A first-order augmented Lagrangian method for constrained minimax optimization

Zhaosong Lu * Sanyou Mei *

January 5, 2023

Abstract

In this paper we study a class of constrained minimax problems. In particular, we propose a first-order augmented Lagrangian method for solving them, whose subproblems turn out to be a much simpler structured minimax problem and are suitably solved by a firstorder method recently developed in [26] by the authors. Under some suitable assumptions, an operation complexity of $\mathcal{O}\left(\varepsilon^{-4} \log \varepsilon^{-1}\right)$, measured by its fundamental operations, is established for the first-order augmented Lagrangian method for finding an ε-KKT solution of the constrained minimax problems.

Keywords: minimax optimization, augmented Lagrangian method, first-order method, operation complexity
Mathematics Subject Classification: 90C26, 90C30, 90C47, 90C99, 65 K 05

1 Introduction

In this paper, we consider a constrained minimax problem

$$
\begin{equation*}
F^{*}=\min _{c(x) \leq 0} \max _{d(x, y) \leq 0}\{F(x, y):=f(x, y)+p(x)-q(y)\} . \tag{1}
\end{equation*}
$$

Assume that problem (1) has at least one optimal solution and the following additional assumptions hold.

Assumption 1. (i) F is L_{F}-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}, f$ is $L_{\nabla f}$-smooth on $\mathcal{X} \times \mathcal{Y}$, and $f(x, \cdot)$ is concave for any given $x \in \mathcal{X}$, where $\mathcal{X}:=\operatorname{dom} p$ and $\mathcal{Y}:=\operatorname{dom} q \mathbb{1}^{11}$
(ii) $p: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $q: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ are proper closed convex functions, and the proximal operator of p and q can be exactly evaluated.
(iii) $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{\tilde{n}}$ is $L_{\nabla c}$-smooth and L_{c}-Lipschitz continuous on \mathcal{X}, $d: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}^{\tilde{m}}$ is $L_{\nabla d}$-smooth and L_{d}-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}$, and $d_{i}(x, \cdot)$ is convex for each $x \in \mathcal{X}$.
(iv) The sets \mathcal{X} and \mathcal{Y} (namely, $\operatorname{dom} p$ and $\operatorname{dom} q$) are compact.

In the recent years, the minimax problem of a simpler form

$$
\begin{equation*}
\min _{x \in X} \max _{y \in Y} f(x ; y), \tag{2}
\end{equation*}
$$

[^0]where X and Y are a closed set, has received tremendous amount of attention. Indeed, it has found broad applications in many areas, such as adversarial training [16, 29, 40, 45, generative adversarial networks [13, 15, 37, reinforcement learning [8, 11, 31, 34, 41, computational game [1, 35, 42, distributed computing [30, 39, prediction and regression [4, 43, 49, 50], and distributionally robust optimization [12, 38. Numerous methods have been developed for solving (2) with X and Y being a simple closed convex set (e.g., see [6, 18, 19, 22, 23, 25, 28, 33, 47, 51, [52, 54]).

There have also been several studies on some other special cases of problem (11) recently. In particular, two first-order methods, called max-oracle gradient-descent and nested gradient descent/ascent methods, were proposed in 14 for solving (1) with $c(x) \equiv 0$ and p and q being the indicator function of simple compact convex sets X and Y respectively, under the assumption that the function $V(x)=\max _{y \in Y}\{f(x, y): d(x, y) \leq 0\}$ is convex and moreover an optimal Lagrangian multiplier associated with the constraint $d(x, y) \leq 0$ can be computed for each $x \in X$. In addition, a multiplier gradient descent method was proposed in 44 for solving (1) with $c(x) \equiv 0, d(x, y)$ being an affine mapping, and p and q being the indicator function of a simple compact convex set. Also, a proximal gradient multi-step ascent decent method was developed in 9 for (11) with $c(x) \equiv 0, d(x, y)$ being an affine mapping, and $f(x, y)=g(x)+x^{T} A y-h(y)$, under the assumption that $f(x, y)-q(y)$ is strongly concave in y. Besides, primal dual alternating proximal gradient methods were proposed in [53 for (1) with $c(x) \equiv 0, d(x, y)$ being an affine mapping, and $\{f(x, y)$ being strongly concave in y or $[q(y) \equiv 0$ and $f(x, y)$ being a linear function in $y]\}$. For these methods, an iteration complexity for finding an approximate stationary point of the aforementioned special minimax problem was established in [9, 14, 53], respectively. Yet, their operation complexity, measured by the amount of fundamental operations such as evaluations of gradient of f and proximal operator of p and q, was not studied in these works.

There was no algorithmic development for (11) prior to our work, though optimality conditions of (1) were recently studied in [10. In this paper, we propose a first-order augmented Lagrangian (AL) method for solving (11). Specifically, given an iterate $\left(x^{k}, y^{k}\right)$ and a Lagrangian multiplier estimate $\left(\lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k}\right)$ at the k th iteration, the next iterate $\left(x^{k+1}, y^{k+1}\right)$ is obtained by finding an approximate stationary point of the AL subproblem

$$
\min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)
$$

for some $\rho_{k}>0$ through the use of a first-order method proposed in [26], where \mathcal{L} is the AL function of (11) defined as
$\mathcal{L}\left(x, y, \lambda_{\mathbf{x}}, \lambda_{\mathbf{y}} ; \rho\right)=F(x, y)+\frac{1}{2 \rho}\left(\left\|\left[\lambda_{\mathbf{x}}+\rho c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}\right\|^{2}\right)-\frac{1}{2 \rho}\left(\left\|\left[\lambda_{\mathbf{y}}+\rho d(x, y)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}\right\|^{2}\right)$.
The Lagrangian multiplier estimate is then updated by $\lambda_{\mathbf{x}}^{k+1}=\Pi_{\mathbb{B}_{\Lambda}^{+}}\left(\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right)$ and $\lambda_{\mathbf{y}}^{k+1}=$ $\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}$for some $\Lambda>0$, where $\Pi_{\mathbb{B}_{\Lambda}^{+}}(\cdot)$ and $[\cdot]_{+}$are defined in Section 1.1,

The main contributions of this paper are summarized below.

- We propose a first-order AL method for solving problem (11). To the best of our knowledge, this is the first yet implementable method for solving (1).
- We show that under some suitable assumptions, our first-order AL method enjoys an iteration complexity of $\mathcal{O}\left(\log \varepsilon^{-1}\right)$ and an operation complexity of $\mathcal{O}\left(\varepsilon^{-4} \log \varepsilon^{-1}\right)$, measured by the amount of evaluations of $\nabla f, \nabla c, \nabla d$ and proximal operator of p and q, for finding an ε-KKT solution of (1).

The rest of this paper is organized as follows. In Subsection 1.1, we introduce some notation and terminology. In Section 2 we propose a first-order AL method for solving problem (11). In

Section 3, we present complexity results for the proposed method. In Section 4, we provide the proof of the main result.

1.1 Notation and terminology

The following notation will be used throughout this paper. Let \mathbb{R}^{n} denote the Euclidean space of dimension n and \mathbb{R}_{+}^{n} denote the nonnegative orthant in \mathbb{R}^{n}. The standard inner product, l_{1}-norm and Euclidean norm are denoted by $\langle\cdot, \cdot\rangle,\|\cdot\|_{1}$ and $\|\cdot\|$, respectively. For any $\Lambda>0$, let $\mathbb{B}_{\Lambda}^{+}=\{x \geq 0:\|x\| \leq \Lambda\}$, whose dimension is clear from the context. For any $v \in \mathbb{R}^{n}$, let v_{+} denote the nonnegative part of v, that is, $\left(v_{+}\right)_{i}=\max \left\{v_{i}, 0\right\}$ for all i. Given a point x and a closed set S in \mathbb{R}^{n}, let $\operatorname{dist}(x, S)=\min _{x^{\prime} \in S}\left\|x^{\prime}-x\right\|, \Pi_{S}(x)$ denote the Euclidean projection of x onto S, and \mathscr{I}_{S} denote the indicator function associated with S.

A function or mapping ϕ is said to be L_{ϕ}-Lipschitz continuous on a set S if $\left\|\phi(x)-\phi\left(x^{\prime}\right)\right\| \leq$ $L_{\phi}\left\|x-x^{\prime}\right\|$ for all $x, x^{\prime} \in S$. In addition, it is said to be $L_{\nabla \phi}$-smooth on S if $\left\|\nabla \phi(x)-\nabla \phi\left(x^{\prime}\right)\right\| \leq$ $L_{\nabla \phi}\left\|x-x^{\prime}\right\|$ for all $x, x^{\prime} \in S$. For a closed convex function $p: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}, 2^{2}$ the proximal operator associated with p is denoted by prox $_{p}$, that is,

$$
\operatorname{prox}_{p}(x)=\arg \min _{x^{\prime} \in \mathbb{R}^{n}}\left\{\frac{1}{2}\left\|x^{\prime}-x\right\|^{2}+p\left(x^{\prime}\right)\right\} \quad \forall x \in \mathbb{R}^{n} .
$$

Given that evaluation of $\operatorname{prox}_{\gamma p}(x)$ is often as cheap as $\operatorname{prox}_{p}(x)$, we count the evaluation of $\operatorname{prox}_{\gamma p}(x)$ as one evaluation of proximal operator of p for any $\gamma>0$ and $x \in \mathbb{R}^{n}$.

For a lower semicontinuous function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$, its domain is the set $\operatorname{dom} \phi:=$ $\{x \mid \phi(x)<\infty\}$. The upper subderivative of ϕ at $x \in \operatorname{dom} \phi$ in a direction $d \in \mathbb{R}^{n}$ is defined by

$$
\phi^{\prime}(x ; d)=\limsup _{\substack{x^{\prime} \rightarrow x, t \downarrow 0}} \inf _{d^{\prime} \rightarrow d} \frac{\phi\left(x^{\prime}+t d^{\prime}\right)-\phi\left(x^{\prime}\right)}{t}
$$

where $t \downarrow 0$ means both $t>0$ and $t \rightarrow 0$, and $x^{\prime} \xrightarrow{\phi} x$ means both $x^{\prime} \rightarrow x$ and $\phi\left(x^{\prime}\right) \rightarrow \phi(x)$. The subdifferential of ϕ at $x \in \operatorname{dom} \phi$ is the set

$$
\partial \phi(x)=\left\{s \in \mathbb{R}^{n} \mid s^{T} d \leq \phi^{\prime}(x ; d) \quad \forall d \in \mathbb{R}^{n}\right\}
$$

We use $\partial_{x_{i}} \phi(x)$ to denote the subdifferential with respect to x_{i}. In addition, for an upper semicontinuous function ϕ, its subdifferential is defined as $\partial \phi=-\partial(-\phi)$. If ϕ is locally Lipschitz continuous, the above definition of subdifferential coincides with the Clarke subdifferential. Besides, if ϕ is convex, it coincides with the ordinary subdifferential for convex functions. Also, if ϕ is continuously differentiable at x, we simply have $\partial \phi(x)=\{\nabla \phi(x)\}$, where $\nabla \phi(x)$ is the gradient of ϕ at x. In addition, it is not hard to verify that $\partial\left(\phi_{1}+\phi_{2}\right)(x)=\nabla \phi_{1}(x)+\partial \phi_{2}(x)$ if ϕ_{1} is continuously differentiable at x and ϕ_{2} is lower or upper semicontinuous at x. See [7, 46] for more details.

Finally, we introduce an (approximate) stationary point (e.g., see [9, 10, 21) for a general minimax problem

$$
\begin{equation*}
\min _{x} \max _{y} \Psi(x, y), \tag{4}
\end{equation*}
$$

where $\Psi(\cdot, y): \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ is a lower semicontinuous function, and $\Psi(x, \cdot): \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{-\infty\}$ is an upper semicontinuous function.
Definition 1. A point (x, y) is said to be a stationary point of the minimax problem (4) if

$$
0 \in \partial_{x} \Psi(x, y), \quad 0 \in \partial_{y} \Psi(x, y)
$$

In addition, for any $\epsilon>0$, a point $\left(x_{\epsilon}, y_{\epsilon}\right)$ is said to be an ϵ-stationary point of the minimax problem (4) if

$$
\operatorname{dist}\left(0, \partial_{x} \Psi\left(x_{\epsilon}, y_{\epsilon}\right)\right) \leq \epsilon, \quad \operatorname{dist}\left(0, \partial_{y} \Psi\left(x_{\epsilon}, y_{\epsilon}\right)\right) \leq \epsilon
$$

[^1]
2 A first-order augmented Lagrangian method for problem (1)

In this section we propose a first-order augmented Lagrangian (FAL) method for problem (11).
One standard approach for solving constrained nonlinear program is to solve a sequence of unconstrained nonlinear program problems, which are typically penalty or augmented Lagrangian subproblems (e.g., see [32]). In a similar spirit, we next propose an FAL method in Algorithm $\mathbb{1}$ for solving (11). In particular, at each iteration, the FAL method finds an approximate stationary point of an AL subproblem in the form of

$$
\begin{equation*}
\min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}, \lambda_{\mathbf{y}} ; \rho\right) \tag{5}
\end{equation*}
$$

for some $\rho>0, \lambda_{\mathbf{x}} \in \mathbb{R}_{+}^{\tilde{n}}$ and $\lambda_{\mathbf{y}} \in \mathbb{R}_{+}^{\tilde{m}}$, where \mathcal{L} is the AL function associated with problem (11) defined in (3). In view of Assumption (1) one can observe that \mathcal{L} enjoys the following nice properties.

- For any given $\rho>0, \lambda_{\mathbf{x}} \in \mathbb{R}_{+}^{\tilde{n}}$ and $\lambda_{\mathbf{y}} \in \mathbb{R}_{+}^{\tilde{m}}, \mathcal{L}$ is the sum of smooth function $f(x, y)+$ $\left(\left\|\left[\lambda_{\mathbf{x}}+\rho c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}\right\|^{2}\right) /(2 \rho)-\left(\left\|\left[\lambda_{\mathbf{y}}+\rho d(x, y)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}\right\|^{2}\right) /(2 \rho)$ with Lipschitz continuous gradient and possibly nonsmooth function $p(x)-q(y)$ with exactly computable proximal operator.
- \mathcal{L} is nonconvex in x but concave in y.

Thanks to such a nice structure of \mathcal{L}, an approximate stationary point of the AL subproblem (55) can be found by Algorithm 3 (see Appendix A), which is a first-order method proposed in [26, Algorithm 2]) for solving nonconvex-concave minimax problems.

Before presenting an FAL method for (1), we let

$$
\begin{align*}
& \mathcal{L}_{\mathbf{x}}\left(x, y, \lambda_{\mathbf{x}} ; \rho\right):=F(x, y)+\frac{1}{2 \rho}\left(\left\|\left[\lambda_{\mathbf{x}}+\rho c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}\right\|^{2}\right), \tag{6}\\
& c_{\mathrm{hi}}:=\max \{\|c(x)\| x \in \mathcal{X}\}, \quad d_{\mathrm{hi}}:=\max \{\|d(x, y)\| \mid(x, y) \in \mathcal{X} \times \mathcal{Y}\}, \tag{7}
\end{align*}
$$

and make one additional assumption on problem (1).
Assumption 2. For any given $\eta \in(0,1]$, an η-approximately feasible point z_{η} of problem (11), namely $z_{\eta} \in \mathcal{X}$ satisfying $\left\|\left[c\left(z_{\eta}\right)\right]_{+}\right\| \leq \eta$, can be found.

Remark 1. A very similar assumption as Assumption 圆 was considered in [5, 17, [27, 48]. One example of the problem instances satisfying Assumption 圆 arises when the error bound condition $\left.\left\|[c(x)]_{+}\right\|=\mathcal{O}\left(\operatorname{dist}\left(0, \partial\left(\left\|[c(x)]_{+}\right\|^{2}+\mathscr{I}_{\mathcal{X}}(x)\right)\right)\right)^{\nu}\right)$ holds on a level set of $\left\|[c(x)]_{+}\right\|$for some $\nu>0$ (e.g., see [24, 36]). Indeed, one can find the above z_{η} by applying a projected gradient method to the problem $\min _{x \in \mathcal{X}}\left\|[c(x)]_{+}\right\|^{2}$.

