
INFORMS Journal on Computing
Vol. 16, No. 4, Fall 2004, pp. 419–429
issn 0899-1499 �eissn 1526-5528 �04 �1604 �0419

informs ®

doi 10.1287/ijoc.1040.0090
©2004 INFORMS

Optimal Solutions for the Closest-String
Problem via Integer Programming

Cláudio N. Meneses
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,

Gainesville, Florida 32611, USA, claudio@ufl.edu

Zhaosong Lu
School of Industrial and Systems Engineering, Georgia Institute of Technology,

Atlanta, Georgia 30332-0205, USA, zhaosong@isye.gatech.edu

Carlos A. S. Oliveira, Panos M. Pardalos
Department of Industrial and Systems Engineering, University of Florida, 303 Weil Hall,

Gainesville, Florida 32611, USA {oliveira@ufl.edu, pardalos@ufl.edu}

In this paper we study the closest-string problem (CSP), which can be defined as follows: Given a finite set � =
�s1� s2� � � � � sn� of strings, each string with length m, find a center string t of length m minimizing d, such

that for every string si ∈� , dH�t� si≤ d. By dH�t� si we mean the Hamming distance between t and si. This is
an NP-hard problem, with applications in molecular biology and coding theory. Even though there are good
approximation algorithms for this problem, and exact algorithms for instances with d constant, there are no
studies trying to solve it exactly for the general case. In this paper we propose three integer-programming (IP)
formulations and a heuristic, which is used to provide upper bounds on the value of an optimal solution. We
report computational results of a branch-and-bound algorithm based on one of the IP formulations, and of
the heuristic, executed over randomly generated instances. These results show that it is possible to solve CSP
instances of moderate size to optimality.

Key words : closest-string problem; computational biology; mathematical programming; branch-and-bound
algorithms

History : Accepted by Harvey J. Greenberg, Guest Editor; received February 2004; revised February 2004,
March 2004; accepted April 2004.

1. Introduction
In many problems occurring in computational biol-
ogy, there is a need to compare and find common fea-
tures in sequences. In this paper we study one such
problem, known as the closest-string problem (CSP).
The CSP has important applications not only in com-
putational biology, but also in other areas, such as
coding theory.
In the CSP, the objective is to find a string t that

minimizes the number of differences among elements
in a given set � of strings. The distance here is
defined as the Hamming distance between t and each
si ∈� . The Hamming distance between two strings a
and b of equal length is calculated by simply counting
the character positions in which a and b differ.
The CSP has been widely studied in the last

few years (Gasieniec et al. 1999; Hertz and Stormo
1995; Lanctot et al. 2003; Rajasekaran et al. 2001a, b;
Stormo and Hartzell 1991) due to the importance
of its applications. In molecular biology problems,
the objective is to identify strings that correspond to
sequences of a small number of chemical structures.

A typical case where the CSP is useful occurs when,
for example, one needs to design genetic drugs with
structures similar to a set of existing sequences of
RNA (Lanctot et al. 2003). As another example, in
coding theory (Roman 1992) the objective is to find
sequences of characters that are closest to some given
set of strings. This is useful in determining the best
way to encode a set of messages.
The CSP is known to be NP-hard (Frances and

Litman 1997). Even though there are good approx-
imation algorithms for this problem, including a
polynomial-time approximation scheme (PTAS) (Li
et al. 2002), and exact algorithms for instances with
constant difference (Berman et al. 1997), there are
no studies reporting on the quality of integer-
programming formulations for the general case when
the maximum distance d between a solution and the
strings in � is variable.
We give here a formal definition of the CSP. To

do this, we first introduce some notation. An alphabet
�= �c1� � � � � ck� is a finite set of elements, called char-
acters, from which strings can be constructed. Each

419

Meneses et al.: Optimal Solutions for the Closest-String Problem
420 INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS

string s is a sequence of characters �si� � � � � sm, si ∈�,
where � is the alphabet used. The size of a string �s�
is the number of elements in the character sequence
that composes the string. Thus, if s = �s1� � � � � sm, then
�s� =m.
We define the Hamming distance dH�a� b between

two strings a and b such that �a� = �b� as the number of
positions in which they differ. Let us define the pred-
icate function � � �×�→ �0�1� as ��x�y= 1 if and
only if x �= y. Thus, we have dH�a� b=

∑�a�
i=1��ai� bi.

For instance, dH�“CATCC”� “CTTGC”= 2.
Let �k be the set of all strings s over the alpha-

bet � with length �s� = k. Then, the CSP is defined
as follows: Given a finite set � = �s1� s2� � � � � sn� of
strings, with si ∈ �m, 1 ≤ i ≤ n, find a center string
t ∈�m minimizing d such that, for every string si ∈� ,
dH�t� s

i≤ d.
The following example shows an instance of the

CSP and its optimal solution.
Example 1. Suppose � = �“differ”, “median”,

“length”, “medium”�. Then, t = “menfar” constitutes
an optimal solution to � , and the corresponding min-
imum difference is d= 4.
The recent development of computational-biology

applications has required the study of optimiza-
tion problems over sequences of characters. Some
early development was done using statistical methods
(Hertz and Stormo 1995). Li et al. (1999), the com-
binatorial nature of the CSP was initially explored,
and it was proved to be NP-hard. Li et al. (1999)
also described some applications in molecular biology
where this problem has been very useful. In Gramm
et al. (2001) it was shown that for a fixed value
of d it is possible to solve the problem in polynomial
time, using techniques of fixed parameter complexity
(see, e.g., Downey and Fellows 1999). Approximation
algorithms have also been used to give near opti-
mal solutions for the CSP. In Lanctot et al. (2003) for
example, an algorithm with performance guarantee of
�4/3�1+ �, for any small constant � > 0, is presented
and analyzed, with a similar result appearing also in
Gasieniec et al. (1999). A PTAS for the CSP was pre-
sented in Li et al. (2002).
In this paper we are interested in optimal solu-

tions for the general case of the CSP where the max-
imum distance between the center string and the set
of strings is variable. With this objective we propose
three integer-programming formulations and explore
properties of these formulations (the third formula-
tion has been independently proposed in Ben-Dor
et al. 1997 and Li et al. 2002). We also show compu-
tational results of a branch-and-bound algorithm that
uses the linear relaxation of one of the proposed for-
mulations. To speed up the branch-and-bound algo-
rithm, we designed and implemented a heuristic
for finding upper bounds on the value of optimal

solutions for the CSP. The computational experiments
show that the resulting approach is effective in solv-
ing to optimality CSP instances of moderate size.
This paper is organized as follows. In §2 we present

three integer-programming (IP) formulations for the
CSP. The formulations are compared and we show
that the third formulation is the strongest. In §3, we
describe the branch-and-bound algorithm based on
one of the formulations presented. We discuss sev-
eral parameters used in this implementation, and how
they were tuned to improve the performance of the
algorithm. Also in this section, we present a new
heuristic algorithm for the CSP. In §4 we show com-
putational results obtained by the proposed methods.
Finally, concluding remarks are given in §5.

