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This paper studies the limiting behavior of weighted infeasible central paths for semidefinite
programming obtained from centrality equations of the form XS + SX = 2νW , where W is a fixed
positive definite matrix and ν > 0 is a parameter, under the assumption that the problem has a strictly
complementary primal–dual optimal solution. We present a different and simpler proof than the one
given by Preiß and Stoer [Preiß, M. and Stoer, J., 2004, Analysis of infeasible-interior-point paths aris-
ing with semidefinite linear complementarity problems. Mathematical Programming 99, 499–520.]
that a weighted central path as a function of ν can be extended analytically beyond 0. In addition, the
characterization of the limit points of the path and its normalized first-order derivatives is also provided.
We also derive an error bound on the distance between a point lying in a certain neighborhood of the
central path and the set of primal–dual optimal solutions. Finally, we make some observation for the
superlinear convergence of some primal–dual interior point SDP algorithms usingAHO neighborhood.
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1. Introduction

Let Sn denote the space of n × n real symmetric matrices. We consider the semidefinite
programming (SDP) problem

minimize C • X

(p) subject to AX = b, (1)

X � 0,

*Corresponding author. Email: zhaosong@sfu.ca

Optimization Methods and Software
ISSN 1055-6788 print/ISSN 1029-4937 online © 2007 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/10556780701374633



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
21

:1
9 

20
 A

ug
us

t 2
00

7 

850 Zhaosong Lu and R. D. C. Monteiro

and its associated dual SDP problem

maximize bT y

(D) subject to A∗y + S = C, (2)

S � 0,

where the data consists of C ∈ Sn, b ∈ �m and a linear operator A : Sn → �m, the primal
variable is X ∈ Sn, and the dual variable consists of (S, y) ∈ Sn × �m. For a matrix V ∈ Sn,
the notation V � 0 means that V is positive semidefinite. Given a fixed positive definite
matrix W ∈ Sn, �b ∈ �m and �C ∈ Sn, our interest in this paper is to study the set of
solutions of the following system of nonlinear equations parametrized by the parameter
ν > 0:

AX = b + ν�b, X � 0, (3)

A∗y + S = C + ν�c, S � 0, (4)

XS + SX = 2νW. (5)

Under suitable conditions on (W, �C, �b), it has been shown in Monteiro and Zanjácomo
[1] that the above system has a unique solution, denoted by p(ν) ≡ (X(ν), S(ν), y(ν)), for
every ν ∈ (0, 1]. We refer to the path ν ∈ (0, 1] → p(ν) as (W, �C, �b)-weighted central
path associated with (P ) and (D).

The main goal of this paper is to present a different and simpler analysis than Preiß and
Stoer [2] on the limiting behavior of this path as ν ↓ 0. Preiß and Stoer [2] have proved the
main result of this paper that the weighted central path is analytically extendible as functions of
ν ∈ (0, 1] to ν = 0. Their approach includes estimating the order of the blocks of the path, and
then changing the variables twice and applying the implicit function theorem to the resulted
systems twice. Our approach is to firstly derive a stronger estimate on the order of the blocks
of the path by applying Hoffman Lemma [3], and then reformulate the system of (3)–(5) into
a simpler system, and finally apply the implicit function theorem to the resulted system only
once. In addition, the characterization of the limit points of the path and its normalized first-
order derivatives is also provided.We also derive an error bound on the distance between a point
lying in a certain neighborhood of the central path and the set of primal–dual optimal solutions.
We also make some observation for the superlinear convergence of some primal–dual interior
point SDP algorithms using AHO neighborhood.

When (W, �C, �b) = (I, 0, 0), the path ν ∈ (0, 1] → p(ν), as shown inAlizadeh et al. [4],
is a part of the central path associated with (P ) and (D). Properties of the central path have
been extensively studied on several papers due to the important role it plays in the development
of interior-points algorithms for cone programming, nonlinear programming and complemen-
tarity problems. Early works dealing with the well-definedness, differentiability and limiting
behavior of weighted central paths in the context of the linear programming and the monotone
complementarity problem include [5–24]

Using the fact that every real algebraic variety has a triangulation, Kojima et al. showed
in ref. [25] that the central path associated with a monotone linear complementarity problem
converges to a solution. In ref. [26], Kojima et al. claims that similar arguments as the ones
used in ref. [25] can also be used to show that the central path of a monotone linear semidefinite
complementarity problem (which is equivalent to SDP) converges to a solution of the problem.
More generally, Drummond and Peterzil [8] established convergence of the central path for
analytic convex nonlinear SDP problems. An alternative proof based on a deep result from
algebraic geometry (see for example Lemma 3.1 of Milnor [27]) of the convergence of the
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Limiting behavior of the AHO weighted paths 851

central path for an SDP problem was given by Halická et al. [28]. Characterization of the
limit point of the central path has been obtained by De Klerk et al. [29] and Luo et al. [30]
for SDP problems possessing strictly complementary primal–dual optimal solutions. Using
an approach based on the implicit function theorem described in Stoer and Wechs [21,22],
Halická [31] showed that the central path of SDP problems possessing strictly complementary
primal–dual optimal solutions can be extended analytically as a function of ν > 0 to ν = 0.
For more general SDP problems, the above issues regarding the central path still remain open
although some progress has been made on a few papers. These include De Klerk et al. [32]
and Goldfarb and Scheinberg [33] who proved that any cluster point of the central path must
be a maximally complementary optimal solution. Also, Halická et al. [34] and Sporre and
Forsgren [20] provided partial characterizations of the limit point of the central path as being
the analytic center of some convex subset of the optimal solution set and the unique solution of
a perturbed log barrier problem over the optimal solution set, respectively. Finally, the recent
paper by Cruz Neto et al. [35] establishes the convergence of the central path for a special
class of SDPs which do not satisfy the strict complementarity condition.

Generalization of the notion of weighted central paths from linear programming to SDP
problems is a delicate issue. While for a linear programming a weighted central path can
be characterized as optimal solutions of certain weighted logarithmic barrier problems,
this characterization does not seem to be a good source to obtain a suitable notion of
weighted central paths for SDP. Instead, Monteiro and Zanjácomo [1] (see also Monteiro
and Pang [36]) work directly with a system consisting of (3), (4) and an equation of the
form �(X, S) = νW , for some suitable map � : D ⊆ Sn × Sn → Sn, and show that this
system has a unique solution for every ν ∈ (0, 1]. Special instances of the map � for
which the above result applies include the map (X, S) → (XS + SX)/2 and (X, S) →
X1/2SX1/2.

Lu and Monteiro [37] have investigated the limiting behavior of the weighted central paths
associated with the map (X, S) → X1/2SX1/2 and their derivatives for the SDPs possessing
strictly complementary primal–dual optimal solutions. They have showed that the weighted
central path as a function of

√
ν can be extended analytically beyond 0. Sim and Zhao [38]

studied a class of off-central paths defined as the unique solutions of a system of ordinary
differential equations. Through an example, they showed that some off-central paths as a
function of

√
ν cannot be analytically extended to μ = 0 (see section Theorem 3.2 of [38]).

However, we should notice that the paths defined in [38] and [37], though related, are defined
differently.

In this paper, we will be interested in the first map above and its corresponding weighted
central path, i.e. the path of solutions of systems of the form (3)–(5). More specifically, we
will investigate the asymptotic properties of the weighted central paths ν ∈ (0, 1] → p(ν) for
the special class of SDPs possessing strictly complementary primal–dual optimal solutions.
Using a suitable change of variables together with the technique described in refs. [21,22]
based on the implicit function theorem, we prove in section 4 that the path ν ∈ (0, 1] → p(ν)

can be extended analytically beyond 0. As a consequence, we see that a weighted central path
converges as �(ν). We also characterize the limit point and the first-order derivative of the
normalized weighted central path as ν ↓ 0. Using these results, we derive in section 5 an error
bound on the distance between a point lying in a certain neighborhood of the central path and
the set of primal–dual optimal solutions. Finally, in section 6, we apply this bound to make
some observation for the superlinear convergence of some primal–dual interior point SDP
algorithms using AHO neighborhood.