We are now ready to present an FAL method for solving problem (1).

```
Algorithm 1 A first-order augmented Lagrangian method for problem (1)
    Input: \(\varepsilon, \tau \in(0,1), \epsilon_{0} \in(\tau \varepsilon, 1], \epsilon_{k}=\epsilon_{0} \tau^{k}, \rho_{k}=\epsilon_{k}^{-1}, \Lambda>0, \lambda_{\mathbf{x}}^{0} \in \mathbb{B}_{\Lambda}^{+}, \lambda_{\mathbf{y}}^{0} \in \mathbb{R}_{+}^{\tilde{m}},\left(x^{0}, y^{0}\right) \in\)
        \(\mathcal{X} \times \mathcal{Y}\), and \(x_{\mathbf{n f}} \in \mathcal{X}\) with \(\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\| \leq \sqrt{\varepsilon}\).
    for \(k=0,1, \ldots\) do
        Set
```

$$
x_{\text {init }}^{k}= \begin{cases}x^{k}, & \text { if } \mathcal{L}_{\mathbf{x}}\left(x^{k}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right) \leq \mathcal{L}_{\mathbf{x}}\left(x_{\mathbf{n f}}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right) \tag{8}\\ x_{\mathbf{n f}}, & \text { otherwise }\end{cases}
$$

$3:$
Call Algorithm 3 (see Appendix A) with $\epsilon \leftarrow \epsilon_{k}, \epsilon_{0} \leftarrow \epsilon_{k} /\left(2 \sqrt{\rho_{k}}\right),\left(x^{0}, y^{0}\right) \leftarrow\left(x_{\text {init }}^{k}, y^{k}\right)$ and $L_{\nabla h} \leftarrow L_{k}$ to find an ϵ_{k}-stationary point $\left(x^{k+1}, y^{k+1}\right)$ of

$$
\begin{equation*}
\min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
L_{k}=L_{\nabla f}+\rho_{k} L_{c}^{2}+\rho_{k} c_{\mathrm{hi}} L_{\nabla c}+\left\|\lambda_{\mathbf{x}}^{k}\right\| L_{\nabla c}+\rho_{k} L_{d}^{2}+\rho_{k} d_{\mathrm{hi}} L_{\nabla d}+\left\|\lambda_{\mathbf{y}}^{k}\right\| L_{\nabla d} \tag{10}
\end{equation*}
$$

Set $\lambda_{\mathbf{x}}^{k+1}=\Pi_{\mathbb{B}_{\Lambda}^{+}}\left(\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right)$ and $\lambda_{\mathbf{y}}^{k+1}=\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}$.
Terminate the algorithm and output $\left(x^{k+1}, y^{k+1}\right)$ if $\epsilon_{k} \leq \varepsilon$.
end for

Remark 2. (i) $x_{\mathbf{n f}}$ is an $\sqrt{\varepsilon}$-approximately feasible point of problem (11), where the subscript "nf" stands for "nearly feasible". It follows from Assumption 圆 that $x_{\mathbf{n f}}$ can be found in advance.
(ii) $\lambda_{\mathbf{x}}^{k+1}$ results from projecting onto a nonnegative Euclidean ball the standard Lagrangian multiplier estimate $\tilde{\lambda}_{\mathbf{x}}^{k+1}$ obtained by the classical scheme $\tilde{\lambda}_{\mathbf{x}}^{k+1}=\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}$. It is called a safeguarded Lagrangian multiplier in the relevant literature [2, 20, 3], which has been shown to enjoy many practical and theoretical advantages (see [2] for discussions).
(iii) In view of Theorem (see Appendix A), one can see that an ϵ_{k}-stationary point of (9) can be successfully found in step 3 of Algorithm 1 by applying Algorithm 3 to problem (9) and thus Algorithm 1 is well-defined.

3 Complexity results of Algorithm 1

In this section we establish iteration and operation complexity results for Algorithm 1, Before proceeding, we make one additional assumption that a generalized Mangasarian-Fromowitz constraint qualification holds for the minimization part of (1) and a uniform Slater's condition holds for the maximization part of (1).

Assumption 3. (i) There exist some constants $\delta_{c}, \theta_{a}, \theta_{f}>0$ such that for each $x \in \mathcal{F}\left(\theta_{f}\right)$ there exists some $v_{x} \in \mathbb{R}^{n}$ satisfying $\left\|v_{x}\right\|=1$ and $v_{x}^{T} \nabla c_{i}(x) \leq-\delta_{c}$ for all $i \in \mathcal{A}\left(x ; \theta_{a}\right)$, where

$$
\begin{equation*}
\mathcal{F}\left(\theta_{f}\right)=\left\{x \in \mathcal{X} \mid\left\|[c(x)]_{+}\right\| \leq \theta_{f}\right\}, \quad \mathcal{A}\left(x ; \theta_{a}\right)=\left\{i \mid c_{i}(x) \geq-\theta_{a}, 1 \leq i \leq \tilde{n}\right\} . \tag{11}
\end{equation*}
$$

(ii) For each $x \in \mathcal{X}$, there exists some $\hat{y}_{x} \in \mathcal{Y}$ such that $d_{i}\left(x, \hat{y}_{x}\right)<0$ for all $i=1,2, \ldots, \tilde{m}$, and moreover, $\delta_{d}:=\inf \left\{-d_{i}\left(x, \hat{y}_{x}\right) \mid x \in \mathcal{X}, i=1,2, \ldots, \tilde{m}\right\}>0.3$

[^2]In order to characterize the approximate solution found by Algorithm we next introduce a terminology called an ε-KKT solution of problem (1).

One can observe from Lemma (iii) that problem (11) is equivalent to

$$
\min _{x, \lambda_{\mathbf{y}}}\left\{\max _{y} F(x, y)-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{+}}}\left(\lambda_{\mathbf{y}}\right) \mid c(x) \leq 0\right\} .
$$

By this, one can further see that problem (11) is equivalent to

$$
\min _{x, \lambda_{\mathbf{y}}} \max _{\lambda_{\mathbf{x}}}\left\{\max _{y}\left\{F(x, y)-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}\left(\lambda_{\mathbf{y}}\right)\right\}+\left\langle\lambda_{\mathbf{x}}, c(x)\right\rangle-\mathscr{I}_{\mathbb{R}_{+}^{\tilde{n}}}\left(\lambda_{\mathbf{x}}\right)\right\},
$$

which is a nonconvex-concave minimax problem

$$
\begin{equation*}
\min _{x, \lambda_{\mathbf{y}}} \max _{y, \lambda_{\mathbf{x}}}\left\{F(x, y)+\left\langle\lambda_{\mathbf{x}}, c(x)\right\rangle-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle-\mathscr{I}_{\mathbb{R}_{+}^{\tilde{n}}}\left(\lambda_{\mathbf{x}}\right)+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}\left(\lambda_{\mathbf{y}}\right)\right\} \tag{12}
\end{equation*}
$$

It then follows from Definition 1 (see also [9, Theorem 3]) that $\left(x, y, \lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{m} \times \mathbb{R}_{+}^{\tilde{n}} \times \mathbb{R}_{+}^{\tilde{m}}$ is a stationary point of problem (12) if

$$
\begin{align*}
& 0 \in \partial_{x} F(x, y)+\nabla c(x) \lambda_{\mathbf{x}}-\nabla_{x} d(x, y) \lambda_{\mathbf{y}} \tag{13}\\
& 0 \in \partial_{y} F(x, y)-\nabla_{y} d(x, y) \lambda_{\mathbf{y}} \tag{14}\\
& c(x) \leq 0, \quad\left\langle\lambda_{\mathbf{x}}, c(x)\right\rangle=0 \tag{15}\\
& d(x, y) \leq 0, \quad\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle=0 \tag{16}
\end{align*}
$$

Based on this observation and the equivalence of (11) and (12), we introduce an (approximate) KKT solution of problem (1) below.

Definition 2. The pair (x, y) is said to be a KKT solution of problem (11) if there exists $\left(\lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}\right) \in \mathbb{R}_{+}^{\tilde{n}} \times \mathbb{R}_{+}^{\tilde{m}}$ such that the conditions (13)-(16) hold. In addition, for any $\varepsilon>0,(x, y)$ is said to be an $\varepsilon-K K T$ point of problem (11) if there exists $\left(\lambda_{\mathbf{x}}, \lambda_{\mathbf{y}}\right) \in \mathbb{R}_{+}^{\tilde{n}} \times \mathbb{R}_{+}^{\tilde{m}}$ such that

$$
\begin{aligned}
& \operatorname{dist}\left(0, \partial_{x} F(x, y)+\nabla c(x) \lambda_{\mathbf{x}}-\nabla_{x} d(x, y) \lambda_{\mathbf{y}}\right) \leq \varepsilon \\
& \operatorname{dist}\left(0, \partial_{y} F(x, y)-\nabla_{y} d(x, y) \lambda_{\mathbf{y}}\right) \leq \varepsilon \\
& \left\|[c(x)]_{+}\right\| \leq \varepsilon, \quad\left|\left\langle\lambda_{\mathbf{x}}, c(x)\right\rangle\right| \leq \varepsilon \\
& \left\|[d(x, y)]_{+}\right\| \leq \varepsilon, \quad\left|\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle\right| \leq \varepsilon
\end{aligned}
$$

To study complexity of Algorithm [1, we define

$$
\begin{align*}
& f^{*}(x):=\max \{F(x, y) \mid d(x, y) \leq 0\}, \tag{17}\\
& f_{\text {low }}^{*}:=\inf \left\{f^{*}(x) \mid x \in \mathcal{X}\right\}, \tag{18}\\
& D_{\mathbf{x}}:=\max \{\|u-v\| \| u, v \in \mathcal{X}\}, \quad D_{\mathbf{y}}:=\max \{\|u-v\| \| u, v \in \mathcal{Y}\}, \tag{19}\\
& F_{\text {hi }}:=\max \{F(x, y) \mid(x, y) \in \mathcal{X} \times \mathcal{Y}\}, \quad F_{\text {low }}:=\min \{F(x, y) \mid(x, y) \in \mathcal{X} \times \mathcal{Y}\}, \tag{20}\\
& r:=2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}, \tag{21}\\
& K:=\left\lceil\left(\log \varepsilon-\log \epsilon_{0}\right) / \log \tau\right\rceil_{+}, \quad \mathbb{K}:=\{0,1, \ldots, K+1\}, \tag{22}
\end{align*}
$$

where L_{F} and δ_{d} are given in Assumptions 1 and 3, and $\epsilon_{0}, \varepsilon$, and τ are some input parameters of Algorithm [1. For convenience, we define $\mathbb{K}-1=\{k-1 \mid k \in \mathbb{K}\}$. One can observe from Assumption 1 that $D_{\mathbf{x}}, D_{\mathbf{y}}, F_{\text {hi }}$ and $F_{\text {low }}$ are finite. Besides, as will be shown in Lemma 1 $f_{\text {low }}^{*}$ is also finite.

We are now ready to present an iteration and operation complexity of Algorithm 1 for finding an $\mathcal{O}(\varepsilon)$-KKT solution of problem (1), whose proof is deferred to Section 4 .

[^3]Theorem 1. Suppose that Assumptions 1, 园 and 3 hold. Let $\left\{\left(x^{k}, y^{k}, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k}\right)\right\}_{k \in \mathbb{K}}$ be generated by Algorithm 1, $c_{\mathrm{hi}}, d_{\mathrm{hi}}, f_{\text {low }}^{*}, D_{\mathbf{x}}, D_{\mathbf{y}}, F_{\mathrm{hi}}, F_{\text {low }}$ and K be defined in (7), (18), (19), (20) and (22), $L_{F}, L_{\nabla f}, L_{\nabla d}, L_{\nabla c}, L_{c}, L_{\nabla d}, L_{d}$ and δ_{d} be given in Assumption 11, $\varepsilon, \epsilon_{0}, \tau, \Lambda$ and $\lambda_{\mathbf{y}}^{0}$ be given in Algorithm 1, and

$$
\begin{align*}
\widehat{L}= & L_{\nabla f}+L_{c}^{2}+c_{\mathrm{hi}} L_{\nabla c}+\Lambda L_{\nabla c}+L_{d}^{2}+d_{\mathrm{hi}} L_{\nabla d}+L_{\nabla d} \sqrt{\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}} \tag{23}\\
\hat{\alpha}= & \min \left\{1, \sqrt{4 /\left(D_{\mathbf{y}} \widehat{L}\right)}\right\}, \quad \hat{\delta}=\left(2+\hat{\alpha}^{-1}\right) \widehat{L} D_{\mathbf{x}}^{2}+\max \left\{1 / D_{\mathbf{y}}, \widehat{L} / 4\right\} D_{\mathbf{y}}^{2} \tag{24}\\
\widehat{M}= & 16 \max \left\{1 /\left(2 L_{c}^{2}\right), 4 /\left(\hat{\alpha} L_{c}^{2}\right)\right\}\left[\left(3 \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right)^{2} / \min \left\{L_{c}^{2}, 1 /\left(2 D_{\mathbf{y}}\right)\right\}+3 \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right]^{2} \\
& \times\left(\hat{\delta}+2 \hat{\alpha}^{-1}\left(F_{\mathrm{hi}}-F_{\mathrm{low}}+\frac{\Lambda^{2}}{2}+\frac{3}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{3\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\rho_{k} d_{\mathrm{hi}}^{2}+\frac{D_{\mathbf{y}}}{4}+\widehat{L} D_{\mathbf{x}}^{2}\right)\right) \tag{25}
\end{align*}
$$

$\widehat{T}=\left\lceil 16\left(L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}-f_{\text {low }}^{*}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau}+\frac{\Lambda^{2}}{2}+\frac{D_{\mathbf{y}}}{4}\right) \widehat{L}\right.$ $\left.+8\left(1+4 D_{\mathbf{y}}^{2} \widehat{L}^{2}\right)\right]_{+}$,
$\tilde{\lambda}_{\mathbf{x}}^{K+1}=\left[\lambda_{\mathbf{x}}^{K}+c\left(x^{K+1}\right) /\left(\epsilon_{0} \tau^{K}\right)\right]_{+}$.
Suppose that

$$
\begin{align*}
& \varepsilon^{-1} \geq \max \left\{1, \theta_{a}^{-1} \Lambda, \theta_{f}^{-2}\left\{2 L_{F} D_{\mathbf{y}}+2 F_{\mathrm{hi}}-2 f_{\mathrm{low}}^{*}+2 \Lambda+\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}\right.\right. \\
&\left.\left.+\frac{\epsilon_{0} D_{\mathbf{y}}}{2}+L_{c}^{-2}+4 D_{\mathbf{y}}^{2} \widehat{L}+\Lambda^{2}\right\}, \frac{4\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}}{\delta_{d}^{2} \tau}+\frac{8\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{\delta_{d}^{2} \tau(1-\tau)}\right\} \tag{28}
\end{align*}
$$

Then the following statements hold.
(i) Algorithm 1 terminates after $K+1$ outer iterations and outputs an approximate stationary point $\left(x^{K+1}, y^{K+1}\right)$ of (11) satisfying

$$
\begin{align*}
& \operatorname{dist}\left(0, \partial_{x} F\left(x^{K+1}, y^{K+1}\right)+\nabla c\left(x^{K+1}\right) \tilde{\lambda}_{x}^{K+1}-\nabla_{x} d\left(x^{K+1}, y^{K+1}\right) \lambda_{\mathbf{y}}^{K+1}\right) \leq \varepsilon, \tag{29}\\
& \operatorname{dist}\left(0, \partial_{y} F\left(x^{K+1}, y^{K+1}\right)-\nabla_{y} d\left(x^{K+1}, y^{K+1}\right) \lambda_{\mathbf{y}}^{K+1}\right) \leq \varepsilon \text {, } \tag{30}\\
& \left\|\left[c\left(x^{K+1}\right)\right]_{+}\right\| \leq \varepsilon \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right), \tag{31}\\
& \left|\left\langle\tilde{\lambda}_{\mathbf{x}}^{K+1}, c\left(x^{K+1}\right)\right\rangle\right| \leq \varepsilon \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right) \\
& \times \max \left\{\delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right), \Lambda\right\}, \tag{32}\\
& \left\|\left[d\left(x^{K+1}, y^{K+1}\right)\right]_{+}\right\| \leq 2 \varepsilon \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}, \tag{33}\\
& \left|\left\langle\lambda_{\mathbf{y}}^{K+1}, d\left(x^{K+1}, y^{K+1}\right)\right\rangle\right| \leq 2 \varepsilon \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} \max \left\{2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}},\left\|\lambda_{\mathbf{y}}^{0}\right\|\right\} \tag{34}
\end{align*}
$$