2. Integer-Programming
Formulations

In this section we present three IP formulations and
show that they correctly describe the CSP. Our main
result in this section states that the third formulation
is the strongest of them. In §2.1 we introduce defini-
tions and notations. The IP formulations are given in
§§2.2, 2.3, and 2.4.

2.1. Definitions and Notation
An instance of the CSP consists of a finite set � =
�s1� s2� � � � � sn�, such that �si� =m, for 1 ≤ i ≤ n. How-
ever, instead of working directly on strings si =
�si1� s

i
2� � � � � s

i
m ∈ � , for 1 ≤ i ≤ n, one can transform

them into points xi ∈ Zm. That is, a unique natu-
ral number can be assigned to each character sik, for
k= 1� � � � �m. To formalize this, let � � � → Z be an
assignment of characters to integers, such that for
a� b ∈ �, if a �= b, then ��a �= ��b. In this paper,
the alphabet �a� � � � � z� and the assignment ��a = 1,
��b = 2� � � � ���z = 26 are used, unless otherwise
stated. Now, let �� � �m →Zm be a function mapping
strings to points in Zm. We define ���s= x, such that
xk =��sk, for k ∈ �1� � � � �m�.
For instance, in Example 1 we have ���x

1 =
�4�9�6�6�5�18, ���x2 = �13�5�4�9�1�14, ���x3 =
�12�5�14�7�20�8, and ���x

4 = �4�9�6�6�21�13.
We extend the definition of the Hamming function dH
to sequences of integers in a similar way as to strings
of characters in �, and note that dH�si� sj = k if and
only if dH�xi� xj= k. Let �� denote the set of points
xi ∈ Zm obtained from an instance � of the CSP by
application of the transformation �� . We refer to ��

and � interchangeably as an instance of the CSP to
simplify notation in the throughout the paper.
Let G= �V �A be a directed graph. Then, a directed

path is a sequence of distinct nodes such that for
each adjacent pair of nodes vi and vi+1, there is an
arc �vi� vi+1 ∈A. By �V � we denote the cardinality of
set V .

Meneses et al.: Optimal Solutions for the Closest-String Problem
INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS 421

2.2. First IP Formulation
We present initially a simple IP formulation, which
will be later improved, according to some properties
of optimal solutions of the CSP. Define variables

zik =
{
1 if tk �= xik
0 otherwise.

Then, we have the following IP formulation.

P1: min d (1)

s.t.
m∑
k=1
zik ≤ d i= 1� � � � �n (2)

tk− xik ≤Kzik
i= 1� � � � �n! k= 1� � � � �m (3)

xik− tk ≤Kzik
i= 1� � � � �n! k= 1� � � � �m (4)

zik ∈ �0�1�
i= 1� � � � �n! k= 1� � � � �m (5)

d ∈Z+ (6)

tk ∈Z k= 1� � � � �m� (7)

where K = ��� is the size of the alphabet used by
instance � . In this formulation, d represents the max-
imum difference between t and the strings in � , and
is the value to be minimized. Constraints (2) give
a lower bound for the value of d because it must
be greater than or equal to the total number of dif-
ferences for each string si ∈ � . Taken together, con-
straints (3) and (4) give lower and upper bounds to
the difference tk − xik, and it is therefore equivalent
to �tk − xik� ≤ K whenever zik = 1, and tk = xik when
zik = 0. Constraints (5) through (7) give the integrality
requirements.
In the next theorem, we prove that P1 is a correct

formulation for the CSP.

Theorem 1. A vector t ∈Zm defines a feasible solution
to an instance �� of the CSP if and only if t satisfies
constraints in P1.

Proof. Let �� be an instance of the CSP. It is clear
that any vector x ∈ Zm such that xi ∈ �1� � � � � ���� for
i ∈ �1� � � � �m�, defines a feasible solution to �� . There-
fore, a solution to P1 is also a solution to �� .
If t defines a feasible solution to �� , then assign

values to zik, for i= 1� � � � �n, k= 1� � � � �m, as follows:

zik =
{
1 if tk �= xik
0 otherwise.

Now, define

d=max
1≤i≤n

m∑
k=1
zik�

Taking d and zik as above, all constraints (2)
through (6) will be satisfied. Thus, P1 is a correct for-
mulation of the CSP. �

Now, we present an observation that will be used
to improve the previous formulation for the CSP.

Proposition 2. Let � be an instance of the CSP. Then,
there is an optimal solution t of � such that tk is the
character in position k in at least one of the strings of � .

Proof. Let z�s be the objective cost of solution s
for a given instance of the CSP. Suppose that we are
given an optimal solution t, such that tk does not
appear in position k on any of the strings si ∈� , for
i ∈ �1� � � � �n�. Consider now the string t′ defined in
the following way:

t′ =
{
ti if i �= k
s1i if i= k�

We claim that t′ gives a solution not worse than t.
This happens because for each string si, with i �= 1,
the value of dH�t′� si = dH�t� s

i. Also, according to
the definition of t′, dH�t′� s1 = dH�t� s

1 − 1. Thus,
z�t′≤ z�t.
Now, given any optimal solution t, if there is a set

Q⊆ �1� � � � �n� such that tj , for j ∈Q, does not appear
in position j in any of the strings si ∈ � , then we
can do the following procedure. Let t0 = t. Then, for
each i ∈ �1� � � � � l= �Q��, let k be the ith element of Q,
and construct a solution ti from ti−1 using the method
above. Then, as t is optimal, z�tl= z�t and tl has the
desired property. �

Given an instance �� of the CSP, let $ be the
bounded region defined by the points xi ∈�� , and $k

the smallest region of Z such that xik ∈ $k, for
each si ∈� . Define the diameter of $k, for each
k ∈ �1� � � � �m�, as
diam�$k=max

{�xik− xjk� � xi� xj ∈�� � 1≤ k≤m
}
�

with �·� standing for the absolute-value function. For
instance, in Example 1 diam�$1 = 9, diam�$2 = 4,
and diam�$3= 10.
Using the definition above, an easy consequence of

Proposition 2 is the following.

