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Abstract

In this paper we consider minimizing the spectral condition number of a positive semidefinite

matrix over a nonempty closed convex set Ω. We show that it can be solved as a convex programming

problem, and moreover, the optimal value of the latter problem is achievable. As a consequence, when

Ω is positive semidefinite representable, it can be cast into a semidefinite programming problem. We

then propose a first-order method to solve the convex programming problem. The computational

results show that our method is usually faster than the standard interior point solver SeDuMi [16]

while producing a comparable solution. We also study a closely related problem, that is, finding an

optimal preconditioner for a positive definite matrix. This problem is not convex in general. We

propose a convex relaxation for finding positive definite preconditioners. This relaxation turns out

to be exact when finding optimal diagonal preconditioners.

Key words: condition number, diagonal preconditioner, convex programming, semidefinite pro-

gramming
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1 Introduction

Inspired by Maréchal and Ye [13], we consider the problem of the form

κ∗ = inf
{
κ(X) : X ∈ Sn+ ∩ Ω

}
, (1)

where Ω ⊆ Sn is a nonempty closed convex set, Sn is the space of symmetric n × n matrices, Sn+ is

the cone of symmetric positive semidefinite n × n matrices, and κ(X) denotes the spectral condition

number of X. We denote by λmax(X) (resp. λmin(X)) the maximal (resp. minimal) eigenvalue of a real

symmetric matrix X. As in [13], for any X ∈ Sn+, the function κ is defined as

κ(X) =


λmax(X)/λmin(X) if λmin(X) > 0,

∞ if λmin(X) = 0 and λmax(X) > 0,

0 if X = 0.
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It is clear that κ achieves the global minimum value of (1) at 0 if 0 ∈ Ω. To avoid some trivial cases,

we make the following assumptions on Ω in (1) throughout the paper:

A.1 Ω does not contain the zero matrix;

A.2 The optimal value κ∗ of problem (1) is finite.

Problem (1) arises in several applications. For example, Guigues [8] recently applied (1) to estimate

the covariance matrix for the Markowitz portfolio selection model (see also [13]). It is easy to show that

κ(·) is a quasi-convex function. An approximate solution of (1) can be found by solving a sequence of

convex feasibility problems. Indeed, suppose that κ̄ and κ are the known upper and lower bounds on

the optimal value κ∗ of (1). Let κl = κ, κu = κ̄, and v = (κl + κu)/2. Consider the convex feasibility

problem:

find X ∈ Fv :=
{
X ∈ Sn+ ∩ Ω, λmax(X)− vλmin(X) ≤ 0

}
. (2)

If Fv = ∅, we know κ∗ ≥ v and update κl by setting κl ← v. Otherwise, κ∗ ≤ v and set κu ← v.

By repeating this bisection scheme, one can find an ϵ-optimal solution of (1) in O(log κ̄−κ
ϵ ) number of

accesses to the oracle (2) for any given ϵ > 0. Though this scheme looks quite simple, it may not be

easily implementable as checking whether Fv is empty or not can be highly numerically unstable.

Recently, Maréchal and Ye [13] studied problem (1) under the assumption that Ω is a compact

convex set. They showed that an optimal solution of (1) can be approximated by an exact or an inexact

solution of a nonsmooth convex programming problem

min{κp(X) : X ∈ Sn+ ∩ Ω}, (3)

for some sufficiently large p > 0, where κp(X) := (λmax(X))p+1/(λmin(X))p. In particular, it is proven

in [13] that κp(·) is convex for any p ≥ 0, and moreover, every accumulation point of the sequence

{Xpk} is an optimal solution of (1) for any {pk} ⊆ ℜ+ → ∞, where Xpk is an optimal solution of (3)

for p = pk. It is not known, however, for a given ϵ > 0, how large a p would ensure that an exact or

inexact solution of (3) is an ϵ-optimal solution of (1).

In this paper we will show that problem (1) can be solved as a convex programming problem, and

moreover, the optimal value of the latter problem is achievable. As a consequence, when Ω is positive

semidefinite representable, it can be cast into a semidefinite programming problem. We then propose

a first-order method to solve the convex programming problem and compare its performance with

standard interior point (IP) solver SeDuMi for two specific Ω’s. The computational results show that

our method is usually faster than SeDuMi while producing a comparable solution. We also consider a

closely related problem, that is, finding a preconditioner for a positive definite matrix. In particular,

assume that C ∈ ℜm×n has full column rank. Consider finding a preconditioner X for CTC so that

κ(XTCTCX) is minimized, which generally can be formulated as

inf κ(XTCTCX)

s.t. X ∈ Ω.
(4)

Here, Ω is a nonempty closed convex subset of ℜn×n\{0} such that the optimal value of (4) is finite.

This problem is typically not convex. We will propose a convex relaxation to it, assuming in addition
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that X ∈ Sn+. Interestingly, this relaxation turns out to be exact when finding diagonal precondition-

ers. Especially, when Ω is a box, finding an optimal diagonal preconditioner can be cast into a cone

programming problem.

The rest of the paper is organized as follows. In Section 2, we introduce the notations that are used

in this paper and present some basic facts about convex sets for the ease of reference. In Section 3 we

consider problem (1) and show that it can be solved as a convex programming problem. In Section 4

we propose a first-order method for solving the convex programming problem and conduct numerical

experiments. In Section 5 we study problem (4) and propose a convex relaxation. Finally we present

some concluding remarks in Section 6.

2 Notations and preliminaries

In this section, we introduce notations used in this paper and present some basic facts about convex

sets for the ease of reference.

The symbols ℜn and ℜn
+ denote the n-dimensional Euclidean space and its nonnegative orthant,

respectively. For a vector v, ∥v∥ denotes the Euclidean norm of v and v+ denotes the vector whose ith

entry is max{vi, 0}. The n-dimensional second-order cone will be denoted by Ln, that is,

Ln :=

{
x ∈ ℜn : x1 ≥

√
x22 + · · ·+ x2n

}
.

The space of symmetric n×n matrices will be denoted by Sn. For a matrix X ∈ Sn, ∥X∥F denotes the

Fröbenius norm ofX, tr(X) denotes the trace ofX, andXij denotes the (i, j)th entry ofX. For matrices

X,Y ∈ Sn, ⟨X,Y ⟩ denotes the trace inner product tr(XY ), and max{X,Y } (resp., min{X,Y }) is the
matrix whose (i, j)th entry is max{Xij , Yij} (resp., min{Xij , Yij}). If X ∈ Sn is positive semidefinite

(resp., definite), we write X ≽ 0 (resp., X ≻ 0). Also, we write X ≼ Y (resp., X ≽ Y ) to mean

Y −X ≽ 0 (resp., X−Y ≽ 0). The cone of positive semidefinite (resp., definite) matrices is denoted by

Sn+ (resp., Sn++). The cone of nonnegative diagonal n× n matrices will be denoted by Dn
+. We denote

by e the vector of all ones, I the identity matrix and E the matrix of all ones, whose dimensions should

be clear from the context. Given a linear operator A, ℜ(A) denotes the range of A.
For a set S, we denote by conv(S) and cone(S) the convex hull and conical hull of S, respectively,

i.e.,

conv(S) =

{
p∑

i=1

αisi :

p∑
i=1

αi = 1, αi ≥ 0, si ∈ S for all integer p > 0

}
, cone(S) =

∪
t≥0

tS.