The organization of this paper is as follows. Section 2 introduces the assumptions made
throughout the paper. We discusses some properties about the weighted central paths in
section 3. Sections 4–6 establish the results mentioned in the previous paragraph.



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
21

:1
9 

20
 A

ug
us

t 2
00

7 

852 Zhaosong Lu and R. D. C. Monteiro

1.1 Notation

The space of symmetric n × n matrices will be denoted by Sn. Given matrices X and Y in
�p×q , the standard inner product is defined by X • Y ≡ tr(XT Y ), where tr(·) denotes the trace
of a matrix. The Euclidean norm and its associated operator norm, i.e., the spectral norm, are
both denoted by ‖ · ‖. The Frobenius norm of a p × q-matrix X is defined as ‖X‖F ≡ √

X • X.
Given a point f and a set F in a finite dimensional normed vector space, the distance from
f to F is defined as dist(f, F ) ≡ inf f̃ ∈F ‖f − f̃ ‖. If X ∈ Sn is positive semidefinite (resp.,
definite), we write X � 0 (resp., X � 0). The cone of positive semidefinite (resp., definite)
matrices is denoted by Sn+ (resp., Sn++). Either the identity matrix or operator will be denoted
by I . The image (or range) space of a linear operator A will be denoted by Im(A), and
its kernel (or null) space will be denoted by N(A); the dimension of the subspace Im(A),
referred to as the rank of A, will be denoted by rank(A). Given a linear operator F : E → F

between two finite dimensional inner product spaces (E, 〈·, ·〉E) and (F, 〈·, ·〉F ), its adjoint
is the unique operator F∗ : F → E satisfying 〈F(u), v〉F = 〈u, F∗(v)〉E for all u ∈ E and
v ∈ F .

If {u(ν) : ν > 0} and {v(ν) : ν > 0} are real sequences with v(ν) > 0, then u(ν) = o(v(ν))

means that limν→0 u(ν)/v(ν) = 0. Given functions f : � → E and g : � → �++, where �

is an arbitrary set and E is a normed vector space, and a subset �̃ ⊂ �, we write f (w) =
O(g(w)) for all w ∈ �̃ to mean that there exists M > 0 such that ‖f (w)‖ ≤ Mg(w) for all
w ∈ �̃; moreover, for a function U : � → Sn++, we write U(w) = �(g(w)) for all w ∈ �̃ if
U(w) = O(g(w)) and U(w)−1 = O(1/g(w)) for all w ∈ �̃. The latter condition is equivalent
to the existence of a constant M > 0 such that

1

M
I � 1

g(w)
U(w) � MI, ∀w ∈ �.

2. Preliminaries

In this section, we describe our assumptions that will be used in our presentation. We also
describe the weighted central path that will be the subject of our study in this paper. The
conditions for its well-definedness are also stated.

Throughout this paper we will be dealing with the pair of dual SDPs (P ) and (D) (see (1)
and (1), respectively). Denote the feasible sets of (P ) and (D) by FP and FD , respectively.
Throughout our presentation, we make the following assumptions on the pair of problems (P )

and (D).

A.1 A : Sn → �m is an onto linear operator;
A.2 There exists a pair of strictly complementary primal–dual optimal solution for (P ) and

(D), that is a triple (X∗, S∗, y∗) ∈ FP × FD satisfying X∗S∗ = 0 and X∗ + S∗ � 0.

We will assume that Assumptions A.1 and A.2 are in force throughout our presentation.
Hence, we will state our results without explicitly mentioning them.

Assumption A.1 is not really crucial for our analysis but it is convenient to ensure that the
variables S and y are in one-to-one correspondence. We will see that the dual weighted central
path can always be defined in the S-space. The goal of Assumption A.1 is just to ensure that
this path can also be extended to the y-space.

Assumption A.2 is the one that is commonly used in the analysis of superlinear convergence
of interior-point algorithms and it plays an important role in our analysis. In fact, it is a very
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Limiting behavior of the AHO weighted paths 853

challenging problem to generalize the analysis of this paper to the case where Assumption A.2
is dropped or simply relaxed.

By assumptionA.2, sinceX∗S∗ = S∗X∗ = 0, we can diagonalizeX∗ andS∗ simultaneously,
i.e. find an orthonormal P ∈ �n×n such that P T X∗P and P T S∗P are both diagonal. Per-
forming the change of variables X̂ = P T XP and (Ŝ, ŷ) = (P T SP, y) on problems (P ) and
(D) yield another pair of primal and dual SDPs which has a primal–dual optimal solution
(X̂∗, Ŝ∗, ŷ∗) such that X̂∗ and Ŝ∗ are both diagonal. To simplify our notation, we will assume
without loss of generality that the original (P ) and (D) already have a primal–dual optimal
solution (X∗, S∗, y∗) such that

X∗ =
[
�B 0

0 0

]
, S∗ =

[
0 0

0 �N

]
, (6)

where �B ≡ diag(λ1, . . . , λK), �N ≡ diag(λK+1, . . . , λn) for some integer 0 ≤ K ≤ n and
some scalars λi > 0, i = 1, 2, . . . , n. Here the subscripts B and N signify the ‘basic’ and
‘nonbasic’ subspaces (following the terminology of linear programming). Throughout this
paper, the decomposition of any n × n matrix V is always made with respect to the above
partition B and N , namely:

V =
[

VB VBN

VNB VN

]
.

Notice that X ∈ FP is an optimal solution of (P ) if and only if XS∗ = 0. Hence, by
assumption A.2, the primal–optimal solution set F∗

P is given by

F∗
P ≡ {X ∈ FP : XBN = 0, XNB = 0 and XN = 0}.

Analogously, the dual optimal solution set F∗
D is given by

F∗
D ≡ {(S, y) ∈ FD : SBN = 0, SNB = 0 and SB = 0}.

Define the linear map G : Sn × Sn × �m → Sn × �m by

G(X, S, y) ≡ (A∗y + S − C, AX − b) (7)

and the set G++ by

G++ ≡ G(Sn
++ × Sn

++ × �m). (8)

Given (W, �C, �b) ∈ Sn × Sn × �m, in this paper we are interested in the solutions of the
system of nonlinear equations (3)–(5) parametrized by the parameter ν > 0. The following
result gives condition on (W, �C, �b) for system (3)–(5) to have a unique solution for each
ν ∈ (0, 1].
PROPOSITION 2.1 Assume that (W, �C, �b) ∈ Sn++ × G++. Then, for any ν ∈ (0, 1], the
system (3)−(5) has a unique solution, denoted by (X(ν), S(ν), y(ν)). Moreover, the path
ν ∈ (0, 1] → (X(ν), S(ν), y(ν)) is analytic.

Proof By A.2 and the assumption that (W, �C, �b) ∈ Sn++ × G++, we easily see that
ν(W, �C, �b) ∈ Sn++ × G++ for all ν ∈ (0, 1]. The first conclusion of the proposition now
follows from Theorem 1(b) of Monteiro and Zanjácomo [1] by letting F , 	 and V in
that theorem be defined as F = G, 	(X, S) = (XS + SX)/2 for all (X, S) ∈ Sn+ × Sn+ and
V = W . The second conclusion follows by applying the analytic version of the implicit func-
tion theorem to system (3)–(5) viewed as a function of (X, S, y, ν) and using the fact that the



D
ow

nl
oa

de
d 

B
y:

 [C
an

ad
ia

n 
R

es
ea

rc
h 

K
no

w
le

dg
e 

N
et

w
or

k]
 A

t: 
21

:1
9 

20
 A

ug
us

t 2
00

7 

854 Zhaosong Lu and R. D. C. Monteiro

assumption (W, �C, �b) ∈ Sn++ × G++ implies that the Jacobian of this system with respect
to (X, S, y) is nonsingular at (X(ν), S(ν), y(ν), ν) for every ν ∈ (0, 1]. (See Lemma 4 of [36]
and the paragraph following it.) �

Given a (W, �C, �b) ∈ Sn++ × G++, the path ν ∈ (0, 1] → (X(ν), S(ν), y(ν)) will be
referred to as the (W, �C, �b)-weighted central path. In view of the above proposition, we
will assume throughout Sections 3 and 4 that the following condition is true, without explicitly
mentioning it in the statements of the results.

