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Abstract

In this paper we study a class of constrained minimax problems. In particular, we pro-
pose a first-order augmented Lagrangian method for solving them, whose subproblems turn
out to be a much simpler structured minimax problem and are suitably solved by a first-
order method recently developed in [26] by the authors. Under some suitable assumptions,
an operation complexity of O(ε−4 log ε−1), measured by its fundamental operations, is es-
tablished for the first-order augmented Lagrangian method for finding an ε-KKT solution
of the constrained minimax problems.

Keywords: minimax optimization, augmented Lagrangian method, first-order method, oper-
ation complexity
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1 Introduction

In this paper, we consider a constrained minimax problem

F ∗ = min
c(x)≤0

max
d(x,y)≤0

{F (x, y) := f(x, y) + p(x)− q(y)}. (1)

Assume that problem (1) has at least one optimal solution and the following additional assump-
tions hold.

Assumption 1. (i) F is LF -Lipschitz continuous on X × Y, f is L∇f -smooth on X × Y,
and f(x, ·) is concave for any given x ∈ X , where X := dom p and Y := dom q.1

(ii) p : Rn → R ∪ {∞} and q : Rm → R ∪ {∞} are proper closed convex functions, and the
proximal operator of p and q can be exactly evaluated.

(iii) c : Rn → R
ñ is L∇c-smooth and Lc-Lipschitz continuous on X , d : Rn × R

m → R
m̃ is

L∇d-smooth and Ld-Lipschitz continuous on X ×Y, and di(x, ·) is convex for each x ∈ X .

(iv) The sets X and Y (namely, dom p and dom q) are compact.

In the recent years, the minimax problem of a simpler form

min
x∈X

max
y∈Y

f(x; y), (2)

∗Department of Industrial and Systems Engineering, University of Minnesota, USA (email:
zhaosong@umn.edu, mei00035@umn.edu). This work was partially supported by NSF Award IIS-2211491.

1The definition of LF -Lipschitz continuity of F and L∇f -smoothness of f is given in Subsection 1.1.
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where X and Y are a closed set, has received tremendous amount of attention. Indeed, it has
found broad applications in many areas, such as adversarial training [16, 29, 40, 45], generative
adversarial networks [13, 15, 37], reinforcement learning [8, 11, 31, 34, 41], computational game
[1, 35, 42], distributed computing [30, 39], prediction and regression [4, 43, 49, 50], and distri-
butionally robust optimization [12, 38]. Numerous methods have been developed for solving (2)
with X and Y being a simple closed convex set (e.g., see [6, 18, 19, 22, 23, 25, 28, 33, 47, 51,
52, 54]).

There have also been several studies on some other special cases of problem (1) recently.
In particular, two first-order methods, called max-oracle gradient-descent and nested gradient
descent/ascent methods, were proposed in [14] for solving (1) with c(x) ≡ 0 and p and q
being the indicator function of simple compact convex sets X and Y respectively, under the
assumption that the function V (x) = maxy∈Y {f(x, y) : d(x, y) ≤ 0} is convex and moreover
an optimal Lagrangian multiplier associated with the constraint d(x, y) ≤ 0 can be computed
for each x ∈ X. In addition, a multiplier gradient descent method was proposed in [44] for
solving (1) with c(x) ≡ 0, d(x, y) being an affine mapping, and p and q being the indicator
function of a simple compact convex set. Also, a proximal gradient multi-step ascent decent
method was developed in [9] for (1) with c(x) ≡ 0, d(x, y) being an affine mapping, and
f(x, y) = g(x) + xTAy − h(y), under the assumption that f(x, y)− q(y) is strongly concave in
y. Besides, primal dual alternating proximal gradient methods were proposed in [53] for (1)
with c(x) ≡ 0, d(x, y) being an affine mapping, and {f(x, y) being strongly concave in y or
[q(y) ≡ 0 and f(x, y) being a linear function in y]}. For these methods, an iteration complexity
for finding an approximate stationary point of the aforementioned special minimax problem
was established in [9, 14, 53], respectively. Yet, their operation complexity, measured by the
amount of fundamental operations such as evaluations of gradient of f and proximal operator
of p and q, was not studied in these works.

There was no algorithmic development for (1) prior to our work, though optimality condi-
tions of (1) were recently studied in [10]. In this paper, we propose a first-order augmented
Lagrangian (AL) method for solving (1). Specifically, given an iterate (xk, yk) and a Lagrangian
multiplier estimate (λk

x, λ
k
y) at the kth iteration, the next iterate (xk+1, yk+1) is obtained by

finding an approximate stationary point of the AL subproblem

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk)

for some ρk > 0 through the use of a first-order method proposed in [26], where L is the AL
function of (1) defined as

L(x, y, λx, λy; ρ) = F (x, y)+
1

2ρ

(
‖[λx + ρc(x)]+‖2 − ‖λx‖2

)
− 1

2ρ

(
‖[λy + ρd(x, y)]+‖2 − ‖λy‖2

)
.

(3)
The Lagrangian multiplier estimate is then updated by λk+1

x = Π
B
+
Λ

(λk
x+ρkc(x

k+1)) and λk+1
y =

[λk
y + ρkd(xk+1, yk+1)]+ for some Λ > 0, where Π

B
+
Λ

(·) and [·]+ are defined in Section 1.1.

The main contributions of this paper are summarized below.

• We propose a first-order AL method for solving problem (1). To the best of our knowledge,
this is the first yet implementable method for solving (1).

• We show that under some suitable assumptions, our first-order AL method enjoys an iter-
ation complexity of O(log ε−1) and an operation complexity of O(ε−4 log ε−1), measured
by the amount of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q, for finding
an ε-KKT solution of (1).

The rest of this paper is organized as follows. In Subsection 1.1, we introduce some notation
and terminology. In Section 2, we propose a first-order AL method for solving problem (1). In
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Section 3, we present complexity results for the proposed method. In Section 4, we provide the
proof of the main result.

1.1 Notation and terminology

The following notation will be used throughout this paper. Let R
n denote the Euclidean space

of dimension n and R
n
+ denote the nonnegative orthant in R

n. The standard inner product,
l1-norm and Euclidean norm are denoted by 〈·, ·〉, ‖ · ‖1 and ‖ · ‖, respectively. For any Λ > 0,
let B

+
Λ = {x ≥ 0 : ‖x‖ ≤ Λ}, whose dimension is clear from the context. For any v ∈ R

n, let v+
denote the nonnegative part of v, that is, (v+)i = max{vi, 0} for all i. Given a point x and a
closed set S in R

n, let dist(x, S) = minx′∈S ‖x′ − x‖, ΠS(x) denote the Euclidean projection of
x onto S, and IS denote the indicator function associated with S.

A function or mapping φ is said to be Lφ-Lipschitz continuous on a set S if ‖φ(x)−φ(x′)‖ ≤
Lφ‖x−x′‖ for all x, x′ ∈ S. In addition, it is said to be L∇φ-smooth on S if ‖∇φ(x)−∇φ(x′)‖ ≤
L∇φ‖x − x′‖ for all x, x′ ∈ S. For a closed convex function p : Rn → R ∪ {∞},2 the proximal
operator associated with p is denoted by proxp, that is,

proxp(x) = arg min
x′∈Rn

{
1

2
‖x′ − x‖2 + p(x′)

}
∀x ∈ R

n.

Given that evaluation of proxγp(x) is often as cheap as proxp(x), we count the evaluation of
proxγp(x) as one evaluation of proximal operator of p for any γ > 0 and x ∈ R

n.
For a lower semicontinuous function φ : Rn → R ∪ {∞}, its domain is the set domφ :=

{x|φ(x) <∞}. The upper subderivative of φ at x ∈ domφ in a direction d ∈ R
n is defined by

φ′(x; d) = lim sup

x′
φ
→x, t↓0

inf
d′→d

φ(x′ + td′)− φ(x′)

t
,

where t ↓ 0 means both t > 0 and t → 0, and x′
φ→ x means both x′ → x and φ(x′) → φ(x).

The subdifferential of φ at x ∈ domφ is the set

∂φ(x) = {s ∈ R
n
∣∣sTd ≤ φ′(x; d) ∀d ∈ R

n}.
We use ∂xi

φ(x) to denote the subdifferential with respect to xi. In addition, for an upper
semicontinuous function φ, its subdifferential is defined as ∂φ = −∂(−φ). If φ is locally Lipschitz
continuous, the above definition of subdifferential coincides with the Clarke subdifferential.
Besides, if φ is convex, it coincides with the ordinary subdifferential for convex functions. Also,
if φ is continuously differentiable at x , we simply have ∂φ(x) = {∇φ(x)}, where ∇φ(x) is the
gradient of φ at x. In addition, it is not hard to verify that ∂(φ1 + φ2)(x) = ∇φ1(x) + ∂φ2(x) if
φ1 is continuously differentiable at x and φ2 is lower or upper semicontinuous at x. See [7, 46]
for more details.

Finally, we introduce an (approximate) stationary point (e.g., see [9, 10, 21]) for a general
minimax problem

min
x

max
y

Ψ(x, y), (4)

where Ψ(·, y) : Rn → R∪{∞} is a lower semicontinuous function, and Ψ(x, ·) : Rm → R∪{−∞}
is an upper semicontinuous function.

Definition 1. A point (x, y) is said to be a stationary point of the minimax problem (4) if

0 ∈ ∂xΨ(x, y), 0 ∈ ∂yΨ(x, y).

In addition, for any ǫ > 0, a point (xǫ, yǫ) is said to be an ǫ-stationary point of the minimax
problem (4) if

dist (0, ∂xΨ(xǫ, yǫ)) ≤ ǫ, dist (0, ∂yΨ(xǫ, yǫ)) ≤ ǫ.
2For convenience, ∞ stands for +∞.