Notice that if S is a convex set, then cone(S) is a convex set. Given a convex set C, let cl C and ri C

denote the closure and relative interior of C, respectively. In the sequel, we will need the following facts

about relative interior and closure of convex sets, whose proofs can be found in [14, Chapter 6].

Proposition 2.1 Let C and D be nonempty convex sets. Then the following statements hold:

i) if x ∈ ri C and y ∈ C, then αx+ (1− α)y ∈ ri C for any α ∈ (0, 1].

ii) if ri C ∩ ri D ̸= ∅, then cl (C ∩D) = cl C ∩ cl D and ri (C ∩D) = ri C ∩ ri D.
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iii) if S = {(1, x) : x ∈ C}, then ri cone(S) = {t(1, x) : t > 0, x ∈ ri C}.

iv) cl (ri C) = cl C and ri (cl C) = ri C.

v) ri (C ×D) = ri C × ri D.

In addition, for a closed convex set C, we denote by C∞ the recession cone of C, that is,

C∞ = {d : c+ td ∈ C ∀t ≥ 0},

for any fixed c ∈ C. The set is independent of the choice of c ∈ C by [1, Proposition 2.1.5] (see also

[14, Theorem 8.3]) and is thus well-defined. The following facts about recession cones will be used

subsequently, whose proofs can be found in Corollary 2.3.3 and Lemma 2.1.1 of [1], Theorem 8.4 of [14]

and Proposition 2.1.11 of [1].

Proposition 2.2 Let C be a nonempty closed convex set. Then the following statements hold.

i) if 0 /∈ C, then cl cone(C) = cone(C) ∪ C∞.

ii) if S = {(1, x) : x ∈ C}, then cl cone(S) = cone(S) ∪ {(0, x) : x ∈ C∞}.

iii) C is bounded if and only if C∞ = {0}.

iv) if A is a linear map such that A−1(C) ̸= ∅, then (A−1(C))∞ = A−1(C∞).

Finally, consider the problem of minimizing a real-valued function f(x) over a certain nonempty

feasible region F contained in the domain of f and let f̄ := inf{f(x) : x ∈ F}. For ϵ ≥ 0, we say that

xϵ is an ϵ-optimal solution of this problem if xϵ ∈ F and f(xϵ) ≤ f̄ + ϵ.

3 Minimizing condition number

In this section we show that problem (1) can be solved as a convex programming problem, and moreover,

the optimal value of the latter problem is achievable.

We first show that problem (1) can be reformulated as the following minimization problem with

respect to (X, t):

λ∗ = inf {λmax(X) : X ∈ tΩ, t ≥ 0, X ≽ I} . (5)

Theorem 3.1 The following statements hold:

i) problem (5) has the same optimal value as (1), that is, λ∗ = κ∗;

ii) for any ϵ ≥ 0, if Xϵ is an ϵ-optimal solution of (1), then (1/λmin(Xϵ), Xϵ/λmin(Xϵ)) is an ϵ-optimal

solution of (5);

iii) for any ϵ ≥ 0, if (tϵ, Xϵ) is an ϵ-optimal solution of (5), then Xϵ/tϵ is an ϵ-optimal solution of

(1).
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Proof. By Assumptions A.1 and A.2, we know that Sn++ ∩ Ω ̸= ∅. It implies that problem (5) is

feasible. Let (t,X) be a feasible point of (5). Then t > 0 and X/t ∈ Sn++ ∩ Ω. Hence, X/t is a feasible

point of (1). Moreover, we have

κ(X/t) = κ(X) = λmax(X)/λmin(X) ≤ λmax(X), (6)

where the last inequality holds due to X ≽ I. It then implies κ∗ ≤ λ∗. Now suppose that Xϵ is

an ϵ-optimal solution of (1) for some ϵ ≥ 0. Then, Xϵ ∈ Sn+ ∩ Ω and κ(Xϵ) ≤ κ∗ + ϵ, which to-

gether with Assumptions A.1 and A.2 implies λmin(Xϵ) > 0. It is then straightforward to verify that

(1/λmin(Xϵ), Xϵ/λmin(Xϵ)) is a feasible point of (5). Furthermore, we have

λ∗ ≤ λmax (Xϵ/λmin(Xϵ)) = κ(Xϵ) ≤ κ∗ + ϵ. (7)

Due to the arbitrariness of ϵ, we conclude that λ∗ ≤ κ∗. Thus, we have λ∗ = κ∗, and so statement (i)

holds. Moreover, it follows from (7) and statement (i) that (1/λmin(Xϵ), Xϵ/λmin(Xϵ)) is an ϵ-optimal

solution of (5), and hence statement (ii) holds. Next we show that statement (iii) holds. Indeed, suppose

(tϵ, Xϵ) is an ϵ-optimal solution of (5) for some ϵ ≥ 0. We see that tϵ > 0 and Xϵ/tϵ is a feasible point

of (1). Replacing t and X by tϵ and Xϵ, respectively in (6), and using statement (i), we obtain that

κ(Xϵ/tϵ) ≤ λmax(Xϵ) ≤ λ∗ + ϵ = κ∗ + ϵ,

which implies that Xϵ/tϵ is an ϵ-optimal solution of (1).

We see from Theorem 3.1 that problem (1) can be solved as (5). Notice that the objective function

and the feasible region of (5), denoted by F , are convex. Nevertheless, F generally is not closed.

For example, let Ω = {X ∈ Sn : X ≽ I}. Then we see that {(tk, Xk)} = {(1/k, I)} ⊆ F but

(tk, Xk) → (0, I) /∈ F , which implies that F is not closed. We next provide a necessary and sufficient

condition for the closedness of F .

Theorem 3.2 The feasible region F of (5) is closed if and only if Sn++ ∩ Ω∞ = ∅.