A.3 (W, �C, �b) ∈ Sn++ × G++.

3. Properties of the weighted central path

In this section, we will introduce some properties of the weighted central path. The estimates
on the sizes of some blocks of the weighted path are given. Although Kojima et al. have
essentially developed them in section 5 of ref. [39], we derive them in a different and simpler
approach with the aid of Hoffman Lemma [3]. The analysis of the limiting behavior of the
weighted central path will strongly rely on these estimates.

The following result gives some estimates on the sizes of the blocks of X(ν) and S(ν).

LEMMA 3.1 For all ν > 0 sufficiently small, we have:
XB(ν) = �(1), XN(ν) = �(ν), (9)

SB(ν) = �(ν), SN(ν) = �(1), (10)

XBN(ν) = O(
√

ν), SBN(ν) = O(
√

ν). (11)

As a consequence, the weighted central path {(X(ν), y(ν), S(ν))} is bounded and any its
accumulation point as ν ↓ 0 is a strictly complementary primal–dual optimal solution of (P )

and (D).

Proof From (5), we have X • S = ν tr(W). Following the same proof as Lemma 2.2 of Lu
and Monteiro [37], we obtain that

XB(ν) = O(1), SN(ν) = O(1), XN(ν) = O(ν), SB(ν) = O(ν) (12)

and (11) holds. By Lemma 3.3 of Monteiro [40], we have

λmin(X
1/3SX1/2) ≥ λmin

(SX + XS)

2

where λmin(·) is the minimal eigenvalue of the associated matrix. Noting that λmin(SX +
XS)/2 = νλmin(W) by (5), we have X1/2SX1/2 � νλmin(W)I . Using this fact together with
(12), we can easily follow the proof of Lemma 3.2 of Luo et al. [30] to derive (9) and (10),
except that the identity matrix I should be replaced by λmin(W)I throughout their proof. �

The following result establishes the relationship between XBN(ν) and SBN(ν).

LEMMA 3.2 For all ν > 0 sufficiently small, we have:
‖SBN(ν)‖ = �(‖XBN(ν)‖) + O(ν),

−XBN(ν) • SBN(ν) = �(‖XBN(ν)‖2) + O(ν‖XBN(ν)‖).
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Limiting behavior of the AHO weighted paths 855

Proof For notational convenience, let X ≡ X(ν), S ≡ S(ν) and V ≡ XS. Using Lemma 3.1,
we obtain that

‖VNB‖ = ‖XNBSB + XNSNB‖ = O(ν3/2). (13)

Using (5) and the fact that V = XS, we have

XBSBN + XBNSN + V T
NB = 2νWBN,

which implies that

SBN = −X−1
B (XBNSN + V T

NB − 2νWBN).

Using this identity, (13) and Lemma 3.1, we obtain that the first conclusion holds, and also

XBN • SBN = −tr(XT
BNX−1

B XBNSN) + O(ν‖XBN‖),
= −‖X−1/2

B XBNS
1/2
N ‖2

F + O(ν‖XBN‖),
which together with Lemma 3.1 implies the second conclusion. �

Next we state Hoffman Lemma [3] (see also Lemma A.3 of Wright [41]), which will be
used subsequently.

LEMMA 3.3 Let G ∈ �r×q and H ∈ �p×q be given matrices. Then there exists a nonnegative
constant L depending only on G and H such that, for all vectors[

g

h

]
∈ Im

([
G

H

])
,

there is a solution to the system

Gw ≤ g, Hw = h

that satisfies ‖w‖ ≤ L‖(g, h)‖.

The following result improves the estimates on the sizes of XBN(ν) and SBN(ν).

LEMMA 3.4 For all ν > 0 sufficiently small, we have:
XBN(ν) = O(ν), SBN(ν) = O(ν).

Proof Suppose that XBN(ν) = O(ν) does not hold. Then there exists a sequence νk ↓ 0
as k → ∞ such that νk = o(‖XBN(νk)‖). For convenience, we omit the index k from νk

throughout the remaining proof. Then the above identity can be written as ν = o(‖XBN(ν)‖),
which together with Lemma 3.2 implies that

‖SBN(ν)‖ = �(‖XBN(ν)‖), (14)

−XBN(ν) • SBN(ν) = �(‖XBN(ν)‖2). (15)

For any ν ∈ (0, 1], consider the linear system

A(X − X(ν)) = −ν�b,

XBN − XBN(ν) = −XBN(ν), (16)

XN − XN(ν) = −XN(ν). (17)

We see that any X∗ ∈ F∗
P is a feasible solution to this system. Hence, by Lemma 3.3, there

exists a sufficiently large constant Ĉ (independent on ν) such that for any ν ∈ (0, 1], this
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system has a solution X̄ ∈ Sn, which satisfies

‖X̄ − X(ν)‖ ≤ Ĉ(ν‖�b‖ + ‖XN(ν)‖ + ‖XBN(ν)‖). (18)

Analogously, for any ν ∈ (0, 1], there exists (S̄, ȳ) ∈ Sn × �m which satisfies

A∗(y − y(ν)) + S − S(ν) = −ν�C,

SB − SB(ν) = −SB(ν), (19)

SBN − SBN(ν) = −SBN(ν), (20)

Ĉ(ν‖�C‖ + ‖SB(ν)‖ + ‖SBN(ν)‖) ≥ ‖S − S(ν)‖. (21)

Noting that (�C, �b) ∈ G++, we have �C = A∗y0 + S0 − C and �b = AX0 − b for
some (X0, S0, y0) ∈ Sn++ × Sn++ × �m. We easily see that, for any given (X∗, S∗, y∗) ∈
F∗

P × F∗
D ,

A(X̄ − X(ν) + ν(X0 − X∗)) = 0, S̄ − S(ν) + ν(S0 − S∗) ∈ Im(A∗).

Hence, we obtain that

(X̄ − X(ν) + ν(X0 − X∗)) • (S̄ − S(ν) + ν(S0 − S∗)) = 0. (22)

Since (X̄, S̄) satisfies (16), (17), (19) and (20), we immediately have

X̄BN = S̄BN = 0, X̄N = 0, S̄B = 0.

This together with (22) implies that

XBN(ν) • SBN(ν) = (X̄B − XB(ν)) • SB(ν) + XN(ν) • (S̄N − SN(ν))

− ν(X̄ − X(ν)) • (S0 − S∗) − ν(X0 − X∗) • (S̄ − S(ν))

− ν2(X0 − X∗) • (S0 − S∗). (23)

Note that ‖X̄B − XB(ν)‖ ≤ ‖X̄ − X(ν)‖ and ‖S̄N − SN(ν)‖ ≤ ‖S̄ − S(ν)‖. Using this
relation together with (23) and Lemma 3.1, we obtain that, for all ν > 0 sufficiently small,

|XBN(ν) • SBN(ν)| ≤ C̆ν(ν + ‖X̄ − X(ν)‖ + ‖S̄ − S(ν)‖) (24)

for some constant C̆. In view of (14), (15), (18), (21), (24) and Lemma 3.1, one has that, for
all ν > 0 sufficiently small,

|XBN(ν) • SBN(ν)| ≤ C̄ν(ν + ‖XBN(ν)‖ + ‖SBN(ν)‖),
≤ C̃ν(ν + |XBN(ν) • SBN(ν)|1/2),

where C̄ and C̃ are some constants (independent on ν) and the last inequality follows from
(14) and (15). Let ξ = |XBN(ν) • SBN(ν)|1/2. From the latter inequality above, we have ξ 2 ≤
C̃ν(ν + ξ), which together with the fact ξ > 0, implies that ξ ≤ (C̃ + (5C̃)

1/2
)ν/2. Hence,

ξ = O(ν). Using this result and (15), we obtain that ‖XBN(ν)‖ = O(ν), which contradicts with
the early assumption of the proof. Therefore, XBN(ν) = O(ν) holds. The proof of SBN(ν) =
O(ν) directly follows from Lemma 3.2. �
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We end this section by stating a convergence result of the (W, �C, �b)-weighted central
path to a primal–dual optimal solution of (1) and (2). We do not provide a proof for it since it
is similar to the one given in the Appendix of Halická et al. [28].

