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Abstract. This note points out an error in the local quadratic convergence proof of the predictor-
corrector interior-point algorithm for solving the semidefinite linear complementarity problem based
on the Alizadeh–Haeberly–Overton search direction presented in [M. Kojima, M. Shida, and S. Shin-
doh, SIAM J. Optim., 9 (1999), pp. 444–465]. Their algorithm is slightly modified and the local
quadratic convergence of the resulting method is established.
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1. Introduction. Let S denote the set of all n × n symmetric real matrices.
Given matrices X and Y in �p×q, the standard inner product is defined by X • Y ≡
tr(XTY ), where tr(·) denotes the trace of a matrix. The Euclidean norm and its
associated operator norm, i.e., the spectral norm, are both denoted by ‖ · ‖. The
Frobenius norm of a p × q-matrix X is defined as ‖X‖F ≡ (X • X)1/2. If X ∈ S
is positive semidefinite (resp., definite), we write X � 0 (resp., X � 0). The cone
of positive semidefinite (resp., definite) matrices is denoted by S+ (resp., S++). The
identity matrix will be denoted by I.

Let F be a n(n + 1)/2-dimensional affine subspace of S × S, and

F+ = {(X,Y ) ∈ F : X � 0, Y � 0}.

We are concerned with the semidefinite linear complementarity problem (SDLCP):

find a (X,Y ) ∈ F+ such that X • Y = 0.(1.1)

We call a (X,Y ) ∈ F+ a feasible solution of the SDLCP (1.1). Throughout this note
we assume the monotonicity of the affine subspace F :

(U ′ − U) • (V ′ − V ) ≥ 0 for every (U ′, V ′), (U, V ) ∈ F .

Kojima, Shida, and Shindoh [3] have proposed a globally convergent Mizuno–Todd–
Ye-type predictor-corrector infeasible-interior-point algorithm (Algorithm 2.1 of [3]),
with the use of the Alizadeh–Haeberly–Overton (AHO) search direction, for the mono-
tone SDLCP (1.1), and demonstrated its local quadratic convergence under the strict
complementarity condition.
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This note has two purposes. One is to point out an error in the proof of the local
quadratic convergence of the algorithm presented in [3]. The other is to describe a
modified variant of this method and establish its local quadratic convergence.

This note is organized as follows. In section 2, we describe the algorithm presented
in [3] and point out an error made in [3] on the proof of its local quadratic convergence.
In section 3, we describe a slight modification of this algorithm and establish the local
quadratic convergence of the resulting method.

1.1. Notation. Given functions f : Ω → E and g : Ω → �++, where Ω is
an arbitrary set and E is a normed vector space, and a subset Ω̃ ⊂ Ω, we write
f(w) = O(g(w)) for all w ∈ Ω̃ to mean that there exists a constant M > 0 such that
‖f(w)‖ ≤ Mg(w) for all w ∈ Ω̃; moreover, for a function U : Ω → S++, we write
U(w) = Θ(g(w)) for all w ∈ Ω̃ if U(w) = O(g(w)) and U(w)−1 = O(1/g(w)) for all
w ∈ Ω̃. The latter condition is equivalent to the existence of a constant M > 0 such
that

1

M
I � 1

g(w)
U(w) � MI ∀w ∈ Ω.

2. A predictor-corrector interior-point algorithm. In this section, we de-
scribe the predictor-corrector infeasible-interior-point algorithm using AHO search
direction (Algorithm 2.1 in [3]) for monotone SDLCP (1.1), and point out an error in
the proof of its local quadratic convergence in Theorem 5.1 of [3].

Throughout this note we use the same notation as in [3],

ζ : a constant not less than 1/
√
n,

F0 = {(U ′, V ′) − (U, V ) : (U ′, V ′), (U, V ) ∈ F},

Ñ (γ, τ) =

{
(X,Y ) ∈ S+ × S+ :

(XY + Y X)/2 � (1 − γ)τI,
X • Y/n ≤ (1 + ζγ)τ

}
,

for each γ ∈ [0, 1] and each τ ≥ 0.
Before describing Algorithm 2.1 of [3], we recall Hypothesis 2.1 of [3].
Hypothesis 2.1 of [3]. Let ω∗ ≥ 1. There exists a solution (X∗, Y ∗) of SDLCP

(1.1) such that

ω∗X0 � X∗ and ω∗Y 0 � Y ∗.

For notational convenience, we introduce one operator as follows:

HI(M) =
M + MT

2
∀M ∈ �n×n.