Proof. By Assumption A.2 and Theorem 3.1 (i), we know that the optimal value of (5) is finite,

which implies that Sn++ ∩ Ω ̸= ∅. Let X ∈ ri Ω and Y ∈ Sn++ ∩ Ω. It follows from Proposition 2.1 (i)

that {αX + (1 − α)Y : α ∈ (0, 1]} ⊆ ri Ω. Hence we have that αX + (1 − α)Y ∈ Sn++ ∩ ri Ω when

0 < α≪ 1. Thus Sn++ ∩ ri Ω ̸= ∅. We now define

K = {t(1, X) : t ≥ 0, X ∈ Ω} , K̃ = {(t,X) : t ∈ ℜ, X ≽ I} . (8)

It follows from Proposition 2.1 (iii) and (v) that

ri K = {t(1, X) : t > 0, X ∈ ri Ω} , ri K̃ = {(t,X) : t ∈ ℜ, X ≻ I} . (9)

Since Sn++ ∩ ri Ω ̸= ∅, we see that ri K ∩ ri K̃ ≠ ∅. Using this result, and Propositions 2.1 (ii) and 2.2

(ii), we obtain that

cl (K ∩ K̃) = cl K ∩ cl K̃ = (K ∪ {(0, X) : X ∈ Ω∞}) ∩ K̃,

= (K ∩ K̃) ∪ {(0, X) : X ∈ Ω∞, X ≽ I} ,
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which together with the definitions of K and K̃ implies that F = K ∩ K̃ is closed if and only if

{(0, X) : X ∈ Ω∞, X ≽ I} ⊆ K. Further, by the definition of K, the latter condition holds if and

only if {(0, X) : X ∈ Ω∞, X ≽ I} = ∅, or equivalently, Sn++ ∩ Ω∞ = ∅. Thus the conclusion holds.

We observe from Theorems 3.1 and 3.2 that when Sn++ ∩ Ω∞ = ∅, problem (1) can be solved as

convex programming problem (5). In particular, for the case where Ω is a compact convex set that is

assumed in [13], Sn++∩Ω∞ = ∅ holds since Ω∞ = {0} by Proposition 2.2 (iii). Given that Sn++∩Ω∞ = ∅
generally may not hold, we will further consider a relaxation of (5):

µ∗ = inf {λmax(X) : (t,X) ∈ Ξ, X ≽ I} , (10)

where

Ξ := {t(1, X) : t ≥ 0, X ∈ Ω} ∪ {(0, X) : X ∈ Ω∞}. (11)

In view of (8) and Proposition 2.2 (ii), we see that Ξ = cl K, and hence Ξ is closed and convex. We

next show that problem (1) can be solved as convex programming problem (10).

Theorem 3.3 The following statements hold:

i) problem (10) has the same optimal value as (1), that is, µ∗ = κ∗;

ii) for any ϵ ≥ 0, if Xϵ is an ϵ-optimal solution of (1), then (1/λmin(Xϵ), Xϵ/λmin(Xϵ)) is an ϵ-optimal

solution of (10);

iii) for any ϵ > 0, if (tϵ, Xϵ) is an ϵ-optimal solution of (10) for some tϵ > 0, then Xϵ/tϵ is an

ϵ-optimal solution of (1);

iv) for any ϵ > 0, if (0, Xϵ) is an ϵ-optimal solution of (10), then X̄ + αXϵ is a 2ϵ-optimal solution

of (1), provided that α ≥ α := max{[λmax(X̄)− (µ∗ + 2ϵ)λmin(X̄)]/ϵ, 1− λmin(X̄), 0}, where X̄ is

an arbitrary point in Ω.

Proof. In view of (5) and (10), we see that µ∗ ≤ λ∗, which together with Theorem 3.1 (i) implies

that µ∗ ≤ κ∗. We now simultaneously show that κ∗ ≤ µ∗ and statements (iii) and (iv) hold. For any

ϵ > 0, suppose that (tϵ, Xϵ) is an ϵ-optimal solution of (10). We now consider two cases: tϵ > 0 or

tϵ = 0. First, assume that tϵ > 0. We observe that λmax(Xϵ) ≤ µ∗ + ϵ ≤ λ∗ + ϵ. Thus, (tϵ, Xϵ) is an

ϵ-optimal solution of (5). It then follows from Theorem 3.1 (iii) that Xϵ/tϵ is an ϵ-optimal solution of

(1), i.e., statement (iii) holds. Moreover, we have

κ∗ ≤ κ(Xϵ/tϵ) = κ(Xϵ) ≤ λmax(Xϵ) ≤ µ∗ + ϵ, (12)

where the second inequality follows from Xϵ ≽ I. Next, assume that tϵ = 0. We can observe that

I ≼ Xϵ ∈ Ω∞, λmax(Xϵ) ≤ µ∗ + ϵ. (13)

Let X̄ be an arbitrary point in Ω and α be defined above. In view of (13) and the definition of α, it

follows that when α ≥ α, we have X̄ + αXϵ ∈ Sn++ ∩ Ω and

λmax(X̄) + αλmax(Xϵ)

λmin(X̄) + α
≤ λmax(X̄) + α(µ∗ + ϵ)

λmin(X̄) + α
≤ µ∗ + 2ϵ. (14)
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Recalling that Xϵ ≽ I, and λmax(·) and λmin(·) are convex and concave functions, respectively, we obtain

that for any α ≥ α,

κ(X̄ + αXϵ) =
λmax

(
(X̄ + αXϵ)/(1 + α)

)
λmin

(
(X̄ + αXϵ)/(1 + α)

) ≤ λmax(X̄) + αλmax(Xϵ)

λmin(X̄) + αλmin(Xϵ)
≤ λmax(X̄) + αλmax(Xϵ)

λmin(X̄) + α
,

which together with (14) and the fact that X̄ + αXϵ ∈ Sn++ ∩ Ω ∀α ≥ α, implies that

κ∗ ≤ κ(X̄ + αXϵ) ≤ µ∗ + 2ϵ ∀α ≥ α. (15)

Using (12), (15) and the arbitrariness of ϵ, we conclude that κ∗ ≤ µ∗, which together with the known

result µ∗ ≤ κ∗ yields κ∗ = µ∗. Hence, statement (i) holds. Moreover, in view of (15) and the relation

κ∗ = µ∗, we see that statement (iv) holds. Finally, recall from Theorem 3.1 (i) that κ∗ = λ∗. Hence,

λ∗ = µ∗. Using this relation and Theorem 3.1 (ii), we conclude that statement (ii) holds.

We next show that problem (10) is solvable, that is, its optimal value is achievable. Before proceed-

ing, we provide some upper bounds on ϵ-optimal solutions of (10) for some ϵ > 0.

Lemma 3.4 Suppose that (tϵ, Xϵ) is an ϵ-optimal solution of (10) for some ϵ > 0. Define

λ∗ = inf
{
λmax(X) : X ∈ Sn+ ∩ Ω

}
. (16)

Then

0 ≤ tϵ ≤ (µ∗ + ϵ)/λ∗, I ≼ Xϵ ≼ (µ∗ + ϵ)I, (17)

where µ∗ is the optimal value of (10).

Proof. By Assumptions A.1 and A.2, we observe that λ∗ ∈ (0,∞). Since (tϵ, Xϵ) is an ϵ-optimal

solution of (10), we know that λmax(Xϵ) ≤ µ∗+ ϵ and Xϵ ≽ I, which implies that the second relation of

(17) holds. If tϵ = 0, the first relation of (17) evidently holds. We now assume that tϵ > 0. It follows

from Theorem 3.3 (iii) that Xϵ/tϵ ∈ Sn+ ∩ Ω. This relation together with the definition of λ∗ implies

that λmax(Xϵ)/tϵ ≥ λ∗. Using this inequality and the relation λmax(Xϵ) ≤ µ∗ + ϵ, we see that the first

relation of (17) holds.

