x) :=

{
ζ : ∃xk f→ x, ζk → ζ with ζk ∈ ∂̂f(xk) for each k

}
,

where xk
f→ x means both xk → x and f(xk) → f(x). Moreover, we set ∂f(x) =

∂̂f(x) = ∅ for x /∈ dom f by convention, and we write dom ∂f := {x : ∂f(x) 6= ∅}.
When f is proper convex, thanks to [46, Proposition 8.12], the limiting subdifferential
and regular subdifferential of f at an x ∈ dom f reduce to the classical subdifferential,
which is given by

∂f(x) = {ζ : 〈ζ, y − x〉 ≤ f(y)− f(x) for all y}.

For a nonempty set C, the indicator function δC is defined as

δC(x) :=

{
0 x ∈ C,
∞ x /∈ C.

The normal cone (resp., regular normal cone) of C at an x ∈ C is defined as NC(x) :=

∂δC(x) (resp., N̂C(x) := ∂̂δC(x)), and the distance from a point x ∈ IRn to C is
denoted by dist(x,C).

We next recall the KL property and the notion of KL exponent; see [2–4,34,42,45].
This property has been used extensively for analyzing convergence properties of
first-order methods; see, for example, [2–4,14,59].
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Definition 2.1 (Kurdyka- Lojasiewicz property and exponent). We say
that a proper closed function h : IRn → (−∞,∞] satisfies the Kurdyka- Lojasiewicz
(KL) property at an x̂ ∈ dom∂h if there are a ∈ (0,∞], a neighborhood V of x̂ and a
continuous concave function ϕ : [0, a)→ [0,∞) with ϕ(0) = 0 such that

(i) ϕ is continuously differentiable on (0, a) with ϕ′ > 0 on (0, a);
(ii) for any x ∈ V with h(x̂) < h(x) < h(x̂) + a, it holds that

(2.1) ϕ′(h(x)− h(x̂))dist(0, ∂h(x)) ≥ 1.

If h satisfies the KL property at x̂ ∈ dom∂h and ϕ in (2.1) can be chosen as ϕ(ν) =
a0ν

1−α for some a0 > 0 and α ∈ [0, 1), then we say that h satisfies the KL property at
x̂ with exponent α.

A proper closed function h satisfying the KL property at every point in dom∂h is
called a KL function, and a proper closed function h satisfying the KL property with
exponent α ∈ [0, 1) at every point in dom∂h is called a KL function with exponent α.

There are many examples of KL functions. For instance, proper closed semi-
algebraic functions and proper subanalytic functions that have closed domains and
are continuous on their domains are KL functions; see [3] and [11, Theorem 3.1],
respectively.

Now we recall the definition of stationary points of (1.1) when gi are smooth.

Definition 2.2 (Stationary point). Consider (1.1) and assume that each gi
is smooth. We say that an x ∈ IRn is a stationary point of (1.1) if there exists λ ∈ IRm

+

such that (x, λ) satisfies

g(x) ≤ 0, λigi(x) = 0 for all i, and 0 ∈ ∇f(x) + ∂P1(x)− ∂P2(x) +

m∑
i=1

λi∇gi(x).

The following assumption will be used repeatedly throughout this paper.

Assumption 2.3. Each gi in (1.1) is smooth and the Mangasarian-Fromovitz
constraint qualification (MFCQ) holds in the whole domain of F in (1.1), i.e., for
every x satisfying g(x) ≤ 0, there exists d ∈ IRn such that

〈∇gi(x), d〉 < 0 for each i ∈ I(x) := {j : gj(x) = 0}.

Under Assumptions 1.1 and 2.3, it is routine to show that any local minimizer
of (1.1) is a stationary point in the sense of Definition 2.2. In fact, let x̂ be a local
minimizer of (1.1). Using [53, Theorem 10.1], we have

0 ∈ ∂F (x̂)
(a)

⊆ ∇f(x̂) + ∂P1(x̂) + ∂(−P2)(x̂) + ∂δg(·)≤0(x̂)

(b)

⊆ ∇f(x̂) + ∂P1(x̂) + ∂̄(−P2)(x̂) + ∂δg(·)≤0(x̂)

(c)
= ∇f(x̂) + ∂P1(x̂)− ∂̄P2(x̂) + ∂δg(·)≤0(x̂)

= ∇f(x̂) + ∂P1(x̂)− ∂P2(x̂) + ∂δg(·)≤0(x̂),

(2.2)

where (a) follows from [53, Exercise 10.10], the inclusion (b) uses [17, Theorem 5.2.22],
where ∂̄(−P2) is the Clarke subdifferential of −P2, the equality (c) uses [22, Proposi-
tion 2.3.1] and the last equality holds because of the convexity of P2 and [15, Theo-
rem 6.2.2]. In addition, we can deduce that

∂δg(·)≤0(x̂) = Ng(·)≤0(x̂) =

{
m∑
i=1

λi∇gi(x̂) : λ ∈ N−IRm+
(g(x̂))

}
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=

{
m∑
i=1

λi∇gi(x̂) : λ ∈ IRm
+ , λigi(x̂) = 0 for i = 1, . . . ,m

}
,

where the second equality follows from MFCQ and [53, Theorem 6.14] and the last
equality follows from the definition of normal cone. The above display together with
(2.2) shows that x̂ is a stationary point of (1.1). In passing, we would like to point out
that x∗ is a stationary point of (1.1) in the sense of Definition 2.2 if and only if there

exists ξ∗ such that 0 ∈ ∂F̃ (x∗, ξ∗), where F̃ (x, ξ) := f(x) + P1(x)− 〈ξ, x〉+ P ∗2 (ξ) +
δg(·)≤0(x), with {P1, P2} given in (1.1) and P ∗2 being the Fenchel conjugate of P2. This
type of stationary points is widely used in the DC literature; see, for example, [57–59].
Note that there are other concepts of stationarity used in the literature, such as the
Clarke stationarity, d-stationarity and B-stationarity; we refer the readers to [1, 32,48]
for more discussions. The notion of stationarity defined in Definition 2.2 is in general
weaker than these aforementioned notions.

Before ending this section, we introduce the algorithm we analyze and present
some auxiliary results for our subsequent analysis. The algorithm, SCPls proposed
in [46], is presented in Algorithm 2.1, where Ḡ is defined as in (1.2). Notice that by
rearranging terms of the constraint functions of the subproblem (2.4), we can see that
the constraint there is equivalent to

x ∈
m⋂
i=1

B

(
s̃i,

√
R̃i

)
,(2.3)

where s̃i := xt− 1

(L̃g)
i

∇gi(xt) and R̃i :=

∥∥∥∥∇gi(xt)(L̃g)
i

∥∥∥∥2

− 2

(L̃g)
i

gi(x
t). Thus, when m = 1,

the constraint reduces to a single ball constraint and a simple root-finding scheme
was discussed in [54] for exactly and efficiently solving the subproblem (2.4) with
m = 1, P2 = 0 and P1 being the `1 norm or the nuclear norm, etc. However, solving
subproblem (2.4) in general requires an iterative solver; see [6, Section 6] for the case
when P1 = P2 = 0.

In the next lemma, we discuss the well-definedness of SCPls and also establish
some inequalities needed in our analysis below. Note that the well-definedness of
SCPls was already proved in [46, Theorem 3.6] in a more general setting. Here we
include its proof for completeness.

Lemma 2.4. Consider (1.1) and suppose that Assumptions 1.1 and 2.3 hold. Then
the following statements hold:

(i) SCPls is well defined, i.e., the subproblems (2.4) are well defined and there exists
a k0 ∈ N+ (independent of t) such that in any iteration t ≥ 0, the inner loop
stops after at most k0 iterations.

(ii) The sequence {(Ltf , Ltg)} generated by SCPls is bounded.

(iii) For each i ∈ {1, . . . ,m}, each t ≥ 0 and each (L̃f , L̃g), the R̃i in (2.3) is positive.

(iv) For each t ≥ 0 and each (L̃f , L̃g), the problem (2.4) has a Lagrange multiplier λ̃.

Let L̃fg := L̃f + 〈λ̃, L̃g〉 and let x̃ be as in (2.4). Then

λ̃i

(
gi(x

t) + 〈∇gi(xt), x̃− xt〉+
(L̃g)i

2
‖x̃− xt‖2

)
= 0 for all i,(2.6)
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Algorithm 2.1 Sequential convex programming method with monotone line search
(SCPls) for (1.1) under Assumption 1.1

Choose parameters c > 0, 0 < L
¯
< L̄, τ > 1 and an x0 with g(x0) ≤ 0. Set t = 0.

Step 1. Pick any ξt ∈ ∂P2(xt).

Step 2. Choose Lt,0f ∈[L
¯
, L̄] and Lt,0g ∈[L

¯
, L̄]m arbitrarily. Set L̃f=L

t,0
f and L̃g=L

t,0
g .

Step 3. Compute

x̃ = arg min
x

{
〈∇f(xt)− ξt, x− xt〉+

L̃f
2
‖x− xt‖2 + P1(x)

}
s.t. Ḡ(x, xt, L̃g) ≤ 0.

(2.4)

Step 3a) If g(x̃) ≤ 0 and

F (x̃) ≤ F (xt)− c

2
‖x̃− xt‖2(2.5)

holds, go to step 4.
Step 3b) If g(x̃) 6≤ 0, let L̃g ← τL̃g and go to step 3.

Step 3c) If (2.5) does not hold, let L̃f ← τL̃f and go to step 3.

Step 4. If a termination criterion is not met, set Ltg = L̃g, L
t
f = L̃f and xt+1 = x̃.

Update t← t+ 1 and go to Step 1.

and

(2.7) 0 ∈ ∇f(xt)− ξt + L̃fg(x̃− xt) + ∂P1(x̃) +

m∑
i=1

λ̃i∇gi(xt),

where {xt} and {ξt} are generated by SCPls. Moreover, if g(x̃) ≤ 0, then for any
x ∈ IRn we have

F (x̃)≤f(xt)+
〈
∇f(xt)− ξt, x−xt

〉
+
L̃fg

2
‖x−xt‖2+P1(x)−P2(xt)

+

m∑
i=1

λ̃i
(
gi(x

t) + 〈∇gi(xt), x− xt〉
)
− L̃fg

2
‖x− x̃‖2− L̃f − Lf

2
‖x̃− xt‖2.