PROPOSITION 3.5 There exists some ε > 0 and an analytic function ν : [0, ε) → (0, 1) such
that ν(0) = 0 and the path t ∈ (0, ε) → (X(ν(t)), S(ν(t)), y(ν(t))) is analytic at t = 0.
In particular, (X(ν(t)), S(ν(t)), y(ν(t))) converges to some primal–dual optimal solution
(X∗, S∗, y∗) as t ↓ 0.

We observe that Proposition 3.5 holds even without requiring Assumption A.2. As a conse-
quence, its main advantage is that it holds for any SDP problem provided that it satisfies strong
duality and Assumption A.3. Its main drawbacks are that it neither gives a characterization of
the limit point (X∗, S∗, y∗) nor describes how fast ν(t) converges to 0. These issues and others
will be addressed in the remaining sections of this paper in the context of SDPs satisfying
Assumption A.2.

4. Analyticity of the weighted central path

In this section, we will show that the weighted central path can be extended analytically to
ν = 0. We also characterize the limit point and the first-order derivative of the normalized
weighted central path as ν ↓ 0.

For the sake of brevity, it is convenient to introduce the following definition.

DEFINITION 4.1 Let w : (0, δ) → E be a given function where δ > 0 and E is a finite dimen-
sional normed vector space. The function w is said to be analytic at 0 if there exist ε > 0 and
an analytic function ψ : (−ε, ε) → E such that w(t) = ψ(t) for all t ∈ (0, ε).

The following theorem is one of the main results of this section. Its proof will be given at
the end of this section.

THEOREM 4.2 The (W, �C, �b)-weighted central path ν ∈ (0, 1] → (
X(ν), S(ν), y(ν)

)
is

analytic and also analytic at ν = 0. As a consequence, the (W, �C, �b)-weighted path and
all its k-th order derivatives, k ≥ 1, converge as ν ↓ 0.

A key step towards showing the above result is a reformulation of the weighted central path
system (3)–(5) as we now discuss. Now, let

Un = {U ∈ �n×n : UB ∈ S |B|, UN ∈ S |N |, UNB = 0},
Un

++ = {U ∈ Un : UB � 0, UN � 0}.

and define L : Un → �n×n as

L(U) =
[

0 0

UT
BN 0

]
, ∀ U ∈ Un.
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Given any (X, S) ∈ Sn++ × Sn++, we define (Ũ , Ṽ , X̃, S̃) ∈ Un++ × Un++ × Sn × Sn as follows

X̃ =

⎡⎢⎢⎣ XB

XBN

ν

XNB

ν

XN

ν

⎤⎥⎥⎦ , S̃ =

⎡⎢⎢⎣
SB

ν

SBN

ν

SNB

ν
SN

⎤⎥⎥⎦ , (25)

Ũ =
[
X̃B

˜XBN

0 X̃N

]
, Ṽ =

[
S̃B S̃BN

0 S̃N

]
. (26)

Letting

DN =
⎡⎢⎣I 0

0
I

ν

⎤⎥⎦ ,

we immediately obtain that

XDN =
[

X̃B X̃BN

νX̃NB X̃N

]
= Ũ + νL(Ũ) = Uν(Ũ ),

D−1
N S

ν
=
[

S̃B S̃BN

νS̃NB S̃N

]
= Ṽ + νL(Ṽ ) = Uν(Ṽ )

where Uν ≡ I + νL. Using the above identities, we easily see that, for ν > 0, (5) is
equivalent to

Uν(Ũ )Uν(Ṽ ) + (Uν(Ũ )Uν(Ṽ ))T = 2W. (27)

Accordingly, we define (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) by replacing (X̃, S̃, X, S) by (X̃(ν), S̃(ν),

X(ν), S(ν)) in (26) and (25), respectively. Proposition 2.1 and the above arguments establish
the following key result.

PROPOSITION 4.3 Let (X∗, S∗, y∗) ∈ F∗
P × F∗

D be given. Then, for every ν ∈ (0, 1],
(Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) is a solution of the system defined by (26), (27) and the linear
equations

A •
[
X̃B − X∗

B νX̃BN

νX̃NB νX̃N

]
= ν�b, (28)

[
νS̃B νS̃BN

νS̃NB S̃N − S∗
N

]
∈ ν�C + Im(A∗). (29)

Moreover, the path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) is analytic.

The next result states some basic properties about the accumulation points of
(Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) as ν approaches 0.

LEMMA 4.4 The path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) remains bounded as ν

approaches 0 and any accumulation point (Ũ ∗, Ṽ ∗, X̃∗, S̃∗) of this path as ν approaches
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Limiting behavior of the AHO weighted paths 859

0 is in Un++ × Un++ × Sn × Sn and satisfies

Ũ ∗ =
[
X̃∗

B X̃∗
BN

0 X̃∗
N

]
, Ṽ ∗ =

[
S̃∗
B S̃∗

BN

0 S̃∗
N

]
, (30)

Ũ ∗Ṽ ∗ + (Ũ ∗Ṽ ∗)T = 2W. (31)

Proof Relation (25), Lemma 3.1 and Lemma 3.4 imply that (X̃(ν), S̃(ν)) remains bounded
as ν approaches 0. So does (Ũ(ν), Ṽ (ν)) according to this fact and relation (26). Using (25)
and Lemma 3.1, we see that (Ũ ∗, Ṽ ∗) ∈ Un++ × Un++. The remaining proof follows directly
from (26) and (27). �

Our next goal is to show that the path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν)) is analytic
at ν = 0. The basic tool we use to establish this fact is the implicit function theorem applied
to a specific system of equations. A first natural candidate for such a system seems to be the
one given by (26)–(29). However, the main drawback of this system is that its derivative with
respect to (Ũ , Ṽ , X̃, S̃) is generally singular for ν = 0 (even though for ν ∈ (0, 1) it is always
nonsingular). The main cause for this phenomenon is that the ‘rank’ of the linear equations
(28) and (29) changes when ν becomes 0.

We will now show how the linear equations (28) and (29) can be reformulated into equivalent
linear equations for every ν ∈ (0, 1]. Moreover, the new linear equations have the property that
their rank remains constant for every ν ∈ �. First note that the linear operator A : Sn → �m

can be expressed as

A(X) = AB(XB) + ABN(XBN) + AN(XN) ≡ (AB ABN AN)

⎛⎜⎝ XB

XBN

XN

⎞⎟⎠ , (32)

for some linear operators AB : S |B| → �m, ABN : �|B|×|N | → �m and AN : S |N | → �m.
A well-known result from linear algebra says that any matrix can be put into row-echelon

form after a sequence of elementary row operations. A similar type of argument allows one to
establish the following result.

LEMMA 4.5 Let A : Sn → �m be an onto linear operator. Assume that

i1 = rank(AB), i2 = rank(AB ABN) − i1,

i3 = rank(A) − (i1 + i2) = m − (i1 + i2).