3



2 A first-order augmented Lagrangian method for problem (1)

In this section we propose a first-order augmented Lagrangian (FAL) method for problem (1).
One standard approach for solving constrained nonlinear program is to solve a sequence

of unconstrained nonlinear program problems, which are typically penalty or augmented La-
grangian subproblems (e.g., see [32]). In a similar spirit, we next propose an FAL method in
Algorithm 1 for solving (1). In particular, at each iteration, the FAL method finds an approxi-
mate stationary point of an AL subproblem in the form of

min
x

max
y
L(x, y, λx, λy; ρ) (5)

for some ρ > 0, λx ∈ R
ñ
+ and λy ∈ R

m̃
+ , where L is the AL function associated with problem

(1) defined in (3). In view of Assumption 1, one can observe that L enjoys the following nice
properties.

• For any given ρ > 0, λx ∈ R
ñ
+ and λy ∈ R

m̃
+ , L is the sum of smooth function f(x, y) +(

‖[λx + ρc(x)]+‖2 − ‖λx‖2
)
/(2ρ)−

(
‖[λy + ρd(x, y)]+‖2 − ‖λy‖2

)
/(2ρ) with Lipschitz con-

tinuous gradient and possibly nonsmooth function p(x) − q(y) with exactly computable
proximal operator.

• L is nonconvex in x but concave in y.

Thanks to such a nice structure of L, an approximate stationary point of the AL subproblem
(5) can be found by Algorithm 3 (see Appendix A), which is a first-order method proposed in
[26, Algorithm 2]) for solving nonconvex-concave minimax problems.

Before presenting an FAL method for (1), we let

Lx(x, y, λx; ρ) := F (x, y) +
1

2ρ

(
‖[λx + ρc(x)]+‖2 − ‖λx‖2

)
, (6)

chi := max{‖c(x)‖
∣∣x ∈ X}, dhi := max{‖d(x, y)‖

∣∣(x, y) ∈ X × Y}, (7)

and make one additional assumption on problem (1).

Assumption 2. For any given η ∈ (0, 1], an η-approximately feasible point zη of problem (1),
namely zη ∈ X satisfying ‖[c(zη)]+‖ ≤ η, can be found.

Remark 1. A very similar assumption as Assumption 2 was considered in [5, 17, 27, 48]. One
example of the problem instances satisfying Assumption 2 arises when the error bound condition
‖[c(x)]+‖ = O(dist(0, ∂(‖[c(x)]+‖2 +IX (x))))ν) holds on a level set of ‖[c(x)]+‖ for some ν > 0
(e.g., see [24, 36]). Indeed, one can find the above zη by applying a projected gradient method
to the problem minx∈X ‖[c(x)]+‖2.

We are now ready to present an FAL method for solving problem (1).
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Algorithm 1 A first-order augmented Lagrangian method for problem (1)

Input: ε, τ ∈ (0, 1), ǫ0 ∈ (τε, 1], ǫk = ǫ0τ
k, ρk = ǫ−1

k , Λ > 0, λ0
x ∈ B

+
Λ , λ0

y ∈ R
m̃
+ , (x0, y0) ∈

X × Y, and xnf ∈ X with ‖[c(xnf )]+‖ ≤
√
ε.

1: for k = 0, 1, . . . do
2: Set

xkinit =

{
xk, if Lx(xk, yk, λk

x; ρk) ≤ Lx(xnf , y
k, λk

x; ρk),
xnf , otherwise.

(8)

3: Call Algorithm 3 (see Appendix A) with ǫ ← ǫk, ǫ0 ← ǫk/(2
√
ρk), (x0, y0) ← (xkinit, y

k)
and L∇h ← Lk to find an ǫk-stationary point (xk+1, yk+1) of

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk) (9)

where

Lk = L∇f + ρkL
2
c + ρkchiL∇c + ‖λk

x‖L∇c + ρkL
2
d + ρkdhiL∇d + ‖λk

y‖L∇d. (10)

4: Set λk+1
x = Π

B
+
Λ

(λk
x + ρkc(x

k+1)) and λk+1
y = [λk

y + ρkd(xk+1, yk+1)]+.

5: Terminate the algorithm and output (xk+1, yk+1) if ǫk ≤ ε.
6: end for

Remark 2. (i) xnf is an
√
ε-approximately feasible point of problem (1), where the subscript

“nf” stands for “nearly feasible”. It follows from Assumption 2 that xnf can be found in
advance.

(ii) λk+1
x results from projecting onto a nonnegative Euclidean ball the standard Lagrangian

multiplier estimate λ̃k+1
x obtained by the classical scheme λ̃k+1

x = [λk
x + ρkc(x

k+1)]+. It is
called a safeguarded Lagrangian multiplier in the relevant literature [2, 20, 3], which has
been shown to enjoy many practical and theoretical advantages (see [2] for discussions).

(iii) In view of Theorem 2 (see Appendix A), one can see that an ǫk-stationary point of (9)
can be successfully found in step 3 of Algorithm 1 by applying Algorithm 3 to problem (9)
and thus Algorithm 1 is well-defined.

3 Complexity results of Algorithm 1

In this section we establish iteration and operation complexity results for Algorithm 1. Before
proceeding, we make one additional assumption that a generalized Mangasarian-Fromowitz
constraint qualification holds for the minimization part of (1) and a uniform Slater’s condition
holds for the maximization part of (1).

Assumption 3. (i) There exist some constants δc, θa, θf > 0 such that for each x ∈ F(θf )
there exists some vx ∈ R

n satisfying ‖vx‖ = 1 and vTx∇ci(x) ≤ −δc for all i ∈ A(x; θa),
where

F(θf ) = {x ∈ X
∣∣‖[c(x)]+‖ ≤ θf}, A(x; θa) = {i|ci(x) ≥ −θa, 1 ≤ i ≤ ñ}. (11)

(ii) For each x ∈ X , there exists some ŷx ∈ Y such that di(x, ŷx) < 0 for all i = 1, 2, . . . , m̃,
and moreover, δd := inf{−di(x, ŷx)|x ∈ X , i = 1, 2, . . . , m̃} > 0.3

3The latter part of this assumption can be weakened to the one that the pointwise Slater’s condition holds for
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In order to characterize the approximate solution found by Algorithm 1, we next introduce
a terminology called an ε-KKT solution of problem (1).

One can observe from Lemma 1(iii) that problem (1) is equivalent to

min
x,λy

{
max
y

F (x, y)− 〈λy, d(x, y)〉 + I
R
m̃
+

(λy)
∣∣c(x) ≤ 0

}
.

By this, one can further see that problem (1) is equivalent to

min
x,λy

max
λx

{
max
y
{F (x, y) − 〈λy, d(x, y)〉 + I

R
m̃
+

(λy)}+ 〈λx, c(x)〉 −I
R
ñ
+

(λx)
}
,

which is a nonconvex-concave minimax problem

min
x,λy

max
y,λx

{
F (x, y) + 〈λx, c(x)〉 − 〈λy, d(x, y)〉 −I

R
ñ
+

(λx) + I
R
m̃
+

(λy)
}
. (12)

It then follows from Definition 1 (see also [9, Theorem 3]) that (x, y, λx, λy) ∈ R
n×Rm×Rñ

+×Rm̃
+

is a stationary point of problem (12) if

0 ∈ ∂xF (x, y) +∇c(x)λx −∇xd(x, y)λy, (13)

0 ∈ ∂yF (x, y)−∇yd(x, y)λy, (14)

c(x) ≤ 0, 〈λx, c(x)〉 = 0, (15)

d(x, y) ≤ 0, 〈λy, d(x, y)〉 = 0. (16)

Based on this observation and the equivalence of (1) and (12), we introduce an (approximate)
KKT solution of problem (1) below.

Definition 2. The pair (x, y) is said to be a KKT solution of problem (1) if there exists
(λx, λy) ∈ R

ñ
+ × R

m̃
+ such that the conditions (13)-(16) hold. In addition, for any ε > 0, (x, y)

is said to be an ε-KKT point of problem (1) if there exists (λx, λy) ∈ R
ñ
+ × R

m̃
+ such that

dist(0, ∂xF (x, y) +∇c(x)λx −∇xd(x, y)λy) ≤ ε,

dist(0, ∂yF (x, y) −∇yd(x, y)λy) ≤ ε,

‖[c(x)]+‖ ≤ ε, |〈λx, c(x)〉| ≤ ε,

‖[d(x, y)]+‖ ≤ ε, |〈λy, d(x, y)〉| ≤ ε.

To study complexity of Algorithm 1, we define

f∗(x) := max{F (x, y)|d(x, y) ≤ 0}, (17)

f∗
low := inf{f∗(x)|x ∈ X}, (18)

Dx := max{‖u− v‖
∣∣u, v ∈ X}, Dy := max{‖u− v‖

∣∣u, v ∈ Y}, (19)

Fhi := max{F (x, y)|(x, y) ∈ X × Y}, Flow := min{F (x, y)|(x, y) ∈ X × Y}, (20)

r := 2δ−1
d (ǫ0 + LF )Dy, (21)

K := ⌈(log ε− log ǫ0)/ log τ⌉+ , K := {0, 1, . . . ,K + 1}, (22)

where LF and δd are given in Assumptions 1 and 3, and ǫ0, ε, and τ are some input parameters
of Algorithm 1. For convenience, we define K − 1 = {k − 1|k ∈ K}. One can observe from
Assumption 1 that Dx, Dy, Fhi and Flow are finite. Besides, as will be shown in Lemma 1, f∗

low

is also finite.
We are now ready to present an iteration and operation complexity of Algorithm 1 for finding

an O(ε)-KKT solution of problem (1), whose proof is deferred to Section 4.

the constraint on y in (1), that is, there exists ŷx ∈ Y such that d(x, ŷx) < 0 for each x ∈ X . Indeed, if δd > 0,
Assumption 3(ii) holds. Otherwise, one can solve the perturbed counterpart of (1) with d(x, y) being replaced
by d(x, y)− ǫ for some suitable ǫ > 0 instead, which satisfies Assumption 3(ii).
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Theorem 1. Suppose that Assumptions 1, 2 and 3 hold. Let {(xk, yk, λk
x, λ

k
y)}k∈K be generated

by Algorithm 1, chi, dhi, f
∗
low, Dx, Dy, Fhi, Flow and K be defined in (7), (18), (19), (20) and