(2.8)

Proof. Let an xt satisfying g(xt) ≤ 0 be given for some t ≥ 0. We will first show

that the corresponding subproblems (2.4) are well defined (for any (L̃f , L̃g)) and the
conclusions of items (iii) and (iv) hold for this t. Using these, we will then show that
there exists k0 (independent of t) so that the inner loop in Step 3 terminates after k0

iterations and returns an xt+1 that satisfies g(xt+1) ≤ 0. This together with g(x0) ≤ 0
and an induction argument will show that SCPls is well defined and that items (iii)
and (iv) hold for all t ≥ 0. Finally, we show that {(Ltf , Ltg)} is bounded.

Suppose that an xt satisfying g(xt) ≤ 0 is given for some t ≥ 0. Notice that for any

(L̃f , L̃g), the feasible region of (2.4) is nonempty (it contains xt) and the subproblem
is to minimize a strongly convex continuous function over a nonempty closed convex
set. Thus, x̃ exists and is unique. Now, fix any i ∈ {1, . . . ,m}. Since g(xt) ≤ 0 and

(L̃g)i > 0, we have − 2

(L̃g)i
gi(x

t) ≥ 0 and thus R̃i ≥ 0. Suppose to the contrary that

R̃i = 0. Then we have ∇gi(xt) = 0 and gi(x
t) = 0, contradicting Assumption 2.3.

Thus, we must have R̃i > 0 at the tth iteration.
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Next, using a similar proof of [6, Proposition 2.1(iii)], we deduce using MFCQ that
the Slater condition holds for (2.4) for this t. Therefore, using [52, Corollary 28.2.1,

Theorem 28.3], for problem (2.4), there exists a Lagrange multiplier λ̃ ∈ IRm
+ such that

(2.6) holds at the tth iteration and x̃ is a minimizer of the following function:

Lt(x, λ̃) :=f(xt) +
〈
∇f(xt), x− xt

〉
+
L̃f
2
‖x− xt‖2 + P1(x)− P2(xt)

−
〈
ξt, x− xt

〉
+ 〈λ̃, Ḡ(x, xt, L̃g)〉.

This together with [53, Theorem 10.1, Exercise 8.8] shows that (2.7) holds at the tth

iteration.
In addition, note that x 7→ Lt(x, λ̃) is strongly convex with modulus L̃fg. Then

we see that for any x ∈ IRn,

(2.9)

f(xt)+
〈
∇f(xt), x̃−xt

〉
+
L̃f
2
‖x̃−xt‖2+P1(x̃)−P2(xt)−

〈
ξt, x̃−xt

〉
= Lt(x̃, λ̃) ≤ Lt(x, λ̃)− L̃fg

2
‖x−x̃‖2

= f(xt)+
〈
∇f(xt), x−xt

〉
+
L̃fg

2
‖x−xt‖2+P1(x)−P2(xt)−

〈
ξt, x−xt

〉
+

m∑
i=1

λ̃i
(
gi(x

t)+〈∇gi(xt), x−xt〉
)
− L̃fg

2
‖x−x̃‖2,

where the first equality makes use of (2.6). On the other hand, since f has Lipschitz
continuous gradient (with modulus Lf ), if g(x̃) ≤ 0, then we have for any x ∈ IRn that

F (x̃) = f(x̃) + P1(x̃)− P2(x̃)

≤ f(xt) +
〈
∇f(xt), x̃− xt

〉
+
Lf
2
‖x̃− xt‖2 + P1(x̃)− P2(x̃)

= f(xt)+
〈
∇f(xt), x̃−xt

〉
+
L̃f
2
‖x̃−xt‖2+P1(x̃)−P2(x̃)− L̃f−Lf

2
‖x̃−xt‖2

(a)

≤ f(xt) +
〈
∇f(xt), x̃− xt

〉
+
L̃f
2
‖x̃− xt‖2 + P1(x̃)

−P2(xt)−
〈
ξt, x̃− xt

〉
− L̃f − Lf

2
‖x̃− xt‖2

≤ f(xt) +
〈
∇f(xt), x− xt

〉
+
L̃fg

2
‖x− xt‖2 + P1(x)− P2(xt)−

〈
ξt, x− xt

〉
+

m∑
i=1

λ̃i
(
gi(x

t) + 〈∇gi(xt), x− xt〉
)
− L̃fg

2
‖x− x̃‖2 − L̃f − Lf

2
‖x̃− xt‖2,

where (a) uses the convexity of P2 and the fact that ξt ∈ ∂P2(xt), while the last
inequality holds due to (2.9). This shows that (2.8) holds at the tth iteration.

Now we show that there exists k0 (independent of t) so that the inner loop
in Step 3 terminates after finitely many iterations at the tth iteration and returns
an xt+1 satisfying g(xt+1) ≤ 0. To this end, let k1 ∈ IN+ be such that L

¯
τk1 >

max{ 1
2 (c+ Lf ), Lg1 , . . . , Lgm}. Then k1 does not depend on t and we have

(2.10) Lt,0f τk1 − Lf
2
≥ L

¯
τk1 − Lf

2
>
c

2
and (Lt,0g )iτ

k1 ≥ L
¯
τk1 ≥ Lgi for i = 1, . . . ,m.
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Note that for each i, since gi has Lipschitz gradient with Lipschitz modulus Lgi , we

have for any (L̃g)i > 0 that

gi(x̃) ≤ gi(xt) + 〈∇gi(xt), x̃− xt〉+
Lgi
2
‖x̃− xt‖2

= Ḡ(x̃, xt, L̃g) +
Lgi − (L̃g)i

2
‖x̃− xt‖2.

This together with (2.10) and the update rule of L̃g in Step 3b) shows that after at
most k1 calls of Step 3b), we have g(x̃) ≤ 0. Whenever x̃ satisfies g(x̃) ≤ 0, we can
apply (2.8) with x being xt to conclude that

F (x̃)≤f(xt)+P1(xt)−P2(xt)+〈λ̃, g(xt)〉− L̃fg
2
‖xt−x̃‖2−

[
L̃f − Lf

2

]
‖xt − x̃‖2

≤ f(xt) + P1(xt)− P2(xt)− 〈λ̃, L̃g〉
2
‖xt − x̃‖2 −

[
L̃f −

Lf
2

]
‖xt − x̃‖2

≤ F (xt)−
[
L̃f −

Lf
2

]
‖xt − x̃‖2,

where the second inequality holds because λ̃ ∈ IRn
+ and g(xt) ≤ 0; we also used the

fact that L̃fg = L̃f + 〈λ̃, L̃g〉. Thus, in view of the above two displays, the conditions

in Step 3a) must hold when (L̃g)i ≥ Lgi for all i and L̃f ≥ Lf+c
2 ; according to the

update rules of L̃f and L̃g, this happens after at most k1 calls of Step 3b) and k1 calls
of Step 3c). Thus, at iteration t, the inner loop stops after at most k0 := 2k1 iterations
and outputs an xt+1 satisfying g(xt+1) ≤ 0 and F (xt+1) ≤ F (xt)− c

2‖x
t+1 − xt‖2.

Finally, since g(x0) ≤ 0 to start with, by induction, we know that for any t ≥ 0,
the inner loop stops after at most k0 iterations. This together with the fact that
{(Lt,0f , Lt,0g )} ⊆ [L

¯
, L̄]m+1 implies that {(Ltf , Ltg)} is bounded. Therefore, SCPls is well

defined and items (ii), (iii) and (iv) hold. This completes the proof.

3. Convergence properties of SCPls.

3.1. Convergence analysis in nonconvex settings. In this section, we ana-
lyze SCPls when F in (1.1) is possibly nonconvex. We first prove some basic properties
of the sequence generated by SCPls. Item (iii) in the following theorem was already
proved in [46, Theorem 3.7]; we also include its proof here for the ease of the readers.

Theorem 3.1. Consider (1.1) and suppose that Assumptions 1.1 and 2.3 hold.
Let {(xt, Ltg)} be generated by SCPls. Then the following statements hold:

(i) The sequence {xt} is bounded.
(ii) The sequence {F̄ (xt+1, xt, Ltg)} is nonincreasing and convergent to some real

number F̄ ∗, where F̄ is defined as in (1.3). Moreover, for any t ≥ 1, we have

F̄ (xt+1, xt, Ltg) ≤ F̄ (xt, xt−1, Lt−1
g )− c

2
‖xt+1 − xt‖2.(3.1)

(iii) It holds that lim
t→∞

‖xt+1 − xt‖ = 0.

Proof. Let F be defined as in (1.1). Then for any t ≥ 0, we have

F (xt+1)− F (x0) =

t∑
i=0

[F (xi+1)− F (xi)] ≤ −
t∑
i=0

c

2
‖xi+1 − xi‖2 ≤ 0,(3.2)
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where the first inequality follows from (2.5). Since F is level-bounded by Assump-
tion 1.1(iii), we deduce that {xt} is bounded and the conclusion in item (i) holds.

We now prove (ii). Since for any t ≥ 0, the xt+1 belongs to domF and is feasible

for (2.4) with (L̃f , L̃g) = (Ltf , L
t
g), it holds that

F̄ (xt+1, xt, Ltg) = F (xt+1) for t ≥ 0.(3.3)

This together with (2.5) shows that {F̄ (xt+1, xt, Ltg)} is nonincreasing and (3.1) holds
for all t ≥ 1. Also, thanks to (3.3) and Assumption 1.1, we have

inf
t
F̄ (xt+1, xt, Ltg) = inf

t
F (xt) ≥ inf F > −∞,

implying that {F̄ (xt+1, xt, Ltg)} is bounded from below. Thus, we conclude that the

sequence {F̄ (xt+1, xt, Ltg)} is convergent. We denote this limit by F̄ ∗.