Then there exists an isomorphism T : �m → �m such that

(T ◦ A)(X) =
⎛⎜⎝A11(XB) +A12(XBN) +A13(XN)

A22(XBN) +A23(XN)

A33(XN)

⎞⎟⎠

≡
⎛⎜⎝A11 A12 A13

0 A22 A23

0 0 A33

⎞⎟⎠
⎛⎜⎝ XB

XBN

XN

⎞⎟⎠ ,
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860 Zhaosong Lu and R. D. C. Monteiro

for some linear operators

A11 : S |B| −→ �i1 , A12 : �|B|×|N | −→ �i1 ,

A13 : S |N | −→ �i1 , A22 : �|B|×|N | −→ �i2 ,

A23 : S |N | −→ �i2 , A33 : S |N | −→ �i3

such that rank(A11) = i1, rank(A22) = i2, rank(A33) = i3.

We can now reformulate the linear system (28) with the use of Lemma 4.5 as follows. Using
Lemma 4.5, we easily see that (28) is equivalent to the linear system⎛⎜⎝A11 νA12 νA13

0 νA22 νA23

0 0 νA33

⎞⎟⎠
⎛⎜⎝X̃B − X∗

B

X̃BN

X̃N

⎞⎟⎠ = ν

⎛⎜⎝�̃b1

�̃b2

�̃b3

⎞⎟⎠
where (�̃b1, �̃b2, �̃b3) ∈ �i1 × �i2 × �i3 and �̃b ≡ T (�b). Dividing the second and third
blocks of rows in the above system by ν, respectively, we obtain the following system⎛⎜⎝A11 νA12 νA13

0 A22 A23

0 0 A33

⎞⎟⎠
⎛⎜⎝X̃B − X∗

B

X̃BN

X̃N

⎞⎟⎠ =
⎛⎝ν�̃b1

�̃b2

�̃b3

⎞⎠ . (33)

Note that the linear system (33) is equivalent to (28) for every ν ∈ (0, 1]. Hence, X̃(ν) satisfies
(33) for every ν ∈ (0, 1]. A nice feature of (33) is that the operator on its left hand side does
not lose full rankness as ν becomes 0. We state this fact in the following proposition.

PROPOSITION 4.6 Let Aν : Sn → �m be the operator defined on the left-hand side of (33).
Then, rank(Aν) = m for every ν ∈ �.

The linear system (29) can also be reformulated with the aid of Lemma 4.5 as follows. First
note that by Lemma 4.5, we have

Im(A∗) = Im[(T ◦ A)∗] = Im

⎡⎢⎣
⎛⎜⎝A∗

11 0 0

A∗
12 A∗

22 0

A∗
13 A∗

23 A∗
33

⎞⎟⎠
⎤⎥⎦

= Im

⎡⎢⎣
⎛⎜⎝νA∗

11 0 0

νA∗
12 νA∗

22 0

νA∗
13 νA∗

23 A∗
33

⎞⎟⎠
⎤⎥⎦ ,

for every ν ∈ (0, 1]. Hence, for every ν ∈ (0, 1] (29) is equivalent to⎛⎜⎝ νS̃B

νS̃BN

S̃N − S∗
N

⎞⎟⎠ ∈ ν

⎛⎜⎝ �CB

�CBN

�CN

⎞⎟⎠+ Im

⎡⎢⎣
⎛⎜⎝νA∗

11 0 0

νA∗
12 νA∗

22 0

νA∗
13 νA∗

23 A∗
33

⎞⎟⎠
⎤⎥⎦ .
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Limiting behavior of the AHO weighted paths 861

Dividing the first and second block of rows in the above system by ν, respectively, we obtain
the system ⎛⎜⎝ S̃B

S̃BN

S̃N − S∗
N

⎞⎟⎠ ∈
⎛⎜⎝ �CB

�CBN

ν�CN

⎞⎟⎠+ Im

⎡⎢⎣
⎛⎜⎝ A∗

11 0 0

A∗
12 A∗

22 0

νA∗
13 νA∗

23 A∗
33

⎞⎟⎠
⎤⎥⎦ , (34)

which is equivalent to (29) for every ν ∈ (0, 1], and hence satisfied by S̃(ν) for all ν ∈ (0, 1].
Let the operator ßν : �m → Sn be defined such that Im(ßν) is defined by the second term

on the right-hand side of (34). Using the definitions of Aν and ßν , and the fact that X̃(ν) and
S̃(ν) satisfy (33) and (34), respectively, for every ν ∈ (0, 1], we conclude that there exists a
function ỹ : (0, 1] → �m such that (X̃(ν), S̃(ν), ỹ(ν)) satisfies

Aν(X̃ − X∗) =
⎛⎜⎝ν�̃b1

�̃b2

�̃b3

⎞⎟⎠ , ßν ỹ + (S̃ − S∗) =
⎛⎜⎝ �CB

�CBN

ν�CN

⎞⎟⎠ . (35)

for every ν ∈ (0, 1]. Moreover, using Proposition 4.6 and the fact that {S̃(ν) : ν ∈ (0, 1]} is
bounded, we easily see that {ỹ(ν) : ν ∈ (0, 1]} is also bounded. We have thus established the
following result.

PROPOSITION 4.7 There exists a curve ỹ : �++ → �m such that (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν),

ỹ(ν)) is a solution of (26), (27) and (35) in Un++ × Un++ × Sn × Sn × �m for every ν ∈
(0, 1]. Moreover, the path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) remains bounded as
ν approaches 0 and any of its accumulation points is in Un++ × Un++ × Sn × Sn × �m.

The system formed by (26), (27) and (35) is the one which we will use to establish that the
path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) is analytic at ν = 0. This will follow by the
analytic version of the implicit function theorem if we can establish that the Jacobian of this
system with ν = 0 with respect to (Ũ , Ṽ , X̃, S̃, ỹ) is nonsingular as long as (Ũ , Ṽ ) ∈ Un++ ×
Un++. The nonsingularity of this Jacobian can be easily seen to be equivalent to showing that
(�̃U, �̃V , �̃X, �̃S, �̃y) = (0, 0, 0, 0, 0) ∈ Un × Un × Sn × Sn × �m is the only solution
of the following linear system:

�̃U =
[
�̃XB �̃XBN

0 �̃XN

]
, �̃V =

[
�̃SB �̃SBN

0 �̃SN

]
. (36)

�̃UṼ + Ũ�̃V + (�̃UṼ + Ũ�̃V
)T = 0, (37)

A0�̃X = 0, ß0�̃y + �̃S = 0. (38)

LEMMA 4.8 Assume that (Ũ , Ṽ ) ∈ Un++ × Un++. Then, the system (36)−(38) has
(�̃U, �̃V , �̃X, �̃S, �̃y) = (0, 0, 0, 0, 0) as its unique solution.

Proof Using the definition of Aν and ßν , we see that the equations in (38) are, respectively,⎛⎜⎝A11 0 0

0 A22 A23

0 0 A33

⎞⎟⎠ �̃X = 0 (39)
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and ⎛⎜⎝A∗
11 0 0

A∗
12 A∗

22 0

0 0 A∗
33

⎞⎟⎠ �̃y + �̃S = 0. (40)

We easily see from (39) that �̃XB ∈ N(A11) and �̃XN ∈ N(A33). We also see from (40)
that �̃SB ∈ Im(A∗

11) and �̃SN ∈ Im(A∗
33). Hence, we conclude that

�̃XB • �̃SB = 0, �̃XN • �̃SN = 0.

Further, in view of (36), we obtain that

�̃UB • �̃VB = 0, �̃UN • �̃VN = 0. (41)

Using the fact that (Ũ , Ṽ ) ∈ Un++ × Un++ and
(
�̃U, �̃V

) ∈ Un × Un, we have �̃UṼ +
Ũ�̃V ∈ Un, which together with (37) implies that

�̃UṼ + Ũ�̃V = 0.

