A NOTE ON THE LOCAL CONVERGENCE OF A PREDICTOR-CORRECTOR INTERIOR-POINT ALGORITHM FOR THE SEMIDEFINITE LINEAR COMPLEMENTARITY PROBLEM BASED ON THE ALIZADEH-HAEBERLY-OVERTON SEARCH DIRECTION*

ZHAOSONG LU ${ }^{\dagger}$ AND RENATO D. C. MONTEIRO ${ }^{\dagger}$

Abstract

This note points out an error in the local quadratic convergence proof of the predictorcorrector interior-point algorithm for solving the semidefinite linear complementarity problem based on the Alizadeh-Haeberly-Overton search direction presented in [M. Kojima, M. Shida, and S. Shindoh, SIAM J. Optim., 9 (1999), pp. 444-465]. Their algorithm is slightly modified and the local quadratic convergence of the resulting method is established.

Key words. semidefinite linear complementarity problem, semidefinite programming, interiorpoint algorithm, predictor-corrector algorithm, local quadratic convergence

AMS subject classifications. 90C22, 90C25, 90C30, 65 K 05

DOI. 10.1137/04060531X

1. Introduction. Let \mathcal{S} denote the set of all $n \times n$ symmetric real matrices. Given matrices X and Y in $\Re^{p \times q}$, the standard inner product is defined by $X \bullet Y \equiv$ $\operatorname{tr}\left(X^{T} Y\right)$, where $\operatorname{tr}(\cdot)$ denotes the trace of a matrix. The Euclidean norm and its associated operator norm, i.e., the spectral norm, are both denoted by $\|\cdot\|$. The Frobenius norm of a $p \times q$-matrix X is defined as $\|X\|_{F} \equiv(X \bullet X)^{1 / 2}$. If $X \in \mathcal{S}$ is positive semidefinite (resp., definite), we write $X \succeq 0$ (resp., $X \succ 0$). The cone of positive semidefinite (resp., definite) matrices is denoted by \mathcal{S}_{+}(resp., \mathcal{S}_{++}). The identity matrix will be denoted by I.

Let \mathcal{F} be a $n(n+1) / 2$-dimensional affine subspace of $\mathcal{S} \times \mathcal{S}$, and

$$
\mathcal{F}_{+}=\{(X, Y) \in \mathcal{F}: X \succeq 0, Y \succeq 0\}
$$

We are concerned with the semidefinite linear complementarity problem (SDLCP):

$$
\begin{equation*}
\text { find a }(X, Y) \in \mathcal{F}_{+} \text {such that } X \bullet Y=0 \tag{1.1}
\end{equation*}
$$

We call a $(X, Y) \in \mathcal{F}_{+}$a feasible solution of the SDLCP (1.1). Throughout this note we assume the monotonicity of the affine subspace \mathcal{F} :

$$
\left(U^{\prime}-U\right) \bullet\left(V^{\prime}-V\right) \geq 0 \text { for every }\left(U^{\prime}, V^{\prime}\right),(U, V) \in \mathcal{F}
$$

Kojima, Shida, and Shindoh [3] have proposed a globally convergent Mizuno-Todd-Ye-type predictor-corrector infeasible-interior-point algorithm (Algorithm 2.1 of [3]), with the use of the Alizadeh-Haeberly-Overton (AHO) search direction, for the monotone SDLCP (1.1), and demonstrated its local quadratic convergence under the strict complementarity condition.

[^0]This note has two purposes. One is to point out an error in the proof of the local quadratic convergence of the algorithm presented in [3]. The other is to describe a modified variant of this method and establish its local quadratic convergence.

This note is organized as follows. In section 2, we describe the algorithm presented in [3] and point out an error made in [3] on the proof of its local quadratic convergence. In section 3, we describe a slight modification of this algorithm and establish the local quadratic convergence of the resulting method.
1.1. Notation. Given functions $f: \Omega \rightarrow E$ and $g: \Omega \rightarrow \Re_{++}$, where Ω is an arbitrary set and E is a normed vector space, and a subset $\tilde{\Omega} \subset \Omega$, we write $f(w)=\mathcal{O}(g(w))$ for all $w \in \tilde{\Omega}$ to mean that there exists a constant $M>0$ such that $\|f(w)\| \leq M g(w)$ for all $w \in \tilde{\Omega}$; moreover, for a function $U: \Omega \rightarrow \mathcal{S}_{++}$, we write $U(w)_{\tilde{\Omega}}=\Theta(g(w))$ for all $w \in \tilde{\Omega}$ if $U(w)=\mathcal{O}(g(w))$ and $U(w)^{-1}=\mathcal{O}(1 / g(w))$ for all $w \in \tilde{\Omega}$. The latter condition is equivalent to the existence of a constant $M>0$ such that

$$
\frac{1}{M} I \preceq \frac{1}{g(w)} U(w) \preceq M I \quad \forall w \in \Omega
$$

2. A predictor-corrector interior-point algorithm. In this section, we describe the predictor-corrector infeasible-interior-point algorithm using AHO search direction (Algorithm 2.1 in [3]) for monotone SDLCP (1.1), and point out an error in the proof of its local quadratic convergence in Theorem 5.1 of [3].