Finally, we prove (iii). Since {F̄ (xt+1, xt, Ltg)} converges to F̄ ∗, passing to the
limit as t goes to infinity in (3.2) and invoking (3.3), we have

∞∑
i=0

c

2
‖xi+1 − xi‖2 ≤ F (x0)− lim

t→∞
F̄ (xt+1, xt, Ltg) = F (x0)− F̄ ∗ <∞.

Therefore, item (iii) holds. This completes the proof.

Next, we show that {λt} with each λt being a Lagrange multiplier5 of (2.4) with

(L̃f , L̃g) = (Ltf , L
t
g) is bounded and any cluster point of the sequence {xt} generated by

SCPls is a stationary point of (1.1) in the sense of Definition 2.2. The latter conclusion
was also proved in [46, Theorem 3.7]. We include its proof for completeness.

Theorem 3.2. Consider (1.1) and suppose that Assumptions 1.1 and 2.3 hold.
Let {xt} be the sequence generated by SCPls and λt be a Lagrange multiplier of (2.4)

with (L̃f , L̃g) = (Ltf , L
t
g). Then the sequence {λt} is bounded and any accumulation

point of {xt} is a stationary point of (1.1).

Proof. Suppose to the contrary that {λt} is unbounded and let {λtj} be a subse-

quence of {λt} such that ‖λtj‖ j→∞. Passing to a further subsequence if necessary,

we may assume that there exist λ∗ ∈ IRm
+ and x∗ such that lim

j→∞
λtj

‖λtj ‖ = λ∗ and

lim
j→∞

xtj = x∗, where the existence of x∗ is due to Theorem 3.1(i).

Using (2.7), the definition of L̃fg there and the fact (L̃f , L̃g) = (Ltf , L
t
g), we have

ηt :=

m∑
i=1

λti
[
∇gi(xt)+(Ltg)i(x

t+1 − xt)
]
∈−∇f(xt)− Ltf (xt+1 − xt)− ∂P1(xt+1) + ξt.

Since the functions ∇f , P1 and P2 are continuous, and {(xt, Ltf )} is bounded thanks

to Theorem 3.1(i) and Lemma 2.4(ii), we deduce from the above display that {ηt} is
bounded. Then, dividing ηtj by ‖λtj‖ and letting j →∞, using the continuity of ∇g
and Theorem 3.1(iii) together with Lemma 2.4(ii), we deduce further that

m∑
i=1

λ∗i∇gi(x∗) = 0.(3.4)

5The existence of λt follows from Lemma 2.4(iv).
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On the other hand, using (2.6) with (x̃, λ̃, L̃g) = (xt+1, λt, Ltg), the continuity of ∇gi
for each i, Lemma 2.4(ii) and Theorem 3.1(iii), we see that λ∗i gi(x

∗) = 0 for all
i = 1, . . . ,m. This further implies that

λ∗i = 0 for i 6∈ I(x∗).

The above display and (3.4) imply that∑
i∈I(x∗)

λ∗i∇gi(x∗) = 0.

Combining this with MFCQ (Assumption 2.3) and recalling that λ∗ ∈ IRm
+ , we conclude

that λ∗i = 0 for i ∈ I(x∗). Therefore, we have λ∗ = 0, contradicting the fact that
‖λ∗‖ = 1. Thus, the sequence {λt} is bounded.

For the second conclusion of this theorem, let x̄ be an accumulation point of
{xt} with lim

k→∞
xtk = x̄. Since {λt} is bounded, passing to a further subsequence if

necessary, we assume without loss of generality that lim
k→∞

λtk = λ̄ for some λ̄. Since

the sequence {(Ltf , Ltg, λt)} is bounded thanks to Lemma 2.4(ii) and the boundedness

of {λt}, using Theorem 3.1(iii), we have that lim
k→∞

(
Ltkf + 〈λtk , Ltkg 〉

)
(xtk+1−xtk) = 0.

Using this fact together with the closedness of ∂P1 and ∂P2, the Lipschitz continuity
of ∇f and ∇g and Theorem 3.1(iii), we have upon passing to the limit as k goes to

infinity in (2.7) with (x̃, λ̃, L̃f , L̃g) = (xtk+1, λtk , Ltkf , L
tk
g ) and t = tk that

0 ∈ ∇f(x̄) + ∂P1(x̄)− ∂P2(x̄) +

m∑
i=1

λ̄i∇gi(x̄).(3.5)

On the other hand, using (2.6) with (x̃, λ̃, L̃g) = (xtk+1, λtk , Ltkg ) and t = tk,
letting k → ∞, we have upon using the continuity of ∇g, Theorem 3.1(iii) and
Lemma 2.4(ii) that

λ̄igi(x̄) = 0 for all i = 1, . . . ,m.(3.6)

Finally, since λt ≥ 0 for any t ≥ 0, we have λ̄ ≥ 0. Also, since gi is continuous for each
i and g(xt) ≤ 0 thanks to Step 3a) of SCPls, we have g(x̄) ≤ 0. These together with
(3.5) and (3.6) imply that x̄ is a stationary point of (1.1).

Lemma 3.3. Consider (1.1) and suppose that Assumptions 1.1 and 2.3 hold. Let
{(xt, Ltg)} be the sequence generated by SCPls and let Ω be the set of accumulation

points of the sequence {(xt+1, xt, Ltg)}. Then Ω 6= ∅ and F̄ ≡ F̄ ∗ on Ω, where F̄ is

defined as in (1.3) and F̄ ∗ is given in Theorem 3.1(ii).

Proof. From Theorem 3.1(i) and Lemma 2.4(ii) we know that Ω 6= ∅. Fix

any (xΩ, yΩ, LΩ) ∈ Ω and let {(xtj+1, xtj , L
tj
g )} be a convergent subsequence with

lim
j→∞

(xtj+1, xtj , L
tj
g ) = (xΩ, yΩ, LΩ). Since each ∇gi is continuous and xtj+1 belongs

to domF and is feasible for (2.4) with t = tj and (L̃f , L̃g) = (L
tj
f , L

tj
g ), we have

(3.7) g(xΩ) = lim
j→∞

g(xtj+1) ≤ 0, Ḡ(xΩ, yΩ, LΩ) = lim
j→∞

Ḡ(xtj+1, xtj , Ltjg ) ≤ 0

and F (xtj+1) = F̄ (xtj+1, xtj , L
tj
g ) for all j. Then, using the continuity of F on its

closed domain, we have

F (xΩ) = lim
j→∞

F (xtj+1) = lim
j→∞

F̄ (xtj+1, xtj , Ltjg ) = F̄ ∗,
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where the last equality follows from Theorem 3.1(ii). Thus, we deduce that

F̄ (xΩ, yΩ, LΩ) = F (xΩ) = F̄ ∗,

where the first equality follows from (3.7). Since (xΩ, yΩ, LΩ) ∈ Ω is arbitrary, we
conclude that F̄ ≡ F̄ ∗ on Ω.

To analyze the global convergence properties of SCPls, we need a bound on
the subdifferential of F̄ in (1.3). To this end, we consider the following additional
differentiability assumption on gi.

Assumption 3.4. Each gi in (1.1) is twice continuously differentiable.

Lemma 3.5. Consider (1.1) and suppose that Assumption 3.4 holds. Let (x, y, w) ∈
IRn × IRn × IRm and assume that P2 is continuously differentiable around x. Then

(3.8) ∂F̄ (x, y, w) ⊇

∇f(x)−∇P2(x) + ∂P1(x) +
∑m
i=1 λi[∇gi(y) + wi(x− y)]∑m

i=1 λi[∇2gi(y)(x− y)− wi(x− y)]
1
2‖x− y‖

2λ


whenever λ ∈ N−IRm+

(Ḡ(x, y, w)), where F̄ and Ḡ are defined as in (1.3).

Proof. We only consider the case where (x, y, w) ∈ domF̄ , since (3.8) holds trivially
otherwise. Using [53, Exercise 8.8, Corollary 10.9, Proposition 10.5], we have

∂F̄ (x, y, w) ⊇ ∂̂F̄ (x, y, w) ⊇

∇f(x)−∇P2(x) + ∂̂P1(x)
0
0

+ ∂̂δḠ(·)≤0(x, y, w)

(a)
=

∇f(x)−∇P2(x) + ∂P1(x)
0
0

+ N̂Ḡ(·)≤0(x, y, w)

(b)

⊇

∇f(x)−∇P2(x) + ∂P1(x)
0
0

+

m∑
i=1

λi

 ∇gi(y) + wi(x− y)
∇2gi(y)(x− y)− wi(x− y)

1
2‖x− y‖

2ei

 ,

where (a) uses the convexity of P1 and [53, Proposition 8.12], ei ∈ IRm is the ith stan-
dard basis vector and (b) holds for any λ ∈ N̂−IRm+

(Ḡ(x, y, w)) = N−IRm+
(Ḡ(x, y, w)),

thanks to [53, Theorem 6.14].

We also need the following assumption to derive the desired bound on ∂F̄ . This
assumption was also used in [59] for analyzing the global convergence property of the
sequence generated by the proximal DCA with extrapolation (pDCAe).

Assumption 3.6. Each gi in (1.1) is smooth, and the P2 in (1.1) is continuously
differentiable on an open set Γ that contains all stationary points of (1.1). Moreover,
the function ∇P2 is locally Lipschitz continuous on Γ.

Using this assumption and Lemma 3.5, we can prove the following property of ∂F̄ .

