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Abstract
Distributionally robust optimization (DRO) is a powerful technique to train robust models against
data distribution shift. This paper aims to solve regularized nonconvex DRO problems, where the
uncertainty set is modeled by a so-called generalized Sinkhorn distance and the loss function is
nonconvex and possibly unbounded. Such a distance allows to model uncertainty of distributions
with different probability supports and divergence functions. For this class of regularized DRO
problems, we derive a novel dual formulation taking the form of nested stochastic optimization,
where the dual variable depends on the data sample. To solve the dual problem, we provide the-
oretical evidence to design a nested stochastic gradient descent (SGD) algorithm, which leverages
stochastic approximation to estimate the nested stochastic gradients. We study the convergence
rate of nested SGD and establish polynomial iteration and sample complexities that are indepen-
dent of the data size and parameter dimension, indicating its potential for solving large-scale DRO
problems. We conduct numerical experiments to demonstrate the efficiency and robustness of the
proposed algorithm.

Keywords: Distributionally Robust Optimization; Lagrange Duality; Nested Stochastic Optimiza-
tion; First-order Algorithm; Adversarial Robustness.

1 Introduction

In classic machine learning, the primary goal is to achieve good predictive performance in the
test set after training the model on a designated training set. The training problem is typically
formulated as an empirical risk minimization (ERM) problem (Vapnik and Chervonenkis, 2015).
However, empirical risk minimization assumes that the training set and the test set follow the same
underlying data distribution, which is often unrealistic and may result in poor test performance when
data distribution shift exists.
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Data distribution shift is prevalent in real-world scenarios. It can be caused by many factors
such as sampling bias, presence of anomalies, data merging and change of measurements, etc. To
tackle this challenge, distributionally robust optimization (DRO) (Herbert, 1957) was proposed,
which formulates the objective function as a min-max problem. DRO aims to learn a robust model
by minimizing the expected risk over the worst-case data distribution within a predefined ambiguity
set. This formulation offers a principled framework to learn the optimal resilient solution in the face
of distribution uncertainty.

One key factor in DRO is the selection of an appropriate divergence measure for modeling the
ambiguity set. Specifically, the divergence measure should not only be computationally tractable
but also yield a solution that avoids excessive conservatism. In the existing literature, various
divergence-based ambiguity sets have been studied. In Pflug and Wozabal (2007); Wozabal (2012);
Shafieezadeh Abadeh et al. (2015); Esfahani and Kuhn (2018); Gao and Kleywegt (2023); Luo and
Mehrotra (2019); Blanchet et al. (2023), the authors focused on reformulating the expressions of
objective functions under the worst-case distributions into a tractable form and exploring possible
algorithms to tackle DRO problems under Wasserstein-type ambiguity sets. For more information,
we refer the readers to Kuhn et al. (2019) for a comprehensive survey on Wasserstein DRO. In Hu
and Hong (2013); Bayraksan and Love (2015); Levy et al. (2020); Duchi and Namkoong (2020); Liu
et al. (2023), the authors analyzed alternative expressions of objective functions under the worst-
case distribution, developed algorithms to solve DRO problems under Kullback–Leibler (KL) and
f -divergence based ambiguity sets. However, the aforementioned divergence measures have certain
limitations. For example, it is known that DRO with Wasserstein distance requires high computa-
tional complexity (Pele and Werman, 2009; Ba et al., 2010). Also, both KL and f -divergence are
not symmetric when assessing distributions. Furthermore, these two divergence measures require
that the distributions share the same probability support, a strong condition that may fail to cap-
ture extreme distributions at certain points. We refer readers to check Examples 1 and 2 for some
concrete applications.

The Sinkhorn distance, first introduced in Cuturi (2013), was designed to address the aforemen-
tioned limitations. Sinkhorn distance is symmetric and allows distributions from the same sample
space to have different probability supports. Furthermore, Sinkhorn distance is a convex function
with respect to distributions, ensuring computation tractability and efficiency for large-scale prob-
lems. In Wang et al. (2023); Blanchet et al. (2023); Azizian et al. (2023), constrained Sinkhorn
DRO was initially investigated. Specifically, Wang et al. (2023) derived the equivalent formula-
tion of constrained Sinkhorn DRO problem and solved it via stochastic mirror descent algorithm,
marking the first work to solve constrained Sinkhorn DRO using first-order optimization methods.
However, the convergence analysis conducted in their work assumed that the loss function is convex
and bounded, which may not hold in practical modern machine learning applications. Furthermore,
the log-exponential compositional structure induced by the conjugate dual of the KL-divergence
makes the objective function difficult to optimize and hinders convergence.

In this work, we develop and study dual formulations of generalized Sinkhorn-distance regu-
larized DRO problems (see formulation (1)). The problem takes the form of a nested stochastic
optimization with a contextual variable. Unlike traditional stochastic optimization problems, our
formulation makes dual decision variable dependent on data sample following distribution P. Hu
et al. (2023) studied contextual bilevel optimization, which can be applied to solve such problem.
However, their convergence analysis is not directly applicable to proposed Sinkhorn DRO dual for-
mulation (3). Specifically, their convergence guarantee relies on the strong convexity of the inner ob-
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jective, a condition that does not hold in our setting. Moreover, from algorithmic perspective, while
Multi-level Monte Carlo (MLMC) significantly improves the per-iteration sample complexity for
computing a variance-reduced stochastic gradient estimator, it still requires storing a non-constant
number of samples that scale with the target error, and second-order information remains unavoid-
able under bilevel optimization framework, leading to increased computational cost and unnecessary
overall sample complexity for our problem. To tackle aforementioned challenges, based on tractable
expression of gradient proved in Jin et al. (2021) (see Lemma 1) and structural relationship between
outer problem’s gradient and inner problem’s gradient, we establish controllable approximation er-
ror of outer objective’s gradient given the inner objective’s gradient satisfying mild conditions (see
Theorem 2). This observation enables us to further utilize sample-average approximation (SAA)
to estimate stochastic gradients, solve dual problem efficiently via Nested SGD algorithm (see Al-
gorithm 2) and establish convergence analysis without requiring large batch size of samples and
additional assumptions including convex loss and strong convexity for inner-objective assumed in
Wang et al. (2023); Hu et al. (2023). Finally, we train several models including logistic regression,
LeNet (LeCun et al., 1998) over CIFAR-10 (Krizhevsky, 2009) and MNIST (Deng, 2012) dataset,
and conduct experiments to evaluate test performance of proposed Sinkhorn DRO dual formula-
tion (3) with other baseline methods over perturbed test dataset. Our results demonstrate that the
Sinkhorn DRO formulation (3) and our proposed nested algorithm successfully improve models’
robustness against distribution shift.

1.1 Summary of Contributions

• To preserve the advantages of Sinkhorn distance while broadening the class of divergence
measures used to model the ambiguity set, we consider a generalized Sinkhorn distance based
on the family of f -divergences. Building on this formulation, we transform the primal prob-
lem using inverse CDF sampling and derive the dual form of the regularized Sinkhorn DRO
problem via Lagrangian duality, under which strong duality holds. The resulting dual problem
takes a novel form of contextual nested stochastic optimization problem, where the variable
of the inner stochastic sub-problem depends explicitly on the data samples.

• To solve the contextual nested stochastic optimization problem, we begin by reviewing the ex-
plicit gradient formula of the proposed Sinkhorn DRO objective. By exploiting the structural
relationship between the objective and its sub-problem, we derive conditions under which
the gradient approximation error can be made arbitrarily small. This insight motivates the
development of a practical Nested-SGD algorithm (Algorithm 2), which simplifies the ap-
proach taken by the research community to solve contextual nested problems within the gen-
eral bilevel optimization framework. To establish convergence guarantee, we further analyze
the smoothness properties and derive second-moment upper bounds. Our convergence anal-
ysis reveals a standard sample complexity of O(ε−4) for each loop of the algorithm, result-
ing in a total sample complexity of O(ε−8) for non-convex loss. However, considering the
one-dimensional nature of the sub-problem of the proposed Sinkhorn DRO formulation and
by appropriately adjusting the batch size, the overall problem can be efficiently solved with
O(ε−4) iteration complexity.

• To justify the efficiency of our proposed formulation and algorithm, we evaluate their practical
performance on real-world datasets. The results, under distribution shifts simulated by various
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adversarial attack methods, demonstrate that our approach not only improves the robustness
of diverse machine learning models but also scales effectively to large models and datasets.

2 Related Work

DRO. The DRO framework shares strong connections with contrastive learning (Wu et al.,
2023), multiple instance learning (Sapkota et al., 2021), AUC maximization (Zhu et al., 2022),
anomaly detection (Chen and Paschalidis, 2018a), and self-supervised learning (Qiu et al., 2024;
Wei et al., 2025). The key challenge in modeling lies in transforming the problem into a tractable
formulation given the chosen ambiguity set. The first stream focuses on using information diver-
gence to construct ambiguity set. Commonly employed divergence measures include the Wasser-
stein metric (Shafieezadeh Abadeh et al., 2015; Esfahani and Kuhn, 2018; Gao and Kleywegt,
2023; Luo and Mehrotra, 2019; Liu et al., 2022; Zhu et al., 2024); KL divergence (Hu and Hong,
2013; Shapiro et al., 2023; Kocuk, 2020); f -divergence (Levy et al., 2020; Lam, 2019; Duchi and
Namkoong, 2020; Jin et al., 2021; Namkoong and Duchi, 2016; Liu et al., 2023); Sinkhorn distance
(Wang et al., 2023; Azizian et al., 2023) and its variants (Wang et al., 2024). Recently, Blanchet
et al. (2023) further proposed a framework to unify aforementioned constrained DRO problem based
on optimal transport theory with conditional moment constraints. Another stream for constructing
ambiguity set is using special statistics, such as geometry shape constraints (Chen et al., 2021) and
statistical moments (Herbert, 1957; Delage and Ye, 2010; Cheramin et al., 2022) etc.

Sinkhorn Distance. Sinkhorn distance has successful applications in areas like generative
models (Patrini et al., 2020; Genevay et al., 2018), matrix factorization (Qian et al., 2016), image
segmentation (Rabin and Papadakis, 2015) etc. In Cuturi (2013), Sinkhorn matrix scaling algo-
rithms was proposed to compute optimal transport map under Sinkhorn distance objective. Later, in
Altschuler et al. (2018); Aude et al. (2016), greedy and stochastic variants of Sinkhorn scaling algo-
rithms were proposed to clarify relationship between algorithm convergence and input dimensions.
Some works also study Sinkhorn distance computation over data samples with special structures. In
Tenetov et al. (2018); Altschuler et al. (2019), they propose variant algorithms specially applying to
data samples over compact Riemannian manifolds and Euclidean balls respectively.

Algorithms for Solving DRO. For Wasserstein metric ambiguity set, several works reformu-
late primal problem into tractable forms such as convex programming (Shafieezadeh Abadeh et al.,
2015), semidefinite programming (Luo and Mehrotra, 2019) and mixed integer programming (Sap-
kota et al., 2021). Subsequent works (Shafieezadeh Abadeh et al., 2015; Sapkota et al., 2021) trans-
form problems into the form which is directly solvable using software toolbox. In Luo and Mehrotra
(2019), they use cutting-surface method to solve semi-definite programming for general nonlinear
objective and branch-and-bound algorithms for bilinear objective. Another common technique to
transform DRO is using duality theory (Gao and Kleywegt, 2023; Levy et al., 2020). Through this
way, computation of shifted distribution can be avoided. In Qi et al. (2023), projected SGD and
acceleration is used to solve the dual form of KL divergence constrained DRO. In Jin et al. (2021),
normalized SGD with momentum is used to optimize the dual of f -divergence regularized DRO.
Later Zhang et al. (2025) revisits f -divergence regularized DRO and propose double SGD with
clipping to solve it. In Zhang et al. (2024), stochastic Frank-Wolfe method is used to solve ap-
proximation for the dual of general Cressie-Read family divergence constrained DRO. Wang et al.
(2023) used stochastic mirror descent to solve the dual form of Sinkhorn distance constrained DRO
and Wang et al. (2024) used a projected sub-gradient method to solve the dual form of unbalanced
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Wasserstein distance constrained DRO. Hu et al. (2023) empirically applied contextual bilevel opti-
mization methods to solve the primal formulation of Wasserstein DRO with side information.

3 Notations

Throughout this work, we denote ξ ∼ Q as data drawn from the underlying distribution Q,
ζ ∼ P as data drawn from the nominal distribution P, and their corresponding reference mea-
sures are denoted by µ (for P) and ν (for Q). We denote N (·, ·) as normal distribution following
certain mean and variance. For the primal problem (1), we denote ℓ(x; ξ) as the loss function
associated with sample ξ and parameter x ∈ Rd (i.e., the weights of a linear model or neural net-
work), λ as the regularization coefficient. For generalized Sinkhorn distance used to model the
ambiguity set (see Definition 1), we denote c(·, ·) as the cost metric for measuring proximity be-
tween samples ζ and ξ, β as the regularization coefficient, Df as the f -divergence. In primal-dual
problem reformulation, we introduce η as Lagrange multiplier and f∗(·) as the conjugate dual func-
tion induced by the chosen information divergence. For the proposed dual formulation (3), when
η∗x(ζ) = argminLζ(x, η), we denote Ψ(x) = Lζ(x, η

∗
x(ζ)) for simplicity, and use ∇Ψ(x) to de-

note the gradient with respect to x. For functions including Lζ ,Lζ,ξ : Rd ×R → R, which takes
two arguments x ∈ Rd, η ∈ R, we use ∇1, ∇2 to denote the gradient with respect to x and η. For
Algorithm 1, which optimizes the inner objective (5), we denote αd as the learning rate, v(·) as the
stochastic gradient estimator with respect to η, d̃ as the output index, B̃ as the batch size, and ε̃ as
the scaled target error. For Algorithm 2, which optimizes the dual formulation (3), we denote γt as
the learning rate, ĝB(·), gB(·) as inexact, exact stochastic gradient estimator of dual formulation (3)
with respect to x, t̃ as the algorithm’s output index, B as the batch size, and ε as the target error
passed to Algorithm 2. Through this work, we denote ∥ · ∥, ∥ · ∥1, and ∥ · ∥∞ as ℓ2, ℓ1, and ℓ∞ norms
over Euclidean space, respectively.

4 Regularized Nonconvex DRO with Generalized Sinkhorn Distance

In this section, we first introduce a class of regularized nonconvex distributionally-robust op-
timization (DRO) problems, where the data distribution uncertainty is quantified by generalized
Sinkhorn distance. We then study its strong dual formulation in Theorem 1 and compare it with
the strong dual formulation of constrained DRO quantified by Sinkhorn distance obtained in Wang
et al. (2023).

4.1 Problem Formulation

In distributionally-robust optimization (DRO), the goal is to learn a model which achieves good
and robust performance when the underlying data distribution is uncertain. Specifically, consider
a machine learning problem with the nonconvex loss function denoted by ℓ(x; ξ), where x ∈ Rd

denotes the collection of model parameters and ξ corresponds to a data sample that follows an
underlying data distribution Q. Then, with a regularization parameter λ > 0, we study the following
regularized DRO problem, which is a popular formulation in robust machine learning (Chen and
Paschalidis, 2018b; Gao et al., 2022; Sagawa et al., 2019).

min
x∈Rd

sup
Q

{
Eξ∼Q

[
ℓ(x; ξ)

]
− λWβ(P,Q)

}
, (1)
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where Wβ(P,Q) denotes a certain function (with parameter β > 0) that measures the distance
between a nominal data distribution P and the underlying data distribution Q. In particular, the
operation minx supQ aims to optimize the model x under the worst-case data distribution Q to en-
hance model robustness against the distribution shift from the nominal distribution P. In the existing
literature, many studies have considered KL-divergence (Hu and Hong, 2013; Shapiro et al., 2023),
f -divergence (Levy et al., 2020; Duchi and Namkoong, 2020; Jin et al., 2021; Namkoong and Duchi,
2016; Liu et al., 2023) and Wasserstein distance (Shafieezadeh Abadeh et al., 2015; Esfahani and
Kuhn, 2018; Gao and Kleywegt, 2023; Luo and Mehrotra, 2019; Blanchet et al., 2023) to quan-
tify the above distribution shift. However, both the KL-divergence and the f -divergence require Q
and P to have the same probability support, which is restrictive and undesirable for many machine
learning applications. The following two examples illustrate the limitations of f -divergence.