(ii) The total number of evaluations of $\nabla f, \nabla c, \nabla d$ and proximal operator of p and q performed in Algorithm 1 is at most N, respectively, where

$$
\begin{align*}
N= & \left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{\mathbf{y}}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} \widehat{L}}\right\} \widehat{T}\left(1-\tau^{4}\right)^{-1} \\
& \times(\tau \varepsilon)^{-4}\left(28 K \log (1 / \tau)+28 \log \left(1 / \epsilon_{0}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \tag{35}
\end{align*}
$$

Remark 3. One can observe from Theorem 1 that Algorithm 1 enjoys an iteration complexity of $\mathcal{O}\left(\log \varepsilon^{-1}\right)$ and an operation complexity of $\mathcal{O}\left(\varepsilon^{-4} \log \varepsilon^{-1}\right)$, measured by the amount of evaluations of $\nabla f, \nabla c, \nabla d$ and proximal operator of p and q, for finding an $\mathcal{O}(\varepsilon)-K K T$ solution $\left(x^{K+1}, y^{K+1}\right)$ of (11) such that

$$
\begin{aligned}
& \operatorname{dist}\left(\partial_{x} F\left(x^{K+1}, y^{K+1}\right)+\nabla c\left(x^{K+1}\right) \tilde{\lambda}_{\mathbf{x}}-\nabla_{x} d\left(x^{K+1}, y^{K+1}\right) \lambda_{\mathbf{y}}^{K+1}\right) \leq \varepsilon \\
& \operatorname{dist}\left(\partial_{y} F\left(x^{K+1}, y^{K+1}\right)-\nabla_{y} d\left(x^{K+1}, y^{K+1}\right) \lambda_{\mathbf{y}}^{K+1}\right) \leq \varepsilon \\
& \left\|\left[c\left(x^{K+1}\right)\right]_{+}\right\|=\mathcal{O}(\varepsilon), \quad\left|\left\langle\tilde{\lambda}_{\mathbf{x}}^{K+1}, c\left(x^{K+1}\right)\right\rangle\right|=\mathcal{O}(\varepsilon) \\
& \left\|\left[d\left(x^{K+1}, y^{K+1}\right)\right]_{+}\right\|=\mathcal{O}(\varepsilon), \quad\left|\left\langle\lambda_{\mathbf{y}}^{K+1}, d\left(x^{K+1}, y^{K+1}\right)\right\rangle\right|=\mathcal{O}(\varepsilon)
\end{aligned}
$$

where $\tilde{\lambda}_{\mathbf{x}}^{K+1} \in \mathbb{R}_{+}^{\tilde{n}}$ is defined in (27) and $\lambda_{\mathbf{y}}^{K+1} \in \mathbb{R}_{+}^{\tilde{m}}$ is given in Algorithm 1 .

4 Proof of the main result

In this section, we provide a proof of our main result presented in Section 2, which is particularly Theorem 1. Before proceeding, let

$$
\begin{equation*}
\mathcal{L}_{\mathbf{y}}\left(x, y, \lambda_{\mathbf{y}} ; \rho\right)=F(x, y)-\frac{1}{2 \rho}\left(\left\|\left[\lambda_{\mathbf{y}}+\rho d(x, y)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}\right\|^{2}\right) \tag{36}
\end{equation*}
$$

In view of (3), (17) and (36), one can observe that

$$
\begin{equation*}
f^{*}(x) \leq \max _{y} \mathcal{L}_{\mathbf{y}}\left(x, y, \lambda_{\mathbf{y}} ; \rho\right) \quad \forall x \in \mathcal{X}, \lambda_{\mathbf{y}} \in \mathbb{R}_{+}^{\tilde{m}}, \rho>0 \tag{37}
\end{equation*}
$$

which will be frequently used later.
We next establish several lemmas that will be used to prove Theorem 1 subsequently.
Lemma 1. Suppose that Assumptions 1 and 3 hold. Let $f^{*}, f_{\text {low }}^{*}, D_{\mathbf{y}}, r, L_{F}$ and δ_{d} be given in (17), (18), (19), (21) and Assumption 1, respectively. Then the following statements hold.
(i) $\left\|\lambda_{\mathbf{y}}^{*}\right\| \leq \delta_{d}^{-1} L_{F} D_{\mathbf{y}}$ and $\lambda_{\mathbf{y}}^{*} \in \mathbb{B}_{r}^{+}$for all $\lambda_{\mathbf{y}}^{*} \in \Lambda^{*}(x)$ and $x \in \mathcal{X}$, where $\Lambda^{*}(x)$ denotes the set of optimal Lagrangian multipliers of problem (17) for any $x \in \mathcal{X}$.
(ii) The function f^{*} is Lipschitz continuous on \mathcal{X} and $f_{\text {low }}^{*}$ is finite.
(iii) It holds that

$$
\begin{equation*}
f^{*}(x)=\min _{\lambda_{\mathbf{y}}} \max _{y} F(x, y)-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}\left(\lambda_{\mathbf{y}}\right) \quad \forall x \in \mathcal{X} \tag{38}
\end{equation*}
$$

where $\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}(\cdot)$ is the indicator function associated with $\mathbb{R}_{+}^{\tilde{m}}$.
Proof. (i) Let $x \in \mathcal{X}$ and $\lambda_{\mathbf{y}}^{*} \in \Lambda^{*}(x)$ be arbitrarily chosen, and let $y^{*} \in \mathcal{Y}$ be such that $\left(y^{*}, \lambda_{\mathbf{y}}^{*}\right)$ is a pair of primal-dual optimal solutions of (17). It then follows that

$$
y^{*} \in \underset{y}{\operatorname{Argmax}} F(x, y)-\left\langle\lambda_{\mathbf{y}}^{*}, d(x, y)\right\rangle, \quad\left\langle\lambda_{\mathbf{y}}^{*}, d\left(x, y^{*}\right)\right\rangle=0, \quad d\left(x, y^{*}\right) \leq 0, \quad \lambda_{\mathbf{y}}^{*} \geq 0
$$

The first relation above yields

$$
F\left(x, y^{*}\right)-\left\langle\lambda_{\mathbf{y}}^{*}, d\left(x, y^{*}\right)\right\rangle \geq F\left(x, \hat{y}_{x}\right)-\left\langle\lambda_{\mathbf{y}}^{*}, d\left(x, \hat{y}_{x}\right)\right\rangle
$$

where \hat{y}_{x} is given in Assumption 3(ii). By this and $\left\langle\lambda_{\mathbf{y}}^{*}, d\left(x, y^{*}\right)\right\rangle=0$, one has

$$
\left\langle\lambda_{\mathbf{y}}^{*},-d\left(x, \hat{y}_{x}\right)\right\rangle \leq F\left(x, y^{*}\right)-F\left(x, \hat{y}_{x}\right)
$$

which together with (19), $\lambda_{\mathbf{y}}^{*} \geq 0$ and Assumption 1 implies that

$$
\begin{equation*}
\delta_{d}\left\|\lambda_{\mathbf{y}}^{*}\right\|_{1} \leq\left\langle\lambda_{\mathbf{y}}^{*},-d\left(x, \hat{y}_{x}\right)\right\rangle \leq F\left(x, y^{*}\right)-F\left(x, \hat{y}_{x}\right) \leq L_{F}\left\|y^{*}-\hat{y}_{x}\right\| \leq L_{F} D_{\mathbf{y}}, \tag{39}
\end{equation*}
$$

where the first inequality is due to Assumption [3(ii), and the third inequality follows from (19) and L_{F}-Lipschitz continuity of F (see Assumption $1(\mathrm{i})$). Using (21) and (39), we have $\left\|\lambda_{\mathbf{y}}^{*}\right\| \leq\left\|\lambda_{\mathbf{y}}^{*}\right\|_{1} \leq \delta_{d}^{-1} L_{F} D_{\mathbf{y}}$ and hence $\lambda_{\mathbf{y}}^{*} \in \mathbb{B}_{r}^{+}$due to (21).
(ii) Recall from Assumption 1 that $F(x, \cdot)$ and $d_{i}(x, \cdot), i=1, \ldots, l$, are convex for any given $x \in \mathcal{X}$. Using this, (17), (21) and the first statement of this lemma, we observe that

$$
\begin{equation*}
f^{*}(x)=\max _{y} \min _{\lambda \in \mathbb{B}_{r}^{+}} F(x, y)-\langle\lambda, d(x, y)\rangle \quad \forall x \in \mathcal{X} . \tag{40}
\end{equation*}
$$

Notice from Assumption $\mathbb{1}$ that F and d are Lipschitz continuous on their domain. Then it is not hard to observe that $\min \left\{F(x, y)+\langle\lambda, d(x, y)\rangle \mid \lambda \in \mathbb{B}_{r}^{+}\right\}$is a Lipschitz continuous function of (x, y) on its domain. By this and (40), one can easily verify that f^{*} is Lipschitz continuous on \mathcal{X}. In addition, the finiteness of $f_{\text {low }}^{*}$ follows from (18), the continuity of \tilde{f}^{*}, and the compactness of \mathcal{X}.
(iii) One can observe from (17) that for all $x \in \mathcal{X}$,
$f^{*}(x)=\max _{y} \min _{\lambda_{\mathbf{y}}} F(x, y)-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}\left(\lambda_{\mathbf{y}}\right) \leq \min _{\lambda_{\mathbf{y}}} \max _{y} F(x, y)-\left\langle\lambda_{\mathbf{y}}, d(x, y)\right\rangle+\mathscr{I}_{\mathbb{R}_{+}^{\tilde{m}}}\left(\lambda_{\mathbf{y}}\right)$, where the inequality follows from the weak duality. In addition, it follows from Assumption 1 that the domain of $F(x, \cdot)$ is compact for all $x \in \mathcal{X}$. By this, (40) and the strong duality, one has

$$
f^{*}(x)=\min _{\lambda \in \mathbb{B}_{r}^{+}} \max _{y} F(x, y)-\langle\lambda, d(x, y)\rangle \quad \forall x \in \mathcal{X},
$$

which together with the above inequality implies that (38) holds.
Lemma 2. Suppose that Assumptions $\mathbb{1}$ and 芧 hold. Let $\left\{\lambda_{\mathbf{y}}^{k}\right\}_{k \in \mathbb{K}}$ be generated by Algorithm $\mathbb{1}$, $f_{\text {low }}^{*}, D_{\mathbf{y}}$, and $F_{\text {hi }}$ be defined in (18), (19) and (20), and ϵ_{0}, τ, and ρ_{k} be given in Algorithm (1). Then we have

$$
\begin{equation*}
\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2} \leq\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau} \quad \forall 0 \leq k \in \mathbb{K}-1 . \tag{41}
\end{equation*}
$$

Proof. One can observe from (18), (20) and Algorithm 1 that $F_{\text {hi }} \geq f_{\text {low }}^{*}$ and $\rho_{0} \geq 1>\tau>0$, which imply that (41) holds for $k=0$. It remains to show that (41)) holds for all $1 \leq k \in \mathbb{K}-1$.

Since $\left(x^{t+1}, y^{t+1}\right)$ is an ϵ_{t}-stationary point of (9) for all $0 \leq t \in \mathbb{K}-1$, it follows from Definition $\mathbb{\square}$ that there exists some $u \in \partial_{y} \mathcal{L}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{x}}^{t}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}, \rho_{t}\right)$ with $\|u\| \leq \epsilon_{t}$. Notice from (3) and (36) that $\partial_{y} \mathcal{L}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{x}}^{t}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}, \rho_{t}\right)=\partial_{y} \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)$. Hence, $u \in$ $\partial_{y} \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)$. Also, observe from (1), (36) and Assumption 1 that $\mathcal{L}_{\mathbf{y}}\left(x^{t+1}, \cdot, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)$ is concave. Using this, (19), $u \in \partial_{y} \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)$ and $\|u\| \leq \epsilon_{t}$, we obtain

$$
\begin{aligned}
\mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right) & \leq \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)+\left\langle u, y-y^{t+1}\right\rangle \\
& \leq \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)+D_{\mathbf{y}} \epsilon_{t} \quad \forall y \in \mathcal{Y},
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\max _{y} \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right) \leq \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y^{t+1}, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right)+D_{\mathbf{y}} \epsilon_{t} . \tag{42}
\end{equation*}
$$

By this, (36) and (37), one has

$$
\begin{aligned}
& f^{*}\left(x^{t+1}\right) \stackrel{\sqrt[37]{3}}{\leq} \max _{y} \mathcal{L}_{\mathbf{y}}\left(x^{t+1}, y, \lambda_{\mathbf{y}}^{t} ; \rho_{t}\right) \\
& \stackrel{\sqrt{366}[42]}{\leq} F\left(x^{t+1}, y^{t+1}\right)-\frac{1}{2 \rho_{t}}\left(\left\|\left[\lambda_{\mathbf{y}}^{t}+\rho_{t} d\left(x^{t+1}, y^{t+1}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{t}\right\|^{2}\right)+D_{\mathbf{y}} \epsilon_{t} \\
& \quad=F\left(x^{t+1}, y^{t+1}\right)-\frac{1}{2 \rho_{t}}\left(\left\|\lambda_{\mathbf{y}}^{t+1}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{t}\right\|^{2}\right)+D_{\mathbf{y}} \epsilon_{t},
\end{aligned}
$$

where the equality follows from the relation $\lambda_{\mathbf{y}}^{t+1}=\left[\lambda_{\mathbf{y}}^{t}+\rho_{t} d\left(x^{t+1}, y^{t+1}\right)\right]_{+}$(see Algorithm (1)). Using the above inequality, (18), (20) and $\epsilon_{t} \leq \epsilon_{0}$ (see Algorithm (1), we have

$$
\left\|\lambda_{\mathbf{y}}^{t+1}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{t}\right\|^{2} \leq 2 \rho_{k}\left(F\left(x^{t+1}, y^{t+1}\right)-f^{*}\left(x^{t+1}\right)+D_{\mathbf{y}} \epsilon_{t}\right) \leq 2 \rho_{t}\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right) .
$$

Summing up this inequality for $t=0, \ldots, k-1$ with $1 \leq k \in \mathbb{K}-1$ yields

$$
\begin{equation*}
\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2} \leq\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+2\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right) \sum_{t=0}^{k-1} \rho_{t} \tag{43}
\end{equation*}
$$

Recall from Algorithm 1 that $\rho_{t}=\epsilon_{t}^{-1}=\left(\epsilon_{0} \tau^{t}\right)^{-1}$. Then we have $\sum_{t=0}^{k-1} \rho_{t} \leq \rho_{k-1} /(1-\tau)$. Using this, (43) and $\rho_{k}>\rho_{k-1} \geq 1$ (see Algorithm (1), we obtain that for all $1 \leq k \in \mathbb{K}-1$,

$$
\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2} \leq \rho_{k}^{-1}\left(\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right) \rho_{k-1}}{1-\tau}\right) \leq\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau} .
$$