Proposition 3. For each instance � of the CSP, let
xi be the point in Zm corresponding to si. Then, there
is an optimal solution x ∈ Zm such that for each si ∈ � ,
�xik− xk� ≤ diam�$k.

Proof. Given an optimum solution t, apply Propo-
sition 2. Then, we find another optimum solution t′

such that each character t′k appears in position k of
some string si ∈ � . Applying to t′ the transforma-
tion �� from � to Zm, we find the point x with the
desired property. �

We can therefore use Proposition 3 to improve
formulation P1. The constraints (3) and (4) can be

Meneses et al.: Optimal Solutions for the Closest-String Problem
422 INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS

changed to the following:

tk− xik ≤ diam�$kz
i
k i= 1� � � � �n! k= 1� � � � �m (8)

xik− tk ≤ diam�$kz
i
k i= 1� � � � �n! k= 1� � � � �m� (9)

It is important to notice that the resulting formula-
tion, which we will call P1A, does not include all
feasible solutions to the CSP. For example, if � =
�“ABC”, “DEF”�, the optimum solution has d = 2. An
optimal string is t = “EBF”, which has distance d= 2,
although it is not feasible for P1A. However, accord-
ing to Proposition 2, any optimum solution to P1 has a
corresponding solution in P1A. Thus, to find an opti-
mal solution to any instance of the CSP, it suffices to
solve problem P1A.
The resulting formulation P1A is therefore a

strengthening of P1, and has n+ 3nm+ 1 constraints
and m+nm+ 1 variables.
2.3. Second IP Formulation
In this section we provide an IP formulation that has a
nice interpretation as a directed graph. Recall Propo-
sition 2. Using this proposition we can describe the
process of finding a solution in the following way. Set
i= 1. Then, select one of the characters c ∈ �s1i � � � � � sni �
to be in the ith position of t. Repeat this while i≤m,
and return the resulting string t.
Alternatively, this process can be thought of as find-

ing a path in a directed graph. Let G = �V �A be a
directed graph with V = V1 ∪ V2 ∪ · · · ∪ Vm ∪ �F �D�,
where Vj is the set of characters used in the jth posi-
tion of the si ∈ � , i.e., Vj =

⋃n
k=1 s

k
j . There is an arc

between each pair of nodes v, u such that v ∈ Vi and
u ∈ Vi+1, for i ∈ �1� � � � �m − 1�. There is also an arc
between F and each node in V1, and between each
node in Vm and D. For example, the graph corre-
sponding to the strings in Example 1 is shown in
Figure 1.
Given an instance �� of CSP, a feasible solution

can be easily identified by creating G as described
above and finding a directed path from vertex F
to vertex D. For instance, taking the directed path
�F �4�9�6�6�1�13�D in the graph shown in Figure 1,
and discarding nodes F and D, we obtain the feasible

13

8

18

14

5

1

20

21

7

9

66

4

14

5

9

12

13

4

F D

Figure 1 Directed Graph G= �V �A� for Strings in Example 1

solution �4�9�6�6�1�13, which corresponds to string
“diffam”.
One can think of enumerating all directed paths

from F to D and choose one with minimum Hamming
distance to all strings in �� . However, the number of
such paths is given by

∏m
k=1 �Vk�. Because �Vk� can be

equal to n in the worst case, it follows that
∏m
k=1 �Vk�

can be equal to nm. For small values of n and m
one could try that approach, but for large values this
becomes impractical. However, we can try to use this
idea to strengthen formulation P1A.
Define the variables

vj�k =
{
1 if vertex j� for j ∈ Vk� is used in a solution
0 otherwise.

Then, another IP formulation is defined in the fol-
lowing way:

P2 � min d (10)

s.t.
∑
j∈Vk

vj�k = 1 k= 1� � � � �m (11)

∑
j∈Vk

jvj�k = tk k= 1� � � � �m (12)

m∑
k=1
zik ≤ d i= 1� � � � �n (13)

tk− xik ≤ diam�$kz
i
k

i= 1� � � � �n! k= 1� � � � �m (14)

xik− tk ≤ diam�$kz
i
k

i= 1� � � � �n! k= 1� � � � �m (15)

vj�k ∈ �0�1� j ∈ Vk! k= 1� � � � �m (16)

zik ∈ �0�1�
i= 1� � � � �n! k= 1� � � � �m (17)

d ∈Z+ (18)

tk ∈Z k= 1� � � � �m� (19)

The additional equalities (11) ensure that only one
vertex in each Vk is chosen. Moreover, constraints (12)
force tk to be one of the elements in Vk. Con-
straints (16) enforce integrality for variables vj�k. The
remaining constraints are equivalent to P1A. In the
next theorem we prove that P2 is a correct formula-
tion for the CSP.

Theorem 4. Given an instance � of CSP, solving the
corresponding formulation P2 is equivalent to finding an
optimum solution for � .

Proof. Clearly, any solution x for P2 is also feasible
for P1. Therefore, by Theorem 1, x is a solution to � .
Now, recalling Proposition 2, for any optimal solution
to P1 we can find a solution x′ with the same objec-
tive cost and with x′k appearing in position k in at

Meneses et al.: Optimal Solutions for the Closest-String Problem
INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS 423

least one of the strings si ∈ � . Then, x′ satisfies con-
straints (11) and (12). This implies that the optimum
solution of P2 has the same objective value as the opti-
mum solution of P1, which is also an optimal solution
for instance � . �

Formulation P2 is interesting as a way of reduc-
ing the size of the feasible solution space in formula-
tion P1A. For example, let � = �“ABC”, “DEF”�. Then,
“BBF” is a feasible solution for P1A, but not for P2,
and therefore P2 ⊂ P1A. However, from the point of
view of the resulting linear relaxation, P1A gives the
same result as P2, as shown in the next theorem.