Example 1 In robust Markov Decision Process (MDP) (Wang et al., 2022), denote the underlying
environment’s transition kernel as Q. Then, robust reinforcement learning aims to optimize the
following robust state value function over the policy π.

V π(s) := inf
Q:Df (Q|P)≤ρ

E
[ ∞∑
t=0

γtrt | π, s0 = s
]
,

where γ is a discount factor, s corresponds to the state and rt represents the reward obtained after
the t-th state transition. Here, the robust value function V π(s) considers the worst-case environment
transition kernel Q over the uncertainty set defined by the f -divergence, i.e., {Q : Df (Q|P) ≤
ρ}. In this setting, if the nominal transition kernel P cannot visit a certain crucial state s, then
neither can the transition kernels Q from the uncertainty set visit that state s. This indicates that
f -divergence does not handle “unknown” uncertainties (e.g., states that never visited by P).

Example 2 Consider the following f -divergence-regularized DRO problem.

min
x∈Rd

sup
Q

{
Eξ∼Q

[
ℓ(x; ξ)

]
− λDf (Q|P)

}
,

where the distribution shift on data is characterized by the f -divergence. Suppose we want to train
a face detection model. If the nominal data distribution P only covers face images collected from
the majority group and excludes the minority groups, then the f -divergence DRO cannot yield a
robust model over all the groups.

On the other hand, the classic Wasserstein distance does not require the distributions P,Q to have
the same probability support. However, it is known that Wasserstein distance suffers from compu-
tational intractability for high-dimension data (Pele and Werman, 2009; Ba et al., 2010), and hence
is not suitable for large-scale problems in machine learning.

To tackle these challenges, inspired by the Wasserstein distance, Sinkhorn distance (Cuturi,
2013; Wang et al., 2023), we consider the following generalized Sinkhorn distance to quantify the
data distribution shift. To elaborate, we consider a sample space Ω associated with σ-algebra F .
Furthermore, for distributions Q, P over a measurable subset of F , we assume they are absolutely
continuous with regard to some reference measures ν and µ, i.e., Q ≪ ν, P ≪ µ.

Definition 1 (Generalized Sinkhorn Distance) Consider probability distributions Q and P over(
Ω,F

)
and let ν and µ be reference measures satisfying Q ≪ ν,P ≪ µ. Denote Γ(P,Q) as the
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set of joint distributions that have marginal distributions P,Q. For a fixed regularization parameter
β > 0 and a cost metric c : Ω× Ω → R, the generalized Sinkhorn distance is defined as

Wβ(P,Q) = inf
γ∈Γ(P,Q)

{
E(ζ,ξ)∼γ

[
c(ζ, ξ)

]
+ βDf (γ|P⊗ ν)

}
,

where Df corresponds to the f -divergence, that is, Df (γ|P ⊗ ν) =
∫
f
( dγ(ζ,ξ)
dP(ζ)dν(ξ)

)
dν(ξ)dP(ζ),

where the function f : [0,+∞) → [−∞,+∞
]

is convex and satisfies f(1) = 0 and f(0) =

limt→0+ f(t), and dγ(ζ,ξ)
dP(ζ)dν(ξ) represents the density ratio of γ with respect to P⊗ ν.

Remark 1 The absolute continuity condition Q ≪ ν, P ≪ µ is crucial to guarantee that the
generalized Sinkhorn distance is well-defined. Typical choices of the reference measure ν include
the Lebesgue measure or the Gaussian measure. In addition, when Q ≪ ν, Df (γ|P ⊗ ν) and
Df (γ|P ⊗ Q) are equivalent up to a constant, which does not affect the optimal solution in the
regularized setting. Thus, we consider the former term for simplicity.

The considered generalized Sinkhorn distance is regularized by the f -divergence , which general-
izes the KL-divergence regularization adopted in the definition of the standard Sinkhorn distance
(Wang et al., 2023). Such generalization still allows the distributions P and Q to have different
probability support. By adding f -divergence regularization, it preserves the joint convexity with
respect to the probability distributions and thus guarantees the uniqueness of the optimal solution,
which helps reduce the computation complexity. Moreover, the generalized Sinkhorn distance pro-
vides more flexibility to model data distribution uncertainty compared to other divergence-based
measures (Levy et al., 2020; Jin et al., 2021).

4.2 Dual Formulation

With generalized Sinkhorn distance, the regularized DRO problem (1) can be rewritten as

min
x∈Rd

sup
Q

{
Eξ∼Q

[
ℓ(x; ξ)

]
− inf

γ∈Γ(P,Q)

{
E(ζ,ξ)∼γ

[
λc(ξ, ζ)

]
+ λβDf (γ|P⊗ ν)

}}
. (2)

The primal Sinkhorn distance regularized DRO problem (2) is hard to solve, since it is challenging
to obtain an analytical form of the worst-case distribution Q. However, the generalized Sinkhorn
distance involves special structures that can transform the primal regularized DRO problem (1) into
a simpler dual form. The following theorem deduces an equivalent dual formulation (See Appendix
E for proof details).

Theorem 1 (Dual formulation) The DRO problem (2) has the following equivalent dual formula-
tion

min
x∈Rd

Eζ∼P[Ψζ(x)], where Ψζ(x) = min
η∈R

Eξ∼ν

[
λβf∗(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)
+ η

]
︸ ︷︷ ︸

Lξ,ζ(x,η)

, (3)

and f∗ denotes the conjugate function of f .

7



YANG, ZHOU, LU

Remark 2 (Technical Novelty) Proving the equivalence between the primal problem (2) and the
dual problem (3) is crucial. To elaborate, we first decompose the joint distribution as γ(ζ, ξ) =
γζ(ξ)P(ζ), where γζ corresponds to the conditional distribution over ξ. Then, by the principle of
interchangeability (Theorem 7.92, Chapter 7.3.2 in Shapiro et al. (2021)), we are able to swap the
order between Eζ∼P and supγζ without changing the optimal value, which yields

min
x∈Rd

Eζ∼P

[
Ψζ(x) = sup

γ(ξ|ζ)

{
Eξ∼γ(·|ζ)

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λβDf

(
γ(ξ|ζ)|ν(ξ)

)}]
.

Then, by utilizing techniques of data processing inequality, we show that Ψζ(x) is equivalent as
follows auxiliary function

Ψ̃ζ(x) = sup
µγ|ζ

{
Eµγ|ζ

[
ℓ(x; ξ)−λc(ζ, ξ)

]
− λβDf (µγ|ζ |µν)

}
.

where supµγ|ζ
corresponds to the supremum over all possible distributions µγ|ζ induced by γ(ξ|ζ).

Last, by utilizing inverse c.d.f sampling on Ψ̃ζ(x) introduced in Levy et al. (2020); Duchi and
Namkoong (2020), we are able to derive equivalent formulation Ψζ(x) = minη∈R

∫ 1
0 supr∈R+[

rF−1(u)−η(r−1)−λβf(r)
]
du, apply Lagrange duality and definition of convex conjugate dual

transforming Ψζ(x) into desired formulation.

We notice that in Wang et al. (2023); Azizian et al. (2023), the authors also present strong dual
formulation for the constrained Sinkhorn DRO problem with Df being the KL divergence and
constraint radius ρ. Specifically, they showed the following equivalent formulation of the problem

min
x∈Rd,λ>0

{
λρ+ λβEζ∼P

[
log

(
Eξ∼ν

[
exp(

ℓ(x; ξ)− λc(ξ; ζ)

λβ
)
])]}

. (4)

Such dual formulation takes a compositional structure of the form Eζ log(Eξ(exp(t))), where con-
trolling the variance and bias of its stochastic gradient estimator is challenging. To elaborate, Wang
et al. (2023) demonstrates that sample-average estimation of gradient leads to a suboptimal con-
vergence rate under mild assumptions. Such limitation motivates them studying variance reduction
technique-multilevel Monte Carlo method (MLMC), to improve the sample complexity thereafter.

As a comparison, for proposed Sinkhorn DRO dual formulation (3) derived using Lagrange
duality, it involves nested minimization structure, where the inner minimization problem is with
respect to the dual variable and sample ζ. Such nested structure is challenging as most nested
problems are solved by using bilevel optimization frameworks, where computing hyper-gradient
estimation is known to be time-consuming due to the requirement of second-order information
(Franceschi et al., 2018). Moreover, the dependency between the inner minimizer η and ζ motivates
us to reduce the number of sampled ζ to O(1)-level per iteration. Thanks to Lemma 1 proved by
Jin et al. (2021), which provides a tractable expression for evaluating gradients without requiring
second-order information. As we later demonstrate in Theorem 2 and 4, one can efficiently control
the gradient approximation error and establish convergence of nested SGD for solving proposed
dual formulation (3) without querying a large batch of ζ and ξ per iteration.
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5 Solving the Dual Problem via Nested SGD

To minimize optimization problem with contextual nested structure, Hu et al. (2023) studied
bilevel SGD framework and attained near optimal sample complexity Õ(ε−4) when lower level
problem is strongly convex and MLMC is used for hyper-gradient estimation. However, their anal-
ysis is not directly applicable to proposed Sinkhorn DRO dual formulation (3), as their framework
assumes dependency between ξ and ζ, but does not account for the dependency between the dual
variable η and the sample ζ. Additionally, most conjugate dual functions f∗ for information di-
vergences are not globally strongly convex, which further limits the applicability of their analysis.
As we mentioned before, Wang et al. (2023); Hu et al. (2023) showed that MLMC requires storing
multiple samples of ζ up to O(log(ε−1)) to construct a stochastic estimator with O(ε)-level ap-
proximation error, and second-order derivative remains unavoidable for evaluating hyper-gradient
in contextual bilevel objective.

Motivated by these bottlenecks, in this section, we present a tractable expression for comput-
ing the gradient of proposed Sinkhorn DRO dual formulation (3) and we then find, by exploring
the structural relationship between the inner and outer objective gradients, that the requirements
of strong convexity assumption and sampling multiple ζ can be eliminated to control the approxi-
mation error between ∇Eζ [Ψζ(x)] and ∇1Eζ [Lζ(x, η

d̃
x(ζ))] given ηd̃x(ζ) is an output of stochastic

oracle satisfying mild conditions. Recall that the dual formulation (3) consists of two stochastic
optimization problems. Throughout, we denote the objective function of the inner problem in (3) as

Lζ(x, η) = Eξ∼ν

[
λβf∗(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)]
+ η. (5)

For simplicity, we denote η∗x(ζ) = argminη Lζ(x, η) to highlight its dependence on the fixed pa-
rameter x and data sample ζ. We also denote Eζ

[
Ψζ(x)

]
as the objective function of the outer

problem.
To analyze the problem structure, we adopt the following standard assumptions on the loss

functions and convex conjugate dual of chosen f -divergence.

Assumption 1 The functions in Sinkhorn DRO dual formulation (3) satisfy:
• For every ξ, ℓ(·; ξ) is G-Lipschitz continuous. i.e.,

∥∥ℓ(x; ξ)− ℓ(y; ξ)
∥∥ ≤ G

∥∥x− y
∥∥.

• For every ξ, ℓ(·; ξ) is continuously differentiable and L-smooth. i.e.,
∥∥∇ℓ(x; ξ)−∇ℓ(y; ξ)

∥∥ ≤
L
∥∥x− y

∥∥.

• The conjugate function f∗ is continuously differentiable and M -smooth.

• The objective function Eζ∼P
[
Ψζ(·)

]
is bounded below.

Remark 3 Note that the loss function ℓ(x; ξ) is generally nonconvex. Regarding the smooth as-
sumption on f∗ in the third item, some typical examples of f -divergence include the χ2-divergence,
smoothed CVaR divergence (Jin et al., 2021), where their corresponding conjugate functions are
given by f∗(y) = −1+ 1

4(y+2)2+ and f∗(t) = 1
α log(1−α+α exp(t)). To analyze the dual formula-

tion (3) with KL-divergence, we need to adopt assumption supx exp((ℓ(x; ξ)−λc(ζ, ξ)−η)/λβ) <
∞ holds almost-surely for every ξ given ζ. Under these assumptions, one can ensure that the con-
vex conjugate dual f∗(t) = exp(t) − 1 is locally M -smooth within a bounded domain. We will
later demonstrate in our ablation study (Appendix D) that the f∗ induced by the KL-divergence
yields similar convergence behavior when optimizing dual formulation (3), compared to choices of

9
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f∗ that satisfy the M -smoothness property, suggesting that this assumption does not limit practical
applicability.

Since the dual problem takes a nested form, we need an efficient way to compute the gradient of
the objective function. The following lemma, proved by Jin et al. (2021), provides an analytical
formula for computing the exact gradient. (See Lemma 2.6 in Jin et al. (2021) for proof details)

Lemma 1 (Computation of ∇Ψζ(x) (Jin et al., 2021)) Let Assumption 1 hold and consider fixed
x and given ζ. Then, the function Ψζ(x) is differentiable and satisfies ∇Ψζ(x) = ∇1Lζ(x, η

∗
x(ζ)),

where η∗x(ζ) ∈ argminη Lζ(x, η).

This lemma shows that, given the exact minimizer η∗x(ζ) of the inner problem, one can directly
evaluate the gradient of dual formulation (3). Notably, it eliminates the need to acquire second-
order derivatives for computing ∇1η

∗
x(ζ), which are typically required under bilevel optimization

framework (Franceschi et al., 2018; Ghadimi and Wang, 2018; Hu et al., 2023). Motivated by
Lemma 1, we aim to develop conditions and algorithms to estimate η∗x(ζ) with arbitrarily small
error, thereby enabling the construction of an inexact gradient estimator for proposed Sinkhorn
DRO dual formulation (3) with an ε-level approximation error. The following theorem shows that,
for any fixed x and ζ, the approximation error in estimating ∇Ψζ(x) can be made arbitrarily small
by querying an inner solution ηd̃x(ζ) that is accurate on average. (See Appendix G for proof details)

Theorem 2 (Gradient approximation error bound) Consider a stochastic algorithm minimizing
(5). If the stochastic oracle outputs an ηd̃x(ζ) converging to ∇2Lζ(xt, η

∗
x(ζ)) with scaled small

target error ε̃ = ε/G, i.e.,

E
ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 ≤ ε̃2, (6)

then the gradient ∇1Lζ(x, η
d̃
x(ζ)) approximates full gradient ∇Ψ(x) with error up to ε, i.e.,∥∥∇Ψζ(x)− E

ηd̃x(ζ)
[∇1Lζ(x, η

d̃
x(ζ))]

∥∥2≤ ε2,∀ζ ∼ P. (7)

Remark 4 (Technical Novelty) The novelty of our proof lies in the usage of the monotonicity prop-
erty of (f∗)′, which enables us to perform an equivalence transformation by moving the expectation
Eξ∼ν into the norm

∥∥·∥∥. Thanks to special structure of formulation (3), such operation swap doesn’t
change its value since each inner problem minη Lζ(x, η) depends on a fixed ζ. In the proof, we also
utilize the convexity of the conjugate function f∗( ℓ(x;ξ)−c(ζ;ξ)−η

λβ ) in η, albeit the loss function ℓ(x; ξ)
is generally nonconvex.

Note that Theorem 2 requires an algorithm capable of generating an ηd̃x(ζ) that satisfies condition
(6), which can be achieved by the vanilla SGD algorithm (Ghadimi and Lan, 2013) under mild
assumptions. And the condition (6) cannot be further reduced to other forms, as the second-order
condition (6) will be reused when estimating the second moment of the inexact gradient (See Lemma
5).