Hence, the conclusion holds as desired.
Lemma 3. Suppose that Assumptions \square and 芧 hold. Let $f_{\text {low }}^{*}, D_{\mathbf{y}}$ and $F_{\text {hi }}$ be defined in (18), (19) and (20), L_{F} and δ_{d} be given in Assumptions $\mathbb{1}$ and 图, and $\epsilon_{0}, \tau, \epsilon_{k}$ and ρ_{k} be given in Algorithm [1. Suppose that $\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{y}}^{k+1}\right)$ is generated by Algorithm \square for some $0 \leq k \in \mathbb{K}-1$ with

$$
\begin{equation*}
\rho_{k} \geq \frac{4\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}}{\delta_{d}^{2}}+\frac{8\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{\delta_{d}^{2}(1-\tau)} . \tag{44}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left\|\left[d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\| \leq \rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k+1}\right\| \leq 2 \rho_{k}^{-1} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} . \tag{45}
\end{equation*}
$$

Proof. Suppose that $\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{y}}^{k+1}\right)$ is generated by Algorithm \square for some $0 \leq k \in \mathbb{K}-1$ with ρ_{k} satisfying (44). Since $\left(x^{k+1}, y^{k+1}\right)$ is an ϵ_{k}-stationary point of (9), it follows from (3) and Definition 1 that

$$
\operatorname{dist}\left(0, \partial_{y} F\left(x^{k+1}, y^{k+1}\right)-\nabla_{y} d\left(x^{k+1}, y^{k+1}\right)\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right) \leq \epsilon_{k} .
$$

Besides, notice from Algorithm \square that $\lambda_{\mathbf{y}}^{k+1}=\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}$. Hence, there exists some $u \in \partial_{y} F\left(x^{k+1}, y^{k+1}\right)$ such that

$$
\begin{equation*}
\left\|u-\nabla_{y} d\left(x^{k+1}, y^{k+1}\right) \lambda_{y}^{k+1}\right\| \leq \epsilon_{k} . \tag{46}
\end{equation*}
$$

By Assumption 3 (ii), there exists some $\hat{y}^{k+1} \in \mathcal{Y}$ such that $-d_{i}\left(x^{k+1}, \hat{y}^{k+1}\right) \geq \delta_{d}$ for all i. Notice that $\left\langle\lambda_{\mathbf{y}}^{k+1}, \lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right\rangle=\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\|^{2} \geq 0$, which implies that

$$
\begin{equation*}
-\left\langle\lambda_{\mathbf{y}}^{k+1}, \rho_{k}^{-1} \lambda_{\mathbf{y}}^{k}\right\rangle \leq\left\langle\lambda_{\mathbf{y}}^{k+1}, d\left(x^{k+1}, y^{k+1}\right)\right\rangle . \tag{47}
\end{equation*}
$$

Using these and (46), we have

$$
\begin{align*}
& F\left(x^{k+1}, \hat{y}^{k+1}\right)-F\left(x^{k+1}, y^{k+1}\right)+\delta_{d}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|_{1}-\rho_{k}^{-1}\left\langle\lambda_{\mathbf{y}}^{k+1}, \lambda_{\mathbf{y}}^{k}\right\rangle \\
& \leq F\left(x^{k+1}, \hat{y}^{k+1}\right)-F\left(x^{k+1}, y^{k+1}\right)-\left\langle\lambda_{\mathbf{y}}^{k+1}, \rho_{k}^{-1} \lambda_{\mathbf{y}}^{k}+d\left(x^{k+1}, \hat{y}^{k+1}\right)\right\rangle \\
& \left.\stackrel{477}{\leq} F\left(x^{k+1}, \hat{y}^{k+1}\right)-F\left(x^{k+1}, y^{k+1}\right)+\left\langle\lambda_{\mathbf{y}}^{k+1}, d\left(x^{k+1}, y^{k+1}\right)-d\left(x^{k+1}, \hat{y}^{k+1}\right)\right)\right\rangle \\
& \leq\left\langle u, \hat{y}^{k+1}-y^{k+1}\right\rangle+\left\langle\nabla_{y} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}, y^{k+1}-\hat{y}^{k+1}\right\rangle \\
& =\left\langle u-\nabla_{y} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}, y^{k+1}-\hat{y}^{k+1}\right\rangle \leq D_{\mathbf{y}} \epsilon_{k}, \tag{48}
\end{align*}
$$

where the first inequality is due to $\lambda_{\mathbf{y}}^{k+1} \geq 0$ and $-d_{i}\left(x^{k+1}, \hat{y}^{k+1}\right) \geq \delta_{d}$ for all i, the third inequality follows from $u \in \partial_{y} F\left(x^{k+1}, y^{k+1}\right), \lambda_{\mathbf{y}}^{k+1} \geq 0$, the concavity of $F\left(x^{k+1}, \cdot\right)$ and the convexity of $d_{i}\left(x^{k+1}, \cdot\right)$, and the last inequality is due to (19) and (46).

In view of (19), (48) and the Lipschitz continuity of F (see Assumption (1), one has

$$
\begin{align*}
D_{\mathbf{y}} \epsilon_{k}+L_{F} D_{\mathbf{y}} & \stackrel{(19)}{\geq} D_{\mathbf{y}} \epsilon_{k}+L_{F}\left\|\hat{y}^{k+1}-y^{k+1}\right\| \geq D_{\mathbf{y}} \epsilon_{k}-F\left(x^{k+1}, \hat{y}^{k+1}\right)+F\left(x^{k+1}, y^{k+1}\right) \\
& \stackrel{48}{\geq} \delta_{d}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|_{1}-\rho_{k}^{-1}\left\langle\lambda_{\mathbf{y}}^{k+1}, \lambda_{\mathbf{y}}^{k}\right\rangle \geq\left(\delta_{d}-\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\|\right)\left\|\lambda_{\mathbf{y}}^{k+1}\right\|, \tag{49}
\end{align*}
$$

where the second inequality follows from L_{F}-Lipschitz continuity of F, and the last inequality is due to $\left\|\lambda_{\mathbf{y}}^{k+1}\right\|_{1} \geq\left\|\lambda_{\mathbf{y}}^{k+1}\right\|$. In addition, it follows from (41) and (44) that

$$
\delta_{d}-\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\| \stackrel{(41)}{\geq} \delta_{d}-\sqrt{\rho_{k}^{-1}\left(\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}\right)} \stackrel{(44)}{\geq} \frac{1}{2} \delta_{d}
$$

which together with (49) yields

$$
\frac{1}{2} \delta_{d}\left\|\lambda_{\mathbf{y}}^{k+1}\right\| \leq\left(\delta_{d}-\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\|\right)\left\|\lambda_{\mathbf{y}}^{k+1}\right\| \stackrel{(49)}{\leq} D_{\mathbf{y}} \epsilon_{k}+L_{F} D_{\mathbf{y}}
$$

The conclusion then follows from this, $\epsilon_{k} \leq \epsilon_{0}$, and the relations

$$
\left\|\left[d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\| \leq \rho_{k}^{-1}\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\|=\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|
$$

Lemma 4. Suppose that Assumptions 11 and 3 hold. Let $f_{\text {low }}^{*}, D_{\mathbf{y}}$ and $F_{\text {low }}$ be defined in (18), (19) and (20), L_{F} and δ_{d} be given in Assumptions 1 and 3, $\epsilon_{0}, \tau, \epsilon_{k}, \rho_{k}$ and $\lambda_{\mathbf{y}}^{0}$ be given in Algorithm 1. Suppose that $\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k+1}, \lambda_{\mathbf{y}}^{k+1}\right)$ is generated by Algorithm 1 for some $0 \leq k \in \mathbb{K}-1$ with

$$
\begin{equation*}
\rho_{k} \geq \frac{4\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}}{\delta_{d}^{2} \tau}+\frac{8\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{\delta_{d}^{2} \tau(1-\tau)} \tag{50}
\end{equation*}
$$

Let

$$
\begin{equation*}
\tilde{\lambda}_{\mathbf{x}}^{k+1}=\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+} . \tag{51}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \operatorname{dist}\left(0, \partial_{x} F\left(x^{k+1}, y^{k+1}\right)+\nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}\right) \leq \epsilon_{k} \tag{52}\\
& \operatorname{dist}\left(0, \partial_{y} F\left(x^{k+1}, y^{k+1}\right)-\nabla_{y} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}\right) \leq \epsilon_{k} \tag{53}\\
& \left\|\left[d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\| \leq 2 \rho_{k}^{-1} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} \tag{54}\\
& \left|\left\langle\lambda_{\mathbf{y}}^{k+1}, d\left(x^{k+1}, y^{k+1}\right)\right\rangle\right| \leq 2 \rho_{k}^{-1} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} \max \left\{\left\|\lambda_{\mathbf{y}}^{0}\right\|, 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}\right\} . \tag{55}
\end{align*}
$$

Proof. Suppose that $\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k+1}, \lambda_{\mathbf{y}}^{k+1}\right)$ is generated by Algorithm 1 for some $0 \leq k \in \mathbb{K}-1$ with ρ_{k} satisfying (50). Since $\left(x^{k+1}, y^{k+1}\right)$ is an ϵ_{k}-stationary point of (9), it then follows from Definition 1 that

$$
\begin{equation*}
\operatorname{dist}\left(0, \partial_{x} \mathcal{L}\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)\right) \leq \epsilon_{k}, \operatorname{dist}\left(0, \partial_{y} \mathcal{L}\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)\right) \leq \epsilon_{k} \tag{56}
\end{equation*}
$$

Observe from Algorithm 1 that $\lambda_{\mathbf{y}}^{k+1}=\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}$. In view of this, (3) and (51), one has

$$
\begin{aligned}
\partial_{x} \mathcal{L}\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)= & \partial_{x} F\left(x^{k+1}, y^{k+1}\right)+\nabla c\left(x^{k+1}\right)\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+} \\
& -\nabla_{x} d\left(x^{k+1}, y^{k+1}\right)\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+} \\
= & \partial_{x} F\left(x^{k+1}, y^{k+1}\right)+\nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1} \\
\partial_{y} \mathcal{L}\left(x^{k+1}, y^{k+1}, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)= & \partial_{y} F\left(x^{k+1}, y^{k+1}\right)-\nabla_{y} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}
\end{aligned}
$$

These relations together with (56) imply that (52) and (53) hold.
Notice from Algorithm 1 that $0<\tau<1$, which together with (50) implies that (44) holds for ρ_{k}. It then follows that (45) holds, which immediately yields (54) and

$$
\begin{equation*}
\left\|\lambda_{\mathbf{y}}^{k+1}\right\| \leq 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} \tag{57}
\end{equation*}
$$

Claim that

$$
\begin{equation*}
\left\|\lambda_{\mathbf{y}}^{k}\right\| \leq \max \left\{\left\|\lambda_{\mathbf{y}}^{0}\right\|, 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}\right\} \tag{58}
\end{equation*}
$$

Indeed, (58) clearly holds if $k=0$. We now assume that $k>0$. Notice from Algorithm 1 that $\rho_{k-1}=\tau \rho_{k}$, which together with (50) implies that (44) holds with k replaced by $k-1$. By this and Lemma 3 with k replaced by $k-1$, one can conclude that $\left\|\lambda_{\mathbf{y}}^{k}\right\| \leq 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}$ and hence (58) holds.

We next show that (55) holds. Indeed, by $\lambda_{\mathbf{y}}^{k+1} \geq 0$, (47), (54), (57) and (58), one has

$$
\begin{aligned}
&\left\langle\lambda_{\mathbf{y}}^{k+1}, d\left(x^{k+1}, y^{k+1}\right)\right\rangle \leq\left\langle\lambda_{\mathbf{y}}^{k+1},\left[d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\rangle \leq\left\|\lambda_{\mathbf{y}}^{k+1}\right\|\left\|\left[d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\| \\
& \stackrel{54)}{\leq} 4 \rho_{k}^{-1} \delta_{d}^{-2}\left(\epsilon_{0}+L_{F}\right)^{2} D_{\mathbf{y}}^{2} \\
&\left\langle\lambda_{\mathbf{y}}^{k+1}, d\left(x^{k+1}, y^{k+1}\right)\right\rangle \stackrel{(47)}{\geq}\left\langle\lambda_{\mathbf{y}}^{k+1},-\rho_{k}^{-1} \lambda_{\mathbf{y}}^{k}\right\rangle \geq-\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|\left\|\lambda_{\mathbf{y}}^{k}\right\| \\
& \geq-2 \rho_{k}^{-1} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}} \max \left\{\left\|\lambda_{\mathbf{y}}^{0}\right\|, 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}\right\} .
\end{aligned}
$$

These relations imply that (55) holds.
Lemma 5. Suppose that Assumptions $\mathbb{1}$, 2 and 3 hold. Let $\left\{\left(\lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k}\right)\right\}_{k \in \mathbb{K}}$ be generated by Algorithm 11, $\mathcal{L}, f_{\text {low }}^{*}, D_{\mathbf{y}}$ and F_{hi} be defined in (3), (18), (19) and (20), L_{F} be given in Assumption 1. and $\epsilon_{0}, \tau, \rho_{k}, \Lambda$ and $x_{\text {init }}^{k}$ be given in Algorithm 1. Then for all $0 \leq k \in \mathbb{K}-1$, we have

$$
\begin{equation*}
\max _{y} \mathcal{L}\left(x_{\mathrm{init}}^{k}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \leq L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau} \tag{59}
\end{equation*}
$$

Proof. In view of (6), (8), (20) and $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$ (see Algorithm (1), one has

$$
\begin{align*}
\mathcal{L}_{\mathbf{x}}\left(x_{\mathrm{init}}^{k}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right) & \stackrel{(8)}{\leq} \mathcal{L}_{\mathbf{x}}\left(x_{\mathbf{n f}}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right) \stackrel{(6)}{=} F\left(x_{\mathbf{n f}}, y^{k}\right)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right) \\
& \leq F\left(x_{\mathbf{n f}}, y^{k}\right)+\frac{1}{2 \rho_{k}}\left(\left(\left\|\lambda_{\mathbf{x}}^{k}\right\|+\rho_{k}\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|\right)^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right) \\
& =F\left(x_{\mathbf{n f}}, y^{k}\right)+\left\|\lambda_{\mathbf{x}}^{k}\right\|\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|+\frac{1}{2} \rho_{k}\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|^{2} \\
& \stackrel{(20)}{\leq} F_{\mathrm{hi}}+\Lambda\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|+\frac{1}{2} \rho_{k}\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|^{2} \tag{60}
\end{align*}
$$

In addition, one can observe from Algorithm 1 that $\epsilon_{k}>\tau \varepsilon$ for all $0 \leq k \in \mathbb{K}-1$. By this and the choice of ρ_{k} in Algorithm 1, we obtain that $\rho_{k}=\epsilon_{k}^{-1}<\tau^{-1} \varepsilon^{-1}$ for all $0 \leq k \in \mathbb{K}-1$. It then follows from this, (31), (6), (19), (41), (60), $\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\| \leq \sqrt{\varepsilon} \leq 1$, and the Lipschitz continuity
of F that

$$
\begin{aligned}
& \max _{y} \mathcal{L}\left(x_{\mathrm{init}}^{k}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \stackrel{(3) \sqrt[(6)]{=}}{=} \max _{y}\left\{\mathcal{L}_{\mathbf{x}}\left(x_{\mathrm{init}}^{k}, y, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right)-\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x_{\mathrm{init}}^{k}, y\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right)\right\} \\
& \leq \max _{y}\left\{\mathcal{L}_{\mathbf{x}}\left(x_{\mathrm{init}}^{k}, y, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right)+\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right\} \\
& \text { (6) } \max _{y}\left\{F\left(x_{\mathrm{init}}^{k}, y\right)-F\left(x_{\mathrm{init}}^{k}, y^{k}\right)+\mathcal{L}_{\mathbf{x}}\left(x_{\mathrm{init}}^{k}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right)+\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right\} \\
& \leq \max _{y \in \mathcal{Y}} L_{F}\left\|y-y^{k}\right\|+\mathcal{L}_{\mathbf{x}}\left(x_{\mathrm{init}}^{k}, y^{k}, \lambda_{\mathbf{x}}^{k} ; \rho_{k}\right)+\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2} \\
& \leq L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}+\Lambda\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\|+\frac{1}{2} \rho_{k}\left\|\left[c\left(x_{\mathrm{nf}}\right)\right]_{+}\right\|^{2}+\frac{1}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau} \\
& \leq L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau},
\end{aligned}
$$

where the second inequality follows from L_{F}－Lipschitz continuity of F（see Assumption $\rrbracket(i)$ ）， the third inequality follows from（19），（41）and（60），and the last inequality follows from $\rho_{k}<$ $\tau^{-1} \varepsilon^{-1}$ and $\left\|\left[c\left(x_{\mathbf{n f}}\right)\right]_{+}\right\| \leq \sqrt{\varepsilon} \leq 1$ ．