Throughout this note we use the same notation as in [3],

$$
\begin{aligned}
& \zeta: \text { a constant not less than } 1 / \sqrt{n} \\
& \mathcal{F}_{0}=\left\{\left(U^{\prime}, V^{\prime}\right)-(U, V):\left(U^{\prime}, V^{\prime}\right),(U, V) \in \mathcal{F}\right\} \\
& \tilde{\mathcal{N}}(\gamma, \tau)=\left\{(X, Y) \in \mathcal{S}_{+} \times \mathcal{S}_{+}: \begin{array}{l}
(X Y+Y X) / 2 \succeq(1-\gamma) \tau I \\
\\
X \bullet Y / n \leq(1+\zeta \gamma) \tau
\end{array}\right\},
\end{aligned}
$$

for each $\gamma \in[0,1]$ and each $\tau \geq 0$.
Before describing Algorithm 2.1 of [3], we recall Hypothesis 2.1 of [3].
Hypothesis 2.1 of [3]. Let $\omega^{*} \geq 1$. There exists a solution $\left(X^{*}, Y^{*}\right)$ of SDLCP (1.1) such that

$$
\omega^{*} X^{0} \succeq X^{*} \text { and } \omega^{*} Y^{0} \succeq Y^{*}
$$

For notational convenience, we introduce one operator as follows:

$$
H_{I}(M)=\frac{M+M^{T}}{2} \quad \forall M \in \Re^{n \times n} .
$$

We are ready to describe Algorithm 2.1 of [3] as follows.
Algorithm 2.1 of [3].
Step 0. Choose an accuracy parameter $\epsilon \geq 0$, a neighborhood parameter $\gamma \in$ $(0,1)$, and an initial point $\left(X^{0}, Y^{0}\right)=\left(\sqrt{\mu^{0}} I, \sqrt{\mu^{0}} I\right)$ with some $\mu^{0}>0$. Let $\theta^{0}=1$, $\sigma=2 \omega^{*} /(1-\gamma)+1, \gamma^{0}=0$, and $k=0$.

Step 1. If the inequality

$$
\theta^{k}\left(X^{0} \bullet Y^{k}+X^{k} \bullet Y^{0}\right) \leq \sigma X^{k} \bullet Y^{k}
$$

does not hold, then stop.

Step 2 (predictor step). Compute a solution $\left(d X_{p}^{k}, d Y_{p}^{k}\right)$ of the system of equations

$$
\begin{aligned}
& H_{I}\left(X^{k} d Y_{p}^{k}+d X_{p}^{k} Y^{k}\right)=-H_{I}\left(X^{k} Y^{k}\right) \\
& \left(X^{k}+d X_{p}^{k}, Y^{k}+d Y_{p}^{k}\right) \in \mathcal{F}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \delta_{p}^{k}=\frac{\left\|d X_{p}^{k}\right\|_{F}\left\|d Y_{p}^{k}\right\|_{F}}{\theta^{k} \mu^{0}}, \\
& \hat{\alpha}_{p}^{k}=\frac{2}{\sqrt{1+4 \delta_{p}^{k} /\left(\gamma-\gamma^{k}\right)}+1}, \\
& \check{\alpha}_{p}^{k}=\max \left\{\begin{array}{ll}
\alpha^{\prime} \in[0,1]: & \left(X^{k}+\alpha d X_{p}^{k}, Y^{k}+\alpha d Y_{p}^{k}\right) \\
& \in \tilde{\mathcal{N}}\left(\gamma,(1-\alpha) \theta^{k} \mu^{0}\right) \\
\text { for every } \alpha \in\left[0, \alpha^{\prime}\right]
\end{array}\right\} .
\end{aligned}
$$

Choose a step length $\alpha_{p}^{k} \in\left[\hat{\alpha}_{p}^{k}, \check{\alpha}_{p}^{k}\right]$. Let

$$
\left(X_{c}^{k}, Y_{c}^{k}\right)=\left(X^{k}, Y^{k}\right)+\alpha_{p}^{k}\left(d X_{p}^{k}, d Y_{p}^{k}\right) \text { and } \theta^{k+1}=\left(1-\alpha_{p}^{k}\right) \theta^{k}
$$