Lemma 3.7. Consider (1.1) and suppose that Assumptions 1.1, 2.3, 3.4 and 3.6
hold. Let {(xt, Ltg)} be the sequence generated by SCPls and let F̄ be defined as in
(1.3). Then there exist κ > 0 and t ∈ N+ such that

dist(0, ∂F̄ (xt+1, xt, Ltg)) ≤ κ‖xt+1 − xt‖ for all t > t.(3.9)
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Proof. From Theorem 3.1(i), we know that {xt} is bounded. Thus, denoting the
set of accumulation points of {xt} as Ωx, we have that Ωx is compact and Ωx ⊆ Γ
thanks to Theorem 3.2, where Γ is the open set give in Assumption 3.6. Choose an
ε > 0 so that Γε := {x : dist(x,Ωx) < ε} ⊆ Γ and ∇P2 is Lipschitz continuous with
modulus LP2 on Γε, which exists thanks to the compactness of Ωx and Assumption 3.6.
Moreover, since Ωx is compact, from the definition of cluster points, we see that
there exists t0 ∈ N+ such that dist(xt,Ωx) < ε whenever t > t0. In particular, P2 is
continuously differentiable around each xt whenever t > t0. In addition, thanks to
Theorem 3.1(iii), we can further choose t > t0 + 1 such that for t > t, we have

‖xt+1 − xt‖2 ≤ ‖xt+1 − xt‖.(3.10)

Now, let λt be a Lagrange multiplier of (2.4) with (L̃f , L̃g) = (Ltf , L
t
g), which

exists thanks to Lemma 2.4(iv). Then it holds that λt ∈ N−IRm+
(Ḡ(xt+1, xt, Ltg)).

Therefore, using (3.8) with λ = λt for any t > t, we have that

∂F̄ (xt+1, xt, Ltg) ⊇

 J t∑m
i=1 λ

t
i

(
∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)

)
1
2‖x

t+1 − xt‖2λt

(3.11)

with J t := ∇f(xt+1)+∂P1(xt+1)−∇P2(xt+1)+
∑m
i=1 λ

t
i

(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
)
.

For this J t, using (2.7) with x̃ = xt+1 and recalling the definition of ξt, we have that

J t 3∇f(xt+1)−∇P2(xt+1) +

m∑
i=1

λti
(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
)

+

(
−∇f(xt)− Ltf (xt+1 − xt) +∇P2(xt)−

m∑
i=1

λti
(
∇gi(xt) + (Ltg)i(x

t+1 − xt)
))

=∇f(xt+1)−∇f(xt) +∇P2(xt)−∇P2(xt+1)− Ltf (xt+1 − xt).

Using this together with Cauchy-Schwarz inequality, for t > t, it holds that

‖J t‖2≤3

(
‖∇f(xt+1)−∇f(xt)‖2+‖∇P2(xt+1)−∇P2(xt)‖2+‖Ltf (xt+1−xt)‖2

)
(a)

≤ 3L2
f‖xt+1 − xt‖2 + 3L2

P2
‖xt+1 − xt‖2 + 3(Ltf )2‖xt+1 − xt‖2

=

(
3L2

f + 3(Ltf )2 + 3L2
P2

)
‖xt+1 − xt‖2,

(3.12)

where (a) makes use of the fact that t > t (so that xt ∈ Γε) and the Lipschitz continuity
of ∇f and ∇P2.

On the other hand, since {(xt, Ltg, λt)} is bounded thanks to Theorem 3.1(i),
Lemma 2.4(ii) and Theorem 3.2, using the continuity of ∇2gi for each i, there exists
D1 > 0 such that∥∥∥∥ m∑

i=1

λti

(
∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)

)∥∥∥∥2

≤m
m∑
i=1

(λti)
2‖∇2gi(x

t)(xt+1 − xt)− (Ltg)i(x
t+1 − xt)‖2≤D1‖xt+1 − xt‖2,

(3.13)
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where the first inequality uses the Cauchy-Schwarz inequality.
Therefore, since {(Ltf , λt)} is bounded thanks to Lemma 2.4(ii) and Theorem 3.2,

combining (3.10), (3.11), (3.12) and (3.13), we conclude that there exists κ > 0 such
that (3.9) holds. This completes the proof.

Now, if we suppose in addition that F̄ is a KL function with exponent α ∈ [0, 1),
then using the results above and following the analysis in [2–4, 14, 44, 59], we can
deduce the convergence of the sequence {xt} generated by SCPls to a stationary point
of (1.1) and estimate its local convergence rate. Specifically, using similar proofs as
in [44, 59], we have the following results. The lines of arguments are standard and we
omit its proof for brevity.

Theorem 3.8 (Convergence rate of SCPls in nonconvex settings). Con-
sider (1.1). Suppose that Assumptions 1.1, 2.3, 3.4 and 3.6 hold, and F̄ in (1.3) is
a KL function. Let {(xt, Ltg)} be the sequence generated by SCPls and let Ω be the
set of accumulation points of the sequence {(xt+1, xt, Ltg)}. Then {xt} converges to

a stationary point x∗ of (1.1). Moreover, if F̄ satisfies the KL property with expo-
nent α ∈ [0, 1) at every point in Ω, then there exists t ∈ N+ such that the following
statements hold:

(i) If α = 0, then {xt} converges finitely, i.e., xt ≡ x∗ for t > t.
(ii) If α ∈ (0, 1

2 ], then there exist a0 ∈ (0, 1) and a1 > 0 such that

‖xt − x∗‖ ≤ a1a
t
0 for t > t.

(iii) If α ∈ ( 1
2 , 1), then there exists a2 > 0 such that

‖xt − x∗‖ ≤ a2t
− 1−α

2α−1 for t > t.

3.2. Convergence analysis in convex settings. In this section, we study the
convergence properties of SCPls under the following convex settings:

Assumption 3.9. Suppose that in (1.1), P2 = 0 and {f, g1, . . . , gm} are convex.

Assumption 3.9 was also considered in [10, Section 3.2.3] for analyzing MBA, and
in [10, Section 4] for its line search variant Multiproxbt [10, Eq. (37)]. Here, we would
like to point out that the line search criterion in Multiproxbt [10, Eq. (37)] is different
from the criterion (2.5) used in SCPls. The criterion in Multiproxbt relies on a local
majorant of the objective function, while (2.5) uses the objective function directly, and
is originated from SpaRSA; see [51, Eq. (22)]. We will establish global convergence of
the whole sequence generated by SCPls in the above convex settings, under suitable
assumptions. Unlike the analysis in the previous subsection, our analysis here is based
on KL property of F in (1.1) instead of that of F̄ , and we will not assume g to be
twice continuously differentiable (i.e., we do not require Assumption 3.4). We start
with two auxiliary lemmas. The first lemma is an analogue of [14, Lemma 6] and
follows immediately from an application of [12, Theorem 5] and standard compactness
argument. We omit the proof for brevity.

Lemma 3.10. Let f : IRn → (−∞,+∞] be a level-bounded proper closed convex
function with Λ := Arg min f 6= ∅. Let f := inf f . Suppose that f satisfies the KL
property at each point in Λ with exponent α ∈ [0, 1). Then there exist ε > 0, r0 > 0
and c0 > 0 such that

dist(x,Λ) ≤ c0(f(x)− f)1−α

for any x ∈ dom∂f satisfying dist(x,Λ) ≤ ε and f ≤ f(x) < f + r0.
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The next lemma is an analogue of Lemma 3.3 for F in (1.1).

Lemma 3.11. Consider (1.1) and suppose that Assumptions 1.1 and 2.3 hold. Let
{xt} be the sequence generated by SCPls for (1.1) and let Ωx be the set of accumulation
point of {xt}. Then the following statements hold:

(i) It holds that Ωx 6= ∅ and F ≡ F̄ ∗ on Ωx, where F is defined as in (1.1) and F̄ ∗

is given in Theorem 3.1(ii).
(ii) The sequence {F (xt)} is nonincreasing and convergent to F̄ ∗.

Proof. We note first from Theorem 3.1(i) that Ωx 6= ∅. In addition, since xt ∈
domF and is feasible for (2.4) (with (t−1, Lt−1

f , Lt−1
g ) in place of (t, L̃f , L̃g)), we have

F (xt) = f(xt) + P1(xt)− P2(xt) = F̄ (xt, xt−1, Lt−1
g ), for all t ≥ 1.(3.14)

Fix any x∗ ∈ Ωx and let lim
j→∞

xtj = x∗. Using the continuity of F on its closed domain

and (3.14), we see that

F (x∗) = lim
j→∞

f(xtj ) + P1(xtj )− P2(xtj ) = lim
j→∞

F̄ (xtj , xtj−1, Ltj−1
g ) = F̄ ∗,

where the last equality makes use of Theorem 3.1(ii). This proves (i). The conclusion
in (ii) now follows immediately upon combining the above display and (3.14) with
Theorem 3.1(ii). This completes the proof.

Now we present our main result in this subsection.

Theorem 3.12 (Convergence rate of SCPls in convex settings). Consider
(1.1) and suppose that Assumptions 1.1, 2.3 and 3.9 hold. Let {xt} be the sequence
generated by SCPls. Then {xt} converges to a minimizer x∗ of (1.1). If in addition F
in (1.1) is a KL function with exponent α ∈ [0, 1), then the following statements hold:

(i) If α ∈ [0, 1
2 ], then there exist c0 > 0, Q1 ∈ (0, 1) and t ∈ N+, such that

‖xt − x∗‖ ≤ c0Qt1 for t > t.

(ii) If α ∈ ( 1
2 , 1), then there exist c0 > 0 and t ∈ N+ such that

‖xt − x∗‖≤c0 t−
1−α
2α−1 for t > t.