Theorem 5. Let RP1A and RP2 be the continuous
relaxations of formulations P1A and P2, respectively. If z∗1
is the optimum value of RP1A and z∗2 is the optimum value
of RP2, then z∗1 = z∗2.
Proof. We know that P2 ⊂ P1A, which implies

RP2⊆ RP1A. Thus, z∗1 ≤ z∗2. Then, it suffices to prove
that z∗2 ≤ z∗1. Suppose we are given a solution t to
RP1A with cost z∗1. We claim that t also satisfies
RP2, and therefore t is a solution for RP2 with the
same objective cost. This is easy to establish for con-
straints (13) through (15). Note however that con-
straints (11) and (12) together state that tk is a linear
combination of the values j ∈ Vk, for k ∈ �1� � � � �m�. An
easy way to satisfy these equations is the following.
Solve

tk = (a+ �1−(b
for (, where a and b are, respectively, the smallest
and the greatest element in Vk. Then, make the assign-
ments va�k = (, vb�k = �1 − (, and vj�k = 0, for j ∈
Vk\�a� b�. �

We note that the number of variables and con-
straints in P2 are given by m+nm+∑m

k=1 �Vk�+ 1 and
3nm+ 2m+n+∑m

k=1 �Vk� + 1.
2.4. Third IP Formulation
In this subsection we propose another IP formula-
tion for the CSP using the idea in Proposition 2.
This formulation has been proposed, independently,
in Ben-Dor et al. (1997) and Li et al. (2002). We use
the same definition of variables vj�k given in §2.3.
The third IP formulation is given by

P3 � min d (20)

s.t.
∑
j∈Vk

vj�k = 1 k= 1� � � � �m (21)

m−
m∑
j=1
vsij � j ≤ d i= 1� � � � �n (22)

vj�k ∈ �0�1� j ∈ Vk� k= 1� � � � �m (23)

d ∈Z+� (24)

Inequalities (21) guarantee that only one vertex in
each Vk is selected. Inequalities (22) say that if a vertex

in a string si is not in a solution t, then that vertex will
contribute to increasing the Hamming distance from t
to si. Constraints (23) are binary inequalities, and (24)
forces d to assume a nonnegative integer value.
We now show that this is a correct formulation.

Theorem 6. Given an instance � of CSP, solving the
corresponding formulation P3 is equivalent to finding an
optimum solution for � .

Proof. Let � be an instance of the CSP. It is
clear that a solution to P3 is also feasible for �
because any x ∈ Zm such that xi ∈ �1� � � � � ����, for
i ∈ �1� � � � �m�, is feasible for � . Now, if t defines a
feasible solution to � satisfying Proposition 2, then
P = �F � t1� � � � � tm�D defines a directed path from F to
D in the graph G, constructed from � as described
in the previous subsection. Assign values to the vari-
ables vj�k as follows:

vi�k =
{
1 if i= tk
0 otherwise.

This definition ensures that constraints (21) are satis-
fied. Notice also that in constraint (22) the value of∑m

j=1 vsij � j is at most m. Hence, d ≥ 0, in accordance
with constraint (24). Constraints (23) are satisfied
as well.
Now, using Proposition 2, any instance � of the

CSP has at least one optimal solution that satisfies
that property. Thus, the optimum solution of P3 has
the same value of an optimal solution of � . �

We note that the number of variables and con-
straints in P3 are

∑m
k=1 �Vk� + 1 and m + n +∑m

k=1 �Vk� + 1, respectively. In the next theorem, we
determine the relationship between P3 and the previ-
ous formulations.

Theorem 7. The IP formulations P1 and P3 satisfy
P3 ⊆ P1, where A ⊆ B means that set A is contained in
set B.

Proof. We show that any feasible solution for P3
is also feasible for P1. If d, vj�k, for j ∈ Vk, k= 1� � � � �m,
is a feasible solution for P3, we can define a feasible
solution d, tk, zik, where i ∈ �1� � � � �n�, k ∈ �1� � � � �m�,
for P1 in the following way. Set

tk =
∑
j∈Vk

jvj�k for k ∈ �1� � � � �m�� and

zik = 1− vsik� k for k ∈ �1� � � � �m�� i= �1� � � � �n��
Constraints (5) are automatically satisfied by this def-
inition. From the second constraint of P3, we have

d ≥m−
m∑
k=1
vsik� k =

m∑
k=1
�1− vsik� k=

m∑
k=1
zik�

Therefore, constraints (2) and (6) are also satisfied.
It remains to show that constraints (3) and (4) are

Meneses et al.: Optimal Solutions for the Closest-String Problem
424 INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS

satisfied as well. Clearly we have

tk− xik =
∑
j∈Vk

jvj�k− xik =
∑

j∈Vk\�xik�
jvj�k+ xikvxik� k− xik�

Now, if tk− xik ≥ 0,
�tk− xik� = tk− xik =

∑
j∈Vk\�xik�

jvj�k− xik�1− vxik� k

≤ ∑
j∈Vk\�xik�

jvj�k ≤K
∑

j∈Vk\�xik�
vj�k

= K�1− vxik� k
= Kzik�

where K = ��� is the size of the alphabet used by
instance � . Similarly, if tk− xik < 0, we have

�tk− xik� = xik− tk = xik�1− vxik� k−
∑

j∈Vk\�xik�
jvj�k

≤ xik�1− vxik� k
≤ K�1− vxik� k
= Kzik�

Hence, in both cases constraints (3) and (4) in P1 are
satisfied by the solution defined above. �

Note that from the point of view of the feasi-
ble set, P3 is similar to P2 because P3 ⊂ P1 and
P2⊆ P1A⊆ P1. However, the relaxation RP3 of P3 has
shown to be better than the relaxation RP2 of P2.
Recalling Theorem 5, RP2 always gives the same
value as RP1A. On the other hand, RP3 gives in prac-
tice results much better than RP1A, as demonstrated
in §4.2.

3. Implementation Issues
Using the formulations described in the previous sec-
tion, we developed a branch-and-bound (B&B) algo-
rithm to solve the CSP. We describe in this section the
parameters used in the B&B, as well as the method-
ology used to create upper bounds for instances of
the problem. Then, we discuss a heuristic for the CSP,
which was designed to find good initial solutions.
These solutions can be used as an upper bound to
speed up the B&B operation.