(22), LF , L∇f , L∇d, L∇c, Lc, L∇d, Ld and δd be given in Assumption 1, ε, ǫ0, τ , Λ and λ0
y be

given in Algorithm 1, and

L̂ = L∇f + L2
c + chiL∇c + ΛL∇c + L2

d + dhiL∇d + L∇d

√
‖λ0

y‖2 +
2(Fhi − f∗

low + Dyǫ0)

1− τ
, (23)

α̂ = min

{
1,

√
4/(DyL̂)

}
, δ̂ = (2 + α̂−1)L̂D2

x + max{1/Dy, L̂/4}D2
y, (24)

M̂ = 16 max
{

1/(2L2
c), 4/(α̂L2

c)
} [

(3L̂ + 1/(2Dy))2/min{L2
c , 1/(2Dy)}+ 3L̂ + 1/(2Dy)

]2

×
(
δ̂ + 2α̂−1

(
Fhi − Flow +

Λ2

2
+

3

2
‖λ0

y‖2 +
3(Fhi − f∗

low + Dyǫ0)

1− τ
+ ρkd

2
hi +

Dy

4
+ L̂D2

x

))
,

(25)

T̂ =

⌈
16

(
LFDy + Fhi − f∗

low + Λ +
1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

+
Λ2

2
+

Dy

4

)
L̂

+ 8(1 + 4D2
yL̂

2)

⌉

+

, (26)

λ̃K+1
x = [λK

x + c(xK+1)/(ǫ0τ
K)]+. (27)

Suppose that

ε−1 ≥ max

{
1, θ−1

a Λ, θ−2
f

{
2LFDy + 2Fhi − 2f∗

low + 2Λ + τ−1 + ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ

+
ǫ0Dy

2
+ L−2

c + 4D2
yL̂ + Λ2

}
,
4‖λ0

y‖2
δ2dτ

+
8(Fhi − f∗

low + Dyǫ0)

δ2dτ(1− τ)

}
. (28)

Then the following statements hold.

(i) Algorithm 1 terminates after K+1 outer iterations and outputs an approximate stationary
point (xK+1, yK+1) of (1) satisfying

dist(0, ∂xF (xK+1, yK+1) +∇c(xK+1)λ̃K+1
x −∇xd(xK+1, yK+1)λK+1

y ) ≤ ε, (29)

dist
(
0, ∂yF (xK+1, yK+1)−∇yd(xK+1, yK+1)λK+1

y

)
≤ ε, (30)

‖[c(xK+1)]+‖ ≤ εδ−1
c

(
LF + 2Ldδ

−1
d (ǫ0 + LF )Dy + ǫ0

)
, (31)

|〈λ̃K+1
x , c(xK+1)〉| ≤ εδ−1

c (LF + 2Ldδ
−1
d (ǫ0 + LF )Dy + ǫ0)

×max{δ−1
c (LF + 2Ldδ

−1
d (ǫ0 + LF )Dy + ǫ0),Λ}, (32)

‖[d(xK+1, yK+1)]+‖ ≤ 2εδ−1
d (ǫ0 + LF )Dy, (33)

|〈λK+1
y , d(xK+1, yK+1)〉| ≤ 2εδ−1

d (ǫ0 + LF )Dy max{2δ−1
d (ǫ0 + LF )Dy, ‖λ0

y‖} (34)

(ii) The total number of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q performed
in Algorithm 1 is at most N , respectively, where

N =
(⌈

96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂ (1− τ4)−1

× (τε)−4
(

28K log(1/τ) + 28 log(1/ǫ0) + 2(log M̂ )+ + 2 + 2 log(2T̂ )
)
. (35)
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Remark 3. One can observe from Theorem 1 that Algorithm 1 enjoys an iteration complexity
of O(log ε−1) and an operation complexity of O(ε−4 log ε−1), measured by the amount of eval-
uations of ∇f , ∇c, ∇d and proximal operator of p and q, for finding an O(ε)-KKT solution
(xK+1, yK+1) of (1) such that

dist
(
∂xF (xK+1, yK+1) +∇c(xK+1)λ̃x −∇xd(xK+1, yK+1)λK+1

y

)
≤ ε,

dist
(
∂yF (xK+1, yK+1)−∇yd(xK+1, yK+1)λK+1

y

)
≤ ε,

‖[c(xK+1)]+‖ = O(ε), |〈λ̃K+1
x , c(xK+1)〉| = O(ε),

‖[d(xK+1, yK+1)]+‖ = O(ε), |〈λK+1
y , d(xK+1, yK+1)〉| = O(ε).

where λ̃K+1
x ∈ R

ñ
+ is defined in (27) and λK+1

y ∈ R
m̃
+ is given in Algorithm 1.

4 Proof of the main result

In this section, we provide a proof of our main result presented in Section 2, which is particularly
Theorem 1. Before proceeding, let

Ly(x, y, λy; ρ) = F (x, y)− 1

2ρ

(
‖[λy + ρd(x, y)]+‖2 − ‖λy‖2

)
. (36)

In view of (3), (17) and (36), one can observe that

f∗(x) ≤ max
y
Ly(x, y, λy; ρ) ∀x ∈ X , λy ∈ R

m̃
+ , ρ > 0, (37)

which will be frequently used later.
We next establish several lemmas that will be used to prove Theorem 1 subsequently.

Lemma 1. Suppose that Assumptions 1 and 3 hold. Let f∗, f∗
low, Dy, r, LF and δd be given

in (17), (18), (19), (21) and Assumption 1, respectively. Then the following statements hold.

(i) ‖λ∗
y‖ ≤ δ−1

d LFDy and λ∗
y ∈ B

+
r for all λ∗

y ∈ Λ∗(x) and x ∈ X , where Λ∗(x) denotes the
set of optimal Lagrangian multipliers of problem (17) for any x ∈ X .

(ii) The function f∗ is Lipschitz continuous on X and f∗
low is finite.

(iii) It holds that

f∗(x) = min
λy

max
y

F (x, y) − 〈λy, d(x, y)〉 + I
R
m̃
+

(λy) ∀x ∈ X , (38)

where I
R
m̃
+

(·) is the indicator function associated with R
m̃
+ .

Proof. (i) Let x ∈ X and λ∗
y ∈ Λ∗(x) be arbitrarily chosen, and let y∗ ∈ Y be such that (y∗, λ∗

y)
is a pair of primal-dual optimal solutions of (17). It then follows that

y∗ ∈ Argmax
y

F (x, y) − 〈λ∗
y, d(x, y)〉, 〈λ∗

y, d(x, y∗)〉 = 0, d(x, y∗) ≤ 0, λ∗
y ≥ 0.

The first relation above yields

F (x, y∗)− 〈λ∗
y, d(x, y∗)〉 ≥ F (x, ŷx)− 〈λ∗

y, d(x, ŷx)〉,

where ŷx is given in Assumption 3(ii). By this and 〈λ∗
y, d(x, y∗)〉 = 0, one has

〈λ∗
y,−d(x, ŷx)〉 ≤ F (x, y∗)− F (x, ŷx),
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which together with (19), λ∗
y ≥ 0 and Assumption 1 implies that

δd‖λ∗
y‖1 ≤ 〈λ∗

y,−d(x, ŷx)〉 ≤ F (x, y∗)− F (x, ŷx) ≤ LF‖y∗ − ŷx‖ ≤ LFDy, (39)

where the first inequality is due to Assumption 3(ii), and the third inequality follows from
(19) and LF -Lipschitz continuity of F (see Assumption 1(i)). Using (21) and (39), we have
‖λ∗

y‖ ≤ ‖λ∗
y‖1 ≤ δ−1

d LFDy and hence λ∗
y ∈ B

+
r due to (21).

(ii) Recall from Assumption 1 that F (x, ·) and di(x, ·), i = 1, . . . , l, are convex for any given
x ∈ X . Using this, (17), (21) and the first statement of this lemma, we observe that

f∗(x) = max
y

min
λ∈B+

r

F (x, y) − 〈λ, d(x, y)〉 ∀x ∈ X . (40)

Notice from Assumption 1 that F and d are Lipschitz continuous on their domain. Then it is
not hard to observe that min{F (x, y)+〈λ, d(x, y)〉|λ ∈ B

+
r } is a Lipschitz continuous function of

(x, y) on its domain. By this and (40), one can easily verify that f∗ is Lipschitz continuous on X .
In addition, the finiteness of f∗

low follows from (18), the continuity of f̃∗, and the compactness
of X .

(iii) One can observe from (17) that for all x ∈ X ,

f∗(x) = max
y

min
λy

F (x, y)−〈λy, d(x, y)〉+I
R
m̃
+

(λy) ≤ min
λy

max
y

F (x, y)−〈λy, d(x, y)〉+I
R
m̃
+

(λy),

where the inequality follows from the weak duality. In addition, it follows from Assumption 1
that the domain of F (x, ·) is compact for all x ∈ X . By this, (40) and the strong duality, one
has

f∗(x) = min
λ∈B+

r

max
y

F (x, y) − 〈λ, d(x, y)〉 ∀x ∈ X ,

which together with the above inequality implies that (38) holds.