We are now ready to show that problem (10) is solvable.

Theorem 3.5 Problem (10) is solvable, that is, its optimal value can be achieved at some feasible point.

Proof. Given an arbitrary ϵ > 0, define

Π := {(t,X) : 0 ≤ t ≤ (µ∗ + ϵ)/λ∗, I ≼ X ≼ (µ∗ + ϵ)I},

where µ∗ is the optimal value of (10) and λ∗ is defined in (16). It follows from Lemma 3.4 that problem

(10) is equivalent to

inf{λmax(X) : (t,X) ∈ Ξ ∩Π}, (18)
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where Ξ is defined in (11). We know that Ξ is closed. Hence, Ξ ∩Π is compact. In addition, λmax(·) is
continuous. It follows that problem (18) is solvable, which implies that problem (10) is solvable.

In view of Theorems 3.3 and 3.5, we see that problem (1) can be reformulated as a solvable convex

programming problem (10). Moreover, an optimal solution of (10) can provide either an optimal or

approximate solution of (1).

We now present three examples to illustrate how problem (1) can be solved as a convex programming

problem. In the first two examples we choose Ω to be the same sets as used in [8] for estimating the

covariance matrix for the Markowitz portfolio selection model (see also [13]). In the third example we

consider a positive semidefinite representable set Ω. We show that for all these sets Ω, problem (1) can

be cast into a semidefinite programming (SDP) problem, which can be suitably solved by IP solvers

(e.g., SeDuMi [16] and SDPT3 [17]) and first-order methods (see, for example, [6, 10] and Section 4).

Corollary 3.6 Let Q1, . . ., Qm ∈ Sn be given. Assume that Ω = conv {Q1, . . . , Qm}. Then problem

(1) can be solved as the following SDP problem:

min
s,y,X

s

s.t.
m∑
i=1

yiQi −X = 0,

y ∈ ℜm
+ , I ≼ X ≼ sI.

(19)

Proof. Since Ω = conv {Q1, . . . , Qm}, Ω is a compact convex set and so Ω∞ = {0} by Proposition 2.2

(iii). Using this result, the definition of Ω and Theorem 3.3, we see that problem (1) can be solved as

the following SDP problem:
min
s,t,y,X

s

s.t.
m∑
i=1

yiQi −X = 0,

m∑
i=1

yi − t = 0,

t ≥ 0, y ∈ ℜm
+ , I ≼ X ≼ sI,

which is equivalent to problem (19). Thus the conclusion holds.

Corollary 3.7 Let Q ∈ Sn be given. Assume that Ω = {X ∈ Sn : |Xij −Qij | ≤ η ∀ij} for some η > 0.

Then, problem (1) can be solved as the following SDP problem:

min
s,t,X

s

s.t. (Qij − η)t ≤ Xij ≤ (Qij + η)t ∀ij

t ≥ 0, I ≼ X ≼ sI.

Proof. The conclusion follows from the definition of Ω and Theorem 3.3.

8



Corollary 3.8 Assume that ∅ ̸= Ω is positive semidefinite representable, i.e., there exists C ∈ Sm and

linear operators A : Sn → Sm and B : ℜk → Sm such that

Ω =
{
X ∈ Sn : A(X) + B(u) + C ≽ 0 for some u ∈ ℜk

}
. (20)

Suppose that ℜ(B) + Sm+ is closed. Then, problem (1) can be solved as the following SDP problem:

min
s,t,u,X

s

s.t. A(X) + B(u) + tC ≽ 0,

t ≥ 0, I ≼ X ≼ sI.

(21)

Proof. First, notice that Ω = A−1(ℜ(B) + Sm+ −C). By the assumption that ℜ(B) + Sm+ is a closed

convex cone, we see that Ω is closed and convex. Moreover, it follows from the definition of recession

cone that (ℜ(B)+Sm+ −C)∞ = ℜ(B)+Sm+ . Using this relation and Proposition 2.2 (iv), we obtain that

Ω∞ = A−1((ℜ(B) + Sm+ − C)∞) = A−1(ℜ(B) + Sm+ ). (22)

Recall from Theorem 3.3 that problem (1) can be solved as (10), which together with (22) implies that

the conclusion holds.

Remark. If ℜ(B) ∩ Sn+ = {0} or ℜ(B) ∩ Sn++ ̸= ∅ holds, then ℜ(B) + Sn+ is closed (see [15]).

Nevertheless, it generally may not be closed. For example, let B : ℜ → S2 be defined as:

B(u) =

[
u 0

0 0

]
∀u ∈ ℜ.

Consider the sequence {Xk} defined as follows:

Xk =

[
0 1

1 1/k

]
=

[
−k 0

0 0

]
+

[
k 1

1 1/k

]
∀k ≥ 1.

Then we have {Xk} ⊆ ℜ(B) + S2+, but

lim
k→∞

Xk =

[
0 1

1 0

]
/∈ ℜ(B) + S2+

since [
0 1

1 0

]
−

[
u 0

0 0

]
=

[
−u 1

1 0

]
/∈ S2+ ∀u ∈ ℜ.

Additionally, as pointed out by a referee, an SDP reformulation of the minimization of condition number

is also discussed in [5, Exercise 4.43], where Ω is an affine set given by {Q0 +
∑m

i=1 yiQi : y ∈ ℜm} for
some Q0, ..., Qm ∈ Sn.
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4 First-order method for finding minimum condition number

In this section, we propose a first-order method, the alternating direction method (ADM), for solving

problem (1). In general, the ADM can be applied to solve problems of the following form:

min
x,y

f(x) + g(y)

s.t. Ax+ By = b,

x ∈ C1, y ∈ C2,

(23)

where f and g are convex functions, A and B are linear operators, and C1 and C2 are closed convex

sets. Each iteration of the ADM involves solving two subproblems successively, followed by an update

of the multiplier. The method converges to an optimal solution of (23) under some mild assumptions

(see, for example, [4, 7]).

4.1 Alternating direction method

In this subsection, we describe the implementation details of the ADM for solving problem (1). First,

we notice from Theorem 3.3 that (1) can be reformulated as

min
X,t

λmax(X)

s.t. (t,X) ∈ Ξ, X ≽ I.
(24)

Further, we can reformulate (24) as follows:

v∗ := min
X,t,Y

λmax(X)

s.t. X − Y = 0,

X ≽ I, (t, Y ) ∈ Ξ.

(25)

We then see that (25) is in the form of (23) with f = λmax(·), g = 0, A = I, B = (0 −I), b = 0,

C1 = I +Sn+ and C2 = Ξ, where I is the identity map. Thus, the ADM can be suitably applied to solve

(25) (or, equivalently, (1)). To proceed, we introduce the following augmented Lagrangian function on

Sn ×ℜ× Sn × Sn:
Lβ(X, t, Y,Γ) = λmax(X) + ⟨Γ, X − Y ⟩+ β

2
∥X − Y ∥2F

for some β > 0.