3.1. Branch-and-Bound Algorithm
In this paper a B&B is proposed for solving the CSP.
An introduction to the technique is given by Lee and
Mitchell (2001). The first important decision when
applying B&B concerns the correct IP formulation for
the problem. Using the results in Theorems 5 and 7,
and with some computational experimentation, we
found that formulation P3 is the most interesting from
the computational point of view. The computational

Input: Fractional solution v, d

Output: Feasible solution v, d

for k ← 1 to m do

max ← −1; i ← 1
for j ∈ Vk do

if (vj,k > max) then

max ← vj,k

i ← j
end

end

for j ∈ Vk do vj,k ← 0
vi,k ← 1

end

d ← maxi∈{1,...,n}(m−
∑m

j=1 vsi
j ,j)

Algorithm 1 Primal Heuristic for Formulation P3

effort to solve the CSP with P3 is smaller because
there are fewer constraints and variables, and the for-
mulation cuts off many solutions that are not needed
to find the optimum. Taking this fact into consid-
eration, the relaxation of P3 was used on the B&B
procedure.
An efficient primal heuristic is important for the

success of a B&B implementation because it allows
the upper bound to be reduced in a way that explores
the underlying structure of the problem. In the B&B
implementation, the heuristic shown in Algorithm 1
is used as a primal heuristic. The solution is found by
selecting the character that has the highest value on
the optimal fractional solution. This is done for each
of the m positions until a feasible solution is found.
Clearly, the computational complexity of Algorithm 1
is O�nm.
The branching phase of the B&B requires a policy

for selection of a variable or constraint where the cur-
rent node will be branched. In the B&B for the CSP,
only branching on variables is employed. The crite-
rion for variable selection is based on the value of the
variables in a fractional solution. Given an optimal
fractional solution x′ for the linear relaxation of P3,
we branch on the fractional variable xj with maximum
value of x′j .
Finally, in the algorithm used, the next node to be

explored in the enumeration tree is the one with the
smallest linear relaxation value (also known as the
best bound).

3.2. Generation of Upper Bounds
An important performance consideration in a B&B
algorithm is the initial upper bound used. A good
initial upper bound will improve the running time
because the number of nodes that need to be explored
can be reduced as a result of pruning. With this
objective, we propose a heuristic for the CSP, shown
in Algorithm 2. The heuristic consists of taking one of

Meneses et al.: Optimal Solutions for the Closest-String Problem
INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS 425

Input: instance S

Output: string s, distance d

1 s ← string in S closest to the other si ∈ S
2 d ← maxi∈{1,...,n} dH(s, si)
3 improve solution(s, d,N)

Algorithm 2 Generate Upper Bound for the CSP

the strings in � and modifying it until a new locally
optimal solution is found.
In the first step, the algorithm searches for a solu-

tion s ∈ � that is closest to all other strings in � .
In the second step, the distance d between s and the
remaining strings is computed. In the last step of
Algorithm 2, a local search procedure is applied as
follows. Let r be the string in � such that dH�r� si,
where i ∈ �1� � � � �n�, is maximum, and let s be the cur-
rent solution. Then, for i ∈ �1� � � � �m�, if si �= ri and
replacing si by ri does not make the solution s worse,
the replacement is done and the Hamming distances
from s to all strings in � are updated. After we have
scanned all m positions, a new string r is selected
among the strings in � that is farthest from the
resulting s, and the process is repeated. The number
of repetitions is controlled by the parameter N . The

Table 1 Summary of Results for the Alphabet with Two Characters

Instance LP IP

n m Min Avg Max Time Min Avg Max Time

10 300 111.14 112.33 113.90 0.10 112 113.25 115 1�800	10
10 400 148.20 150.60 152.80 0.11 149 151.50 154 1�800	33
10 500 186.60 189.55 192.80 0.14 187 190.50 194 2�700	07
10 600 221.70 224.15 228.50 0.16 223 225.00 229 900	84
10 700 259.80 262.95 266.80 0.18 260 263.75 267 1�800	24
10 800 300.00 301.55 303.20 0.21 301 302.25 304 901	03

15 300 118.30 119.37 120.50 0.11 119 120.25 122 915	31
15 400 157.55 158.53 159.01 0.12 158 159.50 160 941	72
15 500 195.55 196.99 197.49 0.13 197 198.00 199 1�801	22
15 600 236.35 237.59 238.93 0.14 237 238.50 240 900	23
15 700 275.94 277.75 279.64 0.18 277 278.50 280 14	06
15 800 315.96 318.37 320.36 0.19 317 319.25 321 62	00

20 300 123.19 124.02 125.02 0.12 124 125.00 126 903	03
20 400 164.68 166.08 168.07 0.12 166 167.25 169 2�037	49
20 500 204.05 206.35 208.41 0.14 205 207.25 209 907	32
20 600 246.08 247.56 248.68 0.17 247 248.75 250 2�702	18
20 700 284.70 286.50 288.98 0.18 286 287.50 290 1�042	29
20 800 326.12 328.88 331.47 0.21 327 330.00 333 1�852	38

25 300 126.32 127.25 128.93 0.12 128 128.75 130 2�701	88
25 400 169.09 169.90 171.31 0.15 170 171.00 172 1�821	56
25 500 210.58 210.78 211.24 0.17 212 212.00 212 2�790	50
25 600 251.40 252.11 253.54 0.18 253 253.60 255 3�600	26
25 700 294.93 295.51 295.84 0.21 296 296.75 297 2�721	62
25 800 334.91 336.62 338.34 0.23 336 338.00 340 3�600	07

30 300 128.97 130.34 131.60 0.13 130 131.50 133 955	92
30 400 171.36 172.39 173.73 0.16 173 173.75 175 3�600	18
30 500 213.20 215.89 217.84 0.18 215 217.50 219 3�600	12
30 600 257.26 258.06 259.09 0.21 259 259.75 261 3�600	07
30 700 299.65 300.51 301.20 0.26 301 302.00 303 2�988	07
30 800 341.48 342.52 342.90 0.28 343 343.75 344 3�600	20

and parameter N

Output: resulting solution s and distance d

for k ← 1 to n do d′
k ← dk ← dH(sk, s)

for i ← 1 to N do

b ← i such that dH(si, s) = d /* break ties randomly */
for j ← 1 to m such that sb

j �= sj do

max ← −1
for k ← 1 to n such that k �= b do

if (sj = sk
j) and (sb

j �= sk
j) then dk ← dk + 1

else if (sj �= sk
j) and (sb

j = sk
j) then dk ← dk − 1

if (max < dk) then max ← dk

end

if d ≥ max /* this is not worse */ then

d ← max; tj ← sb
j

for k ← 1 to n do d′
k ← dk

else

for k ← 1 to n do dk ← d′
k

end
end

end

Input: instance S, current solution s, distance d,

Algorithm 3 Step 3 of Algorithm 2: improve_solution

details of the local search step are presented in
Algorithm 3.
We now analyze the computational complexity of

Algorithm 2.