Lemma 6．Suppose that Assumptions园，圆 and 圆hold．Let $L_{k}, f_{\text {low }}^{*}, D_{\mathbf{x}}, D_{\mathbf{y}}, F_{\text {hi }}$ and $F_{\text {low }}$ be defined in（10），（18），（19）and（20），L_{F} be given in Assumption［1，$\epsilon_{0}, \tau, \epsilon_{k}, \rho_{k}, \Lambda$ and $\lambda_{\mathbf{y}}^{0}$ be given in Algorithm 1，and

$$
\begin{align*}
\alpha_{k}= & \min \left\{1, \sqrt{4 \epsilon_{k} /\left(D_{\mathbf{y}} L_{k}\right)}\right\}, \tag{61}\\
\delta_{k}= & \left(2+\alpha_{k}^{-1}\right) L_{k} D_{\mathbf{x}}^{2}+\max \left\{\epsilon_{k} / D_{\mathbf{y}}, \alpha_{k} L_{k} / 4\right\} D_{\mathbf{y}}^{2}, \tag{62}\\
M_{k}= & \frac{16 \max \left\{1 /\left(2 L_{k}\right), \min \left\{D_{\mathbf{y}} / \epsilon_{k}, 4 /\left(\alpha_{k} L_{k}\right)\right\}\right\} \rho_{k}}{\left[\left(3 L_{k}+\epsilon_{k} /\left(2 D_{\mathbf{y}}\right)\right)^{2} / \min \left\{L_{k}, \epsilon_{k} /\left(2 D_{\mathbf{y}}\right)\right\}+3 L_{k}+\epsilon_{k} /\left(2 D_{\mathbf{y}}\right)\right]^{-2} \epsilon_{k}^{2}} \times\left(\delta_{k}+2 \alpha_{k}^{-1}\left(F_{\mathrm{hi}}-F_{\text {low }}\right.\right. \\
& \left.\left.+\frac{\Lambda^{2}}{2 \rho_{k}}+\frac{3}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{3\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\rho_{k} d_{\mathrm{hi}}^{2}+\frac{\epsilon_{k} D_{\mathbf{y}}}{4}+L_{k} D_{\mathbf{x}}^{2}\right)\right) \tag{63}\\
T_{k}= & {\left[16\left(L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}-f_{\text {low }}^{*}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau}+\frac{\Lambda^{2}}{2 \rho_{k}}+\frac{\epsilon_{k} D_{\mathbf{y}}}{4}\right) L_{k} \epsilon_{k}^{-2}\right.} \\
& \left.+8\left(1+4 D_{\mathbf{y}}^{2} L_{k}^{2} \epsilon_{k}^{-2}\right) \rho_{k}^{-1}-1\right\rceil_{+} \tag{64}\\
N_{k}= & \left(\left[96 \sqrt{2}\left(1+\left(24 L_{k}+4 \epsilon_{k} / D_{\mathbf{y}}\right) L_{k}^{-1}\right)\right\rceil+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} L_{k} \epsilon_{k}^{-1}}\right\} \\
& \times\left(\left(T_{k}+1\right)\left(\log M_{k}\right)_{+}+T_{k}+1+2 T_{k} \log \left(T_{k}+1\right)\right) . \tag{65}
\end{align*}
$$

Then for all $0 \leq k \in \mathbb{K}-1$ ，Algorithm $⿴ 囗 十$ finds an ϵ_{k}－stationary point $\left(x^{k+1}, y^{k+1}\right)$ of problem （9）that satisfies

$$
\begin{align*}
\max _{y} \mathcal{L}\left(x^{k+1}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \leq & L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau} \\
& +\frac{\epsilon_{k} D_{\mathbf{y}}}{4}+\frac{1}{2 \rho_{k}}\left(L_{k}^{-1} \epsilon_{k}^{2}+4 D_{\mathbf{y}}^{2} L_{k}\right) . \tag{66}
\end{align*}
$$

Moreover，the total number of evaluations of $\nabla f, \nabla c, \nabla d$ and proximal operator of p and q performed in iteration k of Algorithm $\mathbb{1}$ is no more than N_{k} ，respectively．

Proof. Observe from (11) and (3) that problem (9) can be viewed as

$$
\min _{x} \max _{y}\{h(x, y)+p(x)-q(y)\},
$$

where

$$
h(x, y)=f(x, y)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right)-\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d(x, y)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right) .
$$

Notice that

$$
\begin{aligned}
& \nabla_{x} h(x, y)=\nabla_{x} f(x, y)+\nabla_{c}(x)\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c(x)\right]_{+}+\nabla_{x} d(x, y)\left[\lambda_{\mathrm{y}}^{k}+\rho_{k} d(x, y)\right]_{+}, \\
& \nabla_{y} h(x, y)=\nabla_{y} f(x, y)+\nabla_{y} d(x, y)\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d(x, y)\right]_{+}
\end{aligned}
$$

It follows from Assumption (iii) that

$$
\|\nabla c(x)\| \leq L_{c}, \quad\|\nabla d(x, y)\| \leq L_{d} \quad \forall(x, y) \in \mathcal{X} \times \mathcal{Y} .
$$

In view of the above relations, (17) and Assumption (1) one can observe that $\nabla c(x)\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c(x)\right]_{+}$ is $\left(\rho_{k} L_{c}^{2}+\rho_{k} c_{\mathrm{hi}} L_{\nabla c}+\left\|\lambda_{\mathbf{x}}^{k}\right\| L_{\nabla c}\right)$-Lipschitz continuous on \mathcal{X}, and $\nabla d(x, y)\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d(x, y)\right]_{+}$is $\left(\rho_{k} L_{d}^{2}+\rho_{k} d_{\mathrm{hi}} L_{\nabla d}+\left\|\lambda_{\mathbf{y}}^{k}\right\| L_{\nabla d}\right)$-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}$. Using these and the fact that $\nabla f(x, y)$ is $L_{\nabla f}$-Lipschitz continuous on $\mathcal{X} \times \mathcal{Y}$, we can see that $h(x, y)$ is L_{k}-smooth on $\mathcal{X} \times \mathcal{Y}$ for all $0 \leq k \in \mathbb{K}-1$, where L_{k} is given in (10). Consequently, it follows from Theorem 2 that Algorithm 3 can be suitably applied to problem (9) for finding an ϵ_{k}-stationary point $\left(x^{k+1}, y^{k+1}\right)$ of it.

In addition, by (3), (18), (36), (37) and $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$ (see Algorithm (1)), one has

$$
\begin{align*}
& \min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \stackrel{(3) \sqrt[(36)]{=}}{=} \min _{x} \max _{y}\left\{\mathcal{L}_{\mathbf{y}}\left(x, y, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right)\right\} \\
& \stackrel{(37)}{\geq} \min _{x}\left\{f^{*}(x)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c(x)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right)\right\} \stackrel{(18)}{\geq} f_{\text {low }}^{*}-\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2} \geq f_{\text {low }}^{*}-\frac{\Lambda^{2}}{2 \rho_{k}} . \tag{67}
\end{align*}
$$

Let $\left(x^{*}, y^{*}\right)$ be an optimal solution of (1). It then follows that $c\left(x^{*}\right) \leq 0$. Using this, (3), (20) and (41), we obtain that

$$
\begin{align*}
& \min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \leq \max _{y} \mathcal{L}\left(x^{*}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \\
& \stackrel{(\Omega 3)}{=} \max _{y}\left\{F\left(x^{*}, y\right)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{*}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right)-\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{*}, y\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right)\right\} \\
& \leq \max _{y}\left\{F\left(x^{*}, y\right)-\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{*}, y\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}\right)\right\} \\
& \leq F_{\mathrm{hi}}+\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2} \stackrel{[410}{\leq} F_{\mathrm{hi}}+\frac{1}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau} \tag{68}
\end{align*}
$$

where the second inequality is due to $c\left(x^{*}\right) \leq 0$. Moreover, it follows from this, (3), (77), (201), (41), $\lambda_{\mathbf{y}}^{k} \in \mathbb{R}_{+}^{\tilde{m}}$ and $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$ that

$$
\begin{align*}
& \min _{(x, y) \in \mathcal{X} \times \mathcal{Y}} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \stackrel{(3)}{\geq} \min _{(x, y) \in \mathcal{X} \times \mathcal{Y}}\left\{F(x, y)-\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}-\frac{1}{2 \rho_{k}}\left\|\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d(x, y)\right]_{+}\right\|^{2}\right\} \\
& \geq \min _{(x, y) \in \mathcal{X} \times \mathcal{Y}}\left\{F(x, y)-\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}-\frac{1}{2 \rho_{k}}\left(\left\|\lambda_{\mathbf{y}}^{k}\right\|+\rho_{k}\left\|[d(x, y)]_{+}\right\|\right)^{2}\right\} \\
& \geq \min _{(x, y) \in \mathcal{X} \times \mathcal{Y}}\left\{F(x, y)-\frac{1}{2 \rho_{k}}\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}-\rho_{k}^{-1}\left\|\lambda_{\mathbf{y}}^{k}\right\|^{2}-\rho_{k}\left\|[d(x, y)]_{+}\right\|^{2}\right\} \\
& \geq F_{\text {low }}-\frac{\Lambda^{2}}{2 \rho_{k}}-\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}-\frac{2\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}-\rho_{k} d_{\mathrm{hi}}^{2}, \tag{69}
\end{align*}
$$

where the second inequality is due to $\lambda_{\mathbf{y}}^{k} \in \mathbb{R}_{+}^{\tilde{m}}$ and the last inequality is due to (7), (20), (41) and $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$.

To complete the rest of the proof, let

$$
\begin{align*}
& H(x, y)=\mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right), \quad H^{*}=\min _{x} \max _{y} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \tag{70}\\
& H_{\text {low }}=\min _{(x, y) \in \mathcal{X} \times \mathcal{Y}} \mathcal{L}\left(x, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) \tag{71}
\end{align*}
$$

In view of these, (59), (67), (68), (69), we obtain that

$$
\begin{aligned}
& \max _{y} H\left(x_{\mathrm{init}}^{k}, y\right) \stackrel{(59)}{\leq} L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau}, \\
& f_{\text {low }}^{*}-\frac{\Lambda^{2}}{2 \rho_{k}} \stackrel{\sqrt{67})}{\leq} H^{*} \stackrel{(68)}{\leq} F_{\mathrm{hi}}+\frac{1}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau} \\
& H_{\text {low }} \\
& \stackrel{(69)}{\geq} F_{\text {low }}-\frac{\Lambda^{2}}{2 \rho_{k}}-\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}-\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}-\rho_{k} d_{\mathrm{hi}}^{2}
\end{aligned}
$$

Using these and Theorem 2 (see Appendix A) with $x^{0}=x_{\text {init }}^{k}, D_{p}=D_{\mathbf{x}}, D_{q}=D_{\mathbf{y}}, \epsilon=\epsilon_{k}$, $\epsilon_{0}=\epsilon_{k} /\left(2 \sqrt{\rho_{k}}\right), L_{\nabla h}=L_{k}, \alpha=\alpha_{k}, \delta=\delta_{k}$, and $H, H^{*}, H_{\text {low }}$ given in (70) and (71), we can conclude that Algorithm 3 performs at most N_{k} evaluations of $\nabla f, \nabla c, \nabla d$ and proximal operator of p and q for finding an ϵ_{k}-stationary point of problem (9) satisfying (66).
Lemma 7. Suppose that Assumptions 1, 园 and 3 hold. Let $f_{\text {low }}^{*}, D_{\mathbf{y}}, F_{\text {hi }}$ and \widehat{L} be defined in (18), (19), (20) and (23), $L_{F}, L_{c}, \delta_{c}, \theta_{f}$ and θ_{a} be given in Assumptions 1 and (3, and ϵ_{0}, τ, ρ_{k}, Λ and $\lambda_{\mathbf{y}}^{0}$ be given in Algorithm 1. Suppose that $\left(x^{k+1}, \lambda_{\mathbf{x}}^{k+1}\right)$ is generated by Algorithm 1 for some $0 \leq k \in \mathbb{K}-1$ with

$$
\begin{align*}
\rho_{k} \geq \max \{ & \theta_{a}^{-1} \Lambda, \theta_{f}^{-2}\left\{2 L_{F} D_{\mathbf{y}}+2 F_{\mathrm{hi}}-2 f_{\mathrm{low}}^{*}+2 \Lambda+\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}\right. \\
& \left.\left.+\frac{\epsilon_{0} D_{\mathbf{y}}}{2}+L_{c}^{-2}+4 D_{\mathbf{y}}^{2} \widehat{L}+\Lambda^{2}\right\}, \frac{4\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}}{\delta_{d}^{2} \tau}+\frac{8\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{\delta_{d}^{2} \tau(1-\tau)}\right\} \tag{72}
\end{align*}
$$

Let

$$
\begin{equation*}
\tilde{\lambda}_{\mathbf{x}}^{k+1}=\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+} \tag{73}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\| \leq \rho_{k}^{-1} \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right) \tag{74}\\
& \left|\left\langle\tilde{\lambda}_{\mathbf{x}}^{k+1}, c\left(x^{k+1}\right)\right\rangle\right| \leq \rho_{k}^{-1} \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right) \max \left\{\delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right), \Lambda\right\} \tag{75}
\end{align*}
$$

Proof. One can observe from (3), (18), (36) and (37) that

$$
\begin{aligned}
\max _{y} \mathcal{L}\left(x^{k+1}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right) & =\max _{y} \mathcal{L}_{\mathbf{y}}\left(x^{k+1}, y, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right) \\
& \stackrel{\text { (37] }}{\geq} f^{*}\left(x^{k+1}\right)+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right) \\
& \stackrel{\text { II8) }}{\geq} f_{\text {low }}^{*}+\frac{1}{2 \rho_{k}}\left(\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|^{2}-\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2}\right) .
\end{aligned}
$$

By this inequality, (66) and $\left\|\lambda_{\mathrm{x}}^{k}\right\| \leq \Lambda$, one has

$$
\begin{aligned}
& \left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|^{2} \leq 2 \rho_{k} \max _{y} \mathcal{L}\left(x^{k+1}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)-2 \rho_{k} f_{\text {low }}^{*}+\left\|\lambda_{\mathbf{x}}^{k}\right\|^{2} \\
& \leq 2 \rho_{k} \max _{y} \mathcal{L}\left(x^{k+1}, y, \lambda_{\mathbf{x}}^{k}, \lambda_{\mathbf{y}}^{k} ; \rho_{k}\right)-2 \rho_{k} f_{\text {low }}^{*}+\Lambda^{2} \\
& \stackrel{(66)}{\leq} 2 \rho_{k} L_{F} D_{\mathbf{y}}+2 \rho_{k} F_{\mathrm{hi}}+2 \rho_{k} \Lambda+\rho_{k}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{2 \rho_{k}\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\frac{\rho_{k} \epsilon_{k} D_{\mathbf{y}}}{2} \\
& \quad+L_{k}^{-1} \epsilon_{k}^{2}+4 D_{\mathbf{y}}^{2} L_{k}-2 \rho_{k} f_{\text {low }}^{*}+\Lambda^{2}
\end{aligned}
$$

This together with $\rho_{k}^{2}\left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\|^{2} \leq\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|^{2}$ implies that

$$
\begin{align*}
\left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\|^{2} \leq & \rho_{k}^{-1}\left(2 L_{F} D_{\mathbf{y}}+2 F_{\mathrm{hi}}-2 f_{\text {low }}^{*}+2 \Lambda+\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\frac{\epsilon_{k} D_{\mathbf{y}}}{2}\right) \\
& +\rho_{k}^{-2}\left(L_{k}^{-1} \epsilon_{k}^{2}+4 D_{\mathbf{y}}^{2} L_{k}+\Lambda^{2}\right) . \tag{76}
\end{align*}
$$