We are now ready to present the algorithmic framework for the ADM when applied to solve (25)

(or, equivalently, (1)).

Alternating direction method:

1. Start: Let (t0, Y 0,Γ0) ∈ ℜ+ × Sn × Sn and β > 0 be given.

10



2. For k = 0, 1, . . .
Compute Xk+1 by approximately solving min{Lβ(X, tk, Y k,Γk) : X ≽ I},
Compute (tk+1, Y k+1) by approximately solving min{Lβ(X

k+1, t, Y,Γk) : (t, Y ) ∈ Ξ},
Γk+1 = Γk + β(Xk+1 − Y k+1).

(26)

End (for)

Before discussing the convergence of the above method, we give the dual problem of (25) in the next

proposition.

Proposition 4.1 The dual problem of (25) is given by

max
Γ

1 + tr(Γ)

s.t. eT max{−γ, 0} ≤ 1, Γ ∈ Ω⊖,
(27)

where γ is the vector of eigenvalues of Γ and Ω⊖ is the negative polar of Ω, i.e., Ω⊖ = {Λ ∈ Sn :

⟨Λ, Y ⟩ ≤ 0 ∀Y ∈ Ω}.

Proof. Recall that Ξ = cl K. It then follows from Proposition 2.1 (iv) that ri Ξ = ri (cl K) = ri K.
Using this relation and Proposition 2.1 (v), we obtain that

ri {(X, t, Y ) : X ≽ I, (t, Y ) ∈ Ξ} = {(X, t, Y ) : X ≻ I, (t, Y ) ∈ ri K}.

This equality together with (9) and the fact Sn++ ∩ ri Ω ̸= ∅ implies that

{(X, t, Y ) : X − Y = 0} ∩ (ri {(X, t, Y ) : X ≽ I, (t, Y ) ∈ Ξ}) ̸= ∅,

and hence, the Slater condition holds for (25). It then follows from this relation and [14, Corollary 28.2.2]

that

v∗ = min
X,Y
{λmax(X) : X = Y,X ≽ I, (t, Y ) ∈ Ξ} = min

X≽I,(t,Y )∈Ξ
max
Γ
{λmax(X) + ⟨Γ, X − Y ⟩}

= max
Γ

min
X≽I,(t,Y )∈Ξ

{λmax(X) + ⟨Γ, X − Y ⟩} .

Using the fact that λmax(X) = max{⟨P,X⟩ : tr(P ) = 1, P ≽ 0}, we see further that

v∗ = max
Γ

min
X≽I,(t,Y )∈Ξ

max
tr(P )=1,P≽0

{⟨P,X⟩+ ⟨Γ, X − Y ⟩}

= max
tr(P )=1,P≽0,Γ

min
X≽I,(t,Y )∈Ξ

{⟨P + Γ, X⟩+ ⟨−Γ, Y ⟩}

= max
P,Γ

{
1 + tr(Γ) : tr(P ) = 1, P ≽ 0, P + Γ ≽ 0,Γ ∈ (PY (Ξ))

⊖} , (28)

where the second equality follows from [14, Corollary 37.3.2] and PY (Ξ) is the projection of Ξ onto the

Y -coordinate. Furthermore, we obtain from (11) and Proposition 2.2 (i) that PY (Ξ) = cone(Ω)∪Ω∞ =

cl cone(Ω). Using this result and the definition of negative polar, we have

(PY (Ξ))
⊖ = (cl (cone(Ω)))⊖ = Ω⊖. (29)
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Finally, we observe that −Γ ≼ P holds for some P satisfying tr(P ) = 1 and P ≽ 0 if and only if

eT max{−γ, 0} ≤ 1, where γ is the vector of eigenvalues of Γ. The conclusion of this proposition

immediately follows from this observation, (28) and (29).

We are now ready to state a convergence result for the above ADM, which asserts global convergence

provided that the subproblems are solved sufficiently accurately. Its proof can be found in [7, Theorem 8].

Proposition 4.2 Let β > 0 and {νk} be a sequence of nonnegative numbers with
∑

νk < ∞. Let

{(Xk, tk, Y k,Γk)} be generated as in (26) with {Xk} and {(tk, Y k)} satisfying∥∥∥∥∥Xk − argmin
X≽I

Lβ(X, tk−1, Y k−1,Γk−1)

∥∥∥∥∥
F

≤ νk,

inf

{∥∥∥Y k − Y
∥∥∥
F
: (t, Y ) ∈ Argmin

(t,Y )∈Ξ
Lβ(X

k, t, Y,Γk−1)

}
≤ νk

for all k. Then {(Xk, Y k,Γk)} is convergent. Furthermore, any accumulation point of {(Xk, tk)} solves
(24) and the limit of {Γk} solves (27).

We next discuss how the two subproblems in (26) can be solved efficiently. We start by considering

the first subproblem, namely, min{Lβ(X, tk, Y k,Γk) : X ≽ I}. Notice that this subproblem can be

formulated as follows:

min
X

{
1

β
λmax(X) +

1

2

∥∥∥∥X − (
Y k − Γk

β

)∥∥∥∥2
F

: X ≽ I

}
. (30)

Let UTdiag(ξk)U be an eigenvalue decomposition of Y k − Γk

β − I, where U ∈ ℜn×n is an orthogonal

matrix, and diag(ξk) is a diagonal matrix whose diagonal consists of the vector ξk. Since λmax(·), ∥ · ∥F
and {X : X ≽ I} are unitary similarity invariant, it follows from [12, Proposition 2.7] that the solution

X∗ of (30) is given by

X∗ = UTdiag(x∗)U + I,

where x∗ ∈ ℜn is the optimal solution of

vk := min
x

{
fk(x) :=

1

β
max

i
xi +

1

2
∥x− ξk∥2 : x ≥ 0

}
. (31)

Problem (31) has a nonsmooth objective function. Its dual problem, however, is smooth as shown

in the following proposition.

Proposition 4.3 The dual problem of (31) is given by

max
w

dk(w) :=
1

2
∥ξk∥2 − 1

2
∥(ξk − w)+∥2

s.t. eTw =
1

β
,w ≥ 0.

(32)

Furthermore, if w∗ solves (32), then (ξk − w∗)+ solves (31).
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Proof. Note that we have

vk = min
x≥0

{
1

β
max

i
xi +

1

2
∥x− ξk∥2

}
= min

x≥0
max

eTw= 1
β
,w≥0

{
wTx+

1

2
∥x− ξk∥2

}
= max

eTw= 1
β
,w≥0

min
x≥0

{
wTx+

1

2
∥x− ξk∥2

}
= max

eTw= 1
β
,w≥0

{
1

2
∥ξk∥2 − 1

2
∥(ξk − w)+∥2

}
,

where the third equality follows from [14, Corollary 37.3.2], and the inner minimization in this equality

is achieved at x = (ξk − w)+. The conclusion of the proposition immediately follows.