Lemma 2. Suppose that Assumptions 1 and 3 hold. Let {λk
y}k∈K be generated by Algorithm 1,

f∗
low, Dy, and Fhi be defined in (18), (19) and (20), and ǫ0, τ , and ρk be given in Algorithm 1.
Then we have

ρ−1
k ‖λk

y‖2 ≤ ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ
∀0 ≤ k ∈ K− 1. (41)

Proof. One can observe from (18), (20) and Algorithm 1 that Fhi ≥ f∗
low and ρ0 ≥ 1 > τ > 0,

which imply that (41) holds for k = 0. It remains to show that (41) holds for all 1 ≤ k ∈ K− 1.
Since (xt+1, yt+1) is an ǫt-stationary point of (9) for all 0 ≤ t ∈ K − 1, it follows from

Definition 1 that there exists some u ∈ ∂yL(xt+1, yt+1, λt
x, λ

t
y; ρt, ρt) with ‖u‖ ≤ ǫt. Notice

from (3) and (36) that ∂yL(xt+1, yt+1, λt
x, λ

t
y; ρt, ρt) = ∂yLy(xt+1, yt+1, λt

y; ρt). Hence, u ∈
∂yLy(xt+1, yt+1, λt

y; ρt). Also, observe from (1), (36) and Assumption 1 that Ly(xt+1, ·, λt
y; ρt)

is concave. Using this, (19), u ∈ ∂yLy(xt+1, yt+1, λt
y; ρt) and ‖u‖ ≤ ǫt, we obtain

Ly(xt+1, y, λt
y; ρt) ≤ Ly(xt+1, yt+1, λt

y; ρt) + 〈u, y − yt+1〉
≤ Ly(xt+1, yt+1, λt

y; ρt) + Dyǫt ∀y ∈ Y,
which implies that

max
y
Ly(xt+1, y, λt

y; ρt) ≤ Ly(xt+1, yt+1, λt
y; ρt) + Dyǫt. (42)

By this, (36) and (37), one has

f∗(xt+1)
(37)

≤ max
y
Ly(xt+1, y, λt

y; ρt)

(36)(42)

≤ F (xt+1, yt+1)− 1

2ρt

(
‖[λt

y + ρtd(xt+1, yt+1)]+‖2 − ‖λt
y‖2
)

+ Dyǫt

= F (xt+1, yt+1)− 1

2ρt

(
‖λt+1

y ‖2 − ‖λt
y‖2
)

+ Dyǫt,
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where the equality follows from the relation λt+1
y = [λt

y + ρtd(xt+1, yt+1)]+ (see Algorithm 1).
Using the above inequality, (18), (20) and ǫt ≤ ǫ0 (see Algorithm 1), we have

‖λt+1
y ‖2 − ‖λt

y‖2 ≤ 2ρk(F (xt+1, yt+1)− f∗(xt+1) + Dyǫt) ≤ 2ρt(Fhi − f∗
low + Dyǫ0).

Summing up this inequality for t = 0, . . . , k − 1 with 1 ≤ k ∈ K− 1 yields

‖λk
y‖2 ≤ ‖λ0

y‖2 + 2(Fhi − f∗
low + Dyǫ0)

k−1∑

t=0

ρt. (43)

Recall from Algorithm 1 that ρt = ǫ−1
t = (ǫ0τ

t)−1. Then we have
∑k−1

t=0 ρt ≤ ρk−1/(1 − τ).
Using this, (43) and ρk > ρk−1 ≥ 1 (see Algorithm 1), we obtain that for all 1 ≤ k ∈ K− 1,

ρ−1
k ‖λk

y‖2 ≤ ρ−1
k

(
‖λ0

y‖2 +
2(Fhi − f∗

low + Dyǫ0)ρk−1

1− τ

)
≤ ‖λ0

y‖2 +
2(Fhi − f∗

low + Dyǫ0)

1− τ
.

Hence, the conclusion holds as desired.

Lemma 3. Suppose that Assumptions 1 and 3 hold. Let f∗
low, Dy and Fhi be defined in (18),

(19) and (20), LF and δd be given in Assumptions 1 and 3, and ǫ0, τ , ǫk and ρk be given in
Algorithm 1. Suppose that (xk+1, yk+1, λk+1

y ) is generated by Algorithm 1 for some 0 ≤ k ∈ K−1
with

ρk ≥
4‖λ0

y‖2
δ2d

+
8(Fhi − f∗

low + Dyǫ0)

δ2d(1− τ)
. (44)

Then we have
‖[d(xk+1, yk+1)]+‖ ≤ ρ−1

k ‖λk+1
y ‖ ≤ 2ρ−1

k δ−1
d (ǫ0 + LF )Dy. (45)

Proof. Suppose that (xk+1, yk+1, λk+1
y ) is generated by Algorithm 1 for some 0 ≤ k ∈ K − 1

with ρk satisfying (44). Since (xk+1, yk+1) is an ǫk-stationary point of (9), it follows from (3)
and Definition 1 that

dist
(

0, ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+

)
≤ ǫk.

Besides, notice from Algorithm 1 that λk+1
y = [λk

y +ρkd(xk+1, yk+1)]+. Hence, there exists some

u ∈ ∂yF (xk+1, yk+1) such that

‖u−∇yd(xk+1, yk+1)λk+1
y ‖ ≤ ǫk. (46)

By Assumption 3(ii), there exists some ŷk+1 ∈ Y such that −di(xk+1, ŷk+1) ≥ δd for all i. Notice
that 〈λk+1

y , λk
y + ρkd(xk+1, yk+1)〉 = ‖[λk

y + ρkd(xk+1, yk+1)]+‖2 ≥ 0, which implies that

− 〈λk+1
y , ρ−1

k λk
y〉 ≤ 〈λk+1

y , d(xk+1, yk+1)〉. (47)

Using these and (46), we have

F (xk+1, ŷk+1)− F (xk+1, yk+1) + δd‖λk+1
y ‖1 − ρ−1

k 〈λk+1
y , λk

y〉
≤ F (xk+1, ŷk+1)− F (xk+1, yk+1)− 〈λk+1

y , ρ−1
k λk

y + d(xk+1, ŷk+1)〉
(47)

≤ F (xk+1, ŷk+1)− F (xk+1, yk+1) + 〈λk+1
y , d(xk+1, yk+1)− d(xk+1, ŷk+1))〉

≤ 〈u, ŷk+1 − yk+1〉+ 〈∇yd(xk+1, yk+1)λk+1
y , yk+1 − ŷk+1〉

= 〈u−∇yd(xk+1, yk+1)λk+1
y , yk+1 − ŷk+1〉 ≤ Dyǫk, (48)
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where the first inequality is due to λk+1
y ≥ 0 and −di(xk+1, ŷk+1) ≥ δd for all i, the third

inequality follows from u ∈ ∂yF (xk+1, yk+1), λk+1
y ≥ 0, the concavity of F (xk+1, ·) and the

convexity of di(x
k+1, ·), and the last inequality is due to (19) and (46).

In view of (19), (48) and the Lipschitz continuity of F (see Assumption 1), one has

Dyǫk + LFDy

(19)

≥ Dyǫk + LF‖ŷk+1 − yk+1‖ ≥ Dyǫk − F (xk+1, ŷk+1) + F (xk+1, yk+1)

(48)

≥ δd‖λk+1
y ‖1 − ρ−1

k 〈λk+1
y , λk

y〉 ≥ (δd − ρ−1
k ‖λk

y‖)‖λk+1
y ‖, (49)

where the second inequality follows from LF -Lipschitz continuity of F , and the last inequality
is due to ‖λk+1

y ‖1 ≥ ‖λk+1
y ‖. In addition, it follows from (41) and (44) that

δd − ρ−1
k ‖λk

y‖
(41)

≥ δd −
√

ρ−1
k

(
‖λ0

y‖2 +
2(Fhi − f∗

low + Dyǫ0)

1− τ

)
(44)

≥ 1

2
δd,

which together with (49) yields

1

2
δd‖λk+1

y ‖ ≤ (δd − ρ−1
k ‖λk

y‖)‖λk+1
y ‖

(49)

≤ Dyǫk + LFDy.

The conclusion then follows from this, ǫk ≤ ǫ0, and the relations

‖[d(xk+1, yk+1)]+‖ ≤ ρ−1
k ‖[λk

y + ρkd(xk+1, yk+1)]+‖ = ρ−1
k ‖λk+1

y ‖.

Lemma 4. Suppose that Assumptions 1 and 3 hold. Let f∗
low, Dy and Flow be defined in (18),

(19) and (20), LF and δd be given in Assumptions 1 and 3, ǫ0, τ , ǫk, ρk and λ0
y be given

in Algorithm 1. Suppose that (xk+1, yk+1, λk+1
x , λk+1

y ) is generated by Algorithm 1 for some
0 ≤ k ∈ K− 1 with

ρk ≥
4‖λ0

y‖2
δ2dτ

+
8(Fhi − f∗

low + Dyǫ0)

δ2dτ(1− τ)
. (50)

Let
λ̃k+1
x = [λk

x + ρkc(x
k+1)]+. (51)

Then we have

dist(0, ∂xF (xk+1, yk+1) +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ) ≤ ǫk, (52)

dist
(

0, ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)λk+1
y

)
≤ ǫk, (53)

‖[d(xk+1, yk+1)]+‖ ≤ 2ρ−1
k δ−1

d (ǫ0 + LF )Dy, (54)

|〈λk+1
y , d(xk+1, yk+1)〉| ≤ 2ρ−1

k δ−1
d (ǫ0 + LF )Dy max{‖λ0

y‖, 2δ−1
d (ǫ0 + LF )Dy}. (55)

Proof. Suppose that (xk+1, yk+1, λk+1
x , λk+1

y ) is generated by Algorithm 1 for some 0 ≤ k ∈ K−1

with ρk satisfying (50). Since (xk+1, yk+1) is an ǫk-stationary point of (9), it then follows from
Definition 1 that

dist
(
0, ∂xL(xk+1, yk+1, λk

x, λ
k
y; ρk)

)
≤ ǫk, dist

(
0, ∂yL(xk+1, yk+1, λk

x, λ
k
y; ρk)

)
≤ ǫk. (56)