Step 3. If $\theta^{k+1} \leq \epsilon$, then stop. If the inequality

$$
\begin{equation*}
\theta^{k+1}\left(X^{0} \bullet Y_{c}^{k}+X_{c}^{k} \bullet Y^{0}\right) \leq \sigma X_{c}^{k} \bullet Y_{c}^{k} \tag{2.1}
\end{equation*}
$$

does not hold, then stop.
Step 4 (corrector step). Compute a solution $\left(d X_{c}^{k}, d Y_{c}^{k}\right)$ of the system of equations

$$
\left\{\begin{array}{l}
H_{I}\left(X_{c}^{k} d Y_{c}^{k}+d X_{c}^{k} Y_{c}^{k}\right)=\theta^{k+1} \mu^{0} I-H_{I}\left(X_{c}^{k} Y_{c}^{k}\right), \tag{2.2}\\
\left(d X_{c}^{k}, d Y_{c}^{k}\right) \in \mathcal{F}_{0}
\end{array}\right.
$$

Let

$$
\begin{align*}
\delta_{c}^{k} & =\frac{\left\|d X_{c}^{k}\right\|_{F}\left\|d Y_{c}^{k}\right\|_{F}}{\theta^{k+1} \mu^{0}}, \tag{2.3}\\
\hat{\alpha}_{c}^{k} & = \begin{cases}\gamma /\left(2 \delta_{c}^{k}\right) & \text { if } \gamma \leq 2 \delta_{c}^{k}, \\
1 & \text { if } \gamma>2 \delta_{c}^{k},\end{cases} \\
\check{\gamma}^{k+1} & = \begin{cases}\gamma\left(1-\gamma /\left(4 \delta_{c}^{k}\right)\right) & \text { if } \gamma \leq 2 \delta_{c}^{k}, \\
\delta_{c}^{k} & \text { if } \gamma>2 \delta_{c}^{k},\end{cases} \\
\hat{\gamma}^{k+1} & =\min \left\{\begin{array}{ll}
\left(X_{c}^{k}+\alpha d X_{c}^{k}, Y_{c}^{k}+\alpha d Y_{c}^{k}\right) \\
\gamma^{\prime} \in[0,1]: & \in \tilde{\mathcal{N}}\left(\gamma^{\prime}, \theta^{k+1} \mu^{0}\right) \\
\text { for some } \alpha \in[0,1]
\end{array}\right\} .
\end{align*}
$$

Choose a step length $\alpha_{c}^{k} \in[0,1]$ and γ^{k+1} such that

$$
\begin{aligned}
& \hat{\gamma}^{k+1} \leq \gamma^{k+1} \leq \check{\gamma}^{k+1} \\
& \left(X_{c}^{k}+\alpha_{c}^{k} d X_{c}^{k}, Y_{c}^{k}+\alpha_{c}^{k} d Y_{c}^{k}\right) \in \tilde{\mathcal{N}}\left(\gamma^{k+1}, \theta^{k+1} \mu^{0}\right)
\end{aligned}
$$

(It has been shown in Lemma 3.8 of [3] that the pair of $\alpha_{c}^{k}=\hat{\alpha}_{c}^{k}$ and $\gamma^{k+1}=\check{\gamma}^{k+1}$ satisfies the relation above.) Let $\left(X^{k+1}, Y^{k+1}\right)=\left(X_{c}^{k}, Y_{c}^{k}\right)+\alpha_{c}^{k}\left(d X_{c}^{k}, d Y_{c}^{k}\right)$.

Step 5 . Replace k by $k+1$. Go to Step 1 .

Before ending this section, we remark that the proof of Theorem 5.1 (local convergence theorem) of [3] is not correct since it is based on the claim that $\delta_{c}^{k}=\mathcal{O}(1)$, which in turn was incorrectly established in the proof of this result. Indeed, in the first two lines of the proof of Theorem 5.1 of [3], the authors claimed that $\delta_{c}^{k}=\mathcal{O}(1)$ holds by (iii) of Lemma 3.1, the definition of δ_{c}^{k}, and the fact that $2 \theta^{k} I-\left(X^{k} Y^{k}+Y^{k} X^{k}\right)=\mathcal{O}\left(\theta^{k}\right)$. However, from those arguments we can only conclude $\delta_{c}^{k}=\mathcal{O}\left(\frac{1}{\theta^{k+1}}\right)$. Let us investigate this proof in more detail. From Step 2 of Algorithm 2.1 of [3], we see that

$$
\begin{equation*}
\left(X_{c}^{k}, Y_{c}^{k}\right) \in \tilde{\mathcal{N}}\left(\gamma, \theta^{k+1} \mu^{0}\right), \tag{2.4}
\end{equation*}
$$

which, together with (2.1) and Lemma 3.4 of [3], implies that $\left(X_{c}^{k}, Y_{c}^{k}\right)=\mathcal{O}(1)$. Also, by (2.4) and Lemma 3.1 (i) of [3], we have $H_{I}\left(X_{c}^{k} Y_{c}^{k}\right)=\mathcal{O}\left(\theta^{k+1}\right)$, which implies that

$$
\begin{equation*}
\theta^{k+1} \mu^{0} I-H_{I}\left(X_{c}^{k} Y_{c}^{k}\right)=\mathcal{O}\left(\theta^{k+1}\right) \tag{2.5}
\end{equation*}
$$