This equation can be written as

�̃UBṼB + ŨB�̃VB = 0, (42)

�̃UNṼN + ŨN�̃VN = 0, (43)

�̃UBṼBN + �̃UBNṼN + ŨB�̃VBN + ŨBN�̃VN = 0. (44)

By virtue of (Ũ , Ṽ ) ∈ Un++ × Un++, we know that ŨB, ŨN , ṼB, ṼN � 0. Multiplying (42) on the
left by (ŨB)−1/2 and on the right by (ṼB)−1/2, squaring both sides of the resulting expression
and using (41), we conclude that∥∥∥(ŨB)−1/2�̃UB(ṼB)1/2

∥∥∥
F

= 0,

∥∥∥(ŨB)1/2�̃VB(ṼB)−1/2
∥∥∥

F
= 0,

from which it follows that �̃UB = �̃UB = 0. Similarly, using (43) and the fact
�̃UN • �̃VN = 0, we have �̃UN = �̃UN = 0. Hence, (44) becomes

�̃UBNṼN + ŨB�̃VBN = 0. (45)

According to (36), we also have

�̃XB = �̃SB = 0, �̃XN = �̃SN = 0.

In view of Lemma 4.5, �̃y can be accordingly partioned into �̃y = (�̃y1, �̃y2, �̃y3

) ∈
�i1 × �i2 × �i3 . This together with (40) implies that A∗

11�̃y1 + �̃SB = 0. Using this identity
and the fact that �̃SB = 0 and A∗

11 is one-to-one, we obtain that �̃y1 = 0, which together
with (40) implies that �̃SBN ∈ Im(A∗

22). Similarly, we have A22(�̃XBN) = 0. Hence, we
conclude that �̃XBN • �̃SBN = 0, which together with (36) implies �̃UBN • �̃VBN = 0.
Using this identity and (45), and applying the same argument as above, we obtain that
�̃UBN = �̃VBN = 0. Again, in view of (36), we have �̃XBN = �̃SBN = 0. Hence, we
conclude that

�̃U = �̃V = �̃X = �̃S = 0.

Also, �̃y = 0 follows from (38) and the fact that �̃S = 0 and ß0 is one-to-one. �
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Limiting behavior of the AHO weighted paths 863

We are now ready to establish the analyticity of the path ν ∈ (0, 1] → (Ũ(ν), Ṽ (ν), X̃(ν),
S̃(ν), ỹ(ν)).

THEOREM 4.9 Let (X∗, S∗, y∗) ∈ F∗
P × F∗

D be given. There hold:
(i) the path ν ∈ (0, 1] → p̃(ν) ≡ (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) is analytic at 0;

consequently, p̃(ν) and all its k-th order derivatives, k ≥ 1, converge as ν ↓ 0;
(ii) (Ũ ∗, Ṽ ∗, X̃∗, S̃∗, ỹ∗) ≡ limν↓0(Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) is the unique solution of

the system defined by (30), (31) and

A0(X̃ − X∗) =
⎛⎜⎝ 0

�̃b2

�̃b3

⎞⎟⎠ , ß0ỹ + (S̃ − S∗) =
⎛⎜⎝ �CB

�CBN

0

⎞⎟⎠ (46)

in Un++ × Un++ × Sn × Sn × �m;

(iii)
(
δ̃U

∗
, δ̃V

∗
, δ̃X

∗
, δ̃S

∗
, δ̃y

∗) ≡ limν↓0
( ˙̃
U(ν),

˙̃
V (ν),

˙̃
X(ν),

˙̃
S(ν), ˙̃y(ν)

)
is the unique

solution of the linear system defined by

δ̃U =
[
δ̃XB δ̃XBN

0 δ̃XN

]
, δ̃V =

[
δ̃SB δ̃SBN

0 δ̃SN

]
, (47)

δ̃UṼ ∗ + Ũ ∗δ̃V +
(
δ̃UṼ ∗ + Ũ ∗δ̃V

)T

= −
[
L(Ũ ∗)Ṽ ∗ + Ũ ∗L(Ṽ ∗) + (L(Ũ ∗)Ṽ ∗ + Ũ ∗L(Ṽ ∗))T

]
, (48)

A0δ̃X = −C0X̃
∗ +

⎛⎜⎝�̃b1

0

0

⎞⎟⎠ , β0δ̃y + δ̃S = −D0ỹ
∗ +

⎛⎜⎝ 0

0

�CN

⎞⎟⎠ , (49)

where

C0 ≡
⎛⎜⎝0 A12 A13

0 0 0

0 0 0

⎞⎟⎠ , D0 ≡
⎛⎜⎝ 0 0 0

0 0 0

A∗
13 A∗

23 0

⎞⎟⎠ .

Proof Let O = Un++ × Un++ × Sn × Sn × �m and H(w, ν) ≡ H(Ũ, Ṽ , X̃, S̃, ỹ, ν) be the
map defined by system (26), (27) and (35). Indeed, H(w, ν) is analytic of w and ν. By
Proposition 4.7, the path p̃(ν) = (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) has an accumulation point
w∗ = (Ũ ∗, Ṽ ∗, X̃∗, S̃∗, ỹ∗) in O, which satisfies H(w∗, 0) = 0. By Lemma 4.8, it follows that
H ′

w(w∗, 0) is nonsingular. In view of implicit function theorem, there exists a δ > 0 and an
analytical function p̂(ν) = (Û(ν), V̂ (ν), X̂(ν), Ŝ(ν), ŷ(ν)) ∈ O defined on (−δ, δ) such that
H(p̂(ν), ν) = 0 for every ν ∈ (−δ, δ) and p̂(0) = w∗. Hence, it follows from Lemma 4.4 that
X̂B(0) = X̃∗

B = Ũ ∗
B � 0. Similarly, we have that X̂N(0), ŜB(0), ŜN (0) � 0. Now, for ν ∈ (0, δ),

let

x̆(ν) ≡
[

X̂B(ν) νX̂BN(ν)

νX̂NB(ν) νX̂N(ν)

]
, S̆(ν) ≡

[
νŜB(ν) νŜBN(ν)

νŜNB(ν) ŜN(ν)

]
. (50)

Using the fact that (28) is equivalent to (33) for ν ∈ (0, 1], we see that X̆(ν) satisfies
AX = b for ν ∈ (0, δ). Similarly, we have S̆(ν) − S∗ ∈ Im(A∗), which together with the
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fact S∗ ∈ C + Im(A∗), implies S̆(ν) ∈ C + Im(A∗). Hence, there exists y̆(ν) ∈ �m such
that (s̆(ν), y̆(ν)) satisfies A∗y + S = C for ν ∈ (0, δ). By virtue of (26), (27) and (50),
we see that (X̆(ν), S̆(ν)) satisfies XS + SX = 2νW for ν ∈ (0, δ). In view of (50) and
the fact that X̂B(0), X̂N(0), ŜB(0), ŜN (0) � 0, there exists an ε ∈ (0, δ) such that X̆(ν) � 0
and S̆(ν) � 0 for every ν ∈ (0, ε). Hence, for every ν ∈ (0, ε), (X̆(ν), S̆(ν), y̆(ν)) satisfies
(3)–(5). By Proposition 2.1, we have (X̆(ν), S̆(ν), y̆(ν)) = (X(ν), S(ν), y(ν)) for every
ν ∈ (0, ε). According to (25) and (50), we obtain that X̃(ν) = X̂(ν) and S̃(ν) = Ŝ(ν) for
all ν ∈ (0, ε). Using (35) and the fact that ßν is one-to-one, we have ỹ(ν) = ŷ(ν) for all
ν ∈ (0, ε). Hence, we conclude that p̃(ν) = p̂(ν) for all ν ∈ (0, ε). In term of definition 4.1,
it follows that (i) holds.