10
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Additionally, condition (7) characterizes the relationship between the gradients ∇Ψζ(x) and
∇1Eηd̃x(ζ)

[Lζ(x, η
d̃
x(ζ))] when the inner problem (5) is solved approximately by an inexact mini-

mizer ηd̃x(ζ). This observation motivates the design of a nested-type stochastic algorithm (detailed
in the next subsection), in which the inner algorithm computes an inexact minimizer ηd̃x(ζ) for
Lζ(x, η), and the outer stochastic algorithm subsequently optimizes minx Eζ∼P[Lζ(x, η)]. This ap-
proach is justified by taking the expectation over ζ ∼ P and applying Jensen’s inequality to (7),
which further implies ∥∥∇1Eζ∼P,ηd̃x(ζ)

[
Lζ(x, η

d̃
x(ζ))

]
−∇Eζ∼P

[
Ψζ(x)

]∥∥2
≤ Eζ∼P

∥∥∇1Lζ(x, η
d̃
x(ζ))−∇Ψζ(x)

∥∥2 ≤ ε2. (8)

Through condition (8), we conclude that one can establish bias and variance guarantee with respect
to the true gradient ∥∇Eζ∼P[Ψζ(x)]∥ by sub-sampling O(1)-batches of ζ.

6 Algorithm design and convergence analysis

In this section, we propose a nested procedure composed of Algorithm 1 and Algorithm 2 to
sequentially optimize x and estimate η∗x(ζ) via SGD-type algorithms. To facilitate the convergence
analysis of these algorithms, we impose the following bounded variance assumptions on the loss
function ℓ(x; ξ) and the cost metric c(ζ; ξ). Through the work, to account for randomness arising
from high-dimensional data, we use the variance definition V arϖ(ρ(ϖ)) = E

[
ρ(ϖ)− E

[
ρ(ϖ)

]]2
in our assumption, where ρ(·) : Rd → R denotes a function mapping a random variable ϖ ∈ Rd

to a scalar.

Assumption 2 There exists σ, δ > 0 such that:
• For every x, the variance of ℓ(x; ·) over ξ is bounded by σ2, i.e., V arξ

(
ℓ(x; ξ)

)
≤ σ2.

• For every ζ, the variance of c(ζ, ·) over ξ is bounded by δ2, i.e., V arξ
(
c(ζ, ξ)

)
≤ δ2.

• For every ξ, the variance of c(·, ξ) over ζ is bounded by δ2, i.e., V arζ
(
c(ζ, ξ)

)
≤ δ2.

6.1 Inexact Estimation of Inner Minimizer via SGD

Recall that the inner problem of the dual problem (3) takes the following form.

min
η∈R

Lζ(x, η) = Eξ∼ν

[
λβf∗(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)
+ η

]
, (9)

which is a stochastic optimization problem. Inspired by condition (6) stated in Theorem 2, we utilize
a SGD-type algorithm (Algorithm 1) for computing an inexact estimation of η∗x(ζ). Specifically, for
fixed x and sample ζ, we compute the mini-batch stochastic gradient estimator of ∇2Lζ(x, η) at
each iteration as follows

vB̃x,ζ(η) = 1− 1

B̃

B̃∑
i=1

(f∗)′
(ℓ(x; ξi)− c(ζ, ξi)− η

λβ

)
. (10)

For simplicity, we simplify notation vB̃x,ζ(η) as vB̃(η) when the dependence on x and ζ is clear from
the context.

11
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Algorithm 1 SGD for estimating η∗x(ζ)

Input: Initialization η0; sample ζ; number of iteration D; batch size B̃.
while d < D do

Draw samples {ξ}B̃ ∼ ν with batch size B̃.
Compute v(ηdxt

(ζ)) via (10).
Update ηd+1

xt
(ζ) = ηdxt

(ζ)− αdv
B̃(ηdxt

(ζ)).
end while
Output: ηd̃x(ζ), where d̃ uniformly sampled from {0, 1, 2, ....D − 1}.

To analyze the convergence of the inner Algorithm 1 based on Assumptions 1 and 2, we first
obtain the following expected smoothness property (See Appendix H for proof details)

Lemma 2 (K ′-smoothness of inner objective (5)) Let Assumption 1 hold and denote Lζ,ξ(x, η) =

λβEξ∼ν

[
f∗( ℓ(x;ξ)−c(ζ,ξ)−η

λβ )
]
+ η. Then, for any η and η′, we have

Eξ∼ν

∥∥∇2Lζ,ξ(x, η)−∇2Lζ,ξ(x, η
′)
∥∥2 ≤ (K ′)2

∥∥η − η′
∥∥2,

where K ′ = M(λβ)−1.

We then obtain the upper bound estimate for second moment of ∇2Lζ(x, η) as follows (See Ap-
pendix I for proof details).

Lemma 3 (Second moment bound for ∇2Lζ,ξ(x, η)) Let Assumption 2 hold. Then, vB̃(η) is the
unbiased estimator for ∇2Lζ(x, η), and the second moment of ∇2Lζ,ξ(x, η) satisfies

Eξ∼ν ∥∇2Lζ,ξ(x, η)∥2 ≤ R2 + ∥∇2Lζ(x, η)∥2 , (11)

where R2 = 2M2(λβ)−2(σ2 + λ2δ2).

Based on K ′-smooth and affine bounded second moment shown above, we establish the follow-
ing convergence result of Algorithm 1 (See Appendix J for proof details).

Corollary 3 (Convergence of Algorithm 1) Let Assumptions 1 and 2 hold, denote ∆̂ = supζ{Lζ(xt, η
0)

−Ψζ(xt)}. Apply Algorithm 1 to solve the inner problem (5) with learning rate αd = min{ 1
K′ ,

ε̃2

R2K′ }
and batch size B̃ = 1, then Algorithm 1 outputs an ηd̃x(ζ) satisfying

E
ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 ≤ ε̃2. (12)

In particular, it takes D = O(∆̂K ′R2ε̃
−4) = O(∆̂K ′R2G

4ε−4) number of iterations to obtain an
ε̃-stationary point, and the stochastic gradient oracle complexity is O(∆̂K ′R2G

4ε−4).

Remark 5 Notice that solving the inner optimization problem (5) to obtain an ηd̃x(ζ) only requires
solving a one-dimensional optimization problem, where evaluating its stochastic gradient does not
require expensive tensor computation or backpropagation. Consequently, employing a large batch
size can substantially reduce the iteration complexity without significantly increasing computational
overhead. For example, by selecting batch size as B̃ = Θ(G−2ε̃−2) = Θ(ε−2) and setting the
learning rate αd = min{ 1

K′ ,
1

2K′R2G2 }, Algorithm 1 generates an ηd̃x(ζ) satisfying condition (6)

after D ≥ 8R2∆̂K ′G4ε−2 = O(R2∆̂K ′G4ε−2) iterations.
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6.2 Nested SGD and its convergence analysis

The previous section has shown that SGD-type algorithms can successfully generate an ηd̃x(ζ)
satisfying the conditions required by Theorem 2. In this section, we introduce the nested SGD
algorithm (Algorithm 2) and establish its convergence guarantees. Specifically, at each iteration,
Algorithm 2 samples a single ζ along with a mini-batch {ξ}B , and obtain an inexact estimate of
η∗x(ζ) by calling Algorithm 1. It is worth noting that the sampled ξ from Algorithm 1 can be
reused to save computation overhead. Algorithm 2 then evaluates a mini-batch gradient estimator
of ∇Eζ [Ψ(xt)] as follows

ĝ(xt; ζ; ξB) =
1

B

B∑
i=1

(f∗)′
(ℓ(x; ξi)− c(ζ, ξi)− ηd̃x(ζ)

λβ

)
∇ℓ(xt; ξi). (13)

Remark 6 In the stochastic gradient estimator (13), note that we only apply mini-batch sampling
over ξ. This is because the inexact minimizer ηd̃x(ζ) explicitly depends on ζ and thus can vary over
different ζ. We notice that Wang et al. (2023) proposes RT-MLMC estimator, which is specifically
designed to reduce the upper bound of the second moment using fewer samples. In our setting, their
RT-MLMC gradient estimator can be rewritten as

gRT-MLMC(xt) =
1

n◦
q

n◦
q∑

i=1

1

P(ι = ιi)
Aιi(xt; ζ

ιi), where

Aιi(xt; ζ
ιi) =ĝ(xt; ζ

ιi ; ξ1:2l)−
1

2
ĝ(xt; ζ

ιi ; ξ1:2l−1)−
1

2
ĝ(xt; ζ

ιi ; ξ2l−1+1:2l), (14)

where n◦
q denotes the randomly sampled levels ι1, . . . , ιn◦

q
, where each level ιi is sampled indepen-

dently following the distribution P(ι = ιi) =
2−ιi

2−2−q , for l = 0, . . . , q. To ensure convergence, Wang
et al. (2023) demonstrates that by choosing hyper-parameters n◦

q = O(1), q = O(log(ε−1)), RT-
MLMC estimators ensures SGD achieving Õ(ε−2) near-optimal convergence when loss function
ℓ(x; ξ) is convex and bounded. However, due to the nested structure of proposed Sinkhorn DRO
dual formulation (3), we find that the RT-MLMC estimator is not well-suited for our setting, as (14)
requires storing q = O(log(ε−1)) samples of ζ. This, in turn, simultaneously increases the number
of calls to Algorithm 1 per iteration within Algorithm 2 to obtain corresponding ηd̃xt

(ζιi). The nested
structure of the problem limits the effectiveness of variance reduction typically offered by the mul-
tilevel Monte Carlo method and fails to significantly improve the convergence order. Furthermore,
it may even introduce additional challenges in sampling and computational efficiency, particularly
when applying estimator (14) within the backpropagation process of deep neural networks. As we
show later in Theorem 4, our proposed Algorithm 2, which employs gradient estimator (13) and
requires only a single sample of ζ and ξ (namely B = 1) per iteration, achieves a convergence rate
of T = O(ε−4) in standard nonconvex setting.

At each iteration, Algorithm 2 then uses SGD-algorithm with respect to ξ to update xt iteratively.
For simplicity, in the following article, we use the simplified notation ĝBt to denote expression (13)
when the dependence on xt, ζ and ξB is clear from the context.

Next, we analyze the convergence of Algorithm 2. We first study the smoothness property of
the objective function Eζ∼P

[
Ψζ(x)

]
. We note that the bi-variate function Eζ∼P

[
Lζ(x, η)

]
has been
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Algorithm 2 Nested SGD for optimizing x

Input: Initialization x0; number of iteration T ; learning rate γt; batch size B.
while t < T do

Draw samples ζ ∼ P and
{
ξ
}
B
∼ ν with batch size B independently.

Apply Algorithm 1 to compute estimator ηd̃x(ζ).
Compute ĝBt via (13).
Update xt+1 = xt − γtĝ

B
t .

end while
Output: xt̃, where t̃ sampled uniformly from

{
0, . . . , T − 1

}
.

shown to satisfy a generalized-smooth condition (Zhang et al., 2020; Chen et al., 2023c). However,
if η is chosen to be the minimizer η∗x(ζ), we show that the objective function satisfies the following
directional smoothness property (Mishkin et al., 2024) (See Appendix K for proof details).

Lemma 4 (Directional Smoothness) Let Assumption 1 hold. For any x and x′, we have

Eζ∼P
∥∥∇Ψζ(x)−∇1Lζ(x

′, η∗x(ζ))
∥∥2 ≤ K2

∥∥x− x′
∥∥2, where K = G2(λβ)−1M + L. (15)

Recall that ηd̃x(ζ) is inexact estimation of η∗x(ζ) obtained from Algorithm 1. To analyze conver-
gence of Algorithm 2, we obtain the upper bound of the second moment for ĝBt , which is stated in
next lemma (See Appendix L for proof details).

Lemma 5 (Second moment bound of ĝBt ) The second moment of the mini-batch gradient estima-
tor ĝBt with batch size B defined in (13) is upper bounded as follows

E
ζ∼P,ηd̃x(ζ),ξB∼ν

∥∥ĝBt ∥∥2 ≤ R1 + 10ε2

B
+
∥∥∇1Eζ∼P,ηd̃x(ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]∥∥2, (16)

where R1 = 8G2 + 24G2M2(λβ)−2σ2 + 24G2M2β−2δ2.

Based on the above lemma, we obtain the following convergence result of Nested-SGD for
minimizing Eζ∼P[Ψζ(x)] (See Appendix M for proof details).

Theorem 4 (Convergence of Algorithm 2) Let Assumptions 1 and 2 hold. Denote ∆ = Eζ∼P
[
Ψζ(x0)

]
−

infx Eζ∼P
[
Ψζ(x)

]
, apply Algorithm 2 to solve the outer objective in (3) using a constant learning

rate γt = γ = min{ 1
24K , ε2

2KR1
}, and set the batch size B = 1. At each iteration, query Algorithm

1 to obtain an estimator ηd̃x(ζ) for sampled ζ. Then, the output xt̃ of Algorithm 2 satisfies

Ext̃

∥∥∇Eζ∼P
[
Ψζ(xxt̃

)
]∥∥2 ≤ 7ε2, (17)

after T ≥ max{96∆Kε−2, 8∆KR1ε
−4} = O(∆KR1ε

−4) number of iterations.

This theorem indicates Algorithm 2 takes O(ε−4) iterations to obtain an O(ε)-stationary point,
which implies the inexact minimizer ηd̃x(ζ) has minor effects on the worst-case sample complexity
of Algorithm 2 for solving proposed Sinkhorn DRO dual formulation (3). Next, we summarize the
overall sample and iteration complexity, as well as the per-iteration sample and memory complexi-
ties of Algorithms 1 and 2 (See Appendix N for proof details).
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Corollary 5 (Complexity Bound for minx Eζ∼P[Ψζ(x)]) Let Assumptions 1 and 2 hold. Then, the
Nested-SGD algorithm (Algorithm 2) returns an ε-stationary point with a total sample complexity
of O(ε−8) for sampling ξ and ζ. Furthermore, by setting the batch sizes B, B̃ ∼ Θ(ε−2), the total
iteration complexity becomes T×D ∼ O(ε−4). At each iteration, Algorithms 1 and 2 incur memory
complexities of O(1) and O(d), respectively.

Compared with existing stochastic bilevel methods—e.g., Hu et al. (2023); Kwon et al. (2023);
Chen et al. (2023a); Huang (2023)—that study bilevel optimization framework, our nested-SGD
Algorithm 2 attains a moderate overall sample-complexity bound. However, the tighter bounds in
those works highly rely on additional regularity assumptions that are incompatible with proposed
dual formulation (3). Specifically, Hu et al. (2023) establish a sample complexity of Õ(ε−6) for
mini-batch SGD under a strongly convex lower-level problem. Huang (2023); Chen et al. (2023b)
obtain sample complexity of Õ(ε−4) and Õ(ε−6), respectively, by assuming the lower-level objec-
tive satisfies the Polyak–Łojasiewicz (PL) condition. Finally, Chen et al. (2023a); Kwon et al. (2023)
report sample complexity of O(ε−4) and O(ε−7) for (i) a jointly convex upper–lower structure and
(ii) a non-convex setting satisfying small-error proximal error-bound (EB) condition. Except Hu
et al. (2023), none of these studies incorporate an in-context variable in the lower-level problem.
Later through numerical experiments in section 7, We show that Algorithm 2 enables proposed dual
formulation (3) to achieve performance comparable to that of Wang et al. (2023), while requiring
only a small number of queries to ζ and ξ under the same iteration budget T and a small inner-loop
depth D. Moreover, it remains scalable to large-scale problems, such as training robust deep neural
networks under distribution shifts.