Now, using (2.4), (2.2), (2.5); Lemma 3.1 (iii) of $[3]$; and the fact $\left(X_{c}^{k}, Y_{c}^{k}\right)=\mathcal{O}(1)$, we have

$$
\begin{equation*}
\left\|d X_{c}^{k}\right\|_{F} \leq \frac{2\left\|X_{c}^{k}\right\|_{F}\left\|\theta^{k+1} \mu^{0} I-H_{I}\left(X_{c}^{k} Y_{c}^{k}\right)\right\|_{F}}{(1-\gamma) \theta^{k+1} \mu^{0}}=\mathcal{O}(1) \tag{2.6}
\end{equation*}
$$

Similarly, we have $\left\|d Y_{c}^{k}\right\|_{F}=\mathcal{O}(1)$, which together with (2.6) and (2.3) implies that $\delta_{c}^{k}=\mathcal{O}\left(\frac{1}{\theta^{k+1}}\right)$. Due to this and [2], we believe that the claim $\delta_{c}^{k}=\mathcal{O}(1)$ does not hold for general SDLCPs, even though it holds under a suitable nondegeneracy assumption on the SDLCP, namely Condition 6.1 of [3] (see the proof in section 6 of [3]). Hence, Algorithm 2.1 of [3] can only be claimed to be locally quadratically convergent for nondegenerate SDLCPs. In the next section, we will describe a slight modification of Algorithm 2.1 of [3] which is locally quadratically convergent.
3. Slightly modified algorithm. In this section, we describe a slight modification of Algorithm 2.1 of [3] and establish its local quadratic convergence.

The modified algorithm is the same as before except that the definition of δ_{c}^{k} in (2.3) is replaced by

$$
\begin{equation*}
\delta_{c}^{k}=\frac{\left\|d X_{c}^{k} d Y_{c}^{k}\right\|_{F}}{\theta^{k+1} \mu^{0}} \tag{3.1}
\end{equation*}
$$

Accordingly, we refer to the modified algorithm as Algorithm 2.1'. Our main effort from now on will be to establish that the quantity δ_{c}^{k}, as defined in (3.1), has the property that $\delta_{c}^{k}=\mathcal{O}(1)$.

First, we will argue that Algorithm 2.1' is globally convergent. It can be shown that Lemmas 3.1-3.7 of [3] also hold for Algorithm 2.1'. The next result shows that Lemma 3.8 also holds for Algorithm 2.1' if $\zeta \geq 1 / \sqrt{n}$.

Lemma 3.1. For Algorithm 2.1', if $\zeta \geq 1 / \sqrt{n}$, Lemma 3.8 in [3] holds, where ζ is a constant defined at the beginning of section 2 of [3].

Proof. Using the fact that $H_{I}\left(d X_{c}^{k} d Y_{c}^{k}\right) \geq-\left\|d X_{c}^{k} d Y_{c}^{k}\right\|_{F} I$ and $d X_{c}^{k} \bullet d Y_{c}^{k} \leq$ $\sqrt{n}\left\|d X_{c}^{k} d Y_{c}^{k}\right\|_{F}$, and the condition $\zeta \geq 1 / \sqrt{n}$, we can show that the conclusion holds in a similar way as the proof given in Lemma 3.8 of [3].

Using Lemmas 3.1-3.7 of [3] and Lemma 3.1 and following the same proof as the one given in Theorem 2.1 of [3], we see that Theorem 2.1 (global convergence theorem) in [3] also holds for Algorithm 2.1'; namely, Algorithm 2.1^{\prime} is globally convergent.

We will now show that Algorithm 2.1^{\prime} is locally quadratically convergent under the following standard condition commonly used in the local convergence analysis of interior-point algorithms for SDLCP.

Condition 5.1 of [3] (strict complementarity). There is a solution $\left(X^{*}, Y^{*}\right)$ of SDLCP (1.1) such that $X^{*}+Y^{*} \succ 0$.

We next state and prove some technical results. The first one is due to Monteiro and Tsuchiya [4].

Lemma 3.2 (Lemma 2.1 of [4]). For every $A \in \mathcal{S}_{++}$and $H \in \mathcal{S}$, the equation $A U+U A=H$ has a unique solution $U \in \mathcal{S}$. Moreover, this solution satisfies $\|A U\|_{F} \leq\|H\|_{F} / \sqrt{2}$.