In addition, we observe from (10), (23), (41), $\rho_{k} \geq 1$ and $\left\|\lambda_{\mathrm{x}}^{k}\right\| \leq \Lambda$ that for all $0 \leq k \leq K$,

$$
\begin{align*}
& \rho_{k} L_{c}^{2} \leq L_{k}=L_{\nabla f}+\rho_{k} L_{c}^{2}+\rho_{k} c_{\mathrm{hi}} L_{\nabla c}+\left\|\lambda_{\mathbf{x}}^{k}\right\| L_{\nabla c}+\rho_{k} L_{d}^{2}+\rho_{k} d_{\mathrm{hi}} L_{\nabla d}+\left\|\lambda_{\mathbf{y}}^{k}\right\| L_{\nabla d} \\
& \leq L_{\nabla f}+\rho_{k} L_{c}^{2}+\rho_{k} c_{\mathrm{hi}} L_{\nabla c}+\Lambda L_{\nabla c}+\rho_{k} L_{d}^{2}+\rho_{k} d_{\mathrm{hi}} L_{\nabla d} \\
& \quad+L_{\nabla d} \sqrt{\rho_{k}\left(\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{y} \epsilon_{0}\right)}{1-\tau}\right)} \leq \rho_{k} \widehat{L} \tag{77}
\end{align*}
$$

Using this relation, (72), (76), $\rho_{k} \geq 1$ and $\epsilon_{k} \leq \epsilon_{0}$, we have

$$
\begin{aligned}
\left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\|^{2} \leq & \rho_{k}^{-1}\left(2 L_{F} D_{\mathbf{y}}+2 F_{\mathrm{hi}}-f_{\text {low }}^{*}+2 \Lambda+\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\frac{\epsilon_{k} D_{\mathbf{y}}}{2}\right) \\
& +\rho_{k}^{-2}\left(\left(\rho_{k} L_{c}^{2}\right)^{-1} \epsilon_{k}^{2}+4 \rho_{k} D_{\mathbf{y}}^{2} \widehat{L}+\Lambda^{2}\right) \\
\leq & \rho_{k}^{-1}\left(2 L_{F} D_{\mathbf{y}}+2 F_{\mathrm{hi}}-f_{\text {low }}^{*}+2 \Lambda+\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{2\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\frac{\epsilon_{0} D_{\mathbf{y}}}{2}\right) \\
& +\rho_{k}^{-1}\left(L_{c}^{-2}+4 D_{\mathbf{y}}^{2} \widehat{L}+\Lambda^{2}\right) \stackrel{[72]}{\leq} \theta_{f}^{2},
\end{aligned}
$$

which together with (111) implies that $x^{k+1} \in \mathcal{F}\left(\theta_{f}\right)$.
It follows from $x^{k+1} \in \mathcal{F}\left(\theta_{f}\right)$ and Assumption [3(i) that there exists some v_{x} such that $\left\|v_{x}\right\|=1$ and $v_{x}^{T} \nabla c_{i}\left(x^{k+1}\right) \leq-\delta_{c}$ for all $i \in \mathcal{A}\left(x^{k+1} ; \theta_{a}\right)$, where $\mathcal{A}\left(x^{k+1} ; \theta_{a}\right)$ is defined in (111). Let $\overline{\mathcal{A}}\left(x^{k+1} ; \theta_{a}\right)=\{1,2, \ldots, \tilde{n}\} \backslash \mathcal{A}\left(x^{k+1} ; \theta_{a}\right)$. Notice from (11) that $c_{i}\left(x^{k+1}\right)<-\theta_{a}$ for all $i \in \overline{\mathcal{A}}\left(x^{k+1} ; \theta_{a}\right)$. In addition, observe from (72) that $\rho_{k} \geq \theta_{a}^{-1} \Lambda$. Using these and $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$, we obtain that $\left(\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right)_{i} \leq \Lambda-\rho_{k} \theta_{a} \leq 0$ for all $i \in \overline{\mathcal{A}}\left(x^{k+1} ; \theta_{a}\right)$. By this and the fact that $v_{x}^{T} \nabla c_{i}\left(x^{k+1}\right) \leq-\delta_{c}$ for all $i \in \mathcal{A}\left(x^{k+1} ; \theta_{a}\right)$, one has

$$
\begin{align*}
& v_{x}^{T} \nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1} \stackrel{(733)}{=} v_{x}^{T} \nabla c\left(x^{k+1}\right)\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}=\sum_{i=1}^{\tilde{n}} v_{x}^{T} \nabla c_{i}\left(x^{k+1}\right)\left(\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right)_{i} \\
& =\sum_{i \in \mathcal{A}\left(x^{k+1} ; \theta_{a}\right)} v_{x}^{T} \nabla c_{i}\left(x^{k+1}\right)\left(\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right)_{i}+\sum_{i \in \overline{\mathcal{A}}\left(x^{k+1 ;} ; \theta_{a}\right)} v_{x}^{T} \nabla c_{i}\left(x^{k+1}\right)\left(\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right)_{i} \\
& \leq-\delta_{c} \sum_{i \in \mathcal{A}\left(x^{k+1} ; \theta_{a}\right)}\left(\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right)_{i}=-\delta_{c} \sum_{i=1}^{\tilde{n}}\left(\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right)_{i} \stackrel{(73)}{=}-\delta_{c}\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\|_{1} . \tag{78}
\end{align*}
$$

Since (x^{k+1}, y^{k+1}) is an ϵ_{k}-stationary point of (9), it follows from (3) and (56) that there exists some $s \in \partial_{x} F\left(x^{k+1}, y^{k+1}\right)$ such that

$$
\left\|s+\nabla c\left(x^{k+1}\right)\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right)\left[\lambda_{\mathbf{y}}^{k}+\rho_{k} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}\right\| \leq \epsilon_{k},
$$

which along with（731）and $\lambda_{\mathbf{y}}^{k+1}=\left[\lambda_{\mathbf{y}}^{k}+\rho_{x} d\left(x^{k+1}, y^{k+1}\right)\right]_{+}$implies that

$$
\left\|s+\nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}\right\| \leq \epsilon_{k} .
$$

By this，（78）and $\left\|v_{x}\right\|=1$ ，one has

$$
\begin{aligned}
\epsilon_{k} & \geq\left\|s+\nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}\right\| \cdot\left\|v_{x}\right\| \\
& \geq\left\langle s+\nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1}-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1},-v_{x}\right\rangle \\
& =-\left\langle s-\nabla_{x} d\left(x^{k+1}, y^{k+1}\right) \lambda_{\mathbf{y}}^{k+1}, v_{x}\right\rangle-v_{x}^{T} \nabla c\left(x^{k+1}\right) \tilde{\lambda}_{\mathbf{x}}^{k+1} \\
& \stackrel{\text { (788) }}{\geq}-\left(\|s\|+\left\|\nabla_{x} d\left(x^{k+1}, y^{k+1}\right)\right\|\left\|\lambda_{\mathbf{y}}^{k+1}\right\|\right)\left\|v_{x}\right\|+\delta_{c}\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\|_{1} . \\
& \geq-L_{F}-L_{d}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|+\delta_{c}\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\|_{1},
\end{aligned}
$$

where the last inequality is due to $\left\|v_{x}\right\|=1$ and Assumptions（i）and（iii）．Notice from（72） that（44）holds．It then follows from（45））that $\left\|\lambda_{\mathbf{y}}^{k+1}\right\| \leq 2 \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}$ ，which together with the above inequality and $\epsilon_{k} \leq \epsilon_{0}$ yields

$$
\begin{equation*}
\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\| \leq\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\|_{1} \leq \delta_{c}^{-1}\left(L_{F}+L_{d}\left\|\lambda_{\mathbf{y}}^{k+1}\right\|+\epsilon_{k}\right) \leq \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right) . \tag{79}
\end{equation*}
$$

By this and（73），one can observe that
$\left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\| \leq \rho_{k}^{-1}\left\|\left[\lambda_{\mathbf{x}}^{k}+\rho_{k} c\left(x^{k+1}\right)\right]_{+}\right\|=\rho_{k}^{-1}\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\| \leq \rho_{k}^{-1} \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right)$.
Hence，（744）holds as desired．
We next show that（75）holds．Indeed，by $\tilde{\lambda}_{\mathrm{x}}^{k+1} \geq 0$ ，（74）and（79），one has

$$
\begin{align*}
\left\langle\tilde{\lambda}_{\mathbf{x}}^{k+1}, c\left(x^{k+1}\right)\right\rangle & \leq\left\langle\tilde{\lambda}_{\mathrm{x}}^{k+1},\left[c\left(x^{k+1}\right)\right]_{+}\right\rangle \leq\left\|\tilde{\lambda}_{\mathrm{x}}^{k+1}\right\|\left\|\left[c\left(x^{k+1}\right)\right]_{+}\right\| \\
& \stackrel{(774)}{\leq} \rho_{k}^{-1} \delta_{c}^{-2}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right)^{2} . \tag{80}
\end{align*}
$$

Using a similar argument as for the proof of（47），we have

$$
-\left\langle\tilde{\lambda}_{\mathbf{x}}^{k+1}, \rho_{k}^{-1} \lambda_{\mathbf{x}}^{k}\right\rangle \leq\left\langle\tilde{\lambda}_{\mathbf{x}}^{k+1}, c\left(x^{k+1}\right)\right\rangle,
$$

which along with $\left\|\lambda_{\mathbf{x}}^{k}\right\| \leq \Lambda$ and（79）yields

$$
\left\langle\tilde{\lambda}_{\mathbf{x}}^{k+1}, c\left(x^{k+1}\right)\right\rangle \geq-\rho_{k}^{-1}\left\|\tilde{\lambda}_{\mathbf{x}}^{k+1}\right\|\left\|\lambda_{\mathbf{x}}^{k}\right\| \geq-\rho_{k}^{-1} \delta_{c}^{-1}\left(L_{F}+2 L_{d} \delta_{d}^{-1}\left(\epsilon_{0}+L_{F}\right) D_{\mathbf{y}}+\epsilon_{0}\right) \Lambda .
$$

The relation（75）then follows from this and（80）．
We are now ready to prove Theorem 1 ，
Proof of Theorem 11．（i）Observe from the definition of K in（22）and $\epsilon_{k}=\epsilon_{0} \tau^{k}$ that K is the smallest nonnegative integer such that $\epsilon_{K} \leq \varepsilon$ ．Hence，Algorithm 1 terminates and outputs $\left(x^{K+1}, y^{K+1}\right)$ after $K+1$ outer iterations．It follows from these and $\rho_{k}=\epsilon_{k}^{-1}$ that $\epsilon_{K} \leq \varepsilon$ and $\rho_{K} \geq \varepsilon^{-1}$ ．By this and（28），one can see that（50）and（72）holds for $k=K$ ．It then follows from Lemmas 4 and 7 that（29）－（34）hold．
（ii）Let K and N be given in（22）and（35）．Recall from Lemma 6 that the number of evaluations of $\nabla f, \nabla c, \nabla d$ ，proximal operator of p and q performed by Algorithm 3at iteration k of Algorithm is at most N_{k} ，where N_{k} is given in（65）．By this and statement（i）of this theorem，one can observe that the total number of evaluations of $\nabla f, \nabla c, \nabla d$ ，proximal operator of p and q performed in Algorithm $⿴ 囗 十 ⺝$ is no more than $\sum_{k=0}^{K} N_{k}$ ，respectively．As a result，to prove statement（ii）of this theorem，it suffices to show that $\sum_{k=0}^{K} N_{k} \leq N$ ．Recall from（77）
and Algorithm 1 that $\rho_{k} L_{c}^{2} \leq L_{k} \leq \rho_{k} \widehat{L}$ and $\rho_{k} \geq 1 \geq \epsilon_{k}$. Using these, (24), (25), (26), (61), (62), (63) and (64), we obtain that

$$
\begin{align*}
& 1 \geq \alpha_{k} \geq \min \left\{1, \sqrt{4 \epsilon_{k} /\left(\rho_{k} D_{\mathbf{y}} \widehat{L}\right)}\right\} \geq \epsilon_{k}^{1 / 2} \rho_{k}^{-1 / 2} \hat{\alpha}, \tag{81}\\
& \delta_{k} \leq\left(2+\epsilon_{k}^{-1 / 2} \rho_{k}^{1 / 2} \hat{\alpha}^{-1}\right) \rho_{k} \widehat{L} D_{\mathbf{x}}^{2}+\max \left\{1 / D_{\mathbf{y}}, \rho_{k} \widehat{L} / 4\right\} D_{\mathbf{y}}^{2} \leq \epsilon_{k}^{-1 / 2} \rho_{k}^{3 / 2} \hat{\delta}, \tag{82}\\
& M_{k} \leq \frac{16 \max \left\{1 /\left(2 \rho_{k} L_{c}^{2}\right), 4 /\left(\epsilon_{k}^{1 / 2} \rho_{k}^{-1 / 2} \hat{\alpha} \rho_{k} L_{c}^{2}\right)\right\} \rho_{k}}{\left[\left(3 \rho_{k} \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right)^{2} / \min \left\{\rho_{k} L_{c}^{2}, \epsilon_{k} /\left(2 D_{\mathbf{y}}\right)\right\}+3 \rho_{k} \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right]^{-2} \epsilon_{k}^{2}} \times\left(\epsilon_{k}^{-1 / 2} \rho_{k}^{3 / 2} \hat{\delta}\right. \\
&+2 \epsilon_{k}^{-1 / 2} \rho_{k}^{1 / 2} \hat{\alpha}^{-1}\left(F_{\mathrm{hi}}-F_{\text {low }}+\frac{\Lambda^{2}}{2}+\frac{3}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{3\left(F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+\rho_{k} d_{\mathrm{hi}}^{2}\right. \\
&\left.\left.+\frac{D_{\mathbf{y}}}{4}+\rho_{k} \widehat{L} D_{\mathbf{x}}^{2}\right)\right) \tag{83}\\
& \leq \frac{16 \epsilon_{k}^{-1 / 2} \rho_{k}^{-1 / 2} \max \left\{1 /\left(2 L_{c}^{2}\right), 4 /\left(\hat{\alpha} L_{c}^{2}\right)\right\} \rho_{k}}{\epsilon_{k}^{2} \rho_{k}^{-4}\left[\left(3 \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right)^{2} / \min \left\{L_{c}^{2}, 1 /\left(2 D_{\mathbf{y}}\right)\right\}+3 \widehat{L}+1 /\left(2 D_{\mathbf{y}}\right)\right]^{-2} \epsilon_{k}^{2}} \times\left(\epsilon_{k}^{-1 / 2} \rho_{k}^{3 / 2}\right)\left(\hat{\delta}+2 \hat{\alpha}^{-1}\right. \\
& \times\left.\left(F_{\mathrm{hi}}-F_{\mathrm{low}}+\frac{\Lambda^{2}}{2}+\frac{3}{2}\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}+\frac{3\left(F_{\mathrm{hi}}-f_{\text {low }}^{*}+D_{\mathbf{y}} \epsilon_{0}\right)}{1-\tau}+d_{\mathrm{hi}}^{2}+\frac{D_{\mathbf{y}}}{4}+\widehat{L} D_{\mathbf{x}}^{2}\right)\right) \leq \epsilon_{k}^{-5} \rho_{k}^{6} \widehat{M}, \\
& T_{k} \leq {\left[16\left(L_{F} D_{\mathbf{y}}+F_{\mathrm{hi}}-f_{\text {low }}^{*}+\Lambda+\frac{1}{2}\left(\tau^{-1}+\left\|\lambda_{\mathbf{y}}^{0}\right\|^{2}\right)+\frac{F_{\mathrm{hi}}-f_{\mathrm{low}}^{*}+D_{\mathbf{y}} \epsilon_{0}}{1-\tau}+\frac{\Lambda^{2}}{2}+\frac{D_{\mathbf{y}}}{4}\right) \epsilon_{k}^{-2} \rho_{k} \widehat{L}\right.} \\
&\left.+8\left(1+4 D_{\mathbf{y}}^{2} \rho_{k}^{2} \widehat{L}^{2} \epsilon_{k}^{-2}\right) \rho_{k}^{-1}-1\right] \quad \leq \epsilon_{k}^{-2} \rho_{k} \widehat{T},
\end{align*}
$$