Upon letting ν ↓ 0 on H(p̃(ν), ν) = 0, we easily see that w∗ satisfies (30), (31) and (46).
The proof of uniqueness follows from the similar argument as above. Indeed, if the sys-
tem H(w, 0) = 0 has another solution ŵ∗ ∈ Un++ × Un++ × Sn × Sn × �m. By Lemma 4.8, it
follows that H ′

w(ŵ∗, 0) is nonsingular. The implicit function theorem implies that the system
H(w, ν) = 0 has a different solution from p̃(ν) in a small neighborhood of ν = 0. By the
similar argument as above, then there exists two distinct weighted paths in a small neighbor-
hood of ν = 0. It contradicts with Proposition 2.1. Differentiating the identity H(w(ν), ν) = 0
with respect to ν and letting ν ↓ 0, we conclude that δw = δw∗ ≡ (δ̃U ∗

, δ̃V
∗
, δ̃X

∗
, δ̃S

∗
, δ̃y

∗)
satisfies

H ′
w(w∗, 0)δw = −H ′

ν(w
∗, 0).

Statement (iii) now follows from the fact that H ′
w(w∗, 0) is nonsingular and the latter system

is equivalent to (47)–(49). �

The proof of Theorem 4.2 is now obvious. Indeed, the analyticity of the map
ν → (X(ν), S(ν)) follows from (25) and the analyticity of ν → (X̃(ν), S̃(ν)). The analyt-
icity of ν → y(ν) follows from the analyticity of ν → S(ν) and Assumption A.1. The last
statement of the theorem is obvious.

In the remainder of this paper, we will let
(
Ũ ∗, Ṽ ∗, X̃∗, S̃∗, ỹ∗) and

(
δ̃U

∗
, δ̃V

∗
, δ̃X

∗
, δ̃S

∗
,

δ̃y
∗)

denote the limits of (Ũ(ν), Ṽ (ν), X̃(ν), S̃(ν), ỹ(ν)) and (
˙̃
U(ν),

˙̃
V (ν),

˙̃
X(ν),

˙̃
S(ν), ˙̃y(ν)),

respectively, as ν ↓ 0 (as in Theorem 4.9 above). Observe that Theorem 4.9 provides a char-
acterization of (Ũ ∗, Ṽ ∗, X̃∗, S̃∗, ỹ∗) as being the unique solution of a certain system of
equations, which arises by first performing some transformations to the original weighted
central path system, and then setting ν = 0 in the resulting system. Hence, it is reasonable
to expect that the linear equations (46) can be entirely described in terms of the original data
(W, A, C, �C, b, �b). Indeed, the following result gives this alternative description of (46).

THEOREM 4.10
(
Ũ ∗, Ṽ ∗, X̃∗, S̃∗

)
is the unique solution of the system given by (30), (31)

and the linear equations

AB(X̃B) = b,
[
ABN AN

] [X̃BN

X̃N

]
∈ �b + Im(AB), (51)

(
S̃B

S̃BN

)
∈
(

�CB

�CBN

)
+ Im

([
A∗

B

A∗
BN

])
,

⎛⎜⎝ 0

0

S̃N

⎞⎟⎠ ∈ C + Im

⎛⎜⎝
⎡⎢⎣ A∗

B

A∗
BN

A∗
N

⎤⎥⎦
⎞⎟⎠ (52)

in Un++ × Un++ × Sn++ × Sn++.
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Proof From Theorem 4.9(ii), it suffices to show that (46) is equivalent to (51) and (52). Since
the first equation of (46) is the same as (33) with ν = 0, we have that the first equation of (46)
holds if and only if

A11(X̃B) = A11(X
∗
B), A22(X̃BN) + A23(X̃N) = �̃b2, A33(X̃N) = �̃b3. (53)

By Lemma 4.5, the first identity in (53) can be written as

(T ◦ A)

⎛⎜⎝X̃B

0

0

⎞⎟⎠ = (T ◦ A)

⎛⎜⎝X∗
B

0

0

⎞⎟⎠ ,

and hence it is equivalent to AB(X̃B) = AB(X∗
B) = b, in view of relation (32) and the fact

that T is an isomorphism. By Lemma 4.5 and the fact that A11 is onto, the second and third
identities in (53) hold if and only if

(T ◦ A)

⎛⎜⎝ X̆B

X̃BN

X̃N

⎞⎟⎠ =
⎛⎜⎝�̃b1

�̃b2

�̃b3

⎞⎟⎠ = T (�b)

for some X̆B ∈ S |B|, and hence it is equivalent to ABN(X̃BN) + AN(X̃N) ∈ �b + Im(AB), in
view of (32) and the fact that T is an isomorphism. We have thus shown that the first equation
of (46) is equivalent to (51).

The fact that the second equation of (46) holds if and only if (52) holds can be proved in a
similar way as above. �

The following result gives an alternative characterization of (δ̃U
∗
, δ̃V

∗
, δ̃X

∗
, δ̃S

∗
) involving

the original data (W , A, C, �C, b, �b).

THEOREM 4.11
(
δ̃U

∗
, δ̃V

∗
, δ̃X

∗
, δ̃S

∗)
is the unique solution of the linear system of equations

(47), (48) and

[
AB ABN AN

]⎡⎢⎣δ̃XB

X̃∗
BN

X̃∗
N

⎤⎥⎦ = �b,
[
ABN AN

] [δ̃XBN

δ̃XN

]
∈ Im(AB), (54)

(
δ̃SB

δ̃SBN

)
∈ Im

([
A∗

B

A∗
BN

])
,

⎛⎜⎝ S̃∗
B

S̃∗
BN

δ̃SN

⎞⎟⎠ ∈ �C + Im

⎛⎜⎝
⎡⎢⎣ A∗

B

A∗
BN

A∗
N

⎤⎥⎦
⎞⎟⎠ . (55)

Proof From Theorem 4.9(iii), it suffices to show that (49) is equivalent to (54) and (55).
Observe that the first equation of (49) can be written as

A11(δ̃SB) + A12(X̃
∗
BN) + A13(X̃

∗
N) = �̃b1,

A22(δ̃XBN) + A23(δ̃XN) = 0, (56)

A33(δ̃XN) = 0.

Using Lemma 4.5, the fact that A11 is onto and the identities A22(X̃
∗
BN) + A23(X̃

∗
N) = �̃b2

and A33X̃
∗
N = �̃b3 that hold in view of (46), we easily see that the first and last two equations
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above are respectively equivalent to

(T ◦ A)

⎛⎜⎝ δ̃SB

X̃∗
BN

X̃∗
N

⎞⎟⎠ =
⎛⎜⎝�̃b1

�̃b2

�̃b3

⎞⎟⎠ = T (�b), (T ◦ A)

⎛⎜⎝ X̆B

δ̃XBN

δ̃bN

⎞⎟⎠ =
⎛⎜⎝0

0

0

⎞⎟⎠ ,

for some X̆B ∈ S |B|. The latter conditions in turn are equivalent to (54) in view of (32) and
the fact that T is an isomorphism.

Using similar arguments as to ones used above, it can be shown that the second equation of
(49) holds if and only if (55) holds. �

5. Error bound analysis

By strengthening some of the results of the previous sections, in this section we derive an
error bound on the distance of a point lying in a certain neighborhood of the central path to
the primal–dual optimal set by means of a standard technique (e.g., see Stoer et al. [42], and
Preiß and Stoer [43].

For any given nonempty compact set K ⊂ G++ and constants γ1, γ2, τ > 0 with γ2 ≥ γ1,
define

N (γ1, γ2, τ, K) ≡

⎧⎪⎨⎪⎩(X, S, y) ∈ Sn
++ × Sn

++ × �m :
G(X, S, y) ∈ τK,

γ1τI � XS + SX

2
� γ2τI

⎫⎪⎬⎪⎭ ,

where the map G and the set G++ are defined in (7) and (8), respectively.
Observe that the set ∪τ>0N (γ1, γ2, τ, K) forms a neighborhood of the primal–dual central

path. This neighborhood and related ones have once been used in the development of primal–
dual interior point algorithms for SDP. For example, see Kojima et al. [39].