Under Condition 5.1 of [3], we have a solution $\left(X^{*}, Y^{*}\right)$ of the SDLCP (1.1) satisfying $X^{*}+Y^{*} \succ 0$. Since X^{*} and Y^{*} commute, there exists an orthogonal matrix Q such that

$$
Q^{T} X^{*} Q=\left(\begin{array}{cc}
\Lambda_{B} & 0 \\
0 & 0
\end{array}\right), \quad Q^{T} Y^{*} Q=\left(\begin{array}{cc}
0 & 0 \\
0 & \Lambda_{N}
\end{array}\right)
$$

where Λ_{B} and Λ_{N} are positive diagonal matrices with dimension m and $n-m$ for some $m \in\{0,1,2, \ldots, n\}$, respectively. For each $(X, Y) \in \mathcal{S} \times \mathcal{S}$, define the following optimal partition:

$$
Q^{T} X Q \equiv \hat{X}=\left(\begin{array}{cc}
\hat{X}_{B} & \hat{X}_{J} \\
\hat{X}_{J}^{T} & \hat{X}_{N}
\end{array}\right), \quad Q^{T} Y Q \equiv \hat{Y}=\left(\begin{array}{cc}
\hat{Y}_{B} & \hat{Y}_{J} \\
\hat{Y}_{J}^{T} & \hat{Y}_{N}
\end{array}\right)
$$

Lemma 3.3. Assume that $(X, Y) \in \tilde{\mathcal{N}}(\gamma, \tau)$. Let $(d X(\tau), d Y(\tau))$ be a solution of the system of equations

$$
\begin{equation*}
H_{I}(d X Y+X d Y)=\tau I-H_{I}(X Y), \quad(d X, d Y) \in \mathcal{F}_{0} \tag{3.2}
\end{equation*}
$$

$\widehat{d X} \equiv Q^{T} d X Q$ and $\widehat{d Y} \equiv Q^{T} d Y Q$. Under Condition 5.1 of $[3]$ and $\zeta \geq 1 / \sqrt{n}$, there then holds

$$
\begin{align*}
\widehat{d X}_{B}(\tau) & =\mathcal{O}(1), & \widehat{d X}_{N}(\tau) & =\mathcal{O}(\tau) \tag{3.3}\\
\widehat{d Y}_{B}(\tau) & =\mathcal{O}(\tau), & \widehat{d Y}_{N}(\tau) & =\mathcal{O}(1) \tag{3.4}
\end{align*}
$$

Proof. For notational convenience, we will use $\widehat{d X}$ and $\widehat{d Y}$ to denote $\widehat{d X}(\tau)$ and $\widehat{d Y}(\tau)$, respectively. Using Lemmas 5.3 and 5.5 of [3], we have

$$
\begin{align*}
& \hat{X}=Q^{T} X Q=\left(\begin{array}{cc}
\Theta(1) & \mathcal{O}(\tau) \\
\mathcal{O}(\tau) & \mathcal{O}(\tau)
\end{array}\right), \tag{3.5}\\
& \hat{Y}=Q^{T} Y Q=\left(\begin{array}{cc}
\mathcal{O}(\tau) & \mathcal{O}(\tau) \\
\mathcal{O}(\tau) & \Theta(1)
\end{array}\right) . \tag{3.6}
\end{align*}
$$

This immediately implies that $X=\mathcal{O}(1)$ and $Y=\mathcal{O}(1)$. In view of Lemma 3.1 (i) of [3] and the definition of $H_{I}(\cdot)$, we immediately see that

$$
\begin{equation*}
\tau I-H_{I}(X Y)=\mathcal{O}(\tau) \tag{3.7}
\end{equation*}
$$

Letting $C=2\left(\tau I-H_{I}(X Y)\right)$ and using Lemma 3.1 (iii) of [3], we obtain that

$$
\|\widehat{d X}\|_{F}=\|d X\|_{F} \leq \frac{\|X\|_{F}\|C\|_{F}}{(1-\gamma) \tau}=\mathcal{O}(1)
$$

Hence, $\widehat{d X}=\mathcal{O}(1)$. Similarly, we can show that $\widehat{d Y}=\mathcal{O}(1)$. Note that the system (3.2) can be written as

$$
\begin{equation*}
H_{I}(\widehat{d X} \hat{Y}+\hat{X} \widehat{d Y})=\tau I-H_{I}(\hat{X} \hat{Y}), \quad(\widehat{d X}, \widehat{d Y}) \in \hat{\mathcal{F}}_{0} \tag{3.8}
\end{equation*}
$$

where $\hat{\mathcal{F}}_{0} \equiv\left\{M=Q^{T} P Q: P \in \mathcal{F}_{0}\right\}$. From (3.7), we easily see that

$$
\begin{equation*}
\tau I-H_{I}(\hat{X} \hat{Y})=\mathcal{O}(\tau) \tag{3.9}
\end{equation*}
$$