Proof. Let S := Arg minF for notational simplicity. Note that S 6= ∅ thanks to
Assumption 1.1. Since P2 = 0 and {f, g1, . . . , gm} are convex by Assumption 3.9, using
Theorem 3.2 and [52, Theorem 28.3], we see that

∅ 6= Ωx ⊆ S,(3.15)

where Ωx is as in Lemma 3.11. This together with Lemma 3.11 implies that F̄ ∗ = inf F .
Next, let λt be a Lagrange multiplier of (2.4) with (L̃f , L̃g) = (Ltf , L

t
g), which

exists thanks to Lemma 2.4(iv). Since P2 = 0 and g(xt) ≤ 0 for all t, for any x̄ ∈ S,

using (2.8) with x = x̄, x̃ = xt+1, λ̃ = λt, L̃f = Ltf and L̃fg = Ltfg := Ltf + 〈λt, Ltg〉,
we deduce that

F (xt+1) ≤ f(xt) +
〈
∇f(xt), x̄− xt

〉
+ P1(x̄) +

Ltfg
2
‖x̄− xt‖2 −

Ltfg
2
‖x̄− xt+1‖2

+

m∑
i=1

λti
(
gi(x

t) + 〈∇gi(xt), x̄− xt〉
)
−
Ltf − Lf

2
‖xt+1 − xt‖2
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(a)

≤ f(x̄) + P1(x̄) +
Ltfg

2
‖x̄− xt‖2 −

Ltfg
2
‖x̄− xt+1‖2 −

Ltf − Lf
2

‖xt+1 − xt‖2

(b)

≤ f(x̄) + P1(x̄) +
Ltfg

2
‖x̄− xt‖2 −

Ltfg
2
‖xt+1− x̄‖2 +

(Lf − Ltf )+

c
(F (xt)− F (xt+1))

≤ f(x̄) + P1(x̄) +
Ltfg

2
‖x̄− xt‖2 −

Ltfg
2
‖xt+1− x̄‖2 +

M0

c
(F (xt)− F (xt+1)),

where (a) holds because {f, g1, . . . , gm} are convex, and λti ≥ 0 and gi(x̄) ≤ 0 for
all i, (b) follows from (2.5), and the M0 in the last inequality is an upper bound of
{(Lf − Ltf )+}, which exists thanks to Lemma 2.4(ii). Rearranging terms in the above

inequality and noting F̄ ∗ = inf F = f(x̄) + P1(x̄) whenever x̄ ∈ S, we have for any
x̄ ∈ S that

F (xt+1)− F̄ ∗

Ltfg
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 +

M0

cLtfg

(
F (xt)− F (xt+1)

)
.

Let Lmax be the upper bound of {Ltfg} (which exists according to Lemma 2.4(ii) and

Theorem 3.2) and recall that Ltfg ≥ Ltf ≥ L
¯
> 0 for all t, where L

¯
is the one used in

Step 2 of SCPls. Then we have from the above display that for any x̄ ∈ S,

γ
(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 + θ

(
F (xt)− F (xt+1)

)
,

where γ := 1
Lmax

and θ := M0

cL
¯

. Rearranging terms in the above inequality, we have

(γ + θ)
(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 − 1

2
‖xt+1 − x̄‖2 + θ

(
F (xt)− F̄ ∗

)
.(3.16)

The inequality above in particular implies that for any x̄ ∈ S,

1

2
‖xt+1 − x̄‖2 ≤ 1

2
‖x̄− xt‖2 + θ

(
F (xt)− F̄ ∗

)
− (γ + θ)

(
F (xt+1)− F̄ ∗

)
≤ 1

2
‖x̄− xt‖2 + (γ + θ)

(
F (xt)− F (xt+1)

)
,

(3.17)

where the last inequality holds because F̄ ∗ = inf F ≤ F (xt). Since {F (xt)− F (xt+1)}
is nonnegative and summable thanks to Lemma 3.11(ii), using (3.15), (3.17) and [31,
Proposition 1], we conclude that {xt} converges to a minimizer x∗ of (1.1).

Now, we suppose in addition that F is a KL function with exponent α ∈ [0, 1).
Let x̄t ∈ S satisfy ‖xt− x̄t‖ = dist(xt, S). Since x̄t ∈ S, it holds that −‖xt+1− x̄t‖2 ≤
−dist2(xt+1, S). Using this and applying (3.16) with x̄t in place of x̄ gives

(γ + θ)
(
F (xt+1)− F̄ ∗

)
≤ 1

2
dist2(xt, S)− 1

2
dist2(xt+1, S) + θ

(
F (xt)− F̄ ∗

)
.(3.18)

For notational simplicity, let

βt := F (xt)− F̄ ∗ +
1

2(γ + θ)
dist2(xt, S).(3.19)

Using this, rearranging terms and dividing γ + θ from both sides of (3.18), we have

(3.20) βt+1 ≤
θ

γ + θ

(
F (xt)− F̄ ∗

)
+

1

2(γ + θ)
dist2(xt, S).
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Since F is a proper closed convex level-bounded KL function with exponent
α ∈ [0, 1), using Lemma 3.10, there exist 0 < ā < 1, c̄ > 0 and 0 < ε < 1 such that

dist(x, S)
1

1−α ≤ c̄
(
F (x)− F̄ ∗

)
(3.21)

for any x ∈ dom∂F satisfying dist(x, S) ≤ ε and F̄ ∗ ≤ F (x) < F̄ ∗ + ā.
Clearly, {xt} ⊂ dom∂F = {x : g(x) ≤ 0}. Next, since {xt} is bounded thanks to

Theorem 3.1(i), using (3.15), there exists t1 such that

dist(xt, S) ≤ dist(xt,Ωx) < ε, for t > t1.(3.22)

On the other hand, using Lemma 3.11(ii), we see that there exists t2 such that

F̄ ∗ ≤ F (xt) < F̄ ∗ + ā, for t > t2.(3.23)

We now consider the cases when α ∈ [0, 1
2 ] and α ∈ ( 1

2 , 1) separately.
Case (i). α ∈ [0, 1

2 ]. Combining (3.21), (3.22) and (3.23), we conclude that for
any t > t3 := max{t1, t2},

dist2(xt, S) ≤ dist
1

1−α (xt, S) ≤ c̄
(
F (xt)− F̄ ∗

)
,(3.24)

where the first inequality holds because 1
1−α ≤ 2 and dist(xt, S) < ε < 1. Next, let

ζ := 2θ+c̄
2(γ+θ)+c̄ ∈ (0, 1). Then one can show that

(3.25)
θ

γ + θ
+

(1− ζ)c̄

2(γ + θ)
= ζ.

Using this and (3.20), we have for all t > t3 that

βt+1 ≤
θ

γ + θ
(F (xt)− F̄ ∗) +

1− ζ
2(γ + θ)

dist2(xt, S) +
ζ

2(γ + θ)
dist2(xt, S)

(a)

≤
(

θ

γ + θ
+

(1− ζ)c̄

2(γ + θ)

)
(F (xt)− F̄ ∗) +

ζ

2(γ + θ)
dist2(xt, S)

(b)
= ζ

(
F (xt)− F̄ ∗ +

1

2(γ + θ)
dist2(xt, S)

)
= ζβt,

where (a) follows from (3.24) and (b) follows from (3.25). Combining the above
inequality with the definition of βt in (3.19) gives

F (xt)− F̄ ∗ ≤ βt ≤ ζt−t3−1βt3+1 for t > t3.(3.26)

Then, for t > t3, we have

‖x∗ − xt‖ ≤
∞∑

j=t+1

‖xj − xj−1‖ ≤
∞∑

j=t+1

√
2

c

√
F (xj−1)− F (xj)

≤
∞∑

j=t+1

√
2

c

√
F (xj−1)− F̄ ∗ ≤

∞∑
j=t+1

√
2

c

√
ζj−t3−2βt3+1 =

√
2βt3+1

cζt3+1

(
√
ζ)t

1−
√
ζ
,

where the second inequality follows from (2.5), the third inequality follows from
Lemma 3.11(ii) and the last inequality follows from (3.26). This proves (i).
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Case (ii). α ∈ ( 1
2 , 1). Using (3.20) and the definition of βt in (3.19), for any

t > t3 = max{t1, t2}, we have

βt+1 ≤ βt −
γ

γ + θ

(
F (xt)− F̄ ∗

)
= βt −

1

2
c3

[
F (xt)− F̄ ∗ + c̄

(
1

2(γ + θ)

) 1
2(1−α) (

F (xt)− F̄ ∗
)]

(a)

≤ βt −
1

2
c3

[
F (xt)− F̄ ∗ +

(
1

2(γ + θ)

) 1
2(1−α)

dist(xt, S)
1

1−α

]
(b)

≤ βt −
1

2
c3

[(
F (xt)− F̄ ∗

) 1
2(1−α) +

(
1

2(γ + θ)
dist2(xt, S)

) 1
2(1−α)

]
,

where c3 = 2
γ
γ+θ

1+c̄( 1
2(γ+θ) )

1
2(1−α)

, (a) follows from (3.21), (3.22), (3.23) and the fact that

{xt} ⊂ dom∂F = {x : g(x) ≤ 0}, and (b) holds because 0 ≤ F (xt) − F̄ ∗ < ā < 1

(thanks to (3.23)) and 1
2(1−α) > 1. Since the mapping w 7→ w

1
2(1−α) is convex, for

t > t3, we obtain further that

βt+1 ≤ βt − c3c4
(
F (xt)− F̄ ∗ +

1

2(γ + θ)
dist2(xt, S)

) 1
2(1−α)

= βt − c3c4β
1

2(1−α)

t = βt

(
1− c3c4β

1
2(1−α)

−1

t

)
,

where c4 := 2−
1

2(1−α) . Since 1
2(1−α) − 1 = 2α−1

2(1−α) > 0, using the above inequality

and [16, Lemma 4.1], we have

βt ≤
(
β
− 2α−1

2(1−α)

t3+1 +
2α− 1

2(1− α)
c3c4(t− t3 − 1)

)− 2(1−α)
2α−1

for t > t3.(3.27)

Then, for any t > t3 and t′ ≥ 0, we have

‖xt − xt+t
′
‖2 ≤ 2

(
‖xt − x̄t‖2 + ‖x̄t − xt+t

′
‖2
)

(a)

≤ 2
(
‖xt − x̄t‖2 + ‖x̄t − xt‖2 + 2(γ + θ)

(
F (xt)− F (xt+t

′
)
))

= 2
(

2dist2(xt, S) + 2(γ + θ)
(
F (xt)− F (xt+t

′
)
))

(b)

≤ 2
(
2dist2(xt, S) + 4(γ + θ)

(
F (xt)− F̄ ∗

))
(c)
= 8(γ + θ)βt ≤ 8(γ + θ)

(
β
− 2α−1

2(1−α)

t3+1 +
2α− 1

2(1− α)
c3c4(t− t3 − 1)

)− 2(1−α)
2α−1

,

where (a) follows from (3.17) and the first equality uses the definition of x̄t (i.e., the
projection of xt onto S), (b) follows from Lemma 3.11(ii), (c) uses the definition of βt
and the last inequality follows from (3.27). Letting t′ →∞ and recalling that xt → x∗,
we see that the conclusion in (ii) holds. This completes the proof.