where (83) follows from (24), (25), (26), (81), (82), $\rho_{k} L_{c}^{2} \leq L_{k} \leq \rho_{k} \widehat{L}$, and $\rho_{k} \geq 1 \geq \epsilon_{k}$. By the above inequalities, (65), (77), $\widehat{T} \geq 1$ and $\rho_{k} \geq 1 \geq \epsilon_{k}$, one has

$$
\begin{align*}
& \sum_{k=0}^{K} N_{k} \leq \sum_{k=0}^{K}\left(\left[96 \sqrt{2}\left(1+\left(24 \rho_{k} \widehat{L}+4 / D_{\mathbf{y}}\right) /\left(\rho_{k} L_{c}^{2}\right)\right)\right]+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} \rho_{k} \widehat{L} \epsilon_{k}^{-1}}\right\} \\
& \quad \times\left(\left(\epsilon_{k}^{-2} \rho_{k} \widehat{T}+1\right)\left(\log \left(\epsilon_{k}^{-5} \rho_{k}^{6} \widehat{M}\right)\right)_{+}+\epsilon_{k}^{-2} \rho_{k} \widehat{T}+1+2 \epsilon_{k}^{-2} \rho_{k} \widehat{T} \log \left(\epsilon_{k}^{-2} \rho_{k} \widehat{T}+1\right)\right) \\
& \leq \sum_{k=0}^{K}\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{\mathbf{y}}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} \widehat{L}}\right\} \epsilon_{k}^{-1 / 2} \rho_{k}^{1 / 2} \\
& \quad \times \epsilon_{k}^{-2} \rho_{k}\left((\widehat{T}+1)\left(\log \left(\epsilon_{k}^{-5} \rho_{k}^{6} \widehat{M}\right)\right)_{+}+\widehat{T}+1+2 \widehat{T} \log \left(\epsilon_{k}^{-2} \rho_{k} \widehat{T}+1\right)\right) \\
& \leq \\
& \sum_{k=0}^{K}\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{\mathbf{y}}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} \widehat{L}}\right\} \\
& \quad \times \epsilon_{k}^{-5 / 2} \rho_{k}^{3 / 2} \widehat{T}\left(2\left(\log \left(\epsilon_{k}^{-5} \rho_{k}^{6} \widehat{M}\right)\right)_{+}+2+2 \log \left(2 \epsilon_{k}^{-2} \rho_{k} \widehat{T}\right)\right) \\
& \leq \tag{84}\\
& \\
& \quad \sum_{k=0}^{K}\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{\mathbf{y}}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{\mathbf{y}} \widehat{L}}\right\} \widehat{T} \\
& \quad \times \epsilon_{k}^{-5 / 2} \rho_{k}^{3 / 2}\left(14 \log \rho_{k}-14 \log \epsilon_{k}+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right)
\end{align*}
$$

By the definition of K in (22), one has $\tau^{K} \geq \tau \varepsilon / \epsilon_{0}$. Also, notice from Algorithm 1 that
$\rho_{k}=\epsilon_{k}^{-1}=\left(\epsilon_{0} \tau^{k}\right)^{-1}$. It then follows from these, (35) and (84) that

$$
\begin{aligned}
& \sum_{k=0}^{K} N_{k} \leq \sum_{k=0}^{K}\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{y}\right) / L_{c}^{2}\right)\right\rceil+2\right) \max \left\{2, \sqrt{D_{y} \widehat{L}}\right\} \widehat{T} \\
& \times \epsilon_{k}^{-4}\left(28 \log \left(1 / \epsilon_{k}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \\
&=\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{y}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{y} \widehat{L}}\right\} \widehat{T} \\
& \times \sum_{k=0}^{K} \epsilon_{0}^{-4} \tau^{-4 k}\left(28 k \log (1 / \tau)+28 \log \left(1 / \epsilon_{0}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \\
& \leq\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{y}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{y} \widehat{L}}\right\} \widehat{T} \\
& \quad \times \sum_{k=0}^{K} \epsilon_{0}^{-4} \tau^{-4 k}\left(28 K \log (1 / \tau)+28 \log \left(1 / \epsilon_{0}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \\
& \leq\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{y}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{y} \widehat{L}}\right\} \widehat{T} \epsilon_{0}^{-4} \\
& \quad \times \tau^{-4 K}\left(1-\tau^{4}\right)^{-1}\left(28 K \log (1 / \tau)+28 \log \left(1 / \epsilon_{0}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \\
& \leq\left(\left[96 \sqrt{2}\left(1+\left(24 \widehat{L}+4 / D_{y}\right) / L_{c}^{2}\right)\right]+2\right) \max \left\{2, \sqrt{D_{y} \widehat{L}}\right\} \widehat{T} \epsilon_{0}^{-4}\left(1-\tau^{4}\right)^{-1} \\
& \times\left(\tau \varepsilon / \epsilon_{0}\right)^{-4}\left(28 K \log (1 / \tau)+28 \log \left(1 / \epsilon_{0}\right)+2(\log \widehat{M})_{+}+2+2 \log (2 \widehat{T})\right) \stackrel{\text { (35) }}{=} N,
\end{aligned}
$$

where the second last inequality is due to $\sum_{k=0}^{K} \tau^{-4 k} \leq \tau^{-4 K} /\left(1-\tau^{4}\right)$, and the last inequality is due to $\tau^{K} \geq \tau \varepsilon / \epsilon_{0}$. Hence, statement (ii) of this theorem holds as desired.

References

[1] K. Antonakopoulos, E. V. Belmega, and P. Mertikopoulos. Adaptive extra-gradient methods for min-max optimization and games. In The International Conference on Learning Representations, 2021.
[2] E. G. Birgin and J. M. Martínez. Practical Augmented Lagrangian Methods for Constrained Optimization. SIAM, 2014.
[3] E. G. Birgin and J. M. Martínez. Complexity and performance of an augmented Lagrangian algorithm. Optim. Methods and Softw., 35(5):885-920, 2020.
[4] N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and games. Cambridge University Press, 2006.
[5] X. Chen, L. Guo, Z. Lu, and J. J. Ye. An augmented Lagrangian method for non-Lipschitz nonconvex programming. SIAM J. Numer. Anal., 55(1):168-193, 2017.
[6] Z. Chen, Y. Zhou, T. Xu, and Y. Liang. Proximal gradient descent-ascent: variable convergence under Kも geometry. arXiv preprint arXiv:2102.04653, 2021.
[7] F. H. Clarke. Optimization and nonsmooth analysis. SIAM, 1990.
[8] B. Dai, A. Shaw, L. Li, L. Xiao, N. He, Z. Liu, J. Chen, and L. Song. SBEED: Convergent reinforcement learning with nonlinear function approximation. In International Conference on Machine Learning, pages 1125-1134, 2018.
[9] Y.-H. Dai, J. Wang, and L. Zhang. Optimality conditions and numerical algorithms for a class of linearly constrained minimax optimization problems. arXiv preprint arXiv:2204.09185, 2022.
[10] Y.-H. Dai and L. Zhang. Optimality conditions for constrained minimax optimization. arXiv preprint arXiv:2004.09730, 2020.
[11] S. S. Du, J. Chen, L. Li, L. Xiao, and D. Zhou. Stochastic variance reduction methods for policy evaluation. In International Conference on Machine Learning, pages 1049-1058, 2017.
[12] J. Duchi and H. Namkoong. Variance-based regularization with convex objectives. Journal of Machine Learning Research, 20(1):2450-2504, 2019.
[13] G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational inequality perspective on generative adversarial networks. In International Conference on Learning Representations, 2019.
[14] D. Goktas and A. Greenwald. Convex-concave min-max stackelberg games. Advances in Neural Information Processing Systems, 34:2991-3003, 2021.
[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems, pages 2672-2680, 2014.
[16] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learning Representations, 2015.
[17] G. N. Grapiglia and Y. Yuan. On the complexity of an augmented Lagrangian method for nonconvex optimization. IMA J. Numer. Anal., 41(2):1508-1530, 2021.
[18] Z. Guo, Z. Yuan, Y. Yan, and T. Yang. Fast objective \& duality gap convergence for nonconvex-strongly-concave min-max problems. arXiv preprint arXiv:2006.06889, 2020.
[19] F. Huang, S. Gao, J. Pei, and H. Huang. Accelerated zeroth-order momentum methods from mini to minimax optimization. arXiv preprint arXiv:2008.08170, 3, 2020.
[20] C. Kanzow and D. Steck. An example comparing the standard and safeguarded augmented Lagrangian methods. Oper. Res. Lett., 45(6):598-603, 2017.
[21] W. Kong and R. D. Monteiro. An accelerated inexact proximal point method for solving nonconvex-concave min-max problems. SIAM Journal on Optimization, 31(4):2558-2585, 2021.
[22] T. Lin, C. Jin, and M. Jordan. On gradient descent ascent for nonconvex-concave minimax problems. In International Conference on Machine Learning, pages 6083-6093, 2020.
[23] T. Lin, C. Jin, and M. I. Jordan. Near-optimal algorithms for minimax optimization. In Conference on Learning Theory, pages 2738-2779. PMLR, 2020.
[24] S. Lu. A single-loop gradient descent and perturbed ascent algorithm for nonconvex functional constrained optimization. In International Conference on Machine Learning, pages 14315-14357, 2022.
[25] S. Lu, I. Tsaknakis, M. Hong, and Y. Chen. Hybrid block successive approximation for one-sided non-convex min-max problems: algorithms and applications. IEEE Transactions on Signal Processing, 68:3676-3691, 2020.
[26] Z. Lu and S. Mei. First-order penalty methods for bilevel optimization. arXiv preprint arXiv:2301.01716, 2023.
[27] Z. Lu and Y. Zhang. An augmented Lagrangian approach for sparse principal component analysis. Math. Program., 135(1-2):149-193, 2012.
[28] L. Luo, H. Ye, Z. Huang, and T. Zhang. Stochastic recursive gradient descent ascent for stochastic nonconvex-strongly-concave minimax problems. Advances in Neural Information Processing Systems, 33:20566-20577, 2020.
[29] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations, 2018.
[30] G. Mateos, J. A. Bazerque, and G. B. Giannakis. Distributed sparse linear regression. IEEE Transactions on Signal Processing, 58:5262-5276, 2010.
[31] O. Nachum, Y. Chow, B. Dai, and L. Li. DualDICE: Behavior-agnostic estimation of discounted stationary distribution corrections. In Advances in Neural Information Processing Systems, pages 2315-2325, 2019.
[32] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.
[33] M. Nouiehed, M. Sanjabi, T. Huang, J. D. Lee, and M. Razaviyayn. Solving a class of nonconvex min-max games using iterative first order methods. Advances in Neural Information Processing Systems, 32, 2019.
[34] S. Qiu, Z. Yang, X. Wei, J. Ye, and Z. Wang. Single-timescale stochastic nonconvex-concave optimization for smooth nonlinear td learning. arXiv preprint arXiv:2008.10103, 2020.
[35] A. Rakhlin and K. Sridharan. Optimization, learning, and games with predictable sequences. In Advances in Neural Information Processing Systems, pages 3066-3074, 2013.
[36] M. F. Sahin, A. Eftekhari, A. Alacaoglu, F. Latorre, and V. Cevher. An inexact augmented Lagrangian framework for nonconvex optimization with nonlinear constraints. Advances in Neural Information Processing Systems, 32, 2019.
[37] M. Sanjabi, J. Ba, M. Razaviyayn, and J. D. Lee. On the convergence and robustness of training gans with regularized optimal transport. Advances in Neural Information Processing Systems, 31, 2018.
[38] S. Shafieezadeh-Abadeh, P. M. Esfahani, and D. Kuhn. Distributionally robust logistic regression. In Advances in Neural Information Processing Systems, page 1576-1584, 2015.
[39] J. Shamma. Cooperative Control of Distributed Multi-Agent Systems. Wiley-Interscience, 2008.
[40] A. Sinha, H. Namkoong, and J. C. Duchi. Certifying some distributional robustness with principled adversarial training. In International Conference on Learning Representations, 2018.
[41] J. Song, H. Ren, D. Sadigh, and S. Ermon. Multi-agent generative adversarial imitation learning. Advances in neural information processing systems, 31, 2018.
[42] V. Syrgkanis, A. Agarwal, H. Luo, and R. E. Schapire. Fast convergence of regularized learning in games. In Advances in Neural Information Processing Systems, page 2989-2997, 2015.
[43] B. Taskar, S. Lacoste-Julien, and M. Jordan. Structured prediction via the extragradient method. In Advances in Neural Information Processing Systems, page 1345-1352, 2006.
[44] I. Tsaknakis, M. Hong, and S. Zhang. Minimax problems with coupled linear constraints: computational complexity, duality and solution methods. arXiv preprint arXiv:2110.11210, 2021.
[45] J. Wang, T. Zhang, S. Liu, P.-Y. Chen, J. Xu, M. Fardad, and B. Li. Adversarial attack generation empowered by min-max optimization. In Advances in Neural Information Processing Systems, 2021.
[46] D. Ward and J. M. Borwein. Nonsmooth calculus in finite dimensions. SIAM Journal on control and optimization, 25(5):1312-1340, 1987.
[47] W. Xian, F. Huang, Y. Zhang, and H. Huang. A faster decentralized algorithm for nonconvex minimax problems. Advances in Neural Information Processing Systems, 34, 2021.
[48] Y. Xie and S. J. Wright. Complexity of proximal augmented Lagrangian for nonconvex optimization with nonlinear equality constraints. J. Sci. Comput., 86(3):1-30, 2021.
[49] H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support vector machines. Journal of Machine Learning Research, 10:1485-1510, 2009.
[50] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans. Maximum margin clustering. In Advances in Neural Information Processing Systems, page 1537-1544, 2005.
[51] T. Xu, Z. Wang, Y. Liang, and H. V. Poor. Gradient free minimax optimization: Variance reduction and faster convergence. arXiv preprint arXiv:2006.09361, 2020.
[52] Z. Xu, H. Zhang, Y. Xu, and G. Lan. A unified single-loop alternating gradient projection algorithm for nonconvex-concave and convex-nonconcave minimax problems. arXiv preprint arXiv:2006.02032, 2020.
[53] H. Zhang, J. Wang, Z. Xu, and Y.-H. Dai. Primal dual alternating proximal gradient algorithms for nonsmooth nonconvex minimax problems with coupled linear constraints. arXiv preprint arXiv:2212.04672, 2022.
[54] J. Zhang, P. Xiao, R. Sun, and Z. Luo. A single-loop smoothed gradient descent-ascent algorithm for nonconvex-concave min-max problems. Advances in Neural Information Processing Systems, 33:7377-7389, 2020.

A A first-order method for nonconvex-concave minimax problem

In this part we present a first-order method proposed in [26, Algorithm 2] for finding an ϵ stationary point of the nonconvex-concave minimax problem

$$
\begin{equation*}
H^{*}=\min _{x} \max _{y}\{H(x, y):=h(x, y)+p(x)-q(y)\} \tag{85}
\end{equation*}
$$

which has at least one optimal solution and satisfies the following assumptions.
Assumption 4. (i) $p: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ and $q: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{\infty\}$ are proper convex functions and continuous on $\operatorname{dom} p$ and $\operatorname{dom} q$, respectively, and moreover, $\operatorname{dom} p$ and $\operatorname{dom} q$ are compact.
(ii) The proximal operator associated with p and q can be exactly evaluated.
(iii) h is $L_{\nabla h}$-smooth on $\operatorname{dom} p \times \operatorname{dom} q$, and moreover, $h(x, \cdot)$ is concave for any $x \in \operatorname{dom} p$.