In view of Proposition 4.3, the solution of (30) can be found by solving (32). Since the objective

function of (32) is smooth and the projection onto simplices can be computed efficiently (see [18]), the

spectral projected gradient (SPG) method (see, for example, [3, 11]) can be suitably applied to solve

(32).

We next discuss how to solve the second subproblem of (26), namely, min{Lβ(X
k+1, t, Y,Γk) :

(t, Y ) ∈ Ξ}. Notice that this subproblem can be formulated as

min
(t,Y )∈Ξ

1

2

∥∥∥∥Y − (
Xk+1 +

Γk

β

)∥∥∥∥2
F

. (33)

Observe from the definition of Ξ that {Y : (t, Y ) ∈ Ξ} = cone(Ω) ∪ Ω∞. Since 0 /∈ Ω, it then follows

from Proposition 2.2 (i) that {Y : (t, Y ) ∈ Ξ} = cl cone(Ω). Hence, the optimal solution Y ∗ of (33) is

the projection of Xk+1 + Γk

β onto cl cone(Ω), and t∗ is any nonnegative number such that (t∗, Y ∗) ∈ Ξ.

For a general Ω, problem (33) does not have a closed form solution. In the remainder of this subsection,

we will discuss how (33) can be solved efficiently for Ω as specified in Corollaries 3.6 and 3.7, and also

identify Ω⊖ explicitly that is used in (27). Since Ω is compact in these cases, it follows from (11) and

Proposition 2.2 (iii) that

Ξ = {t(1, X) : t ≥ 0, X ∈ Ω}. (34)

We first consider the case where Ω is the convex hull of some symmetric matrices, i.e.,

Ω = conv{Q1, ..., Qm} :=

{
m∑
i=1

yiQi :

m∑
i=1

yi = 1, yi ∈ [0, 1]

}
(35)

for some Q1, ..., Qm ∈ Sn. For such Ω, problem (33) reduces to

min
y≥0

Hk(y) :=
1

2

∥∥∥∥∥
m∑
i=1

yiQi −
(
Xk+1 +

Γk

β

)∥∥∥∥∥
2

F

. (36)

Suppose that y∗ is an optimal solution of (36). Then (t∗, Y ∗) = (
∑m

i=1 y
∗
i ,
∑m

i=1 y
∗
iQi) is an optimal

solution of (33). Since the objective function of (36) is smooth and projection onto the nonnegative

orthant is cheap, problem (36) can be suitably solved by the SPG method. In addition, the negative

polar of Ω is given by

Ω⊖ = {Γ ∈ Sn : ⟨Γ, Y ⟩ ≤ 0 ∀Y ∈ Ω} = {Γ ∈ Sn : tr(QiΓ) ≤ 0 ∀i = 1, ...,m} .
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Finally, we consider the case where Ω is a neighborhood of some Q ∈ Sn, i.e.,

Ω = {Y ∈ Sn : |Yij −Qij | ≤ η ∀ij} = {Y ∈ Sn : Qij − η ≤ Yij ≤ Qij + η ∀ij} (37)

for some η > 0. From (34), we see that problem (33) reduces to

min
t≥0

min
Y ∈tΩ

1

2

∥∥∥∥Y − (
Xk+1 +

Γk

β

)∥∥∥∥2
F

= min
t≥0

1

2

∥∥∥∥min

{
max

{
Xk+1 +

Γk

β
, (Q− ηE)t

}
, (Q+ ηE)t

}
−

(
Xk+1 +

Γk

β

)∥∥∥∥2
F

. (38)

We observe that if t∗ is an optimal solution of problem (38), then (t∗, Y ∗) is an optimal solution of (33),

where

Y ∗ = min

{
max

{
Xk+1 +

Γk

β
, (Q− ηE)t∗

}
, (Q+ ηE)t∗

}
.

Notice that the objective function of (38) is smooth. For the similar reason as mentioned above,

problem (38) can be suitably solved by the SPG method. In addition, the negative polar Ω⊖ is given

by

Ω⊖ = {Γ ∈ Sn : ⟨Γ, Y ⟩ ≤ 0 ∀Y ∈ Ω} =
{
Γ ∈ Sn : max

Y ∈Ω
tr(ΓY ) ≤ 0

}

=

Γ ∈ Sn :
∑
Γij>0

Γij(Qij + η) +
∑
Γij<0

Γij(Qij − η) ≤ 0

 .

4.2 Computational results

In this section, we conduct numerical experiments to test the performance of our approach on solving

(24) with different Ω. In particular, we compare our method with the standard interior point (IP)

solver SeDuMi1.1R3 [16]. Our codes for ADM are written in Matlab while SeDuMi is coded in C with a

Matlab interface. All experiments are performed in Matlab Version 7.8 on a Dell POWEREDGE 1950

with Debian 5.0.6 (Linux).

4.2.1 Ω given by (35)

We consider numerical experiments with Ω given by (35). In particular, we choose Ω to be the convex

hull of some positive definite matrices. For the ADM, we set t0 = 0, Y 0 = 0, Γ0 = −I/n, and terminate

the method once

|λmax(Y
k)− 1− tr(Γk)|

max{1, |λmax(Y k)|}
< 10 · tol, 1− λmin(Y

k)

max{1, ∥Y k∥}
< tol,

max
{
eT max{−γk, 0} − 1,max1≤i≤m{tr(QiΓ

k)}
}

max{1, ∥Γk∥F }
< tol

14



Table 1: Computational results for solving (24) with Ω given by (35)
cond cpu

n m min
1≤i≤m

κ(Qi) SeDuMi ADM SeDuMi ADM

50 80 1.828e+03 1.44 1.44 1.85 1.64

50 100 1.789e+03 1.38 1.38 2.34 1.95

50 120 1.730e+03 1.33 1.33 3.08 2.58

60 80 2.774e+03 1.46 1.46 2.60 3.21

60 100 2.270e+03 1.39 1.39 3.43 3.59

60 120 2.503e+03 1.35 1.35 4.33 3.75

for some tol > 0, where γk is the vector of eigenvalues of Γk. In addition, we apply the SPG method to

find approximate solutions wk and yk to (32) and (36), respectively, and terminate the method once

|fk((ξk − wk)+)− dk(ul)|
max{1, |dk(wk)|}

< min{1e− 6, tol/100},

|max{yk −∇Hk(yk), 0} − yk|
max{1, |Hk(yk)|}

< min{1e− 6, tol/100}.

Suppose that (tk, Xk, Y k) is the approximate solution obtained by the ADM. Clearly, Y k/tk ∈ Sn+ ∩Ω.

We then compute an approximate minimum condition number as κ(Y k/tk). For SeDuMi, we use the

default tolerance and compute an approximate minimum condition number similarly.