We are ready to describe Algorithm 2.1 of [3] as follows.
Algorithm 2.1 of [3].
Step 0. Choose an accuracy parameter ε ≥ 0, a neighborhood parameter γ ∈

(0, 1), and an initial point (X0, Y 0) = (
√

μ0I,
√
μ0I) with some μ0 > 0. Let θ0 = 1,

σ = 2ω∗/(1 − γ) + 1, γ0 = 0, and k = 0.
Step 1. If the inequality

θk(X0 • Y k + Xk • Y 0) ≤ σXk • Y k

does not hold, then stop.
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Step 2 (predictor step). Compute a solution (dXk
p , dY

k
p ) of the system of equations

HI(X
kdY k

p + dXk
pY

k) = −HI(X
kY k),

(Xk + dXk
p , Y

k + dY k
p ) ∈ F .

Let

δkp =
‖dXk

p ‖F ‖dY k
p ‖F

θkμ0
,

α̂k
p =

2√
1 + 4δkp/(γ − γk) + 1

,

α̌k
p = max

⎧⎨
⎩α′ ∈ [0, 1] :

(Xk + αdXk
p , Y

k + αdY k
p )

∈ Ñ (γ, (1 − α)θkμ0)
for every α ∈ [0, α′]

⎫⎬
⎭ .

Choose a step length αk
p ∈ [α̂k

p , α̌
k
p ]. Let

(Xk
c , Y

k
c ) = (Xk, Y k) + αk

p(dX
k
p , dY

k
p ) and θk+1 = (1 − αk

p)θ
k.

Step 3. If θk+1 ≤ ε, then stop. If the inequality

θk+1(X0 • Y k
c + Xk

c • Y 0) ≤ σXk
c • Y k

c(2.1)

does not hold, then stop.
Step 4 (corrector step). Compute a solution (dXk

c , dY
k
c ) of the system of equations{

HI(X
k
c dY

k
c + dXk

c Y
k
c ) = θk+1μ0I −HI(X

k
c Y

k
c ),

(dXk
c , dY

k
c ) ∈ F0.

(2.2)

Let

δkc =
‖dXk

c ‖F ‖dY k
c ‖F

θk+1μ0
,(2.3)

α̂k
c =

{
γ/(2δkc ) if γ ≤ 2δkc ,
1 if γ > 2δkc ,

γ̌k+1 =

{
γ(1 − γ/(4δkc )) if γ ≤ 2δkc ,
δkc if γ > 2δkc ,

γ̂k+1 = min

⎧⎨
⎩γ′ ∈ [0, 1] :

(Xk
c + αdXk

c , Y
k
c + αdY k

c )

∈ Ñ (γ′, θk+1μ0)
for some α ∈ [0, 1]

⎫⎬
⎭ .

Choose a step length αk
c ∈ [0, 1] and γk+1 such that

γ̂k+1 ≤ γk+1 ≤ γ̌k+1,

(Xk
c + αk

cdX
k
c , Y

k
c + αk

cdY
k
c ) ∈ Ñ (γk+1, θk+1μ0).

(It has been shown in Lemma 3.8 of [3] that the pair of αk
c = α̂k

c and γk+1 = γ̌k+1

satisfies the relation above.) Let (Xk+1, Y k+1) = (Xk
c , Y

k
c ) + αk

c (dX
k
c , dY

k
c ).

Step 5. Replace k by k + 1. Go to Step 1.
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Before ending this section, we remark that the proof of Theorem 5.1 (local con-
vergence theorem) of [3] is not correct since it is based on the claim that δkc = O(1),
which in turn was incorrectly established in the proof of this result. Indeed, in
the first two lines of the proof of Theorem 5.1 of [3], the authors claimed that
δkc = O(1) holds by (iii) of Lemma 3.1, the definition of δkc , and the fact that
2θkI − (XkY k + Y kXk) = O(θk). However, from those arguments we can only
conclude δkc = O( 1

θk+1 ). Let us investigate this proof in more detail. From Step 2 of
Algorithm 2.1 of [3], we see that

(Xk
c , Y

k
c ) ∈ Ñ (γ, θk+1μ0),(2.4)

which, together with (2.1) and Lemma 3.4 of [3], implies that (Xk
c , Y

k
c ) = O(1). Also,

by (2.4) and Lemma 3.1 (i) of [3], we have HI(X
k
c Y

k
c ) = O(θk+1), which implies that

θk+1μ0I −HI(X
k
c Y

k
c ) = O(θk+1).(2.5)