For ease of presentation, we define

$$
\begin{align*}
& D_{p}=\max \{\|u-v\| \| u, v \in \operatorname{dom} p\}, \quad D_{q}=\max \{\|u-v\| \| u, v \in \operatorname{dom} q\}, \tag{86}\\
& H_{\text {low }}=\min \{H(x, y) \mid(x, y) \in \operatorname{dom} p \times \operatorname{dom} q\} . \tag{87}
\end{align*}
$$

Given an iterate $\left(x^{k}, y^{k}\right)$, the first-order method [26, Algorithm 2] finds the next iterate $\left(x^{k+1}, y^{k+1}\right)$ by applying a modified optimal first-order method [26, Algorithm 1] to the strongly-convex-strongly-concave minimax problem

$$
\begin{equation*}
\min _{x} \max _{y}\left\{h_{k}(x, y)=h(x, y)-\epsilon\left\|y-y^{0}\right\|^{2} /\left(4 D_{q}\right)+L_{\nabla h}\left\|x-x^{k}\right\|^{2}\right\} . \tag{88}
\end{equation*}
$$

For ease reference, we next present the modified optimal first-order method [26, Algorithm 1] in Algorithm [2 below for solving the strongly-convex-strongly-concave minimax problem

$$
\begin{equation*}
\min _{x} \max _{y}\{\bar{h}(x, y)+p(x)-q(y)\}, \tag{89}
\end{equation*}
$$

where $\bar{h}(x, y)$ is σ_{x}-strongly-convex- σ_{y}-strongly-concave and $L_{\nabla \bar{h}}$-smooth on $\operatorname{dom} p \times \operatorname{dom} q$ for some $\sigma_{x}, \sigma_{y}>0$. In Algorithm 2, the functions \hat{h}, a_{x}^{k} and a_{y}^{k} are defined as follows:

$$
\begin{aligned}
& \hat{h}(x, y)=\bar{h}(x, y)-\sigma_{x}\|x\|^{2} / 2+\sigma_{y}\|y\|^{2} / 2, \\
& a_{x}^{k}(x, y)=\nabla_{x} \hat{h}(x, y)+\sigma_{x}\left(x-\sigma_{x}^{-1} z_{g}^{k}\right) / 2, \quad a_{y}^{k}(x, y)=-\nabla_{y} \hat{h}(x, y)+\sigma_{y} y+\sigma_{x}\left(y-y_{g}^{k}\right) / 8,
\end{aligned}
$$

where y_{g}^{k} and z_{g}^{k} are generated at iteration k of Algorithm 2 below.

```
Algorithm 2 A modified optimal first-order method for problem (89)
Input: \(\tau>0, \bar{z}^{0}=z_{f}^{0} \in-\sigma_{x} \operatorname{dom} p \mathbb{4}^{4} \bar{y}^{0}=y_{f}^{0} \in \operatorname{dom} q,\left(z^{0}, y^{0}\right)=\left(\bar{z}^{0}, \bar{y}^{0}\right), \bar{\alpha}=\)
    \(\min \left\{1, \sqrt{8 \sigma_{y} / \sigma_{x}}\right\}, \quad \eta_{z}=\sigma_{x} / 2, \quad \eta_{y}=\min \left\{1 /\left(2 \sigma_{y}\right), 4 /\left(\bar{\alpha} \sigma_{x}\right)\right\}, \quad \beta_{t}=2 /(t+3), \zeta=\)
    \(\left(2 \sqrt{5}\left(1+8 L_{\nabla \bar{h}} / \sigma_{x}\right)\right)^{-1}, \gamma_{x}=\gamma_{y}=8 \sigma_{x}^{-1}\), and \(\hat{\zeta}=\min \left\{\sigma_{x}, \sigma_{y}\right\} / L_{\nabla \bar{h}}^{2}\).
    for \(k=0,1,2, \ldots\) do
        \(\left(z_{g}^{k}, y_{g}^{k}\right)=\bar{\alpha}\left(z^{k}, y^{k}\right)+(1-\bar{\alpha})\left(z_{f}^{k}, y_{f}^{k}\right)\).
        \(\left(x^{k,-1}, y^{k,-1}\right)=\left(-\sigma_{x}^{-1} z_{g}^{k}, y_{g}^{k}\right)\).
        \(x^{k, 0}=\operatorname{prox}_{\zeta \gamma_{x} p}\left(x^{k,-1}-\zeta \gamma_{x} a_{x}^{k}\left(x^{k,-1}, y^{k,-1}\right)\right)\).
        \(y^{k, 0}=\operatorname{prox}_{\zeta \gamma_{y} q}\left(y^{k,-1}-\zeta \gamma_{y} a_{y}^{k}\left(x^{k,-1}, y^{k,-1}\right)\right)\).
        \(b_{x}^{k, 0}=\frac{1}{\zeta \gamma_{x}}\left(x^{k,-1}-\zeta \gamma_{x} a_{x}^{k}\left(x^{k,-1}, y^{k,-1}\right)-x^{k, 0}\right)\).
        \(b_{y}^{k, 0}=\frac{1}{\zeta \gamma_{y}}\left(y^{k,-1}-\zeta \gamma_{y} a_{y}^{k}\left(x^{k,-1}, y^{k,-1}\right)-y^{k, 0}\right)\).
        \(t=0\).
        while
        \(\gamma_{x}\left\|a_{x}^{k}\left(x^{k, t}, y^{k, t}\right)+b_{x}^{k, t}\right\|^{2}+\gamma_{y}\left\|a_{y}^{k}\left(x^{k, t}, y^{k, t}\right)+b_{y}^{k, t}\right\|^{2}>\gamma_{x}^{-1}\left\|x^{k, t}-x^{k,-1}\right\|^{2}+\gamma_{y}^{-1}\left\|y^{k, t}-y^{k,-1}\right\|^{2}\)
            do
            \(x^{k, t+1 / 2}=x^{k, t}+\beta_{t}\left(x^{k, 0}-x^{k, t}\right)-\zeta \gamma_{x}\left(a_{x}^{k}\left(x^{k, t}, y^{k, t}\right)+b_{x}^{k, t}\right)\).
            \(y^{k, t+1 / 2}=y^{k, t}+\beta_{t}\left(y^{k, 0}-y^{k, t}\right)-\zeta \gamma_{y}\left(a_{y}^{k}\left(x^{k, t}, y^{k, t}\right)+b_{y}^{k, t}\right)\).
            \(x^{k, t+1}=\operatorname{prox}_{\zeta \gamma_{x} p}\left(x^{k, t}+\beta_{t}\left(x^{k, 0}-x^{k, t}\right)-\zeta \gamma_{x} a_{x}^{k}\left(x^{k, t+1 / 2}, y^{k, t+1 / 2}\right)\right)\).
            \(y^{k, t+1}=\operatorname{prox}_{\zeta \gamma_{y} q}\left(y^{k, t}+\beta_{t}\left(y^{k, 0}-y^{k, t}\right)-\zeta \gamma_{y} a_{y}^{k}\left(x^{k, t+1 / 2}, y^{k, t+1 / 2}\right)\right)\).
            \(b_{x}^{k, t+1}=\frac{1}{\zeta \gamma_{x}}\left(x^{k, t}+\beta_{t}\left(x^{k, 0}-x^{k, t}\right)-\zeta \gamma_{x} a_{x}^{k}\left(x^{k, t+1 / 2}, y^{k, t+1 / 2}\right)-x^{k, t+1}\right)\).
            \(b_{y}^{k, t+1}=\frac{1}{\zeta \gamma_{y}}\left(y^{k, t}+\beta_{t}\left(y^{k, 0}-y^{k, t}\right)-\zeta \gamma_{y} a_{y}^{k}\left(x^{k, t+1 / 2}, y^{k, t+1 / 2}\right)-y^{k, t+1}\right)\).
            \(t \leftarrow t+1\).
        end while
        \(\left(x_{f}^{k+1}, y_{f}^{k+1}\right)=\left(x^{k, t}, y^{k, t}\right)\).
        \(\left(z_{f}^{k+1}, w_{f}^{k+1}\right)=\left(\nabla_{x} \hat{h}\left(x_{f}^{k+1}, y_{f}^{k+1}\right)+b_{x}^{k, t},-\nabla_{y} \hat{h}\left(x_{f}^{k+1}, y_{f}^{k+1}\right)+b_{y}^{k, t}\right)\).
        \(z^{k+1}=z^{k}+\eta_{z} \sigma_{x}^{-1}\left(z_{f}^{k+1}-z^{k}\right)-\eta_{z}\left(x_{f}^{k+1}+\sigma_{x}^{-1} z_{f}^{k+1}\right)\).
        \(y^{k+1}=y^{k}+\eta_{y} \sigma_{y}\left(y_{f}^{k+1}-y^{k}\right)-\eta_{y}\left(w_{f}^{k+1}+\sigma_{y} y_{f}^{k+1}\right)\).
        \(x^{k+1}=-\sigma_{x}^{-1} z^{k+1}\).
        \(\tilde{x}^{k+1}=\operatorname{prox}_{\hat{\zeta} p}\left(x^{k+1}-\hat{\zeta} \nabla_{x} \bar{h}\left(x^{k+1}, y^{k+1}\right)\right)\).
        \(\tilde{y}^{k+1}=\operatorname{prox}_{\hat{\zeta} q}\left(y^{k+1}+\hat{\zeta} \nabla_{y} \bar{h}\left(x^{k+1}, y^{k+1}\right)\right)\).
```

 Terminate the algorithm and output (\(\tilde{x}^{k+1}, \tilde{y}^{k+1}\)) if
 \(\left\|\hat{\zeta}^{-1}\left(x^{k+1}-\tilde{x}^{k+1}, \tilde{y}^{k+1}-y^{k+1}\right)-\left(\nabla \bar{h}\left(x^{k+1}, y^{k+1}\right)-\nabla \bar{h}\left(\tilde{x}^{k+1}, \tilde{y}^{k+1}\right)\right)\right\| \leq \tau\).
 end for
 We are now ready to present the first-order method [26, Algorithm 2] for finding an ϵ stationary point of (85) in Algorithm 3 below.

[^4]```
Algorithm 3 A first-order method for problem (85)
 Input: \(\epsilon>0, \epsilon_{0} \in(0, \epsilon / 2],\left(\hat{x}^{0}, \hat{y}^{0}\right) \in \operatorname{dom} p \times \operatorname{dom} q,\left(x^{0}, y^{0}\right)=\left(\hat{x}^{0}, \hat{y}^{0}\right)\), and \(\epsilon_{k}=\epsilon_{0} /(k+1)\).
 for \(k=0,1,2, \ldots\) do
 Call Algorithm 2 with \(\bar{h} \leftarrow h_{k}, \tau \leftarrow \epsilon_{k}, \sigma_{x} \leftarrow L_{\nabla h}, \sigma_{y} \leftarrow \epsilon /\left(2 D_{q}\right), L_{\nabla \bar{h}} \leftarrow 3 L_{\nabla h}+\epsilon /\left(2 D_{q}\right)\),
 \(\bar{z}^{0}=z_{f}^{0} \leftarrow-\sigma_{x} x^{k}, \bar{y}^{0}=y_{f}^{0} \leftarrow y^{k}\), and denote its output by \(\left(x^{k+1}, y^{k+1}\right)\), where \(h_{k}\) is
 given in (88).
 Terminate the algorithm and output \(\left(x_{\epsilon}, y_{\epsilon}\right)=\left(x^{k+1}, y^{k+1}\right)\) if
 \(\left\|x^{k+1}-x^{k}\right\| \leq \epsilon /\left(4 L_{\nabla h}\right)\).
```

    end for
    The following theorem presents the iteration complexity of Algorithm 3, whose proof is given in [26, Theorem 2].

Theorem 2 (Complexity of Algorithm 3). Suppose that Assumption 4 holds. Let $H^{*}, H$ $D_{p}, D_{q}$, and $H_{\text {low }}$ be defined in (85), (86) and (87), $L_{\nabla h}$ be given in Assumption 4, $\epsilon$, $\epsilon_{0}$ and $x^{0}$ be given in Algorithm 3, and

$$
\begin{aligned}
\alpha= & \min \left\{1, \sqrt{4 \epsilon /\left(D_{q} L_{\nabla h}\right)}\right\}, \\
\delta= & \left(2+\alpha^{-1}\right) L_{\nabla h} D_{p}^{2}+\max \left\{\epsilon / D_{q}, \alpha L_{\nabla h} / 4\right\} D_{q}^{2}, \\
K= & {\left[16\left(\max _{y} H\left(x^{0}, y\right)-H^{*}+\epsilon D_{q} / 4\right) L_{\nabla h} \epsilon^{-2}+32 \epsilon_{0}^{2}\left(1+4 D_{q}^{2} L_{\nabla h}^{2} \epsilon^{-2}\right) \epsilon^{-2}-1\right]_{+}, } \\
N= & \left(\left[96 \sqrt{2}\left(1+\left(24 L_{\nabla h}+4 \epsilon / D_{q}\right) L_{\nabla h}^{-1}\right)\right]+2\right)\left\{2, \sqrt{D_{q} L_{\nabla h} \epsilon^{-1}}\right\} \\
& \times\left((K+1)\left(\log \frac{4 \max \left\{\frac{1}{2 L_{\nabla h}}, \min \left\{\frac{D_{q}}{\epsilon}, \frac{4}{\alpha L_{\nabla h}}\right\}\right\}\left(\delta+2 \alpha^{-1}\left(H^{*}-H_{\mathrm{low}}+\epsilon D_{q} / 4+L_{\nabla h} D_{p}^{2}\right)\right)}{\left[\left(3 L_{\nabla h}+\epsilon /\left(2 D_{q}\right)\right)^{2} / \min \left\{L_{\nabla h}, \epsilon /\left(2 D_{q}\right)\right\}+3 L_{\nabla h}+\epsilon /\left(2 D_{q}\right)\right]^{-2} \epsilon_{0}^{2}}\right)_{+}\right. \\
& +K+1+2 K \log (K+1)) .
\end{aligned}
$$

Then Algorithm 3 terminates and outputs an $\epsilon$-stationary point $\left(x_{\epsilon}, y_{\epsilon}\right)$ of (85) in at most $K+1$ outer iterations that satisfies

$$
\max _{y} H\left(x_{\epsilon}, y\right) \leq \max _{y} H\left(\hat{x}^{0}, y\right)+\epsilon D_{q} / 4+2 \epsilon_{0}^{2}\left(L_{\nabla h}^{-1}+4 D_{q}^{2} L_{\nabla h} \epsilon^{-2}\right)
$$

Moreover, the total number of evaluations of $\nabla h$ and proximal operator of $p$ and $q$ performed in Algorithm 3 is no more than $N$, respectively.


[^0]:    ${ }^{*}$ Department of Industrial and Systems Engineering, University of Minnesota, USA (email: zhaosong@umn.edu, mei00035@umn.edu). This work was partially supported by NSF Award IIS-2211491.
    ${ }^{1}$ The definition of $L_{F}$-Lipschitz continuity of $F$ and $L_{\nabla f}$-smoothness of $f$ is given in Subsection

[^1]:    ${ }^{2}$ For convenience, $\infty$ stands for $+\infty$.

[^2]:    ${ }^{3}$ The latter part of this assumption can be weakened to the one that the pointwise Slater's condition holds for

[^3]:    the constraint on $y$ in (1), that is, there exists $\hat{y}_{x} \in \mathcal{Y}$ such that $d\left(x, \hat{y}_{x}\right)<0$ for each $x \in \mathcal{X}$. Indeed, if $\delta_{d}>0$, Assumption (3i) holds. Otherwise, one can solve the perturbed counterpart of (1) with $d(x, y)$ being replaced by $d(x, y)-\epsilon$ for some suitable $\epsilon>0$ instead, which satisfies Assumption (3i).

[^4]:    ${ }^{4}$ For convenience, $-\sigma_{x} \operatorname{dom} p$ stands for the set $\left\{-\sigma_{x} u \mid u \in \operatorname{dom} p\right\}$.