Meneses et al.: Optimal Solutions for the Closest-String Problem
426 INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS

Theorem 8. Algorithm 2 has complexity O�nmN,
for N ≥ n.

Proof. The computation of the Hamming distance
can be done in O�m time. It follows that Step 1
has time complexity O�mn2. Step 2 consists of n
Hamming-distance computations, and can be clearly
implemented in O�nm time. Finally, Algorithm 3
takes O�nmN time. Hence, the total time complexity
of Algorithm 2 is O�nmN, for N ≥ n. �

4. Computational Experiments
We now present the computational experiments car-
ried out with the algorithms described in §3. Initially,
we describe the set of instances used in the tests.
Then, in §4.2 the results obtained by the B&B and by
the proposed heuristic are discussed.

4.1. Instances and Test Environment
Three classes of instances were tested. In the first class,
the alphabet � is the set �0�1�, representing binary
strings. The second class of instances uses an alphabet
with four characters, while the third class uses an

Table 2 Summary of Results for the Alphabet with Four Characters

Instance LP IP

n m Min Avg Max Time Min Avg Max Time

10 300 173.20 174.85 176.30 0.21 174 175.50 177 0	12
10 400 232.10 233.50 235.60 0.29 233 234.00 236 0	12
10 500 287.90 289.23 291.90 0.35 288 289.50 292 0	34
10 600 346.40 348.62 350.50 0.45 347 349.25 351 0	18
10 700 404.80 407.07 409.30 0.53 405 407.50 410 1	84
10 800 462.90 466.15 468.60 0.67 463 466.50 469 0	60

15 300 182.36 183.57 186.09 0.25 183 184.25 187 6	02
15 400 242.39 244.89 246.16 0.32 243 245.50 247 3	46
15 500 305.50 306.11 306.87 0.43 306 306.50 307 44	98
15 600 365.00 367.72 370.87 0.54 365 368.00 371 18	39
15 700 425.69 428.07 431.12 0.75 426 428.50 432 21	78
15 800 488.93 490.00 492.73 0.89 489 490.50 493 34	39

20 300 187.11 188.93 190.76 0.27 190 190.25 191 1�170	98
20 400 251.55 252.22 253.25 0.39 252 253.00 254 908	56
20 500 313.42 315.51 317.96 0.52 314 316.25 319 901	44
20 600 377.54 379.64 380.84 0.68 378 380.00 381 1�271	88
20 700 441.10 441.88 443.01 0.93 442 442.75 444 940	21
20 800 503.72 505.05 506.25 1.16 505 505.75 507 1�714	42

25 300 192.18 193.99 195.47 0.31 195 195.75 196 2�741	15
25 400 257.67 258.55 259.73 0.47 259 259.75 261 2�700	30
25 500 320.13 322.52 324.11 0.60 321 323.25 325 741	62
25 600 385.91 387.00 388.14 0.83 387 388.00 389 1�805	16
25 700 449.12 451.30 452.30 1.09 450 452.25 453 907	61
25 800 514.06 515.76 518.65 1.40 515 516.75 520 1�254	19

30 300 196.51 197.10 197.73 0.36 198 198.25 199 3�223	68
30 400 261.09 262.27 263.33 0.47 262 263.25 264 1�852	67
30 500 325.42 328.23 329.52 0.70 326 329.25 331 2�215	67
30 600 392.01 392.89 393.55 0.99 393 394.25 395 2�700	30
30 700 458.05 458.56 459.10 1.26 459 459.75 460 1�803	28
30 800 521.24 522.55 524.68 1.62 522 523.50 526 2�337	20

alphabet with 20 characters. This choice of the last two
alphabets was motivated by real applications on anal-
ysis of DNA and amino-acid sequences, respectively.
The instances used were generated randomly in

the following way. Given parameters n (number of
strings), m (string length), and an alphabet �, ran-
domly choose a character from � for each position in
the resulting string.
The algorithm used for random-number genera-

tion is an implementation of the multiplicative lin-
ear congruential generator (Park and Miller 1988),
with parameters 16,807 (multiplier) and 231−1 (prime
number).
All tests were executed on a Pentium 4 CPU with

speed of 2.80 GHz and 512 MB of RAM, under
WindowsXP. The heuristic algorithm was imple-
mented in the C++ language, and CPLEX 8.1 (ILOG
2003) was used to run the B&B.

4.2. Experimental Results
The B&B algorithm was executed over a set of
360 instances, with 120 instances for each of the alpha-
bets. Four instances were generated for each entry

Meneses et al.: Optimal Solutions for the Closest-String Problem
INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS 427

Table 3 Summary of Results for the Alphabet with 20 Characters

Instance LP IP

n m Min Avg Max Time Min Avg Max Time

10 300 235.20 236.10 237.00 0.20 236 236.50 237 0	15
10 400 311.40 312.60 314.30 0.28 312 313.25 315 0	17
10 500 390.40 391.60 393.70 0.36 391 392.00 394 0	23
10 600 468.10 470.14 471.80 0.45 469 471.40 472 0	29
10 700 546.90 547.45 548.60 0.62 547 547.75 549 0	51
10 800 625.20 626.12 627.50 0.79 626 626.75 628 0	43

15 300 244.47 245.69 246.47 0.31 245 246.25 247 0	23
15 400 326.53 327.15 327.47 0.43 327 327.75 328 0	33
15 500 409.33 409.95 411.33 0.57 410 410.50 412 0	38
15 600 491.67 492.50 493.53 0.80 492 493.00 494 0	56
15 700 572.07 574.24 577.47 1.09 573 575.00 578 0	67
15 800 655.13 655.97 657.27 1.43 656 656.75 658 0	90

20 300 249.90 251.00 252.05 0.43 250 251.50 253 2	77
20 400 335.40 335.66 335.75 0.62 336 336.00 336 0	93
20 500 418.40 419.12 419.90 0.84 419 419.50 420 0	85
20 600 502.60 503.25 504.00 1.25 503 503.50 504 3	95
20 700 585.00 585.64 586.60 1.71 585 586.00 587 4	37
20 800 671.30 671.64 672.05 1.66 672 672.25 673 1	94