6.3 Proof Sketch of Theorem 4

Based on directional smooth property stated in Lemma 4, we obtain the similar descent lemma
as L-smooth function along the direction xt+1 − xt when η∗xt

(ζ) is fixed (See (57) in Appendix
M.1). By replacing xt+1 − xt with biased gradient estimator, ĝt, one can obtain

Eζ∼P
[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Ψζ(xt)

]
− γt⟨∇Eζ∼P

[
Ψζ(xt)

]
, ĝt⟩+

Kγ2t
2

∥∥ĝt∥∥2.
When ĝBt is used, it induces randomness from xt, ζ,

{
ξ
}
B̃

and ηd̃x(ζ). Taking expectation condi-

tioned on xt over ζ, ηd̃x(ζ),
{
ξ
}
B

on both sides of above inequality, we have

E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt+1)|xt

]
≤ E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
⟨∇Eζ∼P

[
Ψζ(xt)

]
, γtĝ

B
t ⟩|xt

]
+ E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[Kγ2t
2

∥∥ĝBt ∥∥2|xt]︸ ︷︷ ︸
second moment

.

For upper bounding term “second moment”, one can utilize (16) stated in Lemma 5, which leads to

E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt+1)|xt

]
≤ E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
+

Kγ2t (R1 + 10ε2)

2

−E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[ 〈
∇Eζ∼P

[
Ψζ(xt)

]
, γtĝ

B
t

〉
|xt

]
︸ ︷︷ ︸

Term 1

+
Kγ2t
2

∥∥∇E
ζ∼P,ηd̃xt (ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]∥∥2︸ ︷︷ ︸
Term 2
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For “Term 1”, we expand this term as −E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
γt⟨∇Eζ∼P[Ψζ(xt)], ĝ

B
t − gBt + gBt ⟩|xt

]
.

Since ∇Eζ∼PΨ(xt) is independent from randomness induced by ξB and ηd̃xt
(ζ), we move expecta-

tion over ξB ∼ ν and ηd̃xt
(ζ) into inner product. For −Eζ∼P

[
γt⟨∇Eζ∼P[Ψζ(xt)],Eηd̃xt (ζ),ξB∼ν

[ĝBt −
gBt ]⟩|xt

]
, we first apply Cauchy-Scharwarz inequality and then use condition (7) stated in Theorem 2

to obtain upper bound γtεExt

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥. For −E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
γt⟨∇Eζ∼P[Ψζ(xt)], g

B
t ⟩|xt

]
,

it is equivalent to rewrite as −γt∥∇Eζ∼P[Ψζ(xt)]∥2.
Similarly, For “Term2”, by plus and minus an additional term ∇Eζ∼P[Ψζ(xt)] in squared norm,

utilizing inequality (a + b)2 ≤ 2a2 + 2b2 and condition (8) stated in Theorem 2, we can upper
bound “Term2” by Kγ2t ε

2 +Kγ2t ∥∇Eζ∼P[Ψζ(xt)]∥2. Re-arranging above inequality and applying
fact γt = γ = min{ 1

24K , ε2

2KR1
} < 1

2K , we have

γt
2
Ext

(∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2 − 2ε
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥)
≤ E

xt,ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)−Ψζ(xt+1)

]
+

KR1γ
2
t

2
+ 6Kε2γ2t .

Summing above inequality from 0 to T − 1, applying γt = γ = min{ 1
24K , ε2

2KR1
} and

T ≥ max{96∆Kε−2, 8∆KR1ε
−4}, we further conclude

Ext̃

[
∥∇Eζ∼P

[
Ψζ(xt̃)

]∥∥2] ≤ 4∆

Tγ
+

24Kε2γ2T

Tγ
+

2KR1γ
2T

Tγ
+

4ε2Tγ

Tγ
≤ 7ε2.

7 Experiments

In this section, we evaluate the performance of proposed Sinkhorn DRO dual formulation (3)
in comparison to other baselines, including (constrained) Sinkhorn DRO dual formulation (4) from
Wang et al. (2023), regularized f -divergence DRO from Jin et al. (2021); Duchi and Namkoong
(2020), and empirical risk minimization (Vapnik and Chervonenkis, 2015) under distribution shifts1.
To elaborate, we train logistic regression and LeNet (LeCun et al., 1998) for classification tasks on
real-world datasets, where we simulate distribution shifts by applying adversarial attacks on test
dataset. To align with assumption 1, for proposed Sinkhorn DRO dual formulation (3), we choose
f∗ to be the conjugate dual of the χ2-divergence, which satisfies the M -smoothness property. We
unify the training procedure across all formulations using vanilla SGD (Ghadimi and Lan, 2013),
implemented via PyTorch’s autograd toolbox (Paszke et al., 2019), without employing additional
heuristics such as random shuffling, learning rate scheduling, or weight decay. Test results are re-
ported using the model parameters obtained at the last epoch, rather than the uniform averaging
over iterates used in theoretical analysis. Additionally, for gradient estimator (13), we evaluate the
expression using the sampled ξ and ηd̃x(ζ) obtained from Algorithm 1 to reduce computational over-
head. To make a fair comparison between proposed Sinkhorn DRO dual formulation (3) and dual
formulation from Wang et al. (2023), we generate sample ξ following same distribution. Due to page
limitation, we refer readers to check Appendix B and C for more details on model initialization and
algorithm hyper-parameter settings. We also conduct linear regression experiment over synthetic
data and ablation studies of proposed Sinkhorn DRO dual formulation (3), where we present the

1. Code available at: https://github.com/ynyang94/GeneralSinkhorn-Regularized-DRO
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corresponding results in Appendix A, D respectively. All the previously mentioned experiments
were conducted on a PC computer with 32GB memory, 24 cores CPU running Python 3.8.

7.1 Logistic Regression on CIFAR-10

FGSM (Logistic) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵFGSM = 0.00 77.07% 77.00% 73.26% 75.27%
ϵFGSM = 0.01 65.60% 63.80% 60.73% 67.13%
ϵFGSM = 0.02 54.0% 46.07% 45.67% 58.13%

ℓ∞-PGD (Logistic) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵPGD = 0.01, iter = 20 66.93% 66.0% 62.2% 68.2%
ϵPGD = 0.02, iter = 20 57.93% 53.27% 51.0% 60.47%
ϵPGD = 0.03, iter = 20 45.47% 37.93% 38.07% 50.60%

Table 1: Test classification accuracy of logistic regression.

In this section, we apply the proposed Sinkhorn DRO dual formulation (3) and other baselines
on logistic regression over CIFAR-10 (Krizhevsky, 2009), and test the classification accuracy on
adversarial samples generated by the fast gradient sign method (FGSM) (Goodfellow et al., 2015)
and ℓ∞-PGD (Madry et al., 2018) attacks utilizing model parameters obtained at last epoch. Table
1 reports the test accuracy under different perturbation magnitudes, where Sinkhorn DRO1 refers
to formulations (4) from Wang et al. (2023) and Sinkhorn DRO2 refers to proposed Sinkhorn DRO
dual formulation (3). The corresponding test loss curves are plotted in Figure 2. We found that
when the test data are clean, the proposed Sinkhorn DRO dual formulation (3) achieves performance
comparable to other baselines. However, as attack level increases, the model obtained via proposed
Sinkhorn DRO formulation (3) is more robust than others, which demonstrates the advantage and
effectiveness of Sinkhorn DRO and proposed Nested SGD Algorithm 2.

7.2 LeNet Classification on MNIST

In this section, we apply proposed Sinkhorn DRO dual formulation (3) and other baselines to
train a LeNet (LeCun et al., 1998) over MNIST (Deng, 2012), and test the classification accuracy on
adversarial samples generated by FGSM (Goodfellow et al., 2015), ℓ∞, ℓ2-PGD (Madry et al., 2018)
and momentum iterative method (MIM) (Dong et al., 2018) attacks utilizing model parameters ob-
tained at last epoch. Table 2 reports the test accuracies under different perturbation magnitudes and
the corresponding test loss curves are plotted in Figure 3, 4, 5 and 6. Specially, we found f -DRO
is vulnerable against FGSM and PGD attacks. This might be due to the generalized-smoothness
property of f -DRO objective (Jin et al., 2021; Chen et al., 2023c), which makes it hard to optimize
using vanilla SGD. As for the proposed Sinkhorn DRO dual formulation (3), we find that it achieves
higher classification accuracy than the Sinkhorn DRO dual formulation (4) from Wang et al. (2023)
across most attack magnitudes, and exhibits a smaller drop in accuracy as the attack strength in-
creases. This demonstrates the effectiveness of our proposed Sinkhorn DRO dual formulation (3)
and supports the validity of our algorithmic analysis.
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FGSM (LeNet) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵFGSM = 0.00 95.89% 94.60% 95.50% 96.80%
ϵFGSM = 0.02 83.10% 60.30% 79.20% 89.80%
ϵFGSM = 0.05 52.50% 16.90% 40.0% 65.60%

PGD ℓ∞ (LeNet) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵPGD∞ = 0.01, iter = 20 91.50% 84.0% 90.80% 94.30%
ϵPGD∞ = 0.02, iter = 20 85.10% 62.30% 81.20% 91.30%
ϵPGD∞ = 0.05, iter = 20 46.60% 7.90% 34.30% 66.20%

PGD ℓ2 (LeNet) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵPGD2 = 0.5, iter = 30 87.10% 71.39% 85.30% 92.50%
ϵPGD2 = 0.8, iter = 30 74.20% 46.20% 73.50% 87.10%
ϵPGD2 = 1.2, iter = 30 55.50% 18.90% 51.40% 74.00%

MIM (LeNet) Sinkhorn DRO1 f-DRO ERM Sinkhorn DRO2

ϵMIM = 0.01, iter = 30 83.20% 42.50% 20.20% 80.60%
ϵMIM = 0.02, iter = 30 76.60% 31.90% 15.20% 76.20%
ϵMIM = 0.05, iter = 30 52.10% 10.60% 4.80% 57.99%

Table 2: Test classification accuracy of LeNet under different adversarial attack methods.

8 Conclusion

In this paper, we investigate generalized Sinkhorn distance-regularized distributionally robust
optimization. By deriving a new dual formulation with strong duality guarantee, we show that the
resultant Sinkhorn DRO problem has nested stochastic optimization structure, which enables us to
design a Nested SGD algorithm with convergence guarantee under mild assumptions. Numerical
studies demonstrate that our Sinkhorn DRO formulation is applicable to large-scale problems and
can attain stronger robustness against distribution shifts through multiple datasets and tasks.
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Appendix A. Regression over synthetic data

Through this section, we use synthetic training and test data. We generate the input samples
with 3k measurements and dimension d = 10 from a multivariate normal distribution, where the
mean vector and covariance matrix are 0.5e and 0.1I, respectively. Ground-truth model parameters
x∗ are sampled from N (0, 9e−2), and the corresponding output data ζoutput ∈ R3k×10 follows the
rule ζoutput = ζtrain ·x∗+ϵnoise, where ϵnoise ∼ N (0, 2.5e−2). For synthetic test data, we generate 500
measurements following the same way as training data, we normalize all the data, apply Gaussian
and Laplacian attack over test data to compare their performances. For primal parameters, we
initialize them as x0 ∼ N (x∗ + 5e−2, 1e−2). For dual variable η used in proposed Sinkhorn
DRO dual formulation (3) and f -DRO, we initialize them as η0 ∈ R3k ∼ N (5, 2.25), η0 = 0.8
respectively.
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We fine-tuned the hyper-parameters for all models. The detailed formulation and algorithm
settings are as follows. The loss function ℓ(.) is set to quadratic loss through all formulations. For
proposed Sinkhorn DRO dual formulation (3) and Sinkhorn DRO dual formulation (4) from Wang
et al. (2023), we set the reference measure ν as Gaussian measure following ξtrain ∼ N (ζtrain, 4e

−2)
for every ζ. The cost metric and f∗ are set as c(ζ, ξ) = ||ζ− ξ||22 and f∗(t) = 1

4(t+2)2+− 1, which
corresponds to the dual function of χ2-divergence. For regularization parameter λ and β used in
generalized Sinkhorn distance (see Definition 1), we set them as λ = 0.8, β = 1.0. We trained all
formulations using vanilla stochastic gradient descent (SGD) (Ghadimi and Lan, 2013). For f -DRO
and ERM, we set the learning rates as 5e−4, 1e−3 respectively, and we optimize primal and dual
variable of f -DRO in parallel following conclusion drawn from Jin et al. (2021). For Sinkhorn
DRO formulation (4) from Wang et al. (2023), we set the learning rate as 1e−3 and subsample ξB̃
with B̃ = 8 at each iteration. For proposed Sinkhorn DRO formulation (3), we subsample ξB̃ with
B̃ = 8, run algorithm 1 with 5 steps to minimize (5) at each iteration, and set the learning rates for
algorithm 2 and 1 as 5e−2, 8e−2 respectively. For all algorithms (except inner SGD algorithm 1),
we set batch size for sub-sampled ζ as 32 and ran SGD for 80 epochs. Figure 1 plots the training
and test loss according to recorded checkpoints every 8 epochs.

We evaluate our proposed Sinkhorn DRO dual formulation (3), f -DRO and ERM on regression
task over synthetic data. We plot test (quadratic) loss on the test data in log-log scale at Figure
1, where the left shows the loss value obtained from the test data under gaussian attack; the right
shows loss value obtained from the test data under Laplacian attack. SDRO1 refers to the Sinkhorn
DRO dual formulation from Wang et al. (2023) and SDRO2 refers to proposed Sinkhorn DRO dual
formulation (3). Different marks represent different perturbation magnitudes p. As we can see, our
proposed Sinkhorn DRO dual formulation (3) attains comparable performance under distribution
shifts with Sinkhorn DRO dual formulation from (Wang et al., 2023). Additionally, we found f -
DRO difficult to optimize using SGD with sample-average approximation. This observation is
consistent with the findings of Jin et al. (2021); Chen et al. (2023c), where the f -DRO formulation
satisfies a generalized smoothness condition and requires advanced optimization algorithms (Zhang
et al., 2025; Cutkosky and Mehta, 2020) to ensure convergence.

(a) Gaussian attack (b) Laplacian attack

Figure 1: Test performance of linear regression under Gaussian and Laplacian attack.
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Appendix B. Detailed settings for training logistic regression over compressed
CIFAR-10

Through this section, we use CIFAR-10 (Krizhevsky, 2009) as our train and test data. We pre-
process the dataset by resizing images, normalizing and utilizing pre-trained ResNet-50 (He et al.,
2016) over ImageNet (Deng et al., 2009) to compress each image into a vector with feature dimen-
sion d = 250. For test data, we subsampled 1500 samples from compressed CIFAR-10 test data,
generating adversarial examples utilizing model parameters obtained at last epoch to evaluate test
performances through all methods. For proposed Sinkhorn DRO dual formulation (3), we initial-
ize the primal and dual parameters as x0 ∼ N (0, 4e−2), η0 ∈ R50k ∼ N (1, 1e−2) respectively.
For Sinkhorn DRO dual formulation from Wang et al. (2023), f -DRO and ERM, we adopt same
initialization for primal parameters and set the dual variable η for f -DRO as η0 = 1.5.