Now, using (2.4), (2.2), (2.5); Lemma 3.1 (iii) of [3]; and the fact (Xk
c , Y

k
c ) = O(1),

we have

‖dXk
c ‖F ≤ 2‖Xk

c ‖F ‖θk+1μ0I −HI(X
k
c Y

k
c )‖F

(1 − γ)θk+1μ0
= O(1).(2.6)

Similarly, we have ‖dY k
c ‖F = O(1), which together with (2.6) and (2.3) implies that

δkc = O( 1
θk+1 ). Due to this and [2], we believe that the claim δkc = O(1) does not hold

for general SDLCPs, even though it holds under a suitable nondegeneracy assumption
on the SDLCP, namely Condition 6.1 of [3] (see the proof in section 6 of [3]). Hence,
Algorithm 2.1 of [3] can only be claimed to be locally quadratically convergent for
nondegenerate SDLCPs. In the next section, we will describe a slight modification of
Algorithm 2.1 of [3] which is locally quadratically convergent.

3. Slightly modified algorithm. In this section, we describe a slight modifi-
cation of Algorithm 2.1 of [3] and establish its local quadratic convergence.

The modified algorithm is the same as before except that the definition of δkc in
(2.3) is replaced by

δkc =
‖dXk

c dY
k
c ‖F

θk+1μ0
.(3.1)

Accordingly, we refer to the modified algorithm as Algorithm 2.1′. Our main effort
from now on will be to establish that the quantity δkc , as defined in (3.1), has the
property that δkc = O(1).

First, we will argue that Algorithm 2.1′ is globally convergent. It can be shown
that Lemmas 3.1–3.7 of [3] also hold for Algorithm 2.1′. The next result shows that
Lemma 3.8 also holds for Algorithm 2.1′ if ζ ≥ 1/

√
n.

Lemma 3.1. For Algorithm 2.1′, if ζ ≥ 1/
√
n, Lemma 3.8 in [3] holds, where ζ

is a constant defined at the beginning of section 2 of [3].
Proof. Using the fact that HI(dX

k
c dY

k
c ) ≥ −‖dXk

c dY
k
c ‖F I and dXk

c • dY k
c ≤√

n‖dXk
c dY

k
c ‖F , and the condition ζ ≥ 1/

√
n, we can show that the conclusion holds

in a similar way as the proof given in Lemma 3.8 of [3].
Using Lemmas 3.1–3.7 of [3] and Lemma 3.1 and following the same proof as the

one given in Theorem 2.1 of [3], we see that Theorem 2.1 (global convergence theorem)
in [3] also holds for Algorithm 2.1′; namely, Algorithm 2.1′ is globally convergent.
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We will now show that Algorithm 2.1′ is locally quadratically convergent under
the following standard condition commonly used in the local convergence analysis of
interior-point algorithms for SDLCP.

Condition 5.1 of [3] (strict complementarity). There is a solution (X∗, Y ∗) of
SDLCP (1.1) such that X∗ + Y ∗ � 0.

We next state and prove some technical results. The first one is due to Monteiro
and Tsuchiya [4].

Lemma 3.2 (Lemma 2.1 of [4]). For every A ∈ S++ and H ∈ S, the equa-
tion AU + UA = H has a unique solution U ∈ S. Moreover, this solution satisfies
‖AU‖F ≤ ‖H‖F /

√
2.

Under Condition 5.1 of [3], we have a solution (X∗, Y ∗) of the SDLCP (1.1)
satisfying X∗ + Y ∗ � 0. Since X∗ and Y ∗ commute, there exists an orthogonal
matrix Q such that

QTX∗Q =

(
ΛB 0
0 0

)
, QTY ∗Q =

(
0 0
0 ΛN

)
,

where ΛB and ΛN are positive diagonal matrices with dimension m and n − m for
some m ∈ {0, 1, 2, . . . , n}, respectively. For each (X,Y ) ∈ S × S, define the following
optimal partition:

QTXQ ≡ X̂ =

(
X̂B X̂J

X̂T
J X̂N

)
, QTY Q ≡ Ŷ =

(
ŶB ŶJ

Ŷ T
J ŶN

)
.