Using this fact and (3.8), we obtain that

$$
\begin{equation*}
H_{I}\left(\widehat{d X}_{B} \hat{Y}_{B}+\widehat{d X}_{J} \hat{Y}_{J}^{T}+\hat{X}_{B} \widehat{d Y}_{B}+\hat{X}_{J} \widehat{d Y}_{J}^{T}\right)=\mathcal{O}(\tau) \tag{3.10}
\end{equation*}
$$

Using (3.5), (3.6), (3.10), and the fact that $\widehat{d X}=\mathcal{O}(1)$ and $\widehat{d Y}=\mathcal{O}(1)$, we have

$$
H_{I}\left(\hat{X}_{B} \widehat{d Y}_{B}\right)=\mathcal{O}(\tau)
$$

which together with (3.5) and Lemma 3.2 implies $\widehat{d Y}_{B}=\mathcal{O}(\tau)$. We can show that $\widehat{d X}_{N}=\mathcal{O}(\tau)$ in a similar way.

Lemma 3.4. Assume that $(X, Y) \in \tilde{\mathcal{N}}(\gamma, \tau)$. Let $(\widehat{d X}(\tau), \widehat{d Y}(\tau))$ be defined in Lemma 3.3. Under Condition 5.1 of [3] and $\zeta \geq 1 / \sqrt{n}$, there then holds

$$
\begin{aligned}
\left\|\widehat{d Y}_{J}(\tau)\right\| & =\Theta\left(\left\|\widehat{d X}_{J}(\tau)\right\|\right)+\mathcal{O}(\tau) \\
-\widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau) & =\Theta\left(\left\|\widehat{d X}_{J}(\tau)\right\|^{2}\right)+\mathcal{O}\left(\tau\left\|\widehat{d X}_{J}(\tau)\right\|\right)
\end{aligned}
$$

Proof. For notational convenience, we will use $\widehat{d X}$ and $\widehat{d Y}$ to denote $\widehat{d X}(\tau)$ and $\widehat{d Y}(\tau)$, respectively. Using (3.9) and (3.8), we obtain that

$$
\begin{aligned}
& \widehat{d X}_{B} \hat{Y}_{J}+\widehat{d X}_{J} \hat{Y}_{N}+\hat{X}_{B} \widehat{d Y}_{J}+\hat{X}_{J} \widehat{d Y}_{N} \\
& +\widehat{d Y}_{B} \hat{X}_{J}+\widehat{d Y}_{J} \hat{X}_{N}+\hat{Y}_{B} \widehat{d X}_{J}+\hat{Y}_{J} \widehat{d X}_{N}=\mathcal{O}(\tau)
\end{aligned}
$$

This identity together with (3.5), (3.6), (3.3), and (3.4) implies that

$$
\begin{equation*}
\widehat{d X}_{J} \hat{Y}_{N}+\hat{X}_{B} \widehat{d Y}_{J}=\mathcal{O}(\tau) \tag{3.11}
\end{equation*}
$$

Using this identity, we obtain that

$$
\begin{equation*}
\widehat{d Y}_{J}=-\hat{X}_{B}^{-1}\left(\widehat{d X}_{J} \hat{Y}_{N}-\mathcal{O}(\tau)\right) \tag{3.12}
\end{equation*}
$$

Using this identity ((3.5) and (3.6)), we see that the first conclusion follows. Using (3.12), (3.5), and (3.6), we obtain that

$$
\begin{aligned}
\widehat{d X}_{J} \bullet \widehat{d Y}_{J} & =-\operatorname{tr}\left(\widehat{d X}_{J}^{T} \hat{X}_{B}^{-1} \widehat{d X}_{J} \hat{Y}_{N}\right)+\mathcal{O}\left(\tau\left\|\widehat{d X}_{J}\right\|\right) \\
& =-\left\|\left(\hat{X}_{B}\right)^{-1 / 2} \widehat{d X}_{J}\left(\hat{Y}_{N}\right)^{1 / 2}\right\|_{F}^{2}+\mathcal{O}\left(\tau\left\|\widehat{d X}_{J}\right\|\right),
\end{aligned}
$$

which together with (3.5) and (3.6) implies the second conclusion.
Lemma 3.5. Assume that $(X, Y) \in \tilde{\mathcal{N}}(\gamma, \tau)$. Let $(\widehat{d X}(\tau), \widehat{d Y}(\tau))$ be defined in Lemma 3.3. Under Condition 5.1 of $[3]$ and $\zeta \geq 1 / \sqrt{n}$, there then holds

$$
\widehat{d X}_{J}(\tau)=\mathcal{O}(\tau), \quad \widehat{d Y}_{J}(\tau)=\mathcal{O}(\tau)
$$