Observe from Algorithm 1 that λk+1
y = [λk

y + ρkd(xk+1, yk+1)]+. In view of this, (3) and (51),
one has

∂xL(xk+1, yk+1, λk
x, λ

k
y; ρk) = ∂xF (xk+1, yk+1) +∇c(xk+1)[λk

x + ρkc(x
k+1)]+

−∇xd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+

= ∂xF (xk+1, yk+1) +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ,

∂yL(xk+1, yk+1, λk
x, λ

k
y; ρk) = ∂yF (xk+1, yk+1)−∇yd(xk+1, yk+1)λk+1

y .
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These relations together with (56) imply that (52) and (53) hold.
Notice from Algorithm 1 that 0 < τ < 1, which together with (50) implies that (44) holds

for ρk. It then follows that (45) holds, which immediately yields (54) and

‖λk+1
y ‖ ≤ 2δ−1

d (ǫ0 + LF )Dy. (57)

Claim that
‖λk

y‖ ≤ max{‖λ0
y‖, 2δ−1

d (ǫ0 + LF )Dy}. (58)

Indeed, (58) clearly holds if k = 0. We now assume that k > 0. Notice from Algorithm 1 that
ρk−1 = τρk, which together with (50) implies that (44) holds with k replaced by k− 1. By this
and Lemma 3 with k replaced by k − 1, one can conclude that ‖λk

y‖ ≤ 2δ−1
d (ǫ0 + LF )Dy and

hence (58) holds.
We next show that (55) holds. Indeed, by λk+1

y ≥ 0, (47), (54), (57) and (58), one has

〈λk+1
y , d(xk+1, yk+1)〉 ≤ 〈λk+1

y , [d(xk+1, yk+1)]+〉 ≤ ‖λk+1
y ‖‖[d(xk+1, yk+1)]+‖

(54)(57)

≤ 4ρ−1
k δ−2

d (ǫ0 + LF )2D2
y,

〈λk+1
y , d(xk+1, yk+1)〉

(47)

≥ 〈λk+1
y ,−ρ−1

k λk
y〉 ≥ −ρ−1

k ‖λk+1
y ‖‖λk

y‖
≥ −2ρ−1

k δ−1
d (ǫ0 + LF )Dy max{‖λ0

y‖, 2δ−1
d (ǫ0 + LF )Dy}.

These relations imply that (55) holds.

Lemma 5. Suppose that Assumptions 1, 2 and 3 hold. Let {(λk
x, λ

k
y)}k∈K be generated by Algo-

rithm 1, L, f∗
low, Dy and Fhi be defined in (3), (18), (19) and (20), LF be given in Assumption

1, and ǫ0, τ , ρk, Λ and xkinit be given in Algorithm 1. Then for all 0 ≤ k ∈ K− 1, we have

max
y
L(xkinit, y, λ

k
x, λ

k
y; ρk) ≤ LFDy + Fhi + Λ +

1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

. (59)

Proof. In view of (6), (8), (20) and ‖λk
x‖ ≤ Λ (see Algorithm 1), one has

Lx(xkinit, y
k, λk

x; ρk)
(8)

≤ Lx(xnf , y
k, λk

x; ρk)
(6)
= F (xnf , y

k) +
1

2ρk

(
‖[λk

x + ρkc(xnf )]+‖2 − ‖λk
x‖2
)

≤ F (xnf , y
k) +

1

2ρk

(
(‖λk

x‖+ ρk‖[c(xnf )]+‖)2 − ‖λk
x‖2
)

= F (xnf , y
k) + ‖λk

x‖‖[c(xnf )]+‖+
1

2
ρk‖[c(xnf )]+‖2

(20)

≤ Fhi + Λ‖[c(xnf )]+‖+
1

2
ρk‖[c(xnf )]+‖2. (60)

In addition, one can observe from Algorithm 1 that ǫk > τε for all 0 ≤ k ∈ K− 1. By this and
the choice of ρk in Algorithm 1, we obtain that ρk = ǫ−1

k < τ−1ε−1 for all 0 ≤ k ∈ K−1. It then
follows from this, (3), (6), (19), (41), (60), ‖[c(xnf )]+‖ ≤

√
ε ≤ 1, and the Lipschitz continuity
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of F that

max
y
L(xkinit, y, λ

k
x, λ

k
y; ρk)

(3)(6)
= max

y

{
Lx(xkinit, y, λ

k
x; ρk)− 1

2ρk

(
‖[λk

y + ρkd(xkinit, y)]+‖2 − ‖λk
y‖2
)}

≤ max
y

{
Lx(xkinit, y, λ

k
x; ρk) +

1

2ρk
‖λk

y‖2
}

(6)
= max

y

{
F (xkinit, y)− F (xkinit, y

k) + Lx(xkinit, y
k, λk

x; ρk) +
1

2ρk
‖λk

y‖2
}

≤ max
y∈Y

LF‖y − yk‖+ Lx(xkinit, y
k, λk

x; ρk) +
1

2ρk
‖λk

y‖2

≤ LFDy + Fhi + Λ‖[c(xnf )]+‖+
1

2
ρk‖[c(xnf )]+‖2 +

1

2
‖λ0

y‖2 +
Fhi − f∗

low + Dyǫ0
1− τ

≤ LFDy + Fhi + Λ +
1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

,

where the second inequality follows from LF -Lipschitz continuity of F (see Assumption 1(i)),
the third inequality follows from (19), (41) and (60), and the last inequality follows from ρk <
τ−1ε−1 and ‖[c(xnf )]+‖ ≤

√
ε ≤ 1.

Lemma 6. Suppose that Assumptions 1, 2 and 3 hold. Let Lk, f
∗
low, Dx, Dy, Fhi and Flow be

defined in (10), (18), (19) and (20), LF be given in Assumption 1, ǫ0, τ , ǫk, ρk, Λ and λ0
y be

given in Algorithm 1, and

αk = min

{
1,
√

4ǫk/(DyLk)

}
, (61)

δk = (2 + α−1
k )LkD

2
x + max {ǫk/Dy, αkLk/4}D2

y, (62)

Mk =
16 max {1/(2Lk),min {Dy/ǫk, 4/(αkLk)}} ρk

[(3Lk + ǫk/(2Dy))2/min{Lk, ǫk/(2Dy)}+ 3Lk + ǫk/(2Dy)]−2 ǫ2k
×
(
δk + 2α−1

k

(
Fhi − Flow

+
Λ2

2ρk
+

3

2
‖λ0

y‖2 +
3(Fhi − f∗

low + Dyǫ0)

1− τ
+ ρkd

2
hi +

ǫkDy

4
+ LkD

2
x

))
(63)

Tk =

⌈
16

(
LFDy + Fhi − f∗

low + Λ +
1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

+
Λ2

2ρk
+

ǫkDy

4

)
Lkǫ

−2
k

+ 8(1 + 4D2
yL

2
kǫ

−2
k )ρ−1

k − 1

⌉

+

, (64)

Nk =
(⌈

96
√

2
(
1 + (24Lk + 4ǫk/Dy)L−1

k

)⌉
+ 2
)

max

{
2,
√

DyLkǫ
−1
k

}

× ((Tk + 1)(log Mk)+ + Tk + 1 + 2Tk log(Tk + 1)) . (65)

Then for all 0 ≤ k ∈ K − 1, Algorithm 1 finds an ǫk-stationary point (xk+1, yk+1) of problem
(9) that satisfies

max
y
L(xk+1, y, λk

x, λ
k
y; ρk) ≤ LFDy + Fhi + Λ +

1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

+
ǫkDy

4
+

1

2ρk

(
L−1
k ǫ2k + 4D2

yLk

)
. (66)

Moreover, the total number of evaluations of ∇f , ∇c, ∇d and proximal operator of p and q
performed in iteration k of Algorithm 1 is no more than Nk, respectively.
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Proof. Observe from (1) and (3) that problem (9) can be viewed as

min
x

max
y
{h(x, y) + p(x)− q(y)},

where

h(x, y) = f(x, y) +
1

2ρk

(
‖[λk

x + ρkc(x)]+‖2 − ‖λk
x‖2
)
− 1

2ρk

(
‖[λk

y + ρkd(x, y)]+‖2 − ‖λk
y‖2
)
.

Notice that

∇xh(x, y) = ∇xf(x, y) +∇c(x)[λk
x + ρkc(x)]+ +∇xd(x, y)[λk

y + ρkd(x, y)]+,

∇yh(x, y) = ∇yf(x, y) +∇yd(x, y)[λk
y + ρkd(x, y)]+.

It follows from Assumption 1(iii) that

‖∇c(x)‖ ≤ Lc, ‖∇d(x, y)‖ ≤ Ld ∀(x, y) ∈ X × Y.

In view of the above relations, (7) and Assumption 1, one can observe that ∇c(x)[λk
x +ρkc(x)]+

is (ρkL
2
c + ρkchiL∇c + ‖λk

x‖L∇c)-Lipschitz continuous on X , and ∇d(x, y)[λk
y + ρkd(x, y)]+ is

(ρkL
2
d + ρkdhiL∇d + ‖λk

y‖L∇d)-Lipschitz continuous on X × Y. Using these and the fact that
∇f(x, y) is L∇f -Lipschitz continuous on X ×Y, we can see that h(x, y) is Lk-smooth on X ×Y
for all 0 ≤ k ∈ K − 1, where Lk is given in (10). Consequently, it follows from Theorem
2 that Algorithm 3 can be suitably applied to problem (9) for finding an ǫk-stationary point
(xk+1, yk+1) of it.

In addition, by (3), (18), (36), (37) and ‖λk
x‖ ≤ Λ (see Algorithm 1), one has

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk)

(3)(36)
= min

x
max
y

{
Ly(x, y, λk

y; ρk) +
1

2ρk

(
‖[λk

x + ρkc(x)]+‖2 − ‖λk
x‖2
)}

(37)

≥ min
x

{
f∗(x) +

1

2ρk

(
‖[λk

x + ρkc(x)]+‖2 − ‖λk
x‖2
)} (18)

≥ f∗
low −

1

2ρk
‖λk

x‖2 ≥ f∗
low −

Λ2

2ρk
.