(a) ϵFGSM = 0.00 (b) ϵFGSM = 0.01 (c) ϵFGSM = 0.02

(d) ϵPGD = 0.01 (e) ϵPGD = 0.02 (f) ϵPGD = 0.03

Figure 2: Logistic Regression Test Loss under FGSM (top) and PGD (bottom) attack

We fine-tuned all hyper-parameters for each baseline methods. The detailed formulation and
algorithm setting are as follows. The loss function ℓ(.) is set to cross-entropy (CE) loss through
all formulations. For proposed Sinkhorn DRO dual formulation (3) and formulation (4) from Wang
et al. (2023), we set reference measure ν as Gaussian measure following ξtrain ∼ N (ζtrain, 4e

−2) and
keep c(·, ·), f∗(·) to be ℓ2-norm and conjugate dual of χ2-divergence. We trained all formulations
using vanilla stochastic gradient descent (SGD) (Ghadimi and Lan, 2013). For f -DRO and ERM,
we set their learning rates as 8e−2, 3e−2 respectively, and we optimize the primal and dual variable
of f -DRO in parallel following conclusion drawn from Jin et al. (2021). For Sinkhorn DRO dual
formulation (4) from Wang et al. (2023), we subsample ξB̃ with B̃ = 2 and set learning rate as
8e−2. For proposed Sinkhorn DRO dual formulation (3), we also subsample ξB̃ with B̃ = 2, run
algorithm 1 with 5 steps to minimize inner objective (5) at each iteration and we set the learning rates
for algorithm 2 and 1 as 8e−2,1e−1 respectively. For all SGD algorithms (except inner Algorithm
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1), we set batch size for sub-sampled ζ as 64, ran algorithms for 80 epochs and plot the test CE loss
every 10 epochs. Figure 2 plots the test loss in log-log scale, where the first row represents the CE
loss of test data under FGSM attack and the second row plots the CE loss of test data under ℓ∞-PGD
(Madry et al., 2018), where we set ℓ∞-PGD attack iterations to be 20 and step size α = ϵPGD/4
through all perturbation magnitudes.

Combined test accuracy reported in Table 2, although every model’s accuracy is affected when
varying perturbation, we found our proposed Sinkhorn DRO dual formulation (3) achieves highest
test classification accuracies across most scenarios, and exhibits smallest accuracy drop the attack
strength increases, which demonstrates the effectiveness of proposed Sinkhorn formulation (3) and
Nested-SGD algorithm (Algorithm 2).

Appendix C. Detailed settings for training LeNet over MNIST data

Through this section, we use MNIST (Deng, 2012) as our train and test data. We preprocess
them by resizing images into 32×32, normalizing them with mean and standard derivation, all equal
to 0.5. For the test data, we randomly subsampled 1000 samples from MNIST test data, and gen-
erate adversarial test samples utilizing model parameters obtained at the last epoch. For proposed
Sinkhorn DRO dual formulation (3) and other baseline methods, we initialize the primal param-
eters using kaiming initialization (He et al., 2015). For the dual parameters utilized in proposed
Sinkhorn DRO dual formulation (3) and f -DRO, we initialize them as η0 ∈ R60k ∼ N (0.5, 1e−2)
and η0 = 1.0 respectively.

(a) ϵFGSM = 0.00 (b) ϵFGSM = 0.02 (c) ϵFGSM = 0.05

Figure 3: Test loss curves of LeNet under FGSM attacks with different perturbation levels.

(a) ϵPGD = 0.01 (b) ϵPGD = 0.02 (c) ϵPGD = 0.05

Figure 4: Test loss curves of LeNet under ℓ∞-PGD attacks with different perturbation levels.
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We fine-tuned all hyper-parameters for each method. The detailed formulation and algorithm
settings are as follows. The loss function ℓ(.) is set to cross-entropy (CE) loss through all formu-
lations. For proposed Sinkhorn DRO dual formulation (3) and formulation (4) from Wang et al.
(2023), we set their reference measure ν as Gaussian measure following ξtrain ∼ N (ζtrain, 2.25e

−2)
and keep c(·, ·), f∗(·) to be ℓ2-norm, conjugate dual of χ2-divergence. For regularization param-
eter λ, β used in objective formulation and Sinkhorn distance, we set them as λ = 0.5, β = 0.8
respectively. We trained all formulations using vanilla stochastic gradient descent (SGD) (Ghadimi
and Lan, 2013). For f -DRO and ERM, we set their learning rate to be 1e−3, optimize primal and
dual variables of f in parallel according to conclusion drawn from Jin et al. (2021). For Sinkhorn
DRO dual formulation (4) from Wang et al. (2023), we subsample ξB̃ with B̃ = 5 and set learning
rate as 1e−3. For proposed Sinkhorn DRO dual formulation (3), we subsample ξB̃ with B̃ = 4, run
algorithm 1 with 20 steps for minimizing inner objective (5), and set the learning rates for algorithm
2 and 1 as 5e−3 and1e−1 respectively. We set the batch size for sub-sampled ζ as 128 and ran SGD
for 100 epochs and record the loss every 10 epochs.

(a) ϵPGD2 = 0.5 (b) ϵPGD2 = 0.8 (c) ϵPGD2 = 1.2

Figure 5: Test loss curves of LeNet under ℓ2-PGD attacks with different perturbation levels.

(a) ϵMIM = 0.01 (b) ϵMIM = 0.02 (c) ϵMIM = 0.05

Figure 6: Test loss curves of LeNet under MIM attacks with different perturbation levels.

Figure 3, 4, 5 and 6 plot the test loss in log-log scale, where the first to last row represents test
CE-loss under FGSM, ℓ∞, ℓ2-PGD attack (Madry et al., 2018) and MIM attack (Dong et al., 2018)
respectively. For ℓ∞, ℓ2-PGD attack, we set their learning rates as αPGD∞ = ϵPGD∞/10, αPGD2 =
ϵPGD2/10; For MIM attack, we set the moving-average parameter 1.0 and its learning rate αmim =
ϵmim/15. From above results, we conclude Sinkhorn DRO dual formulation in general is more robust
against distribution shifts. Compared with Sinkhorn DRO dual formulation (4), our method attains
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smaller accuracy drop and better classification accuracy in most scenarios, which demonstrates the
effectiveness of proposed Sinkhorn DRO dual formulation (3) and its convergence analysis.

Appendix D. Ablation Study

In this section, we conduct ablation studies for our proposed Sinkhorn DRO dual formulation (3)
over linear and logistic regression, where we focus on components of (3) having potential effects of
model robustness performance, including regularization parameter λ, the cost metric c(·, ·) and the
choices of information divergence conjugate dual f∗(·). For linear regression, we slightly modify
the training data generation and model initialization procedures as follows. The optimal model
parameters x∗ are sampled from N (0, 2.25e−2), and the corresponding output training data are
generated according to ζoutput = ζtrain · x∗ + ϵnoise, where ϵnoise ∼ N (0, 1e−2). In addition to
normalizing the training and test data as described in Appendix A, we also normalize the initial
parameters after sampling them from x0 ∼ N (x∗, 1). We apply gaussian attack on subsampled test
dataset to evaluate the robust performance of linear regression trained by proposed Sinkhorn DRO
dual formulation (3). For logistic regression, we adopt the same setup as described in Appendix B,
except that we increase the iteration number of Algorithm 1 from 5 to 8. And we vary FGSM attack
(Goodfellow et al., 2015) strength ϵfgsm over subsampled test data to evaluate the robust performance
of logistic regression trained via proposed Sinkhorn DRO dual formulation (3).

D.0.1 EFFECTS OF REGULARIZATION λ

In this section, we vary λ over the set {0.01, 0.1, 1.0, 10}. We fine-tune the learning rates for
algorithm 2 and algorithm 1 to be 1e−2 and 1e−1, respectively, for all models. Figure 7 (left)
plots the test (quadratic) loss for linear regression under different gaussian attack levels, where
the numbers in the legend indicate the corresponding value of λ. We observe that using a smaller
regularization parameter improves the model’s robustness against distributional shifts. In particular,
when λ = 0.01, the green curves exhibit smaller shifts relative to others, which aligns with classical
insights on the effect of regularization (Bishop, 2006). However, from optimization perspective,
a small λ makes the proposed dual formulation (3) more difficult to train with promising accuracy
guarantee. We also conduct the same experiments for logistic regression, where the learning rates of

(a) linear regression (b) logistic regression

Figure 7: Effects of Regularization λ
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algorithm 2 and algorithm 1 are fine-tuned to 8e−2 and 1e−1, respectively. Figure 7 (right) plots the
test loss curves for logistic regression under different FGSM attack levels. We observe that when
λ = 0.01 or 10, the proposed dual formulation (3) fails to train a valid model, with the resulting
classification accuracies dropping below 10%. In contrast, for λ = 0.1 and 1.0, the test losses
converge to similar scales across different attack levels. These results suggest that a proper choice
of the regularization parameter lies in the range around [0.1, 1.0].

D.0.2 EFFECTS OF COST METRIC c(·, ·)

(a) linear regression (b) logistic regression

Figure 8: Effects of cost metric c(·, ·)

In this section, we vary the cost metric c(·, ·) among the {ℓ1, ℓ2, ℓ∞}-norms to examine the
impact of cost metric choices. Specifically, for the ℓ2-norm, we set c(ζ, ξ) = ∥ζ − ξ∥2; for the
ℓ1-norm, we set c(ζ, ξ) = 0.2 · |ζ − ξ|1; and for the ℓ∞-norm, we set c(ζ, ξ) = 2 · ∥ζ − ξ∥∞. To
ensure a fair comparison, we fix the regularization parameter at λ = 0.8 and retain the same learning
rates for Algorithm 2 and Algorithm 1 as used in Section D.0.1. Figure 8 (left) plots the test loss
for linear regression trained with different cost metrics under the proposed dual formulation (3).
As shown in the figure, the choice of cost metric has a marginal effect on linear regression, as the
test curves across different norms are nearly indistinguishable. However, for logistic regression, we
observe that using the ℓ1-norm makes the proposed dual formulation (3) less effective in learning
a robust model compared to the ℓ2 and ℓ∞ norms. This suggests that ℓ2 and ℓ∞ norms are more
reliable choices for c(·, ·) in practice.

D.0.3 EFFECTS OF CHOICES OF f∗

In this section, we test the effects of conjugate functions f∗(·). We select three classical di-
vergence measures, including χ2-divergence, KL-divergence and smoothed CVaR divergence (Jin
et al., 2021). To elaborate, we list the primal and conjugate dual expressions in following Table 3.

For the linear regression task, we vary the conjugate functions corresponding to different infor-
mation divergences, while keeping the same learning rates for Algorithm 2 and Algorithm 1 as in
Section D.0.1, and fix the regularization parameter at λ = 0.8. Specifically, for conjugate dual of
smoothed-CVaR, we set α = 0.5. Figure 9 (left) plots the test loss for linear regression trained us-
ing the proposed dual formulation (3). We observe that using the conjugate dual of KL-divergence
hinders fast convergence compared with other f∗ satisfying M -smoothness property. However, the
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Table 3: Primal and dual expressions for different divergence measures

Divergence f(t) f∗(t)

χ2 1
2(t− 1)2 −1 + 1

4(t+ 2)2+

KL t log t− t+ 1 exp(t)− 1

smoothed CVaR f smo
α (t) =

{
t log t+ 1−αt

α log 1−αt
1−α , t ∈ [0, 1/α)

+∞, otherwise
1
α log(1− α+ α exp(t))

test accuracy evaluated at last epoch reachs same level under the existence of gaussian attack. For

(a) linear regression (b) logistic regression

Figure 9: Effects of conjugate function f∗

logistic regression, we observe that the robust performance achieved using the conjugate dual of the
KL-divergence is comparable to that obtained with a conjugate dual f∗ satisfying the M -smoothness
property. The performance gap across different models may be attributed to the sensitivity of the
KL-divergence to model initialization, as the local M -smooth constant can vary depending on the
starting point. Nevertheless, empirical results on both linear and logistic regression suggest that en-
forcing the M -smoothness assumption does not hinder practical applicability. As long as the model
is not initialized in an ill-conditioned region, choosing f∗ as the conjugate dual of the KL-divergence
yields similar convergence, supporting the practical validity of the M -smoothness assumption.

Appendix E. Proof of Theorem 1

Theorem 1 (Dual formulation) The DRO problem (2) has the following equivalent dual formula-
tion

min
x∈Rd

Eζ∼P[Ψζ(x)], where Ψζ(x) = min
η∈R

Eξ∼ν

[
λβf∗(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)
+ η

]
︸ ︷︷ ︸

Lξ,ζ(x,η)

, (3)

and f∗ denotes the conjugate function of f .
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Proof Merging the infimum operator infγ∈Γ(P,Q) with the supremum operator supQ in (2), we obtain
the following equivalent form.

min
x∈Rd

sup
Q,γ∈Γ(P,Q)

{
Eξ∼Q

[
ℓ(x; ξ)

]
−
[
E(ζ,ξ)∼γ

[
λc(ζ, ξ)

]
+ λβDf (γ|P⊗ ν)

]}
. (18)

Regarding the joint distribution γ(ζ, ξ), we decompose it as γ(ζ, ξ) = γ(ξ|ζ)P(ζ), where P(ζ)
denotes the marginal distribution and γ(ξ|ζ) corresponds to the conditional distribution given ζ.
Then, the constraint γ ∈ Γ(P,Q) is equivalent to Eζ∼P

[
γ(ξ|ζ)

]
= Q, and hence (18) reduces to

min
x∈Rd

sup
Q s.t. Eζ∼P

[
γ(ξ|ζ)

]
=Q

{
Eζ∼P

[
Eξ∼γ(·|ζ)

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λβDf

(
γ(ξ|ζ)|ν(ξ)

)]}
. (19)

We claim that the optimal value of (19) equals that of the following problem, which takes supremum
over all possible conditional distributions γ(ξ|ζ).

min
x∈Rd

sup
γ(ξ|ζ)

{
Eζ∼P

[
Eξ∼γ(·|ζ)

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λβDf

(
γ(ξ|ζ)|ν(ξ)

)]}
. (20)

To show this, for any fixed x, suppose the supremum of (19) is achieved by a certain conditional
distribution γ(ξ|ζ) that satisfies Eζ∼P

[
γ(ξ|ζ)

]
= Q, and such γ(ξ|ζ) is feasible for the supremum

of (20). Thus, the supremum of (19) is lower than the supremum of (20). On the other hand, for any
fixed x, suppose the supremum of (20) is achieved by a certain conditional distribution γ(ξ|ζ). Then,
the distribution Q given by Q = Eζ∼P

[
γ(ξ|ζ)

]
is feasible for the supremum of (19). Consequently,

the supremum of (19) is higher than that of (20). In summary, (19) and (20) are equivalent.
Furthermore, by principle of interchangeability (Theorem 7.92, Chapter 7.3.2 from Shapiro et al.

(2021)), (20) can be rewritten as

min
x∈Rd

Eζ∼P

[
sup
γ(ξ|ζ)

{
Eξ∼γ(·|ζ)

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λβDf

(
γ(ξ|ζ)|ν(ξ)

)}
︸ ︷︷ ︸

Ψζ(x)

]
. (21)

Next, for every fixed ζ and x, denote µγ|ζ and µν as the distributions of the scalar random variable
ℓ(x; ξ) − λc(ζ, ξ) under γ(ξ|ζ) and ν(ξ), respectively. we show that the Ψζ(x) defined above is
equivalent to the following auxiliary function

Ψ̃ζ(x) = sup
µγ|ζ

{
Eµγ|ζ

[
ℓ(x; ξ)− λc(ζ, ξ)

]
− λβDf (µγ|ζ |µν)

}
, (22)

where supµγ|ζ
corresponds to the supremum over all possible distributions µγ|ζ induced by γ(ξ|ζ).

To show this, for any fixed x, suppose the supremum in Ψζ(x) is achieved by a certain γ(ξ|ζ), and
denote the induced distribution of ℓ(x; ξ)− λc(ζ, ξ) as µγ|ζ . It is straightforward to show that

Eξ∼γ(.|ζ)
[
ℓ(x; ξ)− λc(ζ, ξ)

]
= Eµγ|ζ

[
ℓ(x; ξ)− λc(ζ, ξ)

]
.
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Moreover, by the data processing inequality, it holds that Df

(
µγ|ζ |µν

)
≤ Df

(
γ(ξ|ζ)|ν(ξ)

)
. Since

µγ|ζ is feasible for the supremum of (22), we conclude that Ψζ(x) ≤ Ψ̃ζ(x). Conversely, for
any fixed x, suppose the supremum in Ψ̃ζ(x) is achieved by a certain µγ|ζ , then the corresponding
γ(ζ|ξ) (which induces µγ|ζ) is feasible for the supremum in Ψζ(x), and hence we have that Ψ̃ζ(x) ≤
Ψζ(x). Finally, we conclude that Ψζ(x) = Ψ̃ζ(x).