Proof. Suppose that $\left\|\widehat{d X}_{J}(\tau)\right\|=\mathcal{O}(\tau)$ does not hold. Then there exists a sequence $\tau_{k} \downarrow 0$ as $k \rightarrow \infty$ such that $\tau_{k}=o\left(\left\|\widehat{d X}_{J}\left(\tau_{k}\right)\right\|\right)$. For convenience, we omit the index k from τ_{k} throughout the remaining proof. Then the above identity can be written as $\tau=o\left(\left\|\widehat{d X}_{J}(\tau)\right\|\right)$, which together with Lemma 3.4 implies that

$$
\begin{align*}
\left\|\widehat{d Y}_{J}(\tau)\right\| & =\Theta\left(\left\|\widehat{d X}_{J}(\tau)\right\|\right) \tag{3.13}\\
-\widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau) & =\Theta\left(\left\|\widehat{d X}_{J}(\tau)\right\|^{2}\right) \tag{3.14}
\end{align*}
$$

For any $\tau>0$, consider the linear system

$$
\begin{align*}
(\widehat{d X}, \widehat{d Y})-(\widehat{d X}(\tau), \widehat{d Y}(\tau)) & \in \hat{\mathcal{F}}_{0} \\
\widehat{d X}_{J}-\widehat{d X}_{J}(\tau) & =-\widehat{d X}_{J}(\tau) \tag{3.15}\\
\widehat{d X}_{N}-\widehat{d X}_{N}(\tau) & =-\widehat{d X}_{N}(\tau) \tag{3.16}\\
\widehat{d Y}_{J}-\widehat{d Y}_{J}(\tau) & =-\widehat{d Y}_{J}(\tau) \tag{3.17}\\
\widehat{d Y}_{B}-\widehat{d Y}_{B}(\tau) & =-\widehat{d Y}_{B}(\tau) \tag{3.18}
\end{align*}
$$

We see that any $(\widehat{d X}, \widehat{d Y})=(0,0)$ is a feasible solution to this system. Hence, by Hoffman lemma [1] (see also Lemma A.3, p. 248 of [5]), there exists a sufficiently large constant \hat{C} (independent on τ) such that for any $\tau>0$, this system has a solution $(\overline{d X}, \overline{d Y}) \in \mathcal{S} \times \mathcal{S}$ (dependent on $\tau)$ such that
$\|(\overline{d X}, \overline{d Y})-(\widehat{d X}(\tau), \widehat{d Y}(\tau))\| \leq \hat{C}\left(\left\|\widehat{d X}_{N}(\tau)\right\|+\left\|\widehat{d Y}_{B}(\tau)\right\|+\left\|\widehat{d X}_{J}(\tau)\right\|+\left\|\widehat{d Y}_{J}(\tau)\right\|\right)$.
Obviously, the monotonicity holds for $\hat{\mathcal{F}}_{0}$ due to the monotonicity of \mathcal{F}_{0}. Hence, we have

$$
(\overline{d X}-\widehat{d X}(\tau)) \bullet(\overline{d Y}-\widehat{d Y}(\tau)) \geq 0
$$

Hence, it follows that
$-\left(\overline{d X}_{B}-\widehat{d X}_{B}(\tau)\right) \bullet \widehat{d Y}_{B}(\tau)+2 \widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau)-\widehat{d X}_{N}(\tau) \bullet\left(\overline{d Y}_{N}-\widehat{d Y}_{N}(\tau)\right) \geq 0$.
Note that $\left\|\overline{d X}_{B}-\widehat{d X}_{B}(\tau)\right\| \leq\|\overline{d X}-\widehat{d X}(\tau)\|$ and $\left\|\overline{d Y}_{N}-\widehat{d Y}_{N}(\tau)\right\| \leq\|\overline{d Y}-\widehat{d Y}(\tau)\|$. Using this fact, (3.20), (3.15)-(3.18), (3.19), (3.13), (3.14), (3.3), and (3.4), we obtain that, for all $\tau>0$ sufficiently small,

$$
\begin{aligned}
\left|\widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau)\right| & \leq \frac{1}{2}\left|\left(\overline{d X}_{B}-\widehat{d X}_{B}(\tau)\right) \bullet \widehat{d Y}_{B}(\tau)+\widehat{d X}_{N}(\tau) \bullet\left(\overline{d Y}_{N}-\widehat{d Y}_{N}(\tau)\right)\right| \\
& \leq \check{C} \tau(\|\overline{d X}-\widehat{d X}(\tau)\|+\|\overline{d Y}-\widehat{d Y}(\tau)\|) \\
& \leq 2 \check{C} \hat{C} \tau\left(\left\|\widehat{d X}_{N}(\tau)\right\|+\left\|\widehat{d Y}_{B}(\tau)\right\|+\left\|\widehat{d X}_{J}(\tau)\right\|+\left\|\widehat{d Y}_{J}(\tau)\right\|\right) \\
& \leq \tilde{C} \tau\left(\tau+\sqrt{\left|\widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau)\right|}\right)
\end{aligned}
$$