(67)

Let (x∗, y∗) be an optimal solution of (1). It then follows that c(x∗) ≤ 0. Using this, (3), (20)
and (41), we obtain that

min
x

max
y
L(x, y, λk

x, λ
k
y; ρk) ≤ max

y
L(x∗, y, λk

x, λ
k
y; ρk)

(3)
= max

y

{
F (x∗, y) +

1

2ρk

(
‖[λk

x + ρkc(x
∗)]+‖2 − ‖λk

x‖2
)
− 1

2ρk

(
‖[λk

y + ρkd(x∗, y)]+‖2 − ‖λk
y‖2
)}

≤ max
y

{
F (x∗, y)− 1

2ρk

(
‖[λk

y + ρkd(x∗, y)]+‖2 − ‖λk
y‖2
)}

(20)

≤ Fhi +
1

2ρk
‖λk

y‖2
(41)

≤ Fhi +
1

2
‖λ0

y‖2 +
Fhi − f∗

low + Dyǫ0
1− τ

, (68)

where the second inequality is due to c(x∗) ≤ 0. Moreover, it follows from this, (3), (7), (20),
(41), λk

y ∈ R
m̃
+ and ‖λk

x‖ ≤ Λ that

min
(x,y)∈X×Y

L(x, y, λk
x, λ

k
y; ρk)

(3)

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
‖λk

x‖2 −
1

2ρk
‖[λk

y + ρkd(x, y)]+‖2
}

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
‖λk

x‖2 −
1

2ρk

(
‖λk

y‖+ ρk‖[d(x, y)]+‖
)2}

≥ min
(x,y)∈X×Y

{
F (x, y)− 1

2ρk
‖λk

x‖2 − ρ−1
k ‖λk

y‖2 − ρk‖[d(x, y)]+‖2
}

≥ Flow −
Λ2

2ρk
− ‖λ0

y‖2 −
2(Fhi − f∗

low + Dyǫ0)

1− τ
− ρkd

2
hi, (69)
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where the second inequality is due to λk
y ∈ R

m̃
+ and the last inequality is due to (7), (20), (41)

and ‖λk
x‖ ≤ Λ.

To complete the rest of the proof, let

H(x, y) = L(x, y, λk
x, λ

k
y; ρk), H∗ = min

x
max
y
L(x, y, λk

x, λ
k
y; ρk), (70)

Hlow = min
(x,y)∈X×Y

L(x, y, λk
x, λ

k
y; ρk). (71)

In view of these, (59), (67), (68), (69), we obtain that

max
y

H(xkinit, y)
(59)

≤ LFDy + Fhi + Λ +
1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

,

f∗
low −

Λ2

2ρk

(67)

≤ H∗
(68)

≤ Fhi +
1

2
‖λ0

y‖2 +
Fhi − f∗

low + Dyǫ0
1− τ

,

Hlow

(69)

≥ Flow −
Λ2

2ρk
− ‖λ0

y‖2 −
2(Fhi − f∗

low + Dyǫ0)

1− τ
− ρkd

2
hi.

Using these and Theorem 2 (see Appendix A) with x0 = xkinit, Dp = Dx, Dq = Dy, ǫ = ǫk,
ǫ0 = ǫk/(2

√
ρk), L∇h = Lk, α = αk, δ = δk, and H, H∗, Hlow given in (70) and (71), we

can conclude that Algorithm 3 performs at most Nk evaluations of ∇f , ∇c, ∇d and proximal
operator of p and q for finding an ǫk-stationary point of problem (9) satisfying (66).

Lemma 7. Suppose that Assumptions 1, 2 and 3 hold. Let f∗
low, Dy, Fhi and L̂ be defined in

(18), (19), (20) and (23), LF , Lc, δc, θf and θa be given in Assumptions 1 and 3, and ǫ0, τ ,
ρk, Λ and λ0

y be given in Algorithm 1. Suppose that (xk+1, λk+1
x ) is generated by Algorithm 1

for some 0 ≤ k ∈ K− 1 with

ρk ≥ max

{
θ−1
a Λ, θ−2

f

{
2LFDy + 2Fhi − 2f∗

low + 2Λ + τ−1 + ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ

+
ǫ0Dy

2
+ L−2

c + 4D2
yL̂ + Λ2

}
,
4‖λ0

y‖2
δ2dτ

+
8(Fhi − f∗

low + Dyǫ0)

δ2dτ(1− τ)

}
. (72)

Let
λ̃k+1
x = [λk

x + ρkc(x
k+1)]+. (73)

Then we have

‖[c(xk+1)]+‖ ≤ ρ−1
k δ−1

c

(
LF + 2Ldδ

−1
d (ǫ0 + LF )Dy + ǫ0

)
, (74)

|〈λ̃k+1
x , c(xk+1)〉| ≤ ρ−1

k δ−1
c (LF + 2Ldδ

−1
d (ǫ0 + LF )Dy + ǫ0) max{δ−1

c (LF + 2Ldδ
−1
d (ǫ0 + LF )Dy + ǫ0),Λ}.

(75)

Proof. One can observe from (3), (18), (36) and (37) that

max
y
L(xk+1, y, λk

x, λ
k
y; ρk) = max

y
Ly(xk+1, y, λk

y; ρk) +
1

2ρk

(
‖[λk

x + ρkc(x
k+1)]+‖2 − ‖λk

x‖2
)

(37)

≥ f∗(xk+1) +
1

2ρk

(
‖[λk

x + ρkc(x
k+1)]+‖2 − ‖λk

x‖2
)

(18)

≥ f∗
low +

1

2ρk

(
‖[λk

x + ρkc(x
k+1)]+‖2 − ‖λk

x‖2
)
.
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By this inequality, (66) and ‖λk
x‖ ≤ Λ, one has

‖[λk
x + ρkc(x

k+1)]+‖2 ≤ 2ρk max
y
L(xk+1, y, λk

x, λ
k
y; ρk)− 2ρkf

∗
low + ‖λk

x‖2

≤ 2ρk max
y
L(xk+1, y, λk

x, λ
k
y; ρk)− 2ρkf

∗
low + Λ2

(66)

≤ 2ρkLFDy + 2ρkFhi + 2ρkΛ + ρk(τ−1 + ‖λ0
y‖2) +

2ρk(Fhi − f∗
low + Dyǫ0)

1− τ
+

ρkǫkDy

2

+ L−1
k ǫ2k + 4D2

yLk − 2ρkf
∗
low + Λ2.

This together with ρ2k‖[c(xk+1)]+‖2 ≤ ‖[λk
x + ρkc(x

k+1)]+‖2 implies that

‖[c(xk+1)]+‖2 ≤ ρ−1
k

(
2LFDy + 2Fhi − 2f∗

low + 2Λ + τ−1 + ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ
+

ǫkDy

2

)

+ ρ−2
k

(
L−1
k ǫ2k + 4D2

yLk + Λ2
)
. (76)

In addition, we observe from (10), (23), (41), ρk ≥ 1 and ‖λk
x‖ ≤ Λ that for all 0 ≤ k ≤ K,

ρkL
2
c ≤ Lk = L∇f + ρkL

2
c + ρkchiL∇c + ‖λk

x‖L∇c + ρkL
2
d + ρkdhiL∇d + ‖λk

y‖L∇d

≤ L∇f + ρkL
2
c + ρkchiL∇c + ΛL∇c + ρkL

2
d + ρkdhiL∇d

+ L∇d

√
ρk

(
‖λ0

y‖2 +
2(Fhi − f∗

low + Dyǫ0)

1− τ

)
≤ ρkL̂. (77)

Using this relation, (72), (76), ρk ≥ 1 and ǫk ≤ ǫ0, we have

‖[c(xk+1)]+‖2 ≤ ρ−1
k

(
2LFDy + 2Fhi − f∗

low + 2Λ + τ−1 + ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ
+

ǫkDy

2

)

+ ρ−2
k

(
(ρkL

2
c)

−1ǫ2k + 4ρkD
2
yL̂ + Λ2

)

≤ ρ−1
k

(
2LFDy + 2Fhi − f∗

low + 2Λ + τ−1 + ‖λ0
y‖2 +

2(Fhi − f∗
low + Dyǫ0)

1− τ
+

ǫ0Dy

2

)

+ ρ−1
k

(
L−2
c + 4D2

yL̂ + Λ2
) (72)

≤ θ2f ,

which together with (11) implies that xk+1 ∈ F(θf ).
It follows from xk+1 ∈ F(θf ) and Assumption 3(i) that there exists some vx such that

‖vx‖ = 1 and vTx∇ci(xk+1) ≤ −δc for all i ∈ A(xk+1; θa), where A(xk+1; θa) is defined in
(11). Let Ā(xk+1; θa) = {1, 2, . . . , ñ}\A(xk+1; θa). Notice from (11) that ci(x

k+1) < −θa for all
i ∈ Ā(xk+1; θa). In addition, observe from (72) that ρk ≥ θ−1

a Λ. Using these and ‖λk
x‖ ≤ Λ, we

obtain that (λk
x + ρkc(x

k+1))i ≤ Λ− ρkθa ≤ 0 for all i ∈ Ā(xk+1; θa). By this and the fact that
vTx∇ci(xk+1) ≤ −δc for all i ∈ A(xk+1; θa), one has

vTx∇c(xk+1)λ̃k+1
x

(73)
= vTx∇c(xk+1)[λk

x + ρkc(x
k+1)]+ =

ñ∑

i=1

vTx∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i

=
∑

i∈A(xk+1;θa)

vTx∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i +
∑

i∈Ā(xk+1;θa)

vTx∇ci(xk+1)([λk
x + ρkc(x

k+1)]+)i

≤ −δc
∑

i∈A(xk+1;θa)

([λk
x + ρkc(x

k+1)]+)i = −δc
ñ∑

i=1

([λk
x + ρkc(x

k+1)]+)i
(73)
= −δc‖λ̃k+1

x ‖1. (78)

Since (xk+1, yk+1) is an ǫk-stationary point of (9), it follows from (3) and (56) that there
exists some s ∈ ∂xF (xk+1, yk+1) such that

‖s +∇c(xk+1)[λk
x + ρkc(x

k+1)]+ −∇xd(xk+1, yk+1)[λk
y + ρkd(xk+1, yk+1)]+‖ ≤ ǫk,
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which along with (73) and λk+1
y = [λk

y + ρxd(xk+1, yk+1)]+ implies that

‖s +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ‖ ≤ ǫk.