In our experiments, for each n = 50, 60 and each m = 80, 100, 120, we generate 10 samples of n× n

matrices Bi, i = 1, ...,m, with i.i.d. Gaussian entries. We then set Qi = BiB
T
i for each i = 1, ..,m and

solve the corresponding problem (24) with Ω defined as in (35). We set β = 1 and tol = 1e− 4 for the

ADM. The results of this experiment are reported in Table 1. In particular, we report the CPU time

(cpu) in seconds and the approximate minimum condition number (cond) computed as above for ADM

and SeDuMi, averaged over 10 instances. We also report min1≤i≤m κ(Qi) for each (n,m), averaged over

the 10 instances. We see from Table 1 that our method is comparable with SeDuMi in terms of CPU

time, and gives the same approximate minimum condition number.

4.2.2 Ω given by (37)

We consider numerical experiments with Ω given by (37). For the ADM, we set t0 = 1, Y 0 = I,

Γ0 = −I/n, and terminate the method once Y k ≻ 0, and

|λmax(Y
k)− 1− tr(Γk)|

max{1, |λmax(Y k)|}
< 10 · tol, 1− λmin(Y

k)

max{1, ∥Y k∥}
< tol,

max
{
eT max{−γk, 0} − 1,

∑
Γk
ij<0 Γ

k
ij(Qij − η) +

∑
Γk
ij>0 Γ

k
ij(Qij + η)

}
max{1, ∥Γk∥F }

< tol

for some tol > 0. In addition, we apply the SPG methods similarly as in the previous subsection to

approximately solve (32) and (38). Suppose that (tk, Xk, Y k) is the approximate solution obtained by

the ADM. Clearly, Y k/tk ∈ Sn+ ∩ Ω. We then compute an approximate minimum condition number as
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Table 2: Computational results for solving (24) with Ω given by (37)
cond cpu

n η κ(Q) SeDuMi ADM SeDuMi ADM

50 0.5 4.456e+06 28.4 28.5 23.6 6.3

50 1 2.779e+08 15.9 16.0 26.1 5.9

60 0.5 2.936e+05 30.2 30.2 98.1 8.9

60 1 7.607e+04 16.3 16.3 105.5 4.4

70 0.5 1.071e+07 31.8 31.8 297.7 14.6

70 1 1.486e+06 18.0 18.0 307.4 6.7

κ(Y k/tk). For SeDuMi, we use the default tolerance and compute an approximate minimum condition

number similarly.

In our experiments, for each n = 50, 60, 70 and each η = 0.5, 1, we generate 10 samples of n × n

matrix A with i.i.d. Gaussian entries and set Q = AAT . We then solve the corresponding problem (24)

with Ω defined as in (37). We set β = 0.1 and tol = 1e− 4 for the ADM. The results of this experiment

are reported in Table 2. In particular, we report the CPU time (cpu) in seconds and the approximate

minimum condition number (cond) computed as above for both methods, averaged over 10 instances.

We also report κ(Q) for each n, averaged over the 10 instances. We see from Table 2 that our method is

significantly faster than SeDuMi. In addition, our method sometimes yields a slightly larger condition

number than SeDuMi, but the difference is negligible relative to κ(Q).

5 Finding optimal preconditioners

Preconditioning techniques have been widely used in solving large-scale linear systems arising in many

applications. In recent years, various approaches have been proposed for finding practical precondi-

tioners such as incomplete factorization methods, sparse approximate inverses and more recently some

other variants based on the multilevel paradigm. We refer readers to [2] and the references therein for a

comprehensive survey. Instead of proposing another efficient method for finding good preconditioners,

we study the following question: what could be the best one in a set of infinitely many preconditioners?

In particular, we consider the optimal preconditioner finding problem, that is, problem (4).

We first show that problem (4) can be solved as the following problem:

inf
{
λmax(X

TCTCX) : (t,X) ∈ Ξ, XTCTCX ≽ I
}
, (39)

where Ξ is defined as in (11).

Proposition 5.1 The following statements hold:

i) problem (39) has the same optimal value as (4);

ii) for any ϵ ≥ 0, if Xϵ is an ϵ-optimal solution of (4), then (1/δϵ, Xϵ/δϵ) is an ϵ-optimal solution of

(39), where δϵ =
√

λmin(XT
ϵ C

TCXϵ);

iii) for any ϵ > 0, if (tϵ, Xϵ) is an ϵ-optimal solution of (39) for some tϵ > 0, then Xϵ/tϵ is an

ϵ-optimal solution of (4);
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iv) for any ϵ > 0, if (0, Xϵ) is an ϵ-optimal solution of (39), then X̄ + αXϵ is an 2ϵ-optimal solution

of (4), provided that α is sufficiently large, where X̄ is an arbitrary matrix in Ω.

Proof. Given any X, Y ∈ ℜn×n, we can see that

lim
α→∞

κ((X + αY )TCTC(X + αY )) = lim
α→∞

λmax((X + αY )TCTC(X + αY ))

λmin((X + αY )TCTC(X + αY ))

= lim
α→∞

λmax((X/α+ Y )TCTC(X/α+ Y ))

λmin((X/α+ Y )TCTC(X/α+ Y ))

= lim
α→∞

λmax(Y
TCTCY )

λmin(Y TCTCY )
= κ(Y TCTCY ), (40)

where the third inequality is due to the continuity of eigenvalues. The conclusion of this proposition

then follows from (40) and similar arguments as used in the proof of Theorem 3.3.

Notice that the set defined by the constraint XTCTCX ≽ I is typically nonconvex. Thus problem

(39) is in general nonconvex. We next consider the special case where X is further restricted to be in

Sn+, i.e.,
vopt = inf

{
λmax(X

TCTCX) : (t,X) ∈ Ξ, XTCTCX ≽ I,X ∈ Sn+
}
, (41)

and propose a convex relaxation to this problem, which turns out to be exact when finding optimal

diagonal preconditioners.

Theorem 5.2 Consider the following convex programming problem:

v
relax

= min
s,t,Y,X

s

s.t.

[
I CX

XTCT sI

]
≽ 0,[

I Y

Y CTC

]
≽ 0,[

X I

I Y

]
≽ 0,

(t,X) ∈ Ξ, X ∈ Sn+, Y ∈ Sn+.

(42)

Suppose (s∗, t∗, Y ∗, X∗) is an optimal solution of (42). Then we have

v
relax

δ∗
≥ vopt ≥ v

relax
, (43)

where δ∗ = λmin(X
∗Y ∗2X∗). Moreover, if we further require X,Y ∈ Dn

+ in (41) and (42) (that is, when

the optimal diagonal preconditioner is sought), then the convex problem (42) is equivalent to (41).