Remark 3.13. From the proof of the above theorem, we can actually deduce that
the sequence

{
F (xt)− F̄ ∗ + c0dist2(xt, S)

}
(with some suitable c0 > 0) is Q-linearly

convergent when F is a KL function with exponent α ∈ [0, 1
2 ], and is sublinearly

convergent when F is a KL function with exponent α ∈ ( 1
2 , 1); see (3.26) and (3.27).
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4. KL properties of F̄ and F . In Section 3, we deduced the rate of convergence
of the sequence {xt} generated by SCPls under nonconvex and convex settings by
imposing KL assumptions on F̄ in (1.3) and F in (1.1), respectively; see Theorem 3.8
and Theorem 3.12. Note that the assumptions in Theorem 3.8 and Theorem 3.12 for
(1.1) are different as follows:

• Assumptions 1.1, 2.3, 3.4 and 3.6 are used in Theorem 3.8.
• Assumptions 1.1, 2.3, 3.9 are used in Theorem 3.12.

Thus, it is interesting to find a relationship between KL exponent of F̄ and that of F
when all the above assumptions hold. In this regard, we have the following theorem.

Theorem 4.1 (Relation between the KL exponents of F̄ and F ). Let F
be defined as in (1.1) and suppose that Assumptions 1.1, 2.3, 3.4 and 3.9 hold. If
F̄ defined in (1.3) is a KL function with exponent α ∈ [0, 1), then F is also a KL
function with exponent α.

Proof. Fix any x0 ∈ dom∂F and w0 ∈ IR. Using (3.8) and noting that P2 = 0
(Assumption 3.9), we have for any x ∈ dom∂F that

∂F̄ (x, x, w0)

⊇


∇f(x) + ∂P1(x) +

∑m
i=1 λi∇gi(x)

0
0

 : λ ∈ N−IRm+
(Ḡ(x, x, w0))


(a)
=


∇f(x) + ∂P1(x) +

∑m
i=1 λi∇gi(x)

0
0

 : λ ∈ N−IRm+
(g(x))


(b)
=

∇f(x) + ∂P1(x) +Ng(·)≤0(x)
0
0

 (c)
=

∂F (x)
0
0

 ,

(4.1)

where (a) follows from the fact that g(x) = Ḡ(x, x, w0), (b) follows from Assumption 2.3
and [53, Theorem 6.14], and (c) holds due to [53, Exercise 8.8] and [52, Theorem 23.8]
together with the convexity of P1 and g and the continuity of P1. Using this together
with the assumption that x0 ∈ dom∂F , we have (x0, x0, w0) ∈ dom∂F̄ . Then, from
the KL assumption on F̄ , we see that there exist a > 0, ε > 0 and c0 > 0 such that

dist(0, ∂F̄ (x, y, w)) ≥ a(F̄ (x, y, w)− F̄ (x0, x0, w0))α(4.2)

whenever 0 < F̄ (x, y, w)− F̄ (x0, x0, w0) < c0 and ‖(x, y, w)− (x0, x0, w0)‖ ≤ ε.
In addition, thanks to the fact that g(x) = Ḡ(x, x, w0), for any x ∈ dom∂F

satisfying F (x0) < F (x) < F (x0) + c0, we have

F̄ (x0, x0, w0) < F̄ (x, x, w0) < F̄ (x0, x0, w0) + c0.(4.3)

On the other hand, for x such that ‖x−x0‖ ≤ 1
2ε, we have ‖(x, x, w0)−(x0, x0, w0)‖ ≤ ε.

Using this and (4.3), for x ∈ dom∂F satisfying ‖x − x0‖ ≤ 1
2ε and F (x0) < F (x) <

F (x0) + c0, we have

dist(0, ∂F (x))
(a)

≥ dist(0, ∂F̄ (x, x, w0))
(b)

≥ a(F̄ (x, x, w0)− F̄ (x0, x0, w0))α

(c)
= a(F (x)− F (x0))α,

where (a) follows from (4.1), (b) uses (4.2) and (c) holds thanks to g(x) = Ḡ(x, x, w0).
This completes the proof.
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4.1. KL exponent for a concrete model. In this subsection, we study the
KL exponent of F in (1.1) with additional assumptions on the functions involved.
Specifically, we consider the following multiply constrained optimization problem:

min
x∈IRn

P1(x) + δg(·)≤0(x),(4.4)

where P1 is convex continuous, the function g(x) = (l1(A1x), . . . , lm(Amx)) with each
Ai ∈ IRqi×n and li : IRqi → IR being strictly convex, and {x : g(x) ≤ 0} 6= ∅. Clearly,
(4.4) is a special case of (1.1) with f = P2 = 0, gi(x) = li(Aix), for i = 1, . . . ,m and

F (x) = P1(x) + δg(·)≤0(x)= P1(x) +

m∑
i=1

δli(·)≤0(Aix).(4.5)

We will derive rules to deduce the KL exponent of F in (4.5) from its Lagrangian.
Similar rules were introduced in [42] and [61], which studied the KL exponent of F
in (4.5) respectively when m = 1 and when the constraint set is defined by equality
constraints, under suitable assumptions. Here, we look at (4.5) that involves multiple
inequality constraints.

Theorem 4.2 (KL exponent of (4.5) from its Lagrangian). Let F be as in
(4.5) and x̄ ∈ Arg minF . Suppose the following conditions hold:

(i) There exists a Lagrange multiplier λ̄ ∈ IRm
+ for (4.4) and x 7→ P1(x) + 〈λ̄, g(x)〉

is a KL function with exponent α ∈ (0, 1).
(ii) The strict complementarity condition holds at (x̄, λ̄), i.e., for every i satisfying

λ̄i = 0, it holds that li(Aix̄) < 0.
Then F satisfies the KL property with exponent α at x̄.

Proof. Let Fλ̄(x) := P1(x) + 〈λ̄, g(x)〉. By the definition of Lagrange multiplier,
we have

F (x̄) = inf F = P1(x̄) = inf Fλ̄ ≤ Fλ̄(x̄) ≤ F (x̄),(4.6)

where the second inequality holds because g(x̄) ≤ 0 and λ̄ ∈ IRm
+ . On the other hand,

thanks to (ii), it holds that {i : λ̄i > 0} = I(x̄). This together with [52, Theorem 28.1]
gives

x̄ ∈ Arg minF =
⋂

i∈I(x̄)

{x : li(Aix) = 0} ∩
⋂

i 6∈I(x̄)

{x : li(Aix) ≤ 0} ∩Arg minFλ̄.(4.7)

Since li is strictly convex and λ̄i > 0 for i ∈ I(x̄), we see that Aix is constant over
Arg minFλ̄ for each i ∈ I(x̄). This together with the fact that li(Aix̄) = 0 for i ∈ I(x̄)
and (4.7) implies that

x̄ ∈ Arg minF =
⋂

i 6∈I(x̄)

{x : li(Aix) ≤ 0} ∩Arg minFλ̄.(4.8)

Next, since li(Aix̄) < 0 for each i 6∈ I(x̄), there exists ε0 > 0 such that

li(Aix) < 0, ∀x ∈ B(x̄, ε0), ∀ i 6∈ I(x̄).

This together with (4.8) implies that

x̄ ∈ Arg minF ∩B(x̄, ε0) = Arg minFλ̄ ∩B(x̄, ε0).(4.9)
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Now, using (i) and [12, Theorem 5(i)] together with the fact that x̄ ∈ Arg minFλ̄,
we see that there exist ā > 0, c̄ > 0 and 0 < ε < ε0 such that

dist(x,Arg minFλ̄) ≤ c̄(Fλ̄(x)− Fλ̄(x̄))1−α(4.10)

whenever ‖x− x̄‖ ≤ ε and Fλ̄(x̄) ≤ Fλ̄(x) < Fλ̄(x̄) + ā. Note that for any x satisfying
F (x̄) < F (x) < F (x̄) + ā, we have li(Aix) ≤ 0 for each i and

F (x̄) = Fλ̄(x̄) ≤ Fλ̄(x) ≤ F (x) < F (x̄) + ā = Fλ̄(x̄) + ā,(4.11)

where the first and the last equalities follow from (4.6) and the second inequality holds
because λ̄i ≥ 0 and li(Aix) ≤ 0 for each i = 1, . . . ,m. Therefore, for any x satisfying
F (x̄) < F (x) < F (x̄) + ā and ‖x− x̄‖ ≤ ε, we have

dist(x,Arg minF ) ≤ dist(x,Arg minF ∩B(x̄, ε0))
(a)
= dist(x,Arg minFλ̄ ∩B(x̄, ε0))

(b)

≤ 4 max {dist(x,Arg minFλ̄),dist(x,B(x̄, ε0))} (c)
= 4dist(x,Arg minFλ̄)

(d)

≤ 4c̄(Fλ̄(x)− Fλ̄(x̄))1−α ≤ 4c̄(F (x)− F (x̄))1−α,

where (a) follows from (4.9), (b) follows from [40, Lemma 4.10], (c) holds because
ε < ε0, (d) follows from (4.10) and (4.11) and the last inequality holds because of (4.6)
(so that Fλ̄(x̄) = F (x̄)), li(Aix) ≤ 0 for each i and λ̄ ∈ IRm

+ . The desired conclusion
now follows immediately from this and [12, Theorem 5(ii)].

Now, we give a corollary that deals with (4.4) with m = 1. This result is different
from [42, Theorem 3.5] because, here, it is the constraint function that is a composition
of strictly convex function and a linear map, but not the objective function.

Corollary 4.3. Let F be defined as in (4.5) with m = 1. Suppose the following
conditions hold:

(i) It holds that inf P1 < inf F .
(ii) There exists a Lagrange multiplier6 λ̄ ≥ 0 for (4.4) and x 7→ P1(x) + λ̄l1(A1x)

is a KL function with exponent α ∈ (0, 1).
Then F is KL function with exponent α.