25 300 254.60 255.12 256.11 0.49 255 255.75 257 0	58
25 400 340.64 340.86 341.04 0.77 341 341.25 342 189	59
25 500 425.32 426.10 426.72 1.15 426 426.50 427 40	12
25 600 509.80 510.73 511.48 1.74 510 511.00 512 19	79
25 700 595.24 596.28 597.04 1.48 596 596.75 598 50	71
25 800 680.88 681.88 682.96 1.79 681 682.00 683 863	77

30 300 258.29 258.90 259.57 0.66 259 259.50 260 0	58
30 400 344.00 344.54 345.27 1.02 344 345.00 346 49	04
30 500 430.43 430.79 431.07 1.71 431 431.25 432 629	32
30 600 516.73 517.00 517.50 2.10 517 517.25 518 155	07
30 700 601.97 603.00 603.50 1.61 603 603.75 604 902	10
30 800 688.30 689.26 690.60 2.17 689 689.75 691 198	94

in Tables 1 through 3, and the results represent
the average of the obtained values. The maximum
time allowed for each instance was one hour (after
the computation of the initial linear relaxation). The
columns in these tables have the following mean-
ing. The first two columns give information about
the instances: the number of strings �n and their
length �m. The columns labeled “LP” give the mini-
mum, average, and maximum LP value, as well as the
average running time (in seconds) for the linear relax-
ation of formulation P3. The columns labeled “IP”
give the minimum, average, and maximum IP value,
as well as the average running time (in seconds) for
the B&B.
Notice that some large instances presented in

Table 1 could be solved in a small amount of CPU
time. In particular, this happened for instances with
n= 15 and m = 700�800. According to our investi-
gation, these instances (which were also generated
randomly) represented configurations of the CSP that
were easier to solve. However, we were not able to
identify the properties that make these instances eas-
ier to solve. One can conclude that even for ran-
dom instances, the computation time is not only

directly proportional to instance size, but also to its
structure.
Table 4 shows the results of experiments with the

heuristic. For each instance, the following informa-
tion is presented for alphabets with 2, 4, and 20 char-
acters. The column labeled “val” gives the average
solution value and the next column gives the running
time (in seconds) for the heuristic algorithm. The third
column gives the relative gap between the heuris-
tic solution and the IP solution, calculated as h/i,
where h is the average heuristic value and i is the
average IP solution value. The experiments show that
the heuristic algorithm was able to find solutions
within 15% of the optimal value in less than one
minute for instances with the binary alphabet. But
when the alphabet has four characters, our heuristic
found solutions within 4% of an optimal value within
one minute, and within the maximum of 7% for the
alphabet with 20 characters. Because the heuristic is
mostly controlled by the number of iterations one
allows it to run, one could try to get better solutions
by giving it more time. For our purpose of assessing
the quality of the heuristic algorithm, we have set the
number of iterations equal to 10,000.

Meneses et al.: Optimal Solutions for the Closest-String Problem
428 INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS

Table 4 Summary of Results for the Heuristic

Instance 2 Characters 4 Characters 20 Characters

n m Val Time Gap Val Time Gap Val Time Gap

10 300 124.50 0.00 1.10 178.25 0.00 1.02 249.50 0.00 1.05
10 400 156.25 0.00 1.03 237.50 0.00 1.01 329.75 0.25 1.05
10 500 194.50 0.00 1.02 295.00 1.00 1.02 413.25 1.00 1.05
10 600 233.75 0.00 1.04 353.75 1.00 1.01 495.75 1.00 1.05
10 700 300.25 0.50 1.14 413.75 1.00 1.02 577.00 1.00 1.05
10 800 309.75 0.50 1.02 473.25 1.00 1.01 656.00 1.00 1.05

15 300 138.50 0.00 1.15 188.50 1.00 1.02 261.75 1.00 1.06
15 400 171.25 0.00 1.07 251.50 1.00 1.02 348.50 1.00 1.06
15 500 207.50 0.50 1.05 316.25 1.00 1.03 436.50 1.00 1.06
15 600 256.25 1.00 1.07 378.50 1.00 1.03 523.00 2.00 1.06
15 700 309.75 1.00 1.11 440.25 2.00 1.03 609.25 2.00 1.06
15 800 346.25 1.00 1.08 503.75 2.00 1.03 695.25 2.00 1.06

20 300 134.25 0.00 1.07 195.50 1.00 1.03 268.50 1.00 1.07
20 400 178.25 1.00 1.07 261.50 1.00 1.03 359.00 1.00 1.07
20 500 230.00 1.00 1.11 325.50 2.00 1.03 447.00 2.00 1.07
20 600 262.25 1.00 1.05 391.00 2.00 1.03 536.50 2.00 1.07
20 700 316.00 1.50 1.10 456.75 3.00 1.03 624.75 3.00 1.07
20 800 354.75 2.00 1.07 521.75 3.00 1.03 713.50 3.00 1.06

25 300 135.25 1.00 1.05 202.50 1.00 1.03 273.25 1.00 1.07
25 400 192.50 1.00 1.13 267.50 2.00 1.03 363.50 2.00 1.07
25 500 229.75 1.00 1.08 334.00 2.50 1.03 453.75 2.00 1.06
25 600 270.80 2.00 1.07 399.25 3.00 1.03 544.25 3.00 1.07
25 700 320.50 2.00 1.08 467.00 3.00 1.03 635.75 3.25 1.07
25 800 373.00 2.00 1.10 533.25 4.00 1.03 727.75 4.00 1.07

30 300 141.50 1.00 1.08 204.25 1.00 1.03 276.50 1.50 1.07
30 400 187.00 1.00 1.08 272.75 2.25 1.04 367.75 2.00 1.07
30 500 237.25 2.00 1.09 339.25 3.00 1.03 459.00 3.00 1.06
30 600 291.00 2.00 1.12 405.50 3.00 1.03 551.25 3.00 1.07
30 700 329.25 2.50 1.09 475.00 4.00 1.03 641.75 4.00 1.06
30 800 381.00 3.00 1.11 540.25 5.00 1.03 733.25 5.00 1.06

The results for the B&B in Tables 1 through 3 show
that the IP formulation P3 gives very good lower
bounds on the value of an optimal solution for a CSP
instance. We have noticed that applying the primal
heuristic for the root node gives an optimal solution
most of the time. We have also noticed that for the
tested instances there are many alternative optimal
solutions, and a large number of nodes in the B&B
tree have the same linear relaxation value. This is the
main reason why the number of nodes in the B&B
tree is large for some instances.