By this, (78) and ‖vx‖ = 1, one has

ǫk ≥ ‖s +∇c(xk+1)λ̃k+1
x −∇xd(xk+1, yk+1)λk+1

y ‖ · ‖vx‖
≥ 〈s +∇c(xk+1)λ̃k+1

x −∇xd(xk+1, yk+1)λk+1
y ,−vx〉

= −〈s−∇xd(xk+1, yk+1)λk+1
y , vx〉 − vTx∇c(xk+1)λ̃k+1

x

(78)

≥ −
(
‖s‖+ ‖∇xd(xk+1, yk+1)‖‖λk+1

y ‖
)
‖vx‖+ δc‖λ̃k+1

x ‖1.

≥ −LF − Ld‖λk+1
y ‖+ δc‖λ̃k+1

x ‖1,

where the last inequality is due to ‖vx‖ = 1 and Assumptions 1(i) and 1(iii). Notice from (72)
that (44) holds. It then follows from (45) that ‖λk+1

y ‖ ≤ 2δ−1
d (ǫ0 +LF )Dy, which together with

the above inequality and ǫk ≤ ǫ0 yields

‖λ̃k+1
x ‖ ≤ ‖λ̃k+1

x ‖1 ≤ δ−1
c (LF + Ld‖λk+1

y ‖+ ǫk) ≤ δ−1
c (LF + 2Ldδ

−1
d (ǫ0 + LF )Dy + ǫ0). (79)

By this and (73), one can observe that

‖[c(xk+1)]+‖ ≤ ρ−1
k ‖[λk

x + ρkc(x
k+1)]+‖ = ρ−1

k ‖λ̃k+1
x ‖ ≤ ρ−1

k δ−1
c (LF + 2Ldδ

−1
d (ǫ0 +LF )Dy + ǫ0).

Hence, (74) holds as desired.
We next show that (75) holds. Indeed, by λ̃k+1

x ≥ 0, (74) and (79), one has

〈λ̃k+1
x , c(xk+1)〉 ≤ 〈λ̃k+1

x , [c(xk+1)]+〉 ≤ ‖λ̃k+1
x ‖‖[c(xk+1)]+‖

(74)(79)

≤ ρ−1
k δ−2

c (LF + 2Ldδ
−1
d (ǫ0 + LF )Dy + ǫ0)

2. (80)

Using a similar argument as for the proof of (47), we have

−〈λ̃k+1
x , ρ−1

k λk
x〉 ≤ 〈λ̃k+1

x , c(xk+1)〉,

which along with ‖λk
x‖ ≤ Λ and (79) yields

〈λ̃k+1
x , c(xk+1)〉 ≥ −ρ−1

k ‖λ̃k+1
x ‖‖λk

x‖ ≥ −ρ−1
k δ−1

c (LF + 2Ldδ
−1
d (ǫ0 + LF )Dy + ǫ0)Λ.

The relation (75) then follows from this and (80).

We are now ready to prove Theorem 1.

Proof of Theorem 1. (i) Observe from the definition of K in (22) and ǫk = ǫ0τ
k that K is

the smallest nonnegative integer such that ǫK ≤ ε. Hence, Algorithm 1 terminates and outputs
(xK+1, yK+1) after K + 1 outer iterations. It follows from these and ρk = ǫ−1

k that ǫK ≤ ε and
ρK ≥ ε−1. By this and (28), one can see that (50) and (72) holds for k = K. It then follows
from Lemmas 4 and 7 that (29)-(34) hold.

(ii) Let K and N be given in (22) and (35). Recall from Lemma 6 that the number of
evaluations of ∇f , ∇c, ∇d, proximal operator of p and q performed by Algorithm 3 at iteration
k of Algorithm 1 is at most Nk, where Nk is given in (65). By this and statement (i) of this
theorem, one can observe that the total number of evaluations of ∇f , ∇c, ∇d, proximal operator
of p and q performed in Algorithm 1 is no more than

∑K
k=0Nk, respectively. As a result, to

prove statement (ii) of this theorem, it suffices to show that
∑K

k=0Nk ≤ N . Recall from (77)
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and Algorithm 1 that ρkL
2
c ≤ Lk ≤ ρkL̂ and ρk ≥ 1 ≥ ǫk. Using these, (24), (25), (26), (61),

(62), (63) and (64), we obtain that

1 ≥ αk ≥ min

{
1,

√
4ǫk/(ρkDyL̂)

}
≥ ǫ

1/2
k ρ

−1/2
k α̂, (81)

δk ≤ (2 + ǫ
−1/2
k ρ

1/2
k α̂−1)ρkL̂D

2
x + max{1/Dy, ρkL̂/4}D2

y ≤ ǫ
−1/2
k ρ

3/2
k δ̂, (82)

Mk ≤
16 max

{
1/(2ρkL

2
c), 4/(ǫ

1/2
k ρ

−1/2
k α̂ρkL

2
c)
}
ρk

[
(3ρkL̂ + 1/(2Dy))2/min{ρkL2

c , ǫk/(2Dy)}+ 3ρkL̂ + 1/(2Dy)
]−2

ǫ2k

×
(
ǫ
−1/2
k ρ

3/2
k δ̂

+ 2ǫ
−1/2
k ρ

1/2
k α̂−1

(
Fhi − Flow +

Λ2

2
+

3

2
‖λ0

y‖2 +
3(Fhi − f∗

low + Dyǫ0)

1− τ
+ ρkd

2
hi

+
Dy

4
+ ρkL̂D

2
x

))
(83)

≤ 16ǫ
−1/2
k ρ

−1/2
k max

{
1/(2L2

c), 4/(α̂L2
c)
}
ρk

ǫ2kρ
−4
k

[
(3L̂ + 1/(2Dy))2/min{L2

c , 1/(2Dy)}+ 3L̂ + 1/(2Dy)
]−2

ǫ2k

× (ǫ
−1/2
k ρ

3/2
k )

(
δ̂ + 2α̂−1

×
(
Fhi − Flow +

Λ2

2
+

3

2
‖λ0

y‖2 +
3(Fhi − f∗

low + Dyǫ0)

1− τ
+ d2hi +

Dy

4
+ L̂D2

x

))
≤ ǫ−5

k ρ6kM̂,

Tk ≤
⌈

16

(
LFDy + Fhi − f∗

low + Λ +
1

2
(τ−1 + ‖λ0

y‖2) +
Fhi − f∗

low + Dyǫ0
1− τ

+
Λ2

2
+

Dy

4

)
ǫ−2
k ρkL̂

+ 8(1 + 4D2
yρ

2
kL̂

2ǫ−2
k )ρ−1

k − 1

⌉

+

≤ ǫ−2
k ρkT̂ ,

where (83) follows from (24), (25), (26), (81), (82), ρkL
2
c ≤ Lk ≤ ρkL̂, and ρk ≥ 1 ≥ ǫk. By the

above inequalities, (65), (77), T̂ ≥ 1 and ρk ≥ 1 ≥ ǫk, one has

K∑

k=0

Nk ≤
K∑

k=0

(⌈
96
√

2
(

1 +
(

24ρkL̂ + 4/Dy

)
/(ρkL

2
c)
)⌉

+ 2
)

max

{
2,

√
DyρkL̂ǫ

−1
k

}

×
(

(ǫ−2
k ρkT̂ + 1)(log(ǫ−5

k ρ6kM̂))+ + ǫ−2
k ρkT̂ + 1 + 2ǫ−2

k ρkT̂ log(ǫ−2
k ρkT̂ + 1)

)

≤
K∑

k=0

(⌈
96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
ǫ
−1/2
k ρ

1/2
k

× ǫ−2
k ρk

(
(T̂ + 1)(log(ǫ−5

k ρ6kM̂ ))+ + T̂ + 1 + 2T̂ log(ǫ−2
k ρkT̂ + 1)

)

≤
K∑

k=0

(⌈
96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}

× ǫ
−5/2
k ρ

3/2
k T̂

(
2(log(ǫ−5

k ρ6kM̂))+ + 2 + 2 log(2ǫ−2
k ρkT̂ )

)

≤
K∑

k=0

(⌈
96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂

× ǫ
−5/2
k ρ

3/2
k

(
14 log ρk − 14 log ǫk + 2(log M̂ )+ + 2 + 2 log(2T̂ )

)
, (84)

By the definition of K in (22), one has τK ≥ τε/ǫ0. Also, notice from Algorithm 1 that
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ρk = ǫ−1
k = (ǫ0τ

k)−1. It then follows from these, (35) and (84) that

K∑

k=0

Nk ≤
K∑

k=0

(⌈
96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂

× ǫ−4
k

(
28 log(1/ǫk) + 2(log M̂)+ + 2 + 2 log(2T̂ )

)

=
(⌈

96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂

×
K∑

k=0

ǫ−4
0 τ−4k

(
28k log(1/τ) + 28 log(1/ǫ0) + 2(log M̂)+ + 2 + 2 log(2T̂ )

)

≤
(⌈

96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂

×
K∑

k=0

ǫ−4
0 τ−4k

(
28K log(1/τ) + 28 log(1/ǫ0) + 2(log M̂)+ + 2 + 2 log(2T̂ )

)

≤
(⌈

96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂ ǫ−4

0

× τ−4K(1− τ4)−1
(

28K log(1/τ) + 28 log(1/ǫ0) + 2(log M̂)+ + 2 + 2 log(2T̂ )
)

≤
(⌈

96
√

2
(

1 +
(

24L̂ + 4/Dy

)
/L2

c

)⌉
+ 2
)

max

{
2,

√
DyL̂

}
T̂ ǫ−4

0 (1− τ4)−1

× (τε/ǫ0)−4
(

28K log(1/τ) + 28 log(1/ǫ0) + 2(log M̂)+ + 2 + 2 log(2T̂ )
)

(35)
= N,

where the second last inequality is due to
∑K

k=0 τ
−4k ≤ τ−4K/(1 − τ4), and the last inequality

is due to τK ≥ τε/ǫ0. Hence, statement (ii) of this theorem holds as desired.
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A A first-order method for nonconvex-concave minimax prob-

lem

In this part we present a first-order method proposed in [26, Algorithm 2] for finding an ǫ-
stationary point of the nonconvex-concave minimax problem

H∗ = min
x

max
y
{H(x, y) := h(x, y) + p(x)− q(y)} , (85)

which has at least one optimal solution and satisfies the following assumptions.