Proof. Let Fλ̄(x) := P1(x) + λ̄l1(A1x). In view of [42, Lemma 2.1] and the
convexity of F , it suffices to show that F has KL property at every point in {x : 0 ∈
∂F (x)} = Arg minF with exponent α. Fix any x̄ with 0 ∈ ∂F (x̄). Then one can
see from condition (i) and the definition of Lagrange multiplier that λ̄ > 0 and thus
l1(Ax̄) = 0. Therefore, Assumption (ii) of Theorem 4.2 is satisfied. This together with
(ii) and Theorem 4.2 shows that F satisfies the KL property at x̄ with exponent α.

Remark 4.4. When P1(·) = ‖ · ‖1 in (4.4), we deduce from [42, Corollary 5.1] and
Corollary 4.3 that the KL exponent of F in (4.5) is 1

2 if m = 1 and l1 takes one of the
following forms with b ∈ IRq and δ > 0 chosen so that the Slater condition holds and
the origin is not feasible:

(i) (Basis pursuit denoising [19]) l1(z) = 1
2‖z − b‖

2 − δ.
(ii) (Logistic loss [30,33]) l1(z) =

∑q
i=1 log(1 + exp(bizi))− δ for some b ∈ IRq.

(iii) (Poisson loss [27,35,62]) l1(z) =
∑q
i=1(−bizi + exp(zi))− δ for some b ∈ IRq.

6Following [52, Page 274], we say that λ̄ is a Lagrange multiplier for (4.4) if λ̄ ≥ 0 and inf
x∈IRn

{P1(x)+

λ̄g(x)} = inf
x∈IRn

{P1(x) + δg(·)≤0(x)} > −∞.
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5. Applications in compressed sensing. In this section, we consider applica-
tions of (1.1) and discuss how the various assumptions required in our analysis of SCPls
can be verified. We focus on the problem of compressed sensing, which attempts to
reconstruct sparse signals from possibly noisy low-dimensional measurements; see [21]
for a recent review. We specifically look at the following model:

(5.1)
min
x

‖x‖1 − µ‖x‖
s.t. `(Ax− b) ≤ δ,

where µ ∈ [0, 1], A ∈ IRq×n has full row rank, b ∈ IRq, ` : IRq → IR+ is an analytic
function whose gradient is Lipschitz continuous with modulus L` and satisfies `(0) = 0,
and δ ∈ (0, `(−b)). The ` in (5.1) is typically chosen according to different types of
noise. We will look at two specific choices in Section 5.1 and Section 5.2, respectively.

Problem (5.1) is a special case of (1.1) with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖
and g(x) = `(Ax− b)− δ.7 Then the F from (1.1) corresponding to (5.1) is

(5.2) F (x) = ‖x‖1 − µ‖x‖+ δ`(A·−b)≤δ(x),

and the F̄ from (1.3) corresponding to (5.1) is

F̄ (x, y, w) = ‖x‖1 − µ‖x‖+ δḠ(·)≤0(x, y, w)(5.3)

with

(5.4) Ḡ(x, y, w) = `(Ay − b) + 〈AT∇`(Ay − b), x− y〉+
w

2
‖x− y‖2 − δ.

Our next theorem concerns the KL conditions needed in Theorems 3.8 and 3.12.

Theorem 5.1. Let F and F̄ be defined as in (5.2) and (5.3), respectively, and let
Ξ ⊆ dom ∂F and Υ ⊆ dom ∂F̄ be compact sets. Then there exists α ∈ [0, 1) so that F
(resp., F̄ ) satisfies the KL property with exponent α at every point in Ξ (resp., in Υ).

Proof. Let D0 := {x : `(Ax − b) ≤ δ} and D1 = {(x, y, w) : Ḡ(x, y, w) ≤ 0},
where Ḡ is as in (5.4). Since ` and Ḡ are analytic, we have that D0 and D1 are
semianalytic; see [26, Page 596] for the definition.

On the other hand, since x 7→ ‖x‖1 − µ‖x‖ is semialgebraic, it holds that F0 :=
{(x, z) : z = ‖x‖1 − µ‖x‖} and F1 := {(x, y, w, z) : z = ‖x‖1 − µ‖x‖} are subanalytic
(see [26, Page 597(p2)] for the subanalyticity of F1). Therefore,

gph(F ) = F0 ∩ (D0 × IR) and gph(F̄ ) = F1 ∩ (D1 × IR)

are subanalytic, thanks to [26, Page 597(p1)&(p2)]. Also, the functions F and F̄ have
closed domains and are continuous on their respective domains. Thus, the desired
conclusion follows from [11, Theorem 3.1] and a standard compactness argument as in
the proof of [2, Lemma 1].

We next focus on two common choices of ` in (5.1): `(·) = 1
2‖ · ‖

2 (for Gaussian
noise [8]) and `(·) = ‖ · ‖LL2,γ being the Lorentzian norm (for Cauchy noise [20]) for
some γ > 0. We will discuss how to verify the other assumptions necessary for the
applications of Theorem 3.8 or Theorem 3.12 to (5.1) with these two choices of `.

7Note that {x : g(x) ≤ 0} 6= ∅ because A has full row rank and `(0) = 0 < δ.



CONVERGENCE RATE ANALYSIS OF SCPLS 23

5.1. When `(·) = 1
2‖ · ‖

2. In this case, the model (5.1) becomes

(5.5)
min
x

‖x‖1 − µ‖x‖
s.t. 1

2‖Ax− b‖
2 ≤ δ,

and the corresponding F in (1.1) becomes:

F (x) = ‖x‖1 − µ‖x‖+ δg(·)≤0(x),(5.6)

with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖ and g(x) = 1
2‖Ax− b‖

2 − δ for A, b, δ and µ
as in (5.1). Then, for (5.5), P1 and P2 are convex continuous, and Assumption 1.1(i)
and (ii) and Assumption 3.4 are satisfied. Moreover, A having full row rank and
δ ∈ (0, 1

2‖b‖
2) imply that Slater condition holds for (5.5). Hence, it follows that

{x : g(x) ≤ 0} 6= ∅ and Assumption 2.3 holds. In addition, this P2 satisfies
Assumption 3.6 since its only possible point of nondifferentiability (the origin) is not
feasible thanks to the fact that δ < 1

2‖b‖
2. Furthermore, the required KL conditions

follow from Theorem 5.1.8 In order to apply Theorem 3.8 (or Theorem 3.12), we
now demonstrate how conditions can be imposed so that Assumption 1.1(iii) (level-
boundedness) is satisfied.

Proposition 5.2. Let F be defined as in (5.6). The following statements hold:
(i) If µ ∈ [0, 1), then F is level-bounded.

(ii) If µ = 1 and A does not have zero columns, then F is level-bounded.

Proof. Note first that if 0 ≤ µ < 1, then x 7→ ‖x‖1 − µ‖x‖ is level-bounded and
hence (i) holds trivially. We next focus on the case where µ = 1.

Suppose to the contrary that there exists σ and {xt} ⊆ {x : F (x) ≤ σ} such that
‖xt‖ → ∞. By passing to a further subsequence if necessary, we may assume that

there exists d with ‖d‖ = 1 and lim
t→∞

xt

‖xt‖ = d. Since 1
2‖Ax

t − b‖2 ≤ δ thanks to

F (xt) ≤ σ for each t, we have

1

2
‖Ad‖2 = lim

t→∞

1

2

‖Axt − b‖2

‖xt‖2
≤ lim
t→∞

δ

‖xt‖2
= 0.(5.7)

On the other hand, since F (xt) ≤ σ, it holds that

0 ≤ ‖xt‖1 − ‖xt‖ ≤ σ =⇒ 0 ≤ lim
t→∞

‖xt‖1 − ‖xt‖
‖xt‖

= ‖d‖1 − 1 ≤ 0.

This together with ‖d‖ = 1 implies that exactly one coordinate of d is nonzero. Since
A does not have zero columns, we obtain that ‖Ad‖ 6= 0, which contradicts (5.7).
Thus, the statement in (ii) holds.

Therefore, if the assumptions in the above proposition hold, one can apply The-
orem 3.8 or Theorem 3.12 to deducing the convergence rate of the sequence gen-
erated by SCPls when applied to solving (5.5). When µ = 0 in (5.5), since we
assumed δ ∈ (0, 1

2‖b‖
2) and A has full row rank, we know from Remark 4.4 that

x 7→ ‖x‖1 + δ 1
2‖A(·)−b‖2≤δ(x) is a KL function with exponent 1

2 . Consequently, the

8Specifically, if µ = 0, then F is convex and level-bounded, and the set of stationary points
(minimizers) is compact. We can then deduce from Theorem 5.1 that F is a KL function with
some exponent α ∈ [0, 1). On the other hand, the KL property required in the nonconvex case (see
Theorem 3.8) follows directly from Theorem 5.1.
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sequence {xt} generated by SCPls for (5.5) converges locally linearly. When µ ∈ (0, 1],
although no explicit KL exponent is known for the corresponding F̄ , we still observe
in our numerical experiments below that the sequence {xt} generated by SCPls for
(5.5) appears to converge linearly.

5.2. When ` is the Lorentzian norm. Recall that, given γ > 0, the Lorentzian
norm of a vector y ∈ IRq is defined as

‖y‖LL2,γ :=

q∑
i=1

log

(
1 +

y2
i

γ2

)
.