Lemma 3.3. Assume that (X,Y ) ∈ Ñ (γ, τ). Let (dX(τ), dY (τ)) be a solution
of the system of equations

HI(dX Y + X dY ) = τI −HI(XY ), (dX, dY ) ∈ F0,(3.2)

d̂X ≡ QT dXQ and d̂Y ≡ QT dY Q. Under Condition 5.1 of [3] and ζ ≥ 1/
√
n, there

then holds

d̂XB(τ) = O(1), d̂XN (τ) = O(τ),(3.3)

d̂Y B(τ) = O(τ), d̂Y N (τ) = O(1).(3.4)

Proof. For notational convenience, we will use d̂X and d̂Y to denote d̂X(τ) and

d̂Y (τ), respectively. Using Lemmas 5.3 and 5.5 of [3], we have

X̂ = QTXQ =

(
Θ(1) O(τ)
O(τ) O(τ)

)
,(3.5)

Ŷ = QTY Q =

(
O(τ) O(τ)
O(τ) Θ(1)

)
.(3.6)

This immediately implies that X = O(1) and Y = O(1). In view of Lemma 3.1 (i)
of [3] and the definition of HI(·), we immediately see that

τI −HI(XY ) = O(τ).(3.7)

Letting C = 2(τI −HI(XY )) and using Lemma 3.1 (iii) of [3], we obtain that

‖d̂X‖F = ‖dX‖F ≤ ‖X‖F ‖C‖F
(1 − γ)τ

= O(1).
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Hence, d̂X = O(1). Similarly, we can show that d̂Y = O(1). Note that the system
(3.2) can be written as

HI(d̂X Ŷ + X̂ d̂Y ) = τI −HI(X̂Ŷ ), (d̂X, d̂Y ) ∈ F̂0,(3.8)

where F̂0 ≡ {M = QTPQ : P ∈ F0}. From (3.7), we easily see that

τI −HI(X̂Ŷ ) = O(τ).(3.9)

Using this fact and (3.8), we obtain that

HI(d̂XBŶB + d̂XJ Ŷ
T
J + X̂B d̂Y B + X̂J d̂Y

T

J ) = O(τ).(3.10)

Using (3.5), (3.6), (3.10), and the fact that d̂X = O(1) and d̂Y = O(1), we have

HI(X̂B d̂Y B) = O(τ),

which together with (3.5) and Lemma 3.2 implies d̂Y B = O(τ). We can show that

d̂XN = O(τ) in a similar way.

Lemma 3.4. Assume that (X,Y ) ∈ Ñ (γ, τ). Let (d̂X(τ), d̂Y (τ)) be defined in
Lemma 3.3. Under Condition 5.1 of [3] and ζ ≥ 1/

√
n, there then holds

‖d̂Y J(τ)‖ = Θ(‖d̂XJ(τ)‖) + O(τ),

−d̂XJ(τ) • d̂Y J(τ) = Θ(‖d̂XJ(τ)‖2) + O(τ‖d̂XJ(τ)‖).

Proof. For notational convenience, we will use d̂X and d̂Y to denote d̂X(τ) and

d̂Y (τ), respectively. Using (3.9) and (3.8), we obtain that

d̂XBŶJ + d̂XJ ŶN + X̂B d̂Y J + X̂J d̂Y N

+d̂Y BX̂J + d̂Y JX̂N + ŶB d̂XJ + ŶJ d̂XN = O(τ).

This identity together with (3.5), (3.6), (3.3), and (3.4) implies that

d̂XJ ŶN + X̂B d̂Y J = O(τ).(3.11)

Using this identity, we obtain that

d̂Y J = −X̂−1
B (d̂XJ ŶN −O(τ)).(3.12)

Using this identity ((3.5) and (3.6)), we see that the first conclusion follows. Using
(3.12), (3.5), and (3.6), we obtain that

d̂XJ • d̂Y J = −tr(d̂X
T

J X̂
−1
B d̂XJ ŶN ) + O(τ‖d̂XJ‖)

= −‖(X̂B)−1/2d̂XJ(ŶN )1/2‖2
F + O(τ‖d̂XJ‖),

which together with (3.5) and (3.6) implies the second conclusion.

Lemma 3.5. Assume that (X,Y ) ∈ Ñ (γ, τ). Let (d̂X(τ), d̂Y (τ)) be defined in
Lemma 3.3. Under Condition 5.1 of [3] and ζ ≥ 1/

√
n, there then holds

d̂XJ(τ) = O(τ), d̂Y J(τ) = O(τ).
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Proof. Suppose that ‖d̂XJ(τ)‖ = O(τ) does not hold. Then there exists a

sequence τk ↓ 0 as k → ∞ such that τk = o(‖d̂XJ(τk)‖). For convenience, we omit
the index k from τk throughout the remaining proof. Then the above identity can be

written as τ = o(‖d̂XJ(τ)‖), which together with Lemma 3.4 implies that

‖d̂Y J(τ)‖ = Θ(‖d̂XJ(τ)‖),(3.13)

−d̂XJ(τ) • d̂Y J(τ) = Θ(‖d̂XJ(τ)‖2).(3.14)