where \check{C} and \tilde{C} are some constants and the last inequality follows from (3.13) and (3.14). Let $\xi=\sqrt{\left|\widehat{d X}_{J}(\tau) \bullet \widehat{d Y}_{J}(\tau)\right|}$. From the last inequality above, we have
$\xi^{2} \leq \tilde{C} \tau(\tau+\xi)$, which together with the fact $\xi>0$ implies $\xi \leq(\tilde{C}+\sqrt{5 \tilde{C}}) \tau / 2$. Hence, $\xi=\mathcal{O}(\tau)$. Using this result and (3.14), we obtain $\left\|\widehat{d X}_{J}(\tau)\right\|=\mathcal{O}(\tau)$, which contradicts with the assumption $\tau=o\left(\left\|\widehat{d X}_{J}(\tau)\right\|\right)$. Therefore, $\left\|\widehat{d X}_{J}(\tau)\right\|=\mathcal{O}(\tau)$ holds. The proof of $\left\|\widehat{d Y}_{J}(\tau)\right\|=\mathcal{O}(\tau)$ immediately follows from Lemma 3.4.

We are now in a position to state the main result of this section, which establishes the local quadratic convergence of Algorithm 2.1'.

Theorem 3.6. Assume that Hypothesis 2.1 and Condition 5.1 of [3] hold. If $\zeta \geq 1 / \sqrt{n}$, Theorem 5.1 (local convergence theorem) of [3] holds for Algorithm 2.1'.

Proof. Since $\left(d X_{c}^{k}, d Y_{c}^{k}\right)$ satisfies (2.2), it implies that $\left(d X_{c}^{k}, d Y_{c}^{k}\right)$ also satisfies the system (3.2) with $\tau=\theta^{k+1} \mu^{0}$. We also know that $\left(X_{c}^{k}, Y_{c}^{k}\right) \in \tilde{\mathcal{N}}(\gamma, \tau)$. Hence, in view of Lemmas 3.3 and 3.5, we have

$$
\begin{aligned}
\widehat{d X}_{c}^{k} & =\left(\begin{array}{cc}
\mathcal{O}(1) & \mathcal{O}\left(\theta^{k+1}\right) \\
\mathcal{O}\left(\theta^{k+1}\right) & \mathcal{O}\left(\theta^{k+1}\right)
\end{array}\right) \\
\widehat{d Y}_{c}^{k} & =\left(\begin{array}{cc}
\mathcal{O}\left(\theta^{k+1}\right) & \mathcal{O}\left(\theta^{k+1}\right) \\
\mathcal{O}\left(\theta^{k+1}\right) & \mathcal{O}(1)
\end{array}\right)
\end{aligned}
$$

It implies that

$$
\delta_{c}^{k}=\frac{\left\|d X_{c}^{k} d Y_{c}^{k}\right\|_{F}}{\theta^{k+1} \mu^{0}}=\frac{\left\|\widehat{d X}_{c}^{k} \widehat{d Y}_{c}^{k}\right\|_{F}}{\theta^{k+1} \mu^{0}}=\mathcal{O}(1)
$$

The remaining part of the proof is based on similar arguments as the ones used in the proof of Theorem 5.1 of [3].

REFERENCES

[1] A. J. Hoffman, On approximate solutions of systems of linear inequalities, J. Research Nat. Bur. Standards, 49 (1952), pp. 263-265.
[2] M. Kojima, private communication, 2003.
[3] M. Kojima, M. Shida, and S. Shindoh, A predictor-corrector interior-point algorithm for the semidefinite linear complementarity problem using the Alizadeh-Haeberly-Overton search direction, SIAM J. Optim., 9 (1999), pp. 444-465.
[4] R. D. C. Monteiro and T. Tsuchiya, Polynomial convergence of a new family of primal-dual algorithms for semidefinite programming, SIAM J. Optim., 9 (1999), pp. 551-577.
[5] S. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.

[^0]: *Received by the editors March 16, 2004; accepted for publication (in revised form) November 24, 2004; published electronically August 3, 2005.
 http://www.siam.org/journals/siopt/15-4/60531.html
 †School of ISyE, Georgia Tech, Atlanta, GA 30332 (zhaosong@isye.gatech.edu, monteiro@isye. gatech.edu). The second author was supported in part by NSF grants CCR-0203113 and INT9910084 and ONR grant N00014-03-1-0401.