Using inverse c.d.f. sampling based on the cumulative distribution function over µν , the f -
divergence between µγ|ζ and µν can be rewritten as

Df (µγ|ζ |µν) =

∫
f
(dµγ|ζ

dµν

)
dµν =

∫
f
( dµ′

dUnif([0, 1])

)
dUnif([0, 1]) = Df

(
µ′ | Unif([0, 1])

)
,

where Unif([0, 1]) represents the uniform distribution over [0, 1], µ′ = µ−1
ν ◦ µγ|ζ . Moreover, for

fixed x and ζ, denote the cumulative distribution function of the scalar random variable ℓ(x; ξ) −
λc(ζ, ξ) as F (t) = P

(
ℓ(x; ξ)− λc(ζ, ξ) ≤ t

)
. We can further transform Ψζ(x) into

Ψζ(x) = sup
µ′

{
EF−1(u)∼µ′

[
F−1(u)

]
− λβDf

(
µ′|Unif([0, 1])

)}
(23)

= sup
µ′

∫
F−1(u)dµ′(u)− λβ

∫
f
( dµ′(u)

dUnif([0, 1])(u)

)
dUnif([0, 1])(u) (24)

= sup
µ′

∫ (
F−1(u)

dµ′(u)

dUnif([0, 1])(u)
− λβf

( dµ′(u)

dUnif([0, 1])(u)

))
dUnif([0, 1])(u) (25)

= sup
r∈R

∫ 1

0

[
r(u)F−1(u)− λβf(r(u))

]
du, (26)

where r(u) = dµ′

dUnif(u) and R = {r : [0, 1] → R+ |
∫ 1
0 r(u)du = 1}. Introduce a dual variable η

for the constraint R, the Lagrange dual formulation of (26) can be written as

Ψζ(x) = min
η∈R

Lζ(x, η), where (27)

Lζ(x, η) = sup
r

∫ 1

0

[
r(u)F−1(u)− η(r(u)− 1)− λβf

(
r(u)

)]
du. (28)

Since for fixed η, Lζ(x, η) can be denoted as supr Eu∼Unif[0,1]
[
ϑη(r(u), u)

]
, where ϑη(r(u), u) =

r(u)F−1(u)−η(r(u)−1)−λβf
(
r(u)

)
is a continuous function, by principle of interchangeability

stated in Theorem 7.92 (Shapiro et al., 2021), the order of sup and integral can be swapped, which
yields that

Ψζ(x) = min
η∈R

∫ 1

0
sup
r∈R+

[
rF−1(u)− η(r − 1)− λβf(r)

]
du︸ ︷︷ ︸

Lζ(x,η)

. (29)

Define the conjugate function f∗(v) = supr∈R+

{
vr − f(r)

}
, we further obtain that

Ψζ(x) = min
η∈R

∫ 1

0
λβf∗

(F−1(u)− η

λβ

)
du+ η = min

η∈R
Eξ∼ν

[
λβf∗

(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)]
+ η.

(30)
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Finally, the dual formulation of (21) is expressed as

min
x∈Rd

Eζ∼P

[
min
η∈R

Eξ∼ν

[
λβf∗

(ℓ(x; ξ)− λc(ζ, ξ)− η

λβ

)]
+ η︸ ︷︷ ︸

Ψζ(x)

]
,

which gives the desired result.

Appendix F. Proof of Lemma 1

Lemma 1 (Computation of ∇Ψζ(x) (Jin et al., 2021)) Let Assumption 1 hold and consider fixed
x and given ζ. Then, the function Ψζ(x) is differentiable and satisfies ∇Ψζ(x) = ∇1Lζ(x, η

∗
x(ζ)),

where η∗x(ζ) ∈ argminη Lζ(x, η).

Proof We refer to Lemma 2.6 in Jin et al. (2021) for the detailed proof.

Appendix G. Proof of Theorem 2

Theorem 2 (Gradient approximation error bound) Consider a stochastic algorithm minimizing
(5). If the stochastic oracle outputs an ηd̃x(ζ) converging to ∇2Lζ(xt, η

∗
x(ζ)) with scaled small

target error ε̃ = ε/G, i.e.,

E
ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 ≤ ε̃2, (6)

then the gradient ∇1Lζ(x, η
d̃
x(ζ)) approximates full gradient ∇Ψ(x) with error up to ε, i.e.,∥∥∇Ψζ(x)− E

ηd̃x(ζ)
[∇1Lζ(x, η

d̃
x(ζ))]

∥∥2≤ ε2,∀ζ ∼ P. (7)

Proof First, taking square root and applying Jensen’s inequality on both sides, (6) implies

E
ηd̃x(ζ)

|∇2Lζ(x, η
d̃
x(ζ))| ≤ ε̃. (31)

Since at η∗x(ζ), by optimality condition, ∇2Lζ(x, η
∗
x(ζ)) = 0, we have

E
ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣
=E

ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))−∇2Lζ(x, η

∗
x(ζ))

∣∣
=E

ηd̃x(ζ)

∣∣∣Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ζ, ξ)− ηd̃x(ζ)

λβ

)]
− Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ζ, ξ)− η∗x(ζ)

λβ

)]∣∣∣
≤ε̃. (32)
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Applying expression (32), for given x and every ζ, the approximation error between ∇Ψ(x) and
E
ηd̃x(ζ)

[∇1L(x, ηd̃x(ζ))] can be upper bounded as follows∥∥E
ηd̃x(ζ)

[∇1Lζ(x, η
d̃
x(ζ))]−∇Ψζ(x)

∥∥
=
∥∥E

ηd̃x(ζ)
[∇1Lζ(x, η

d̃
x(ζ))−∇Ψζ(x)]

∥∥
(i)

≤E
ηd̃x(ζ)

∥∥∇1Lζ(x, η
d̃
x(ζ))−∇Ψζ(x)

∥∥
=E

ηd̃x(ζ)

∥∥Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ)− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)
∇ℓ(x; ξ)

]∥∥
=E

ηd̃x(ζ)

∥∥Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)]
· ∇ℓ(x; ξ)

∥∥
(ii)

≤E
ηd̃x(ζ),ξ∼ν

∥∥[(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)]
· ∇ℓ(x; ξ)

∥∥
(iii)
= E

ηd̃x(ζ),ξ∼ν

∣∣[(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)]∣∣ · ∥∥∇ℓ(x; ξ)
∥∥

(iv)

≤ GE
ηd̃x(ζ),ξ∼ν

∥∥(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)∥∥
(v)
=GE

ηd̃x(ζ)

∥∥Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)]∥∥
=GE

ηd̃x(ζ)

∥∥∇2Lζ(x, η
d̃
x(ζ))−∇2Lζ(x, η

∗
x(ζ))

∥∥
(vi)

≤ Gε̃ = ε, (33)

where (i) applies Jensen’s inequality to extract out expectation over ηd̃x(ζ); (ii) applies Jensen’s
inequality to extract out expectation over ξ; (iii) extracts scalar

(f∗)′
(
ℓ(x;ξ)−λc(ζ,ξ)−ηd̃x(ζ)

λβ

)
− (f∗)′

(
ℓ(x;ξ)−λc(ζ,ξ)−η∗x(ζ)

λβ

)
out; (iv) applies G-Lipschitz assumption

of ℓ(x; ξ) stated at Assumption 1; (v) applies monotonicity property of (f∗)′ with regard to η given

x and fixed ζ (the sign of (f∗)′( ℓ(x;ξ)−λc(ζ,ξ)−ηd̃x(ζ)
λβ )− (f∗)′( ℓ(x;ξ)−λc(ζ,ξ)−η∗x(ζ)

λβ ) is fixed regardless
of ξ, which enables to move the expectation over ξ into the norm without changing its value); (vi)
applies condition (32). Squaring both sides and re-arranging LHS, we conclude that∥∥∇Ψζ(x)− E

ηd̃x(ζ)
[∇1Lζ(x, η

d̃
x(ζ))]

∥∥2≤ ε2,∀ζ ∼ P, (34)

which gives the desired result.

Appendix H. Proof of Lemma 2

Lemma 2 (K ′-smoothness of inner objective (5)) Let Assumption 1 hold and denote Lζ,ξ(x, η) =

λβEξ∼ν

[
f∗( ℓ(x;ξ)−c(ζ,ξ)−η

λβ )
]
+ η. Then, for any η and η′, we have

Eξ∼ν

∥∥∇2Lζ,ξ(x, η)−∇2Lζ,ξ(x, η
′)
∥∥2 ≤ (K ′)2

∥∥η − η′
∥∥2,
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where K ′ = M(λβ)−1.

Proof Notice that the gradient of Lζ,ξ(x, η) takes the form

∇2Lζ,ξ(x, η) = 1− Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ζ, ξ)− η

λβ

)]
.

Then, we obtain that

Eξ∼ν

∥∥∇2Lζ,ξ(x, η)−∇2Lζ,ξ(x, η
′)
∥∥2

=Eξ∼ν

∥∥(f∗)′
(ℓ(x; ξ)− c(ζ, ξ)− η

λβ

)
− (f∗)′

(ℓ(x; ξ)− c(ζ, ξ)− η′

λβ

)∥∥2
≤(M(λβ)−1)2

∥∥η − η′
∥∥2,

where the inequality is due to the M -smoothness assumption of f∗ stated in assumption 1.

Appendix I. Proof of Lemma 3

Through this work, we utilize the following proposition for variance computing.

Proposition 1 (Variance computing) Given two i.i.d. random variables X1 and X2, the variance
can be calculated as

2V ar(X1) = 2V ar(X2) = E
∥∥X1 −X2

∥∥2. (35)

Proof The proof simply extends from variance definition,

2V ar(X) =2E
∥∥X1 − X̄

∥∥2
=2E∥X1 − X̄∥2 + 2E(X1 − X̄)(X2 − X̄)

=E∥X1 − X̄∥2 + 2E(X1 − X̄)(X2 − X̄) + E∥X2 − X̄∥2

=E∥X1 − X̄∥2 + 2E(X1 − X̄)(X̄ −X2) + E∥X̄ −X2∥2

=E
∥∥X1 − X̄ + X̄ −X2

∥∥2
=E

∥∥X1 −X2

∥∥2,
where X̄ denotes the mean and we use the facts that (i) E∥X1 − X̄∥2 = E∥X2 − X̄∥2 = V ar(X);
(ii) E(X1 − X̄)(X2 − X̄) = 0 for i.i.d random variables.

Lemma 3 (Second moment bound for ∇2Lζ,ξ(x, η)) Let Assumption 2 hold. Then, vB̃(η) is the
unbiased estimator for ∇2Lζ(x, η), and the second moment of ∇2Lζ,ξ(x, η) satisfies

Eξ∼ν ∥∇2Lζ,ξ(x, η)∥2 ≤ R2 + ∥∇2Lζ(x, η)∥2 , (11)

where R2 = 2M2(λβ)−2(σ2 + λ2δ2).
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Proof Utilizing proposition 1, we have

V arξ
(
∇2Lζ,ξ(x, η)

)
=
1

2
Eξ1,ξ2

[
(f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− η

λβ

)
− (f∗)′

(ℓ (x; ξ2)− λc(ζ, ξ2)− η

λβ

)]2
≤1

2
M2(λβ)−2Eξ1,ξ2

∥∥ℓ(x; ξ1)− ℓ(x; ξ2)− (λc(ζ, ξ1)− λc(ζ, ξ2))
∥∥2

(i)

≤ 1

2
M2(λβ)−22 · (Eξ1,ξ2∥ℓ(x; ξ1)− ℓ(x; ξ2)∥2 + λ2Eξ1,ξ2∥c(ζ, ξ1)− c(ζ, ξ2)∥2)

(ii)

≤ 1

2
M2(λβ)−22(2V ar

(
ℓ(x; ξ)

)
+ 2V arξ

(
c(ζ, ξ))

)
(iii)

≤ 2M2(λβ)−2(σ2 + λ2δ2),

where (i) applies the fact that given any vectors a,b, we have ∥a− b∥2 ≤ 2∥a∥2+2∥b∥2, (ii) applies
proposition 1 and (iii) applies bounded variance assumptions 2 for ℓ(·, ξ) and c(ζ, ·).

Appendix J. Proof of Corollary 3

Corollary 1 (Convergence of Algorithm 1) Let Assumptions 1 and 2 hold, denote ∆̂ = supζ{Lζ(xt, η
0)

−Ψζ(xt)}. Apply Algorithm 1 to solve the inner problem (5) with learning rate αd = min{ 1
K′ ,

ε̃2

R2K′ }
and batch size B̃ = 1, then Algorithm 1 outputs an ηd̃x(ζ) satisfying

E
ηd̃x(ζ)

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 ≤ ε̃2. (12)

In particular, it takes D = O(∆̂K ′R2ε̃
−4) = O(∆̂K ′R2G

4ε−4) number of iterations to obtain an
ε̃-stationary point, and the stochastic gradient oracle complexity is O(∆̂K ′R2G

4ε−4).

Proof Notice that the objective function is K ′-smooth, we have

Lζ(xt, η
d+1
xt

(ζ))
(i)

≤ Lζ(xt, η
d
xt
(ζ))− ⟨∇2L(xt, ηdxt

(ζ)), ηdxt
(ζ)− ηd+1

xt
(ζ)⟩+ K ′

2
|ηd+1

xt
(ζ)− ηdxt

(ζ)|2

(ii)
= Lζ(xt, η

d
xt
(ζ))− ⟨∇2L(xt, ηdxt

(ζ)), αdv
B̃(ηdxt

(ζ))⟩+
K ′α2

d

2
|vB̃(ηdxt

(ζ))|
2
,

where (i) applies descent lemma for K ′-smooth function; (ii) applies update rule ηd+1
xt

(ζ) = ηdxt
(ζ)−

αdv
B̃(ηdxt

(ζ)). Taking expectation over ξ on both sides, we further obtain

EξB̃∼ν [Lζ(xt, η
d+1
xt

(ζ))]

≤ EξB̃∼ν [Lζ(xt, η
d
xt
(ζ))]− αdEξB̃∼ν |∇2Lζ(xt, η

d
xt
(ζ))|2 +

K ′α2
d

2
EξB̃∼ν |vB̃(ηdxt

(ζ))|2

(i)

≤ EξB̃∼ν [Lζ(xt, η
d
xt
(ζ))]− αdEξB̃∼ν |∇2Lζ(xt, η

d
xt
(ζ))|2 +

K ′R2α
2
d

2B̃
+

K ′α2
d

2
|∇2Lζ(xt, η

d
xt
(ζ))|2

= EξB̃∼ν [Lζ(xt, η
d
xt
(ζ))]− αd(1−

K ′αd

2
)EξB̃∼ν |∇2Lζ(xt, η

d
xt
(ζ))|2 +

K ′α2
dR2

2
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(ii)

≤ EξB̃∼ν [Lζ(xt, η
d
xt
(ζ))]− αd

2
EξB̃∼ν |∇2Lζ(xt, η

d
xt
(ζ))|2 +

K ′α2
dR2

2
(36)

where (i) utilizes second moment upper bound stated in Lemma 3; (ii) utilizes the fact αd ≤ 1
K′ and

B̃ = 1. Since Lζ(xt, η
d
xt
(ζ)) does not include randomness from ξ, re-organizing above inequality

gives

αd

2
|∇2Lζ(xt, η

d
xt
(ζ))|2 ≤ Eξ∼ν [Lζ(xt, η

d
xt
(ζ))− Lζ(xt+1, η

d
xt
(ζ))] +

K ′α2
dR2

2
(37)

Summing above equation through d ∈ {0....D − 1}, we have

αd

2D

D−1∑
d=0

|∇2Lζ(xt, η
d
xt
(ζ))|2 ≤ ∆̂

D
+

K ′α2
dR2

2
(38)

To make sure the RHS smaller than or equal to ε̃2, we need αd ≤ ε̃2

2K′R2
, and D ≥ 8̂∆K′R2

ε̃4
. Then,

applying average argument, above inequality implies for any d̃ uniformly sampled from {0, ....D−
1}, we have

E
ηd̃x(ζ)

|∇2Lζ(xt, η
d̃
x(ζ))|2 =

1

D

D−1∑
d=0

Eηdxt (ζ)
|∇2Lζ(xt, η

d
xt
(ζ))|2 ≤ ε̃2, (39)

which gives the desired result.