Proof. We first observe that

s ≥ λmax(X
TCTCX) ⇔ sI −XTCTCX ≽ 0 ⇔

[
I CX

XTCT sI

]
≽ 0.
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In addition, for any X ∈ Sn+,

XTCTCX ≽ I ⇔ CTC ≽ X−2 ⇔ CTC ≽ Y 2, Y 2 ≽ X−2 for some Y ∈ Sn+,
⇒ CTC ≽ Y 2, Y ≽ X−1 for some Y ∈ Sn+, (44)

⇔

[
I Y

Y CTC

]
≽ 0,

[
X I

I Y

]
≽ 0 (45)

where (44) follows from [9, Problem 6.6.17]. Using the above observations, we see that vopt ≥ v
relax

.

Furthermore, let (s∗, t∗, Y ∗, X∗) be an optimal solution of (42). It follows from (44) and (45) that X∗,

Y ∗ ∈ Sn++ and

X∗TCTCX∗ ≽ X∗Y ∗2X∗ ≽ δ∗I ≻ 0. (46)

Using (46) and the fact that Ξ is a cone, we further observe that (t∗, X∗)/
√
δ∗ is feasible for (41). We

thus have
v
relax

δ∗
= λmax

(
X∗
√
δ∗

CTC
X∗
√
δ∗

)
≥ vopt

and hence (43) holds. Finally, if X and Y are further restricted to be in Dn
+, then the implication in

(44) becomes an equivalence, and thus (41) is equivalent to the convex programming problem (42).

The next proposition provides a lower bound on the value of δ∗.

Proposition 5.3 For any optimal solution (s∗, t∗, Y ∗, X∗) of (42), it holds that

δ∗ = λmin(X
∗Y ∗2X∗) ≥ 1√

κ(CTC)v
relax

,

where v
relax

is the optimal value of (42).

Proof. First, we know from the proof of Theorem 5.2 that X∗ ≽ Y ∗−1, which implies that

X∗ 1
2Y ∗X∗ 1

2 ≽ I. We thus have

δ∗ = λmin(X
∗Y ∗2X∗) ≥ λmin(X

∗Y ∗X∗)λmin(Y
∗)

= λmin(X
∗ 1
2X∗ 1

2Y ∗X∗ 1
2X∗ 1

2 )λmin(Y
∗)

≥ λmin(X
∗)λmin(Y

∗). (47)

Next, from the second constraint in (42), we know that CTC ≽ Y ∗2 and hence

λmax(C
TC) ≥ (λmax(Y

∗))2. (48)

Furthermore, recall from the proof of Theorem 5.2 that

v
relax

= λmax(X
∗TCTCX∗) ≥ λmin(C

TC)(λmax(X
∗))2. (49)

Finally, the third constraint in (42) implies that X∗ ≽ Y ∗−1 and Y ∗ ≽ X∗−1. Thus we have

λmin(X
∗) ≥ λmin(Y

∗−1) =
1

λmax(Y ∗)
, λmin(Y

∗) ≥ λmin(X
∗−1) =

1

λmax(X∗)
. (50)
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Combining (47)-(50), we obtain

δ∗ ≥ λmin(X
∗)λmin(Y

∗) ≥ 1

λmax(Y ∗)λmax(X∗)
≥ 1√

κ(CTC)v
relax

.

This completes the proof.

We next present an example to illustrate how the problem of finding a diagonal preconditioner can

be solved as a convex programming problem. In particular, we choose Ω to be a box. One can see from

Theorem 5.2 that such a problem can be cast into a cone programming problem, which can be suitably

solved by interior point solvers (e.g., SeDuMi [16] and SDPT3 [17]) and first-order methods (see, for

example, [10]).

Corollary 5.4 Let d ∈ ℜn
++ be given. Assume that Ω = {X ∈ Dn

+ : |Xii − di| ≤ η ∀i} for some η > 0.

Then, problem (4) can be solved as the following cone programming problem:

min
s,t,Y,X

s

s.t.

[
I CX

XTCT sI

]
≽ 0,[

I Y

Y CTC

]
≽ 0, (Yii +Xii)/2

(Yii −Xii)/2

1

 ∈ L3, i = 1, . . . , n,

(di − η)t ≤ Xii ≤ (di + η)t, i = 1, . . . , n,

t ≥ 0, X ∈ Dn
+, Y ∈ Dn

+.

(51)

Proof. Notice that when X,Y ∈ Dn
+, we have

[
X I

I Y

]
≽ 0⇔ Y ≽ X−1 ⇔ YiiXii ≥ 1 ∀i = 1, ..., n⇔

 (Yii +Xii)/2

(Yii −Xii)/2

1

 ∈ L3, i = 1, . . . , n.

The conclusion of this corollary follows from this observation and Theorem 5.2.

Before ending this section, we perform numerical experiments to compare the quality of the diagonal

preconditioner obtained by solving (51) and the Jacobi diagonal preconditioner, i.e., setting Xii =
1√

(CTC)ii
. For each n = 40, 50, 60 and η = 0.05, 0.1, we generate 10 samples of n × n matrix A with

i.i.d. Gaussian entries. We then set Q = AAT . We take CTC to be the Cholesky decomposition of Q

and set di =
1√

(CTC)ii
for i = 1, ..., n. We then solve the corresponding problem (51) using the IP solver

SeDuMi with the default tolerance. The approximate optimal condition number after preconditioning

is computed as

κopt = κ

(
X∗

t∗
CTC

X∗

t∗

)
,
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Table 3: Computational results for solving (51)
n η κ(CTC) κJ κopt

40 0.05 7.102e+04 6.871e+04 4.905e+04

40 0.10 8.810e+04 7.657e+04 5.848e+04

50 0.05 6.158e+05 5.672e+05 4.240e+05

50 0.10 7.120e+06 6.573e+06 4.954e+06

60 0.05 4.658e+06 4.344e+06 3.195e+06

60 0.10 4.884e+04 4.478e+04 3.196e+04

where (s∗, t∗, X∗, Y ∗) is the approximate optimal solution given by SeDuMi. We report in Table 3 the

original condition number κ(CTC), the condition number upon applying Jacobi diagonal preconditioner

(denoted by κJ) and the approximate optimal condition number κopt, averaged over the 10 instances.

We see that κopt is usually smaller than J by at least 20%.

6 Concluding remarks

In this paper we considered minimizing the spectral condition number of a positive semidefinite matrix

over a nonempty closed convex set Ω. We showed that it can be solved as a convex programming

problem, and moreover the optimal value of the latter problem is achievable. As a consequence, when Ω

is positive semidefinite representable, it can be cast into an SDP problem. We also considered a closely

related problem, that is, finding an optimal preconditioner for a positive definite matrix. We proposed

a convex relaxation for finding positive definite preconditioners. This relaxation turns out to be exact

when finding diagonal preconditioners.

The results of this paper can be extended to the problem:

inf

{ ∑k
i=1 λi(X)∑l

j=0 λn−j(X)
: X ∈ Sn+ ∩ Ω

}
,

where 1 ≤ k ≤ n, 0 ≤ l ≤ n− 1, and λi(X) denotes the ith largest eigenvalue of X for i = 1, . . . , n.
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