For any τ > 0, consider the linear system

(d̂X, d̂Y ) − (d̂X(τ), d̂Y (τ)) ∈ F̂0,

d̂XJ − d̂XJ(τ) = −d̂XJ(τ),(3.15)

d̂XN − d̂XN (τ) = −d̂XN (τ),(3.16)

d̂Y J − d̂Y J(τ) = −d̂Y J(τ),(3.17)

d̂Y B − d̂Y B(τ) = −d̂Y B(τ).(3.18)

We see that any (d̂X, d̂Y ) = (0, 0) is a feasible solution to this system. Hence, by
Hoffman lemma [1] (see also Lemma A.3, p. 248 of [5]), there exists a sufficiently large
constant Ĉ (independent on τ) such that for any τ > 0, this system has a solution
(dX, dY ) ∈ S × S (dependent on τ) such that

‖(dX, dY ) − (d̂X(τ), d̂Y (τ))‖ ≤ Ĉ(‖d̂XN (τ)‖ + ‖d̂Y B(τ)‖ + ‖d̂XJ(τ)‖ + ‖d̂Y J(τ)‖).
(3.19)

Obviously, the monotonicity holds for F̂0 due to the monotonicity of F0. Hence, we
have

(dX − d̂X(τ)) • (dY − d̂Y (τ)) ≥ 0.

Hence, it follows that

−(dXB − d̂XB(τ)) • d̂Y B(τ) + 2d̂XJ(τ) • d̂Y J(τ) − d̂XN (τ) • (dY N − d̂Y N (τ)) ≥ 0.

(3.20)

Note that ‖dXB− d̂XB(τ)‖ ≤ ‖dX− d̂X(τ)‖ and ‖dY N − d̂Y N (τ)‖ ≤ ‖dY − d̂Y (τ)‖.
Using this fact, (3.20), (3.15)–(3.18), (3.19), (3.13), (3.14), (3.3), and (3.4), we obtain
that, for all τ > 0 sufficiently small,

|d̂XJ(τ) • d̂Y J(τ)| ≤ 1

2

∣∣∣(dXB − d̂XB(τ)) • d̂Y B(τ) + d̂XN (τ) • (dY N − d̂Y N (τ))
∣∣∣

≤ Čτ(‖dX − d̂X(τ)‖ + ‖dY − d̂Y (τ)‖)

≤ 2ČĈτ(‖d̂XN (τ)‖ + ‖d̂Y B(τ)‖ + ‖d̂XJ(τ)‖ + ‖d̂Y J(τ)‖)

≤ C̃τ

(
τ +

√
|d̂XJ(τ) • d̂Y J(τ)|

)
,

where Č and C̃ are some constants and the last inequality follows from (3.13) and

(3.14). Let ξ =

√
|d̂XJ(τ) • d̂Y J(τ)|. From the last inequality above, we have
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ξ2 ≤ C̃τ(τ + ξ), which together with the fact ξ > 0 implies ξ ≤ (C̃ +
√

5C̃)τ/2.

Hence, ξ = O(τ). Using this result and (3.14), we obtain ‖d̂XJ(τ)‖ = O(τ), which

contradicts with the assumption τ = o(‖d̂XJ(τ)‖). Therefore, ‖d̂XJ(τ)‖ = O(τ)

holds. The proof of ‖d̂Y J(τ)‖ = O(τ) immediately follows from Lemma 3.4.
We are now in a position to state the main result of this section, which establishes

the local quadratic convergence of Algorithm 2.1′.
Theorem 3.6. Assume that Hypothesis 2.1 and Condition 5.1 of [3] hold. If

ζ ≥ 1/
√
n, Theorem 5.1 (local convergence theorem) of [3] holds for Algorithm 2.1′.

Proof. Since (dXk
c , dY

k
c ) satisfies (2.2), it implies that (dXk

c , dY
k
c ) also satisfies

the system (3.2) with τ = θk+1μ0. We also know that (Xk
c , Y

k
c ) ∈ Ñ (γ, τ). Hence, in

view of Lemmas 3.3 and 3.5, we have

d̂X
k

c =

(
O(1) O(θk+1)

O(θk+1) O(θk+1)

)
,

d̂Y
k

c =

(
O(θk+1) O(θk+1)
O(θk+1) O(1)

)
.

It implies that

δkc =
‖dXk

c dY
k
c ‖F

θk+1μ0
=

‖d̂X
k

c d̂Y
k

c‖F
θk+1μ0

= O(1).

The remaining part of the proof is based on similar arguments as the ones used in the
proof of Theorem 5.1 of [3].
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