Assumption 4. (i) p : Rn → R ∪ {∞} and q : Rm → R ∪ {∞} are proper convex functions
and continuous on dom p and dom q, respectively, and moreover, dom p and dom q are
compact.

(ii) The proximal operator associated with p and q can be exactly evaluated.

22

http://arxiv.org/abs/2110.11210
http://arxiv.org/abs/2006.09361
http://arxiv.org/abs/2006.02032
http://arxiv.org/abs/2212.04672


(iii) h is L∇h-smooth on dom p× dom q, and moreover, h(x, ·) is concave for any x ∈ dom p.

For ease of presentation, we define

Dp = max{‖u− v‖
∣∣u, v ∈ dom p}, Dq = max{‖u− v‖

∣∣u, v ∈ dom q}, (86)

Hlow = min{H(x, y)|(x, y) ∈ dom p× dom q}. (87)

Given an iterate (xk, yk), the first-order method [26, Algorithm 2] finds the next iterate
(xk+1, yk+1) by applying a modified optimal first-order method [26, Algorithm 1] to the strongly-
convex-strongly-concave minimax problem

min
x

max
y

{
hk(x, y) = h(x, y) − ǫ‖y − y0‖2/(4Dq) + L∇h‖x− xk‖2

}
. (88)

For ease reference, we next present the modified optimal first-order method [26, Algorithm
1] in Algorithm 2 below for solving the strongly-convex-strongly-concave minimax problem

min
x

max
y

{
h̄(x, y) + p(x)− q(y)

}
, (89)

where h̄(x, y) is σx-strongly-convex-σy -strongly-concave and L∇h̄-smooth on dom p× dom q for

some σx, σy > 0. In Algorithm 2, the functions ĥ, akx and aky are defined as follows:

ĥ(x, y) = h̄(x, y)− σx‖x‖2/2 + σy‖y‖2/2,

akx(x, y) = ∇xĥ(x, y) + σx(x− σ−1
x zkg )/2, aky(x, y) = −∇yĥ(x, y) + σyy + σx(y − ykg )/8,

where ykg and zkg are generated at iteration k of Algorithm 2 below.
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Algorithm 2 A modified optimal first-order method for problem (89)

Input: τ > 0, z̄0 = z0f ∈ −σxdom p,4 ȳ0 = y0f ∈ dom q, (z0, y0) = (z̄0, ȳ0), ᾱ =

min
{

1,
√

8σy/σx
}

, ηz = σx/2, ηy = min {1/(2σy), 4/(ᾱσx)}, βt = 2/(t + 3), ζ =(
2
√

5(1 + 8L∇h̄/σx)
)−1

, γx = γy = 8σ−1
x , and ζ̂ = min{σx, σy}/L2

∇h̄
.

1: for k = 0, 1, 2, . . . do
2: (zkg , y

k
g ) = ᾱ(zk, yk) + (1− ᾱ)(zkf , y

k
f ).

3: (xk,−1, yk,−1) = (−σ−1
x zkg , y

k
g ).

4: xk,0 = proxζγxp(xk,−1 − ζγxa
k
x(xk,−1, yk,−1)).

5: yk,0 = proxζγyq(y
k,−1 − ζγya

k
y(xk,−1, yk,−1)).

6: bk,0x = 1
ζγx

(xk,−1 − ζγxa
k
x(xk,−1, yk,−1)− xk,0).

7: bk,0y = 1
ζγy

(yk,−1 − ζγya
k
y(xk,−1, yk,−1)− yk,0).

8: t = 0.
9: while

γx‖akx(xk,t, yk,t)+bk,tx ‖2+γy‖aky(xk,t, yk,t)+bk,ty ‖2 > γ−1
x ‖xk,t−xk,−1‖2+γ−1

y ‖yk,t−yk,−1‖2
do

10: xk,t+1/2 = xk,t + βt(x
k,0 − xk,t)− ζγx(akx(xk,t, yk,t) + bk,tx ).

11: yk,t+1/2 = yk,t + βt(y
k,0 − yk,t)− ζγy(aky(xk,t, yk,t) + bk,ty ).

12: xk,t+1 = proxζγxp(xk,t + βt(x
k,0 − xk,t)− ζγxa

k
x(xk,t+1/2, yk,t+1/2)).

13: yk,t+1 = proxζγyq(y
k,t + βt(y

k,0 − yk,t)− ζγya
k
y(xk,t+1/2, yk,t+1/2)).

14: bk,t+1
x = 1

ζγx
(xk,t + βt(x

k,0 − xk,t)− ζγxa
k
x(xk,t+1/2, yk,t+1/2)− xk,t+1).

15: bk,t+1
y = 1

ζγy
(yk,t + βt(y

k,0 − yk,t)− ζγya
k
y(xk,t+1/2, yk,t+1/2)− yk,t+1).

16: t← t + 1.
17: end while
18: (xk+1

f , yk+1
f ) = (xk,t, yk,t).

19: (zk+1
f , wk+1

f ) = (∇xĥ(xk+1
f , yk+1

f ) + bk,tx ,−∇yĥ(xk+1
f , yk+1

f ) + bk,ty ).

20: zk+1 = zk + ηzσ
−1
x (zk+1

f − zk)− ηz(xk+1
f + σ−1

x zk+1
f ).

21: yk+1 = yk + ηyσy(yk+1
f − yk)− ηy(wk+1

f + σyy
k+1
f ).

22: xk+1 = −σ−1
x zk+1.

23: x̃k+1 = proxζ̂p(xk+1 − ζ̂∇xh̄(xk+1, yk+1)).

24: ỹk+1 = proxζ̂q(y
k+1 + ζ̂∇yh̄(xk+1, yk+1)).

25: Terminate the algorithm and output (x̃k+1, ỹk+1) if

‖ζ̂−1(xk+1 − x̃k+1, ỹk+1 − yk+1)− (∇h̄(xk+1, yk+1)−∇h̄(x̃k+1, ỹk+1))‖ ≤ τ.

26: end for

We are now ready to present the first-order method [26, Algorithm 2] for finding an ǫ-
stationary point of (85) in Algorithm 3 below.

4For convenience, −σxdom p stands for the set {−σxu|u ∈ dom p}.
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Algorithm 3 A first-order method for problem (85)

Input: ǫ > 0, ǫ0 ∈ (0, ǫ/2], (x̂0, ŷ0) ∈ dom p× dom q, (x0, y0) = (x̂0, ŷ0), and ǫk = ǫ0/(k + 1).
1: for k = 0, 1, 2, . . . do
2: Call Algorithm 2 with h̄← hk, τ ← ǫk, σx ← L∇h, σy ← ǫ/(2Dq), L∇h̄ ← 3L∇h+ǫ/(2Dq),

z̄0 = z0f ← −σxxk, ȳ0 = y0f ← yk, and denote its output by (xk+1, yk+1), where hk is
given in (88).

3: Terminate the algorithm and output (xǫ, yǫ) = (xk+1, yk+1) if

‖xk+1 − xk‖ ≤ ǫ/(4L∇h).

4: end for

The following theorem presents the iteration complexity of Algorithm 3, whose proof is given
in [26, Theorem 2].

Theorem 2 (Complexity of Algorithm 3). Suppose that Assumption 4 holds. Let H∗, H
Dp, Dq, and Hlow be defined in (85), (86) and (87), L∇h be given in Assumption 4, ǫ, ǫ0 and
x0 be given in Algorithm 3, and

α = min

{
1,
√

4ǫ/(DqL∇h)

}
,

δ = (2 + α−1)L∇hD
2
p + max {ǫ/Dq, αL∇h/4}D2

q ,

K =

⌈
16(max

y
H(x0, y)−H∗ + ǫDq/4)L∇hǫ

−2 + 32ǫ20(1 + 4D2
qL

2
∇hǫ

−2)ǫ−2 − 1

⌉

+

,

N =
(⌈

96
√

2
(
1 + (24L∇h + 4ǫ/Dq)L

−1
∇h

)⌉
+ 2
){

2,
√

DqL∇hǫ−1
}

×
(

(K + 1)

(
log

4 max
{

1
2L∇h

,min
{

Dq

ǫ , 4
αL∇h

}} (
δ + 2α−1(H∗ −Hlow + ǫDq/4 + L∇hD

2
p)
)

[(3L∇h + ǫ/(2Dq))2/min{L∇h, ǫ/(2Dq)}+ 3L∇h + ǫ/(2Dq)]
−2 ǫ20

)

+

+ K + 1 + 2K log(K + 1)

)
.

Then Algorithm 3 terminates and outputs an ǫ-stationary point (xǫ, yǫ) of (85) in at most K+1
outer iterations that satisfies

max
y

H(xǫ, y) ≤ max
y

H(x̂0, y) + ǫDq/4 + 2ǫ20
(
L−1
∇h + 4D2

qL∇hǫ
−2
)
.

Moreover, the total number of evaluations of ∇h and proximal operator of p and q performed
in Algorithm 3 is no more than N , respectively.

25


	1 Introduction
	1.1 Notation and terminology

	2 A first-order augmented Lagrangian method for problem (1)
	3 Complexity results of Algorithm 1
	4 Proof of the main result
	A A first-order method for nonconvex-concave minimax problem