In this case, the model (5.1) becomes

min
x
‖x‖1 − µ‖x‖

s.t. ‖Ax− b‖LL2,γ ≤ δ,
(5.8)

and the corresponding F in (1.1) now takes the following form:

F (x) = ‖x‖1 − µ‖x‖+ δg(·)≤0(x),(5.9)

with f = 0, P1(x) = ‖x‖1, P2(x) = µ‖x‖ and g(x) = ‖Ax− b‖LL2,γ − δ for A, b, δ and
µ defined as in (5.1). One can show that the mapping z 7→ ‖z‖LL2,γ − δ has Lipschitz
gradient with modulus L` = 2

γ2 and is twice continuously differentiable. From these one

can readily see that P1 and P2 are convex continuous, and Assumption 1.1(i) and (ii)
and Assumption 3.4 are satisfied. Also, since A has full row rank and δ ∈ (0, ‖b‖LL2,γ),
we see that {x : g(x) ≤ 0} 6= ∅. In addition, this P2 satisfies Assumption 3.6 since its
only possible point of nondifferentiability is not feasible, thanks to δ ∈ (0, ‖b‖LL2,γ).
Furthermore, the required KL conditions follow from Theorem 5.1. In order to apply
Theorem 3.8, we show below that Assumption 2.3 holds and impose conditions so that
Assumption 1.1(iii) is satisfied.

Proposition 5.3. Let F be defined as in (5.9). The following statements hold:
(i) The MFCQ holds in the whole feasible set of (5.8).

(ii) If µ ∈ [0, 1), then F is level-bounded.
(iii) If µ = 1 and A does not have zero columns, then F is level-bounded.

Proof. For (i), using the definition of MFCQ, it suffices to show that for every
feasible point x with g(x) = 0, it holds that ∇g(x) 6= 0. Suppose to the contrary that
there exists x̂ such that g(x̂) = 0 and

∇g(x̂) = AT
(

2(Ax̂− b)1

γ2 + (Ax̂− b)2
1

, . . . ,
2(Ax̂− b)q

γ2 + (Ax̂− b)2
q

)T
= 0.

Since A is surjective, we deduce that
(

2(Ax̂−b)1
γ2+(Ax̂−b)21

, . . . ,
2(Ax̂−b)q

γ2+(Ax̂−b)2q

)
= 0. This shows

that Ax̂ − b = 0 and thus g(x̂) = ‖Ax̂ − b‖LL2,γ − δ = −δ 6= 0, a contradiction.
Therefore, the MFCQ holds in the whole feasible set of (5.8).

The assertion in (ii) holds trivially. We now prove (iii). Suppose to the contrary
that there exist σ and {xt} ⊆ {x : F (x) ≤ σ} such that ‖xt‖ → ∞. By passing to
a further subsequence if necessary, we may assume that there exists d with ‖d‖ = 1

and d = lim
t→∞

xt

‖xt‖ . Since `(Axt − b) ≤ 0 thanks to F (xt) ≤ σ for each t, and the

Lorentzian norm is level-bounded, we see that there exists ξ such that ‖Axt − b‖ ≤ ξ
for all t. The rest of the proof is then the same as that of Proposition 5.2(ii).
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Therefore, if the assumptions in the above proposition hold, one can apply Theo-
rem 3.8 to deducing the convergence rate of the sequence {xt} generated by SCPls
when applied to solving (5.8). Although no explicit KL exponent is known for the
corresponding F̄ , in our numerical experiments below, we observe empirically that the
sequence {xt} generated by SCPls for (5.8) appears to converge linearly.

5.3. Numerical experiments. In this subsection, we perform numerical exper-
iments to illustrate the convergence results of SCPls established in Section 3. We
apply SCPls to (5.1) with ` being either 1

2‖ · ‖
2 (as in (5.5)) or the Lorentzian norm

(as in (5.8)). We also consider the SCP in [46] in our experiments below.
Algorithms and their parameters. We consider the following algorithms:

(i) SCPls: We solve the corresponding subproblem (2.4) through a root-finding
scheme outlined in Appendix A. Moreover, we let τ = 2, c = 10−4, L

¯
= 10−8,

L̄ = 108. For t = 0, we choose Lt,0f = 1 and Lt,0g = 1. For t ≥ 1, we choose:

Lt,0f = 1, Lt,0g =

{
max

{
10−8,min

{
〈∆x,∆g〉
‖∆x‖2 , 108

}}
if 〈∆x,∆g〉 ≥ 10−12,

max
{

10−8,min
{
Lt−1
g /τ, 108

}}
else,

where ∆x = xt − xt−1 and ∆g = ∇g(xt)−∇g(xt−1). We initialize SCPls at A†b
and terminate it when ‖xt+1 − xt‖ < 10−8 max{1, ‖xt+1‖}.

(ii) SCP: This was proposed in [46]. The subproblem of SCP is solved using a root-
finding scheme outlined in Appendix A. We initialize SCP at A†b and terminate
it when ‖xt+1 − xt‖ < 10−8 max{1, ‖xt+1‖}.

Numerical results. All codes are written in Matlab, and the experiments are
performed in Matlab 2019b on a 64-bit PC with an Intel(R) Core(TM) i7-4790 CPU
(3.60GHz) and 32GB of RAM.

For both models (5.5) and (5.8), we consider either µ = 0 or 1. In our tests,
we let q = 720i and n = 2560i with i = 5. We generate an A ∈ IRq×n with i.i.d
standard Gaussian entries, and then normalize this matrix so that each column of A
has unit norm. Then we choose a subset T of size s0 = [ q9 ] uniformly at random from
{1, 2, . . . , n} and an s0-sparse vector xorig having i.i.d. standard Gaussian entries on
T is generated.

For (5.5), we let b = Axorig +0.01 · n̂ with n̂ ∈ IRq being a random vector with i.i.d.
standard Gaussian entries. We then set the δ in (5.5) to be 1

2σ
2 with σ = 1.1‖0.01 · n̂‖.

For (5.8), we let b = Axorig +0.01 · n̄ with n̄i ∼ Cauchy(0, 1), i.e., n̄i := tan(π(ñi−
1/2)) with ñ ∈ IRm being a random vector with i.i.d. entries uniformly chosen in [0, 1].
We set the δ in (5.8) to be 1.1‖0.01n̄‖LL2,γ with γ = 0.02.

We compare the approximate solution obtained by SCPls and the original sparse
solution in Figures 1 and 2 to illustrate the recovery ability of SCPls. In Figures 3 and
4, we plot ‖xt − xout‖ (in logarithmic scale) against the number of iterations, where
xt and xout are respectively the tth iterate and the approximate solution obtained by
the algorithm under study. As we can see, SCPls always appears to converge linearly
and is also faster than SCP.

Appendix A. Solving the subproblem of SCPls with P1 being the `1
norm, P2 = 0 and m = 1. We discuss how the subproblem (2.4) that arises in our
numerical tests when SCPls is applied to (5.1) can be solved efficiently. Our approach
is based on a root-finding strategy for solving the dual, which was also adopted in [54]
for solving the subproblem that arises in the MBA variant there. Comparing with
the subproblem considered in [54], our subproblem has an additional quadratic term,
which slightly complicates the derivation and implementation.
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Fig. 1. Recovery results by solving model (5.5) with µ = 0 (left) and µ = 1 (right) via SCPls.
The approximate solution obtained by SCPls is marked by asterisk, and xorig is marked by circle.

Fig. 2. Recovery results by solving model (5.8) with µ = 0 (left) and µ = 1 (right) via SCPls.
The approximate solution obtained by SCPls is marked by asterisk, and xorig is marked by circle.

At the tth iteration, the corresponding subproblem (2.4) that arises when SCPls
is applied to (5.1) takes the following form:

(A.1)
min
x

‖x‖1 + α
2 ‖x− y‖

2

s.t. ‖x− s‖2 ≤ r,

where y, s ∈ IRn, α > 0 and r > 0.9

Recall that the Lagrangian function for (A.1) is given by

L̃(x, λ) = ‖x‖1 +
α

2
‖x− y‖2 + λ(‖x− s‖2 − r).

Using [52, Corollary 28.2.1, Theorem 28.3], we know that there exists (x∗, λ∗) with
λ∗ ≥ 0 such that x∗ is optimal for (A.1) and

min
x∈IRn

L̃(x, λ∗) = min
x∈IRn

‖x‖1 +
α

2
‖x− y‖2 + δ‖(·)−s‖2≤r(x).

If λ∗ = 0, then the solution x̌ of min
x∈IRn

‖x‖1 + α
2 ‖x− y‖

2 lies in {x : ‖x− s‖2 ≤ r} and

x̌ solves (A.1). Moreover, x̌ is given explicitly as sign(y) ◦max{|y| − 1
α , 0}, where ◦

9The fact that r > 0 follows from Lemma 2.4(iii).
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Fig. 3. Plot of ‖xt − xout‖ (in log scale) for model (5.5) with µ = 0 (left) and µ = 1 (right).
The number in the parenthesis is the CPU time taken.

Fig. 4. Plot of ‖xt − xout‖ (in log scale) for model (5.8) with µ = 0 (left) and µ = 1 (right).
The number in the parenthesis is the CPU time taken.

denotes the entrywise product, and the sign function, absolute value and maximum
are taken componentwise.

If λ∗ > 0, using [52, Theorem 28.3], we obtain that

(A.2) 0 ∈ ∂‖x∗‖1 + α(x∗ − y) + 2λ∗(x∗ − s) and ‖x∗ − s‖2 = r.

Using the first relation in (A.2), we have

x∗ = Prox 1
α+2λ∗ ‖·‖1

(
α

α+ 2λ∗
y +

2λ∗

α+ 2λ∗
s

)
,(A.3)

where Proxh(u) := arg min
v∈IRn

{
h(v) + 1

2‖u− v‖
2
}

for a proper closed convex function h.

Plugging this into the second relation in (A.2), we see that λ∗ can be obtained by
solving the following one-dimensional nonsmooth equation and the solution x∗ can
then be recovered via (A.3):∥∥∥∥Prox 1

α+2λ∗ ‖·‖1

(
α

α+ 2λ∗
y +

2λ∗

α+ 2λ∗
s

)
− s
∥∥∥∥2

= r.

Upon the transformation t∗ = α
α+2λ∗ , the above equation becomes piecewise linear

quadratic and can be solved efficiently by a standard root-finding procedure.
In passing, we note that a solution procedure for the subproblem that arises when

SCP is applied to (5.1) can be derived similarly, where the subproblem takes the form

min
x

‖x‖1 − 〈ξ, x〉
s.t. ‖x− s‖2 ≤ r,
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for some ξ, s ∈ IRn and r > 0. We omit the details for brevity.
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