Table 5 Summary of Results for the McClure Instances, over the
Alphabet with 20 Characters

Instance LP IP Heuristic

Name n m Val Time Val Time Val Time Gap

mc582.10.seq 10 141 71.83 0.08 72 0.52 78 1 1.08
mc582.12.seq 12 141 94.83 0.38 95 0.16 100 1 1.05
mc582.6.seq 6 141 74.40 0.28 75 0.08 78 1 1.04

mc586.6.seq 6 100 96.52 0.16 97 0.28 100 1 1.03
mc586.10.seq 10 98 75.82 0.14 76 0.27 80 1 1.05
mc586.12.seq 12 98 96.56 0.17 97 0.13 101 1 1.04

Table 5 shows results for some instances over
the alphabet with 20 characters. These instances are
taken from the McClure data set (McClure et al.
1994), a set of protein sequences frequently used to
test string-comparison algorithms. For each of the
instances considered, the size of the strings �m is
equal to the length of the smallest string in the set
(this was necessary because the McClure instances
have strings of different lengths). We removed the
last characters for strings with length greater than the
minimum.

5. Concluding Remarks
In this paper we have introduced three IP models for
the CSP. Our goal was to solve the problem exactly by
using IP algorithmic techniques. Theoretical develop-
ments based on those models were made. Our exper-
iments on randomly generated instances have shown
that the new heuristic algorithm we have proposed
is capable of finding good upper bounds, and by
using them in conjunction with the B&B, it is possible
to speed up the performance of this algorithm. The
B&B introduced here was able to solve to optimality

Meneses et al.: Optimal Solutions for the Closest-String Problem
INFORMS Journal on Computing 16(4), pp. 419–429, © 2004 INFORMS 429

instances of size up to n= 30 and m= 800 with alpha-
bets with 2, 4, and 20 characters.
The computational results suggest that the diffi-

culty of the problem does not depend only on its size
but also on its structure and other unknown proper-
ties. It is an interesting research problem to identify all
parameters that characterize the computational com-
plexity of the CSP.

Acknowledgments
This work was partially supported by NIH and NSF grants.
The first author was supported by the Brazilian Federal
Agency for Post-Graduate Education (CAPES), Grant No.
1797-99-9. The authors are grateful for the suggestions of
referees, which helped improve the presentation.

References
Ben-Dor, A., G. Lancia, J. Perone, R. Ravi. 1997. Banishing bias from

consensus sequences. A. Apostolico, J. Hein, eds. Proc. Eighth
Annual Sympos. Combin. Pattern Matching, Aarhus, Denmark, Lec-
ture Notes in Computer Science, No. 1264. Springer-Verlag, Hei-
delberg, Germany, 247–261.

Downey, R. G., M. R. Fellows. 1999. Parameterized Complexity.
Springer-Verlag, Heidelberg, Germany.

Frances, M., A. Litman. 1997. On covering problems of codes.
Theoret. Comput. System 30 113–119.

Gasieniec, L., J. Jansson, A. Lingas. 1999. Efficient approximation
algorithms for the Hamming center problem. Proc. Tenth ACM-
SIAM Sympos. Discrete Algorithms, Baltimore, Maryland, Soci-
ety for Industrial and Applied Mathematics, Philadelphia, PA,
S905–S906.

Gramm, J., R. Niedermeier, P. Rossmanith. 2001. Exact solutions
for closest string and related problems. Proc. Twelfth Annual
Internat. Sympos. Algorithms Comput. (ISAAC 2001), Lecture
Notes in Computer Science, No. 2223. Springer-Verlag, Heidel-
berg, Germany, 441–452.

Hertz, G., G. Stormo. 1995. Identification of consensus patterns in
unaligned DNA and protein sequences: A large-deviation sta-
tistical basis for penalizing gaps. Lim, Cantor, eds. Proc. Third
Internat. Conf. Bioinformatics Genome Res. World Scientific, Sin-
gapore, 201–216.

ILOG Inc. 2003. CPLEX 8.1 User’s Manual. ILOG, Incline Village,
NV, USA.

Lanctot, K., M. Li, B. Ma, S. Wang, L. Zhang. 2003. Distinguishing
string selection problems. Inform. Comput. 185 41–55.

Lee, E., J. Mitchell. 2001. Integer programming: Branch and bound
methods. C. Floudas, P. Pardalos, eds. Encyclopedia of Opti-
mization, Vol. 2. Kluwer Academic Publishers, Dordrecht,
Netherlands, 509–519.

Li, M., B. Ma, L. Wang. 1999. Finding similar regions in many
strings. Proc. Thirty First Annual ACM Sympos. Theory Comput.
ACM Press, Atlanta, GA, 473–482.

Li, M., B. Ma, L. Wang. 2002. On the closest string and substring
problems. J. ACM 49 157–171.

McClure, M., T. Vasi, W. Fitch. 1994. Comparative analysis of mul-
tiple protein-sequence alignment methods. Mol. Biol. Evol. 11
571–592.

Park, S., K. Miller. 1988. Random number generators: Good ones
are hard to find. Comm. ACM 31 1192–1201.

Rajasekaran, S., Y. Hu, J. Luo, H. Nick, P. Pardalos, S. Sahni,
G. Shaw. 2001a. Efficient algorithms for similarity search.
J. Combin. Optim. 5 125–132.

Rajasekaran, S., H. Nick, P. Pardalos, S. Sahni, G. Shaw. 2001b. Effi-
cient algorithms for local alignment search. J. Combin. Optim. 5
117–124.

Roman, S. 1992. Coding and Information Theory. Graduate Texts in
Mathematics, No. 134. Springer-Verlag, Heidelberg, Germany.

Stojanovic, N., P. Berman, D. Gumucio, R. Hardison, W. Miller.
1997. A linear-time algorithm for the 1-mismatch problem.
Workshop on Algorithms and Data Structures, Halifax, Nova Scotia,
Canada, Lecture Notes in Computer Science, No. 1272. Springer-
Verlag, Heidelberg, Germany, 126–135.

Stormo, G., G. Hartzell III. 1991. Identifying protein-binding sites
from unaligned DNA fragments. Proc. National Acad. Sci. USA
88 5699–5703.