Appendix K. Proof of Lemma 4

Lemma 4 (Directional Smoothness) Let Assumption 1 hold. For any x and x′, we have

Eζ∼P
∥∥∇Ψζ(x)−∇1Lζ(x

′, η∗x(ζ))
∥∥2 ≤ K2

∥∥x− x′
∥∥2, where K = G2(λβ)−1M + L. (15)

Proof For any fixed ζ, define the following two quantities.

A = Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)
∇ℓ(x; ξ)− (f∗)′

(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)
∇ℓ(x′; ξ)

]
,

B = Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)
∇ℓ(x′; ξ)− (f∗)′

(ℓ(x′; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)
∇ℓ(x′; ξ)

]
.

It’s easy to show that A+ B = ∇Ψζ(x)−∇1Lζ(x
′, η∗x(ζ)). Our proof strategy is to bound A and

B separately and combine the bounds together to give the results.
We first proceed upper bound of A. Note that η∗x(ζ) ∈ argminη Lζ(x, η), and the first-order opti-
mality condition over η gives that

1− Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ξ; ζ))− η∗x(ζ)

λβ

)]
= 0. (40)
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Moreover, note that the derivative of the conjugate function f∗ satisfies (f∗)′(v) = r∗(v) =
argmaxr∈R+⟨r, v⟩ − f(r). Thus, we must have (f∗)′(v) ≥ 0, and the above equation further
implies that

Eξ∼ν

∣∣∣(f∗)′
(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)∣∣∣ = ∣∣∣Eξ∼ν

[
(f∗)′

(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)]∣∣∣ = 1.

(41)

Consequently, using L-smoothness of ℓ(x; ξ) and the equality (41), we conclude that∥∥A∥∥ ≤ LEξ

∣∣∣f∗′
(ℓ(x; ξ)− c(ξ; ζ)− η∗x(ζ)

λβ

)∣∣∣∥∥x− x′
∥∥ ≤ L

∥∥x− x′
∥∥. (42)

Next, we bound B. By G-Lipschitz continuity of ℓ(x; ξ) and M -smoothness of (f∗)′, we have∥∥B∥∥
≤Eξ

∥∥[(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)
− (f∗)′

(ℓ(x′; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)]
∇ℓ(x′; ξ)

∥∥
≤Eξ

∥∥(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)
− (f∗)′

(ℓ(x′; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)∥∥∥∥∇ℓ(x′; ξ)
∥∥

≤GEξ

∥∥(f∗)′
(ℓ(x; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)
− (f∗)′

(ℓ(x′; ξ)− λc(ζ, ξ)− η∗x(ζ)

λβ

)∥∥
≤GM(λβ)−1Eξ

∥∥ℓ(x; ξ)− ℓ(x′; ξ)
∥∥

≤(λβ)−1MG2
∥∥x− x′

∥∥. (43)

Combining (42) and (43), we obtain that∥∥∇Ψζ(x)−∇Lζ(x
′, η∗x(ζ))

∥∥ ≤
∥∥A∥∥+

∥∥B∥∥ ≤ (G2(λβ)−1M + L)
∥∥x− x′

∥∥.
Squaring both sides and taking expectation over ζ gives the claimed result.

Appendix L. Proof of Lemma 5

Lemma 5 (Second moment bound of ĝBt ) The second moment of the mini-batch gradient estima-
tor ĝBt with batch size B defined in (13) is upper bounded as follows

E
ζ∼P,ηd̃x(ζ),ξB∼ν

∥∥ĝBt ∥∥2 ≤ R1 + 10ε2

B
+
∥∥∇1Eζ∼P,ηd̃x(ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]∥∥2, (16)

where R1 = 8G2 + 24G2M2(λβ)−2σ2 + 24G2M2β−2δ2.

Proof Throughout, given x, η, we denote Lζ,ξ(x, η) = f∗( ℓ(x;ξ)−c(ζ,ξ)−η
λβ ) to simplify notation.

Notice that the outputs from Algorithm 1, d̃ also contains randomness, we use E
ηd̃x(ζ)

(·) to denote

expectation over ηd̃x(ζ) through the proof. Then, for E
ζ∼P,ξ∼ν,ηd̃x(ζ)

∥∥∇1Lζ,ξ(x, η
d̃
x(ζ)

∥∥2, we decom-
pose it as follows

E
(ζ∼P,ηd̃x(ζ)),ξ∼ν

∥∥∇1Lζ,ξ(x, η
d̃
x(ζ))

∥∥2
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=E
(ζ∼P,ηd̃x(ζ))

[
Eξ∼ν

∥∥∇1Lζ,ξ(x, η
d̃
x(ζ))

∥∥2]
(i)
=E

(ζ∼P,ηd̃x(ζ))
[
V arξ

(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)
+
∥∥∇1Lζ(x, η

d̃
x(ζ))

∥∥2]
=E

(ζ∼P,ηd̃x(ζ))
[
V arξ

(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)]
+ E

(ζ∼P,ηd̃x(ζ))

∥∥∇1Lζ(x, η
ηd̃x(ζ)
x (ζ))

∥∥2
(ii)
=E

(ζ∼P,ηd̃x(ζ))
[
V arξ

(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)]
+
[
V ar

(ζ,ηd̃x(ζ))

(
∇1Lζ(x, η

d̃
x(ζ))

)]
+
[∥∥∇1Eζ∼P,ηd̃x(ζ)

[
Lζ(x, η

d̃
x(ζ))

]∥∥2],
where (i) and (ii) apply equation E

[
ρ(ϖ)2

]
= V arϖ(ρ(ϖ)) + (E

[
ρ(ϖ)

]
)2, which holds for any

random variable ϖ and ρ(·) : Rd → R.
Next, we bound E

ζ∼P,ηd̃x(ζ)
[
V arξ

(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)]
and V ar

(ζ,ηd̃x(ζ))

(
∇1Lζ(x, η

d̃
x(ζ))

)
separately.

For V arξ
(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)
, we have

V arξ
(
∇1Lζ,ξ(x, η

d̃
x(ζ))

)
(i)
=
1

2
Eξ1,ξ2

∥∥(f∗)′
(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ1)

− (f∗)′
(ℓ(x; ξ2)− λc(ζ, ξ2)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ2)

∥∥2
=
1

2
Eξ1,ξ2

∥∥(f∗)′
(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ1)

− (f∗)′
(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ2)

+ (f∗)′
(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ2)

− (f∗)′
(ℓ(x; ξ2)− λc(ζ, ξ2)− ηd̃x(ζ)

λβ

)
∇ℓ(x; ξ2)

∥∥2
(ii)

≤Eξ1,ξ2

[
(f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)2∥∥∇ℓ(x; ξ1)−∇ℓ(x; ξ2)
∥∥2]

+ Eξ1,ξ2

[∥∥∇ℓ(x; ξ2)
∥∥2 · ((f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)
− (f∗)′

(ℓ(x; ξ2)− λc(ζ, ξ2)− ηd̃x(ζ)

λβ

))2]
(iii)

≤ 4G2Eξ1

[
(f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)2]
+G2M2(λβ)−2Eξ1,ξ2

[
ℓ(x; ξ1)− λc(ζ, ξ1)− ℓ(x; ξ2) + λc(ζ, ξ2)

]2
(iv)

≤ 4G2Eξ1

[
(f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)2]
+ 2G2M2(λβ)−2(2σ2 + 2λ2δ2), (44)

where (i) applies proposition 1; (ii) applies the fact (a+b)2 ≤ 2(a2+b2); (iii) applies the assumption
G-Lipschitz continuity of ℓ(x; ξ) function and M-smoothness of f∗; (iv) applies bounded variance
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assumption of ℓ(x, ξ) and c(ζ, ξ).

Applying inequality a2 ≤ 2(a − 1)2 + 2, the term in (44), Eξ1

[
(f∗)′

( ℓ(x;ξ1)−λc(ζ,ξ1)−ηd̃x(ζ)
λβ

)2] can
be further upper bounded as

Eξ1

[
(f∗)′

(ℓ(x; ξ1)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)2]
≤ 2 + 2Eξ1

[
1− (f∗)′

(ℓ(x; ξ)− λc(ζ, ξ1)− ηd̃x(ζ)

λβ

)]2
≤ 2

(
1 +

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 + V arξ
(
∇2Lζ,ξ(x, η

d̃
x(ζ))

))
. (45)

Since at ηd̃x(ζ), by (6) stated in Theorem 3, we conclude E
ηd̃x(ζ)

|∇2Lζ(x, η
d̃
x(ζ))|2 ≤ ε̃2 = ε2/G2.

Moreover, from lemma 3, we have

V arξ
(
∇2Lζ,ξ(x, η

d̃
x(ζ))

)
≤ 2M2(λβ)−2(σ2 + λ2δ2). (46)

Thus, combining inequalities (44) (45) (46), we have

E
ζ∼P,ηd̃x(ζ)

[
V arξ

(
∇1Lζ,ξ(x, η

d̃
x(ζ))

)]
≤E

ζ∼P,ηd̃x(ζ)
[
4G2 · 2(1 +

∣∣∇2Lζ(x, η
d̃
x(ζ))

∣∣2 + 2M2(λβ)−2(σ2 + λ2δ2))

+ 2G2M2(λβ)−2(2σ2 + 2λ2δ2)
]

≤8G2 + 8G2ε̃2 + 20G2M2(λβ)−2σ2 + 20G2M2β−2δ2

=8G2 + 8ε2 + 20G2M2(λβ)−2σ2 + 20G2M2β−2δ2. (47)

For V ar
(ζ,ηd̃xt (ζ))

(
∇1Lζ(x, η

d̃
x(ζ))

)
, we have

V ar
(ζ,ηd̃x(ζ))

(
∇1Lζ(x, η

d̃
x(ζ))

)
=
1

2
E
(ζ1,ηd̃x(ζ1)),(ζ2,η

d̃
x(ζ2))

∥∥Eξ

[(
(f∗)′

(ℓ(x; ξ)− λc(ζ1, ξ)− ηd̃x(ζ1)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ2, ξ)− ηd̃x(ζ2)

λβ

))
· ∇ℓ(x; ξ)

]∥∥2
(i)

≤ 1

2
E
(ζ1,ηd̃x(ζ1)),(ζ2,η

d̃
x(ζ2)),ξ

∥∥[(f∗)′
(ℓ(x; ξ)− λc(ζ1, ξ)− ηd̃x(ζ1)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ2, ξ)− ηd̃x(ζ2)

λβ

)]
· ∇ℓ(x; ξ)

∥∥2
(ii)
=

1

2
E
(ζ1,ηd̃x(ζ1)),(ζ2,η

d̃
x(ζ2)),ξ

|(f∗)′
(ℓ(x; ξ)− λc(ζ1, ξ)− ηd̃x(ζ1)

λβ

)
− (f∗)′

(ℓ(x; ξ)− λc(ζ2, ξ)− ηd̃x(ζ2)

λβ

)
|2
∥∥∇ℓ(x; ξ)

∥∥2
(iii)

≤ 1

2
G2E

(ζ1,ηd̃x(ζ1)),(ζ2,η
d̃
x(ζ2)),ξ

|(f∗)′
(ℓ(x; ξ)− λc(ζ1, ξ)− ηd̃x(ζ1)

λβ

)
− 1
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− (f∗)′
(ℓ(x; ξ)− λc(ζ2, ξ)− ηd̃x(ζ2)

λβ

)
+ 1|2

(iv)

≤ G2E
(ζ1,ηd̃x(ζ1)),(ζ2,η

d̃
x(ζ2))

(
Eξ|∇2Lζ1,ξ(x; η

d̃
x(ζ1))|2 + Eξ|∇2Lζ2,ξ(x; η

d̃
x(ζ2))|2

)
(v)
=G2E

(ζ1,ηd̃x(ζ1)),(ζ2,η
d̃
x(ζ2))

(
V arξ(∇2Lζ1,ξ(x; η

d̃
x(ζ1))) + |∇2Lζ1(x; η

d̃
x(ζ1))|2

+ V arξ(∇2Lζ2,ξ(x; η
d̃
x(ζ2))) + |∇2Lζ2(x; η

d̃
x(ζ2))|2

)
(vi)

≤ G2
(
4M2(λβ)−2(σ2 + λδ2) + E

ζ1,ηd̃x(ζ1)
|∇2Lζ2(x; η

d̃
x(ζ1))|2 + E

ζ2,ηd̃x(ζ2)
|∇2Lζ2(x; η

d̃
x(ζ2))|2

)
(vii)

≤ 4G2M2(λβ)−2(σ2 + λδ2) + 2G2ε̃2

=4G2M2(λβ)−2σ2 + 4G2M2β−2δ2 + 2ε2 (48)

where (i) applies Jensen’s inequality move expectation over ξ out squared-norm; (ii) extracts scalar

|(f∗)′
(
ℓ(x;ξ)−λc(ζ1,ξ)−ηd̃x(ζ)

λβ

)
− (f∗)′

(
ℓ(x;ξ)−λc(ζ2,ξ)−ηd̃x(ζ)

λβ

)
| out; (iii) applies G-Lipschitz assump-

tion of ℓ(·, ξ) stated at assumption 1. (iv) applies inequality (a + b)2 ≤ 2a2 + 2b2 to decouple
|∇2Lζ1,ξ(x; η

d̃
x(ζ1))| and |∇2Lζ2,ξ(x; η

d̃
x(ζ2))|; (v) applies equality E

[
ρ(ϖ)2

]
= V arϖ(ρ(ϖ)) +

(E
[
ρ(ϖ)

]
)2, which holds for any random variable ϖ and ρ(·) : Rd → R; (v) and (vi) apply

Lemma 3 to upper bound V arξ(∇2Lζ1,ξ(x; η
d̃
x(ζ1))), V arξ(∇2Lζ2,ξ(x; η

d̃
x(ζ2))); (vii) applies (6)

stated in Theorem 3 to upper bound E
ηd̃x(ζ1)

|∇2Lζ2(x; η
d̃
x(ζ1))|2 and E

ηd̃x(ζ2)
|∇2Lζ2(x; η

d̃
x(ζ2))|2 by

ε̃2 = ε2/G2.
Combining (47) (48), we have

E
ζ∼P,ηd̃x(ζ),ξ∼ν

∥∥∇1Lζ,ξ(x, η
d̃
x(ζ))

∥∥2
≤E

(ζ∼P,ηd̃x(ζ))
[
V arξ

(
∇1Lξ,ζ(x, η

d̃
x(ζ))

)]
+
[
V ar

(ζ,ηd̃x(ζ))

(
∇1Lζ(x, η

d̃
x(ζ))

)]
+
[∥∥∇1Eζ∼P,ηd̃x(ζ)

[
Lζ(x, η

d̃
x(ζ))

]∥∥2],
≤8G2 + 10ε2 + 24G2M2(λβ)−2σ2 + 24G2M2β−2δ2 +

∥∥∇1Eζ,ηd̃x(ζ)
L(x, ηd̃x(ζ))

∥∥2. (49)

For mini-batch stochastic gradient estimator (13), the RHS of (49) becomes

E
ζ∼P,ηd̃x(ζ),ξB∼ν

∥∥∇1Lζ,ξ(x, η
d̃
x(ζ))

∥∥2
≤8G2 + 24G2M2(λβ)−2σ2 + 24G2M2β−2δ2

B
+

10ε2

B
+
∥∥∇1Eζ,ηd̃x(ζ)

[L(x, ηd̃x(ζ))]
∥∥2,

which gives the desired result.