The following result gives an error bound on the distance of a point lying in N (γ1, γ2, τ, K)

to the primal–dual optimal set F∗
P × F∗

D . Its proof will be given at the end of this section after
we have derived stronger versions of the results of the previous sections.

THEOREM 5.1 Let γ2 ≥ γ1 > 0 and any nonempty compact set K ⊂ G++ be given. Then, there
exists a constant M = M(γ1, γ2, K) > 0 such that

dist((X, S, y),F∗
P × F∗

D) ≤ Mτ, (57)

for every τ ∈ (0, 1] and (X, S, y) ∈ N (γ1, γ2, τ, K).

In view of Proposition 2.1, for each (ν, W, �C, �b) ∈ (0, 1] × Sn++ × G++, the system
of nonlinear equations (3)–(5) has a unique solution, which in this section we denote by
(X(ν, W, �C, �b), S(ν, W , �C, �b), y(ν, W, �C, �b)) in order to emphasize and study its
dependence on (W, �C, �b). Moreover, in view of Theorem 4.2, the limit

lim
ν↓0

(X(ν, W, �C, �b), S(ν, W, �C, �b), y(ν, W, �C, �b)),

denoted by (X(0, W, �C, �b), S(0, W, �C, �b), y(0, W, �C, �b)), exists for every
(W , �C, �b) ∈ Sn++ × G++. Hence, the functions X(·, ·, ·, ·), S(·, ·, ·, ·) and y(·, ·, ·, ·) are
well-defined over the set [0, 1] × Sn++ × G++. In an obvious way, we can also define the
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functions X̃(ν, W, �C, �b), S̃(ν, W, �C, �b) and ỹ(ν, W, �C, �b) over the set [0, 1] ×
Sn++ × G++.

It turns out that the above functions are analytic according to the following definition. We
say that a function f : � ⊆ E → F , where E, F are two finite dimensional normed vector
spaces, is analytic if there exists an open set O ⊆ E containing � and an analytic function
f̃ : O → F such that f̃ restricted to � is equal to f .

THEOREM 5.2 There hold:

(i) the map (ν, W, �C, �b) ∈ [0, 1] × Sn++ × G++ → (X̃(ν, W, �C, �b), S̃(ν, W, �C,

�b), ỹ(ν, W, �C, �b)) is analytic;
(ii) the map (ν, W, �C, �b) ∈ [0, 1] × Sn++ × G++ → (X(ν, W, �C, �b), S(ν, W, �C,

�b), y(ν, W, �C, �b)) is analytic.

Proof The proof of the theorem is identical to the proof of Theorem 4.9 and Theorem 4.2,
except that when invoking the implicit function theorem, we should view (ν, W, �C, �b) as
the parameter vector. �

THEOREM 5.3 Let γ2 ≥ γ1 > 0 be given. Then, for all (ν, W, �C, �b) ∈ [0, 1] ×
W(γ1, γ2) × K, there exists a constant M = M(γ1, γ2, K) > 0 such that

‖(X(ν, W, �C, �b), S(ν, W, �C, �b)) − (X(0, W, �C, �b), S(0, W, �C, �b))‖ ≤ Mν,

where W(γ1, γ2) ≡ {W ∈ Sn : γ1I � W � γ2I }.

Proof By the mean value theorem, we have

‖(X(ν, W, �C, �b), S(ν, W, �C, �b)) − (X(0, W, �C, �b), S(0, W, �C, �b))‖
≤ sup

θ∈[0,1]
‖(X′(θν, W, �C, �b), S ′(θν, W, �C, �b))‖ν.

By Theorem 5.2(ii) and the fact that W(γ1, γ2) × K is compact, there exists a constant
M = M(γ, K) > 0 such that

‖(X′(θν, W, �C, �b), S ′(θν, W, �C, �b))‖ ≤ M

for all (θ, ν, W, �C, �b) ∈ [0, 1] × [0, 1] × W(γ1, γ2) × K. Hence, the conclusion
follows. �

The proof of Theorem 5.1 now follows from Assumption A.1 and Theorem 5.3 with
ν = τ , W = (XS + SX)/2τ , (X, S) = (X(ν, W, �C, �b), S(ν, W, �C, �b)) and the fact
(X(0, W, �C, �b), S(0, W, �C, �b), y(0, W, �C, �b)) ∈ F∗

P × F∗
D .

6. Some observation for superlinear convergence

In this section, we will use the error bound derived in Theorem 5.3 to make some observation
for the superlinear convergence of some primal–dual interior point algorithms for SDP using
AHO neighborhood, for example, Kojima et al. [39].
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Potra and Sheng [44] have developed a primal–dual infeasible-interior-point algorithm
which, for some α ∈ (0, 1/2], generates a sequence of iterates {(Xk, Sk, yk)} ⊆ Sn++ × Sn++ ×
�m satisfying

‖Wk − I‖F ≤ α, rk
p = τk

τ0
r0
p, rk

d = τk

τ0
r0
d , (58)

for some sequence {τk} ⊂ �++ converging to 0 at least Q-linearly, where

rk
p ≡ AXk − b,

rk
d ≡ A∗yk + Sk − C,

Wk ≡ (Xk)1/2Sk(Xk)1/2

τk

,

for all k ≥ 0. The derived linear rate of convergence of the sequence {τk} is sufficient to
guarantee polynomial convergence of their method under some suitable conditions on the
initial point (X0, S0, y0). However, some sufficient conditions are needed to guarantee the
Q-superlinear convergence of {τk} to zero. One such condition is the tangential condition
proposed by Kojima et al. [45], namely

lim
k→∞ Wk = I. (59)

Another such condition is the one that has been proposed by Potra and Sheng [46], namely

lim
k→∞

XkSk

√
τk

= 0. (60)

We remark that Potra and Sheng [46] have shown that the tangential condition (59) implies
their condition (60). Recently, Lu and Monteiro [37] have shown that the condition (60) is
equivalent to a natural condition

lim
k→∞ Wk

BN = 0.

The following result shows that the condition (60) automatically holds when the iterates
{(Xk, Sk, yk)} are in an AHO neighborhood of the central path, namely,

γ1I � Wk � γ2I, rk
p = τk

τ0
r0
p, rk

d = τk

τ0
r0
d , (61)

where γ2 ≥ γ1 > 0 are given and Wk = (XkSk + SkXk)/(2τk) for k ≥ 0.

THEOREM 6.1 Assume that the iterates {(Xk, Sk, yk)} ⊆ Sn++ × Sn++ × �m satisfy (61) for
all k ≥ 0. Then, XkSk = O(τk) holds.

Proof We easily see that the set K = {(r0
p/τ0, r

0
p/τ0)} ⊂ G++ is nonempty compact. More-

over, we know that for some constants γ2 ≥ γ1 > 0, γ1I � Wk � γ2I for all k ≥ 0. Hence,
noting that XkSk + SkXk = 2τkW

k , it follows from Theorem 5.2(ii) and 5.3 that

Xk =
(

O(1) O(τk)

O(τk) O(τk)

)
, Sk =

(
O(τk) O(τk)

O(τk) O(1)

)
,

and hence

XkSk =
(

O(1) O(τk)

O(τk) O(τk)

)(
O(τk) O(τk)

O(τk) O(1)

)
=
(

O(τk) O(τk)

O(τ 2
k ) O(τk)

)
= O(τk).

�
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Theorem 6.1 implies that a primal–dual interior point algorithm for SDPs using AHO
neighborhood automatically satisfies the condition (60) with no need to perform multiple
centrality steps (e.g., see Luo et al. [30]) between two consecutive standard steps. This indi-
rectly explains why it is more likely to be naturally superlinearly convergent for this type
of algorithm. Actually, Kojima et al. [39], and Lu and Monteiro [47] have shown the local
quadratic convergence for a predictor-corrector infeasible-interior-point algorithm using AHO
neighborhood, which was proposed by Kojima et al. [39] for the monotone semidefinite linear
complementarity problem (which is equivalent to an SDP).
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