Appendix M. Proof of Theorem 4

Theorem 4 (Convergence of Algorithm 2) Let Assumptions 1 and 2 hold. Denote ∆ = Eζ∼P
[
Ψζ(x0)

]
−

infx Eζ∼P
[
Ψζ(x)

]
, apply Algorithm 2 to solve the outer objective in (3) using a constant learning
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rate γt = γ = min{ 1
24K , ε2

2KR1
}, and set the batch size B = 1. At each iteration, query Algorithm

1 to obtain an estimator ηd̃x(ζ) for sampled ζ. Then, the output xt̃ of Algorithm 2 satisfies

Ext̃

∥∥∇Eζ∼P
[
Ψζ(xxt̃

)
]∥∥2 ≤ 7ε2, (17)

after T ≥ max{96∆Kε−2, 8∆KR1ε
−4} = O(∆KR1ε

−4) number of iterations.

Proof Regarding the objective function Eζ∼P
[
Ψζ(x)

]
, we have the following descent lemma

Eζ∼P
[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Ψζ(xt)

]
+ ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩+

Kγ2t
2

∥∥xt+1 − xt
∥∥2. (50)

The proof of (50) is provided in Appendix M.1. Replace xt+1 − xt by −γtĝ
B
t , above inequality

implies

Eζ∼P
[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Ψζ(xt)

]
− γt⟨∇Eζ∼P

[
Ψζ(xt)

]
, ĝt⟩+

Kγ2t
2

∥∥ĝt∥∥2. (51)

Since during parameters’ update, the inexact mini-batch stochastic gradient, ĝBt is utilized, where
its randomness comes from xt, ζ,

{
ξ
}
B̃

and ηd̃x(ζ). Taking expectation over ζ, ηd̃x(ζ),
{
ξ
}
B

on both
sides conditioned on xt, we have

E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt+1)|xt

]
(i)

≤E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
⟨∇Eζ∼P

[
Ψζ(xt)

]
, γtĝ

B
t ⟩|xt

]
+ E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[Kγ2t
2

∥∥ĝBt ∥∥2|xt]
(ii)

≤E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[ 〈
∇Eζ∼P

[
Ψζ(xt)

]
, γtĝ

B
t

〉
|xt

]
+

Kγ2t (R1 + 10ε2)

2

+
Kγ2t
2

∥∥∇E
ζ∼P,ηd̃xt (ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]∥∥2
(iii)

≤ E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− γtEζ∼P,ηd̃xt (ζ),ξB∼ν

[
⟨∇Eζ∼P

[
Ψζ(xt)

]
, ĝBt − gBt + gBt ⟩|xt

]
+Kγ2t

∥∥∇E
ζ∼P,ηd̃xt (ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]
−∇E

ζ∼P,ηd̃xt (ζ)
[
Ψζ(xt)

]∥∥2
+Kγ2t

∥∥∇E
ζ∼P,ηd̃xt (ζ)

[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 5Kε2γ2t

(iv)

≤ E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− γtEζ∼P,ηd̃xt (ζ),ξB∼ν

[〈
∇Eζ∼P

[
Ψζ(xt)

]
, ĝBt − gBt + gBt

〉
|xt

]
+Kγ2t Eζ∼P

[∥∥∇1Eηd̃xt (ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]
−∇Ψζ(xt)

∥∥2|xt]
+Kγ2t

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2 + KR1γ
2
t

2
+ 5Kε2γ2t
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(v)

≤E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− γtEζ∼P,ηd̃xt (ζ),ξB∼ν

[
⟨∇Eζ∼P

[
Ψζ(xt)

]
, ĝBt − gBt ⟩|xt

]
− γtEζ∼P,ηd̃xt (ζ),ξB∼ν

[
⟨∇Eζ∼P

[
Ψζ(xt)

]
, gBt ⟩|xt

]
+Kγ2t

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+Kε2γ2t +

KR1γ
2
t

2
+ 5Kε2γ2t

=E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− γtEζ∼P

[〈
∇Eζ∼P

[
Ψζ(xt)

]
,E

ηd̃xt (ζ),ξB∼ν
[ĝBt − gBt ]

〉
|xt

]
− (γt −Kγ2t )

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t

(vi)
= E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− γtEζ∼P

[〈
∇Eζ∼P

[
Ψζ(xt)

]
,∇1Eηd̃x(ζ)

[Lζ(xt, η
d̃
x(ζ))−∇Ψζ(xt)]

〉
|xt

]
− (γt −Kγ2t )

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t

(vii)

≤ E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
+ γtEζ∼P

[∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥ ·
∥∥∇1Eηd̃xt (ζ)

[Lζ(xt, η
d̃
xt
(ζ))]−∇Ψζ(xt)

]∥∥|xt]
− (γt −Kγ2t )

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t

=E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
+ γt

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥ · Eζ∼P
∥∥∇1Eηd̃xt (ζ)

[Lζ(xt, η
d̃
xt
(ζ))]−∇Ψζ(xt)

]∥∥
− (γt −Kγ2t )

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t

(viii)

≤ E
ζ∼P(ζ),ξB∼ν,ηd̃xt

[
Ψζ(xt)|xt

]
+ γtε

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− (γt −Kγ2t )
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t , (52)

where (i) applies descent lemma (50); (ii) applies (16) stated in lemma 5 with B = 1; (iii) applies
(a+ b)2 ≤ 2a2 + 2b2 to further upper bound ∥∇E

ζ∼P,ηd̃xt (ζ)
[Lζ(xt, η

d̃
xt
(ζ))]∥2 by

2∥∇1Eζ∼P,ηd̃xt (ζ)
[Lζ(xt, η

d̃
xt
(ζ))]−∇Eζ∼P[Ψζ(xt)]∥2+2∥∇Eζ∼P[Ψζ(xt)]∥2 (the expectation over

ηd̃xt
(ζ) can be neglected as Ψζ(xt) doesn’t contain randomness from ηd̃xt

(ζ)); (iv) applies Jensen’s
inequality to extract E

ζ∼P,ηd̃xt (ζ)
out from squared norm; (v) applies condition (7) stated in Theorem

2; (vi) moves expectation over ξB inside inner product; (vii) applies Cauchy-Schwarz inequality;
(viii) again applies condition (7) stated Theorem 2 as such relationship holds for every ζ.
Then, for any γt <

1
2K by choice, we have (γt−Kγ2t ) >

γt
2 . Taking expectation over xt, the above

inequality further transformed to

E
xt,ζ∼P,ηd̃x(ζ),ξB∼ν

[
Ψζ(xt+1)

]
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≤E
xt,ζ∼P,ηd̃x(ζ),ξB∼ν

[
Ψζ(xt)

]
+ γtεExt

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− γt
2
Ext

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t

2
+ 6Kε2γ2t .

Re-arranging above terms, we have

γt
2
Ext

(∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2 − 2ε
∥∥∇Eζ∼P

[
Ψζ(xt)

]∥∥)
=
γt
2
Ext

(∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− ε
)2

− γtε
2

2

≤E
xt,ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)−Ψζ(xt+1)

]
+

KR1γ
2
t

2
+ 6Kε2γ2t .

Re-arranging above inequality, we have

γt
2
Ext

(∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− ε
)2

≤E
xt,ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)−Ψζ(xt+1)

]
+

KR1γ
2
t

2
+ 6Kε2γ2t +

γtε
2

2
.

Applying (a+b)2

2 ≤ a2 + b2 and re-arranging above terms, we have

γt
4
Ext

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
≤γt

2
Ext

[(∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− ε
)2]

+
γtε

2

2

≤E
xt,ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)−Ψζ(xt+1)

]
+

KR1γ
2
t

2
+ 6Kε2γ2t + ε2γt.

Summing the above inequality from t = 0 to T − 1 leads to

T−1∑
t=0

γt
4
Ext

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
≤

T−1∑
t=0

E
xt,ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)−Ψ(xt+1)

]
+ 6K

T−1∑
t=0

γ2t ε
2 +

KR1

2

T−1∑
t=0

γ2t + ε2
T−1∑
t=0

γt

≤Eζ∼P
[
Ψζ(x0)−Ψζ(x

∗)
]
+ 6Kε2

T−1∑
t=0

γ2t +
KR1

2

T−1∑
t=0

γ2t + ε2
T−1∑
t=0

γt.

Denoting ∆ = Eζ∼P
[
Ψζ(x0)−Ψζ(x

∗)
]

and choosing constant learning rate γt = γ, we have

Ext̃

[
∥∇Eζ∼P

[
Ψζ(xt̃)

]∥∥2] = 1

T

T−1∑
t=0

Ext∥∇Eζ∼P[Ψ(xt)]∥2

≤4∆

Tγ
+

24Kε2γ2T

Tγ
+

2KR1γ
2T

Tγ
+

4ε2Tγ

Tγ
. (53)
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Then, choosing γ = min{ 1
24K , ε2

2KR1
}, we immediately have

24Kε2γ2T

Tγ
≤ ε2 and

2KR1γ
2T

Tγ
≤ ε2. (54)

To make 4∆
Tγ = ε2, we have

T =
4∆

γε2
≥ max{96∆K

ε2
,
8∆KR1

ε4
} = O(∆KR1ε

−4). (55)

Combining all inequalities together, we have

Ext̃

[
∥∇Eζ∼P

[
Ψζ(xt̃)

]∥∥2] ≤ 7ε2, (56)

which gives the desired result.

M.1 Proof of Descent Lemma (50)

Lemma A.6 Denote η∗xt
(ζ) ∈ argminη Lζ(xt, η). Then, for Eζ∼P[Ψ(xt)], we have the following

descent lemma

Eζ∼P
[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Ψζ(xt)

]
+ ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩+

K

2
∥xt+1 − xt∥2 , (57)

where K = G2(λβ)−1M + L.

Proof Notice that, applying Jensen’s inequality and taking square-root on both sides, Lemma 4
implies ∥∥∇Eζ∼P[Ψζ(x)]−∇1Eζ∼P[Lζ(x

′, η∗x(ζ))]
∥∥ ≤ K

∥∥x− x′
∥∥.

From fundamental theorem of calculus, we have∣∣∣Eζ∼P
[
Lζ(xt+1, η

∗
xt
(ζ))

]
− Eζ∼P

[
Ψζ(xt)

]
− ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩

∣∣∣
=
∣∣∣ ∫ 1

0
⟨∇1Eζ∼P

[
Lζ(xt + t(xt+1 − xt), η

∗
xt
(ζ))

]
, xt+1 − xt⟩ − ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩dt

∣∣∣
=
∣∣∣ ∫ 1

0
⟨∇1Eζ∼P

[
Lζ(xt + t(xt+1 − xt), η

∗
xt
(ζ))

]
−∇1Eζ∼P

[
Lζ(xt, η

∗
xt
(ζ))

]
, xt+1 − xt⟩dt

∣∣∣
(i)

≤
∣∣∣ ∫ 1

0

∥∥∇1Eζ

[
Lζ(xt + t(xt+1 − xt), η

∗
xt
(ζ))

]
−∇1Eζ∼P

[
Lζ(xt, η

∗
x(ζ))

]∥∥ ∥xt+1 − xt∥ dt
∣∣∣

(ii)

≤
∣∣∣ ∫ 1

0
tK ∥xt+1 − xt∥2 dt

∣∣∣
≤K

2

∥∥xt+1 − xt
∥∥2,

47



YANG, ZHOU, LU

where (i) applies Cauchy-Schwarz inequality; (ii) applies directional smoothness property stated at
Lemma 4.
Re-arranging above inequality, we have

Eζ∼P
[
Lζ(xt+1, η

∗
xt
(ζ))

]
≤ Eζ∼P

[
Ψζ(xt)

]
+ ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩+

K

2
∥xt+1 − xt∥2 .

Since for each ζ, η∗xt+1
(ζ) ∈ argminη Lζ(xt+1, η), it holds that Ψζ(xt+1) = Lζ(xt+1, η

∗
xt+1

(ζ)) ≤
Lζ(xt+1, η

∗
xt
(ζ)). Taking expectation over ζ, we have Eζ∼P

[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Lζ(xt+1, η

∗
xt
(ζ))

]
.

Combining this fact with above inequality gives us the desired result,

Eζ∼P
[
Ψζ(xt+1)

]
≤ Eζ∼P

[
Ψζ(xt)

]
+ ⟨∇Eζ∼P

[
Ψζ(xt)

]
, xt+1 − xt⟩+

K

2
∥xt+1 − xt∥2 .

Appendix N. Proof of Corollary 5

Corollary 2 (Complexity Bound for minx Eζ∼P[Ψζ(x)]) Let Assumptions 1 and 2 hold. Then, the
Nested-SGD algorithm (Algorithm 2) returns an ε-stationary point with a total sample complexity
of O(ε−8) for sampling ξ and ζ. Furthermore, by setting the batch sizes B, B̃ ∼ Θ(ε−2), the total
iteration complexity becomes T×D ∼ O(ε−4). At each iteration, Algorithms 1 and 2 incur memory
complexities of O(1) and O(d), respectively.

Proof According to Theorem 3, for Algorithm 1 to output ηd̃x(ζ) satisfying the condition (6) in
Theorem 2, a sample complexity of O(∆̂G4K ′R2ε

−4) is required. Furthermore, by Theorem 4,
Algorithm 2 requires O(1) mini-batch of ζ and ξ per iteration and runs for O(∆KR1ε

−4) iterations.
Combining both results, the total sample complexity is O(∆∆̂R1R2KK ′G4ε−8) ∼ O(ε−8).

For the total iteration complexity, i.e., T × D, it can be improved as follows. By setting B =
Θ(ε−2) and applying the conclusion from Lemma 5 along with the descent inequality, we have

E
ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt+1)|xt

]
≤E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[
Ψζ(xt)|xt

]
− E

ζ∼P,ηd̃xt (ζ),ξB∼ν

[ 〈
∇Eζ∼P

[
Ψζ(xt)

]
, γtĝ

B
t

〉
|xt

]
+

Kγ2t (R1ε
2 + 10ε4)

2

+
Kγ2t
2

∥∥∇E
ζ∼P,ηd̃xt (ζ)

[
Lζ(xt, η

d̃
xt
(ζ))

]∥∥2.
Following the same logic as Proof M, we then have

E
xt,ζ∼P,ηd̃x(ζ),ξB∼ν

[
Ψζ(xt+1)

]
≤E

xt,ζ∼P,ηd̃x(ζ),ξB∼ν

[
Ψζ(xt)

]
+ γtεExt

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥− γt
2
Ext

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2
+

KR1γ
2
t ε

2

2
+Kε2γ2t + 5Kγ2t ε

4.
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Let γt = γ, re-arranging above inequality, summing t from 0, · · · , T − 1 and dividing by T , we
have

γ

4T

T−1∑
t=0

Ext

∥∥∇Eζ∼P
[
Ψζ(xt)

]∥∥2 ≤ ∆

T
+

KR1γ
2ε2

2
+Kε2γ2 + 5Kε4γ2 + ε2γ.

For γ = min{ 1
2KR1

, 1
4K }, after T = max{8∆KR1, 16∆K}ε−2 = O(∆KR1ε

−2) iterations,
above inequality further implies

Ext̃

∥∥∇Eζ∼P
[
Ψζ(xt̃)

]∥∥2 ≤ 7ε2 + 5ε4 = O(ε2). (58)

This concludes that by choosing B, B̃ ∼ Θ(ε−2) as suggested in Remark 5, we have total iteration
complexity T × D = O(∆∆̂R1R2KK ′G4ε−4) ∼ O(ε−4). Based on gradient dimension with
respect to x and η, we conclude the per-iteration complexity of algorithm 1 and 2 are O(1),O(d)
respectively.
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