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Abstract

We propose a randomized nonmonotone block proximal gradient (RNBPG) method
for minimizing the sum of a smooth (possibly nonconvex) function and a block-separable
(possibly nonconvex nonsmooth) function. At each iteration, this method randomly
picks a block according to any prescribed probability distribution and solves typically
several associated proximal subproblems that usually have a closed-form solution, until
a certain progress on objective value is achieved. In contrast to the usual randomized
block coordinate descent method [24, 21], our method has a nonmonotone flavor and
uses variable stepsizes that can partially utilize the local curvature information of the
smooth component of objective function. We show that any accumulation point of the
solution sequence of the method is a stationary point of the problem almost surely and
the method is capable of finding an approximate stationary point with high probabil-
ity. We also establish a sublinear rate of convergence for the method in terms of the
minimal expected squared norm of certain proximal gradients over the iterations. When
the problem under consideration is convex, we show that the expected objective val-
ues generated by RNBPG converge to the optimal value of the problem. Under some
assumptions, we further establish a sublinear and linear rate of convergence on the ex-
pected objective values generated by a monotone version of RNBPG. Finally, we conduct
some preliminary experiments to test the performance of RNBPG on the `1-regularized
least-squares problem, a dual SVM problem in machine learning, the `0- regularized
least-squares problem, and a regularized matrix completion model. The computational
results demonstrate that our method substantially outperforms the randomized block
coordinate descent method with fixed or variable stepsizes.
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1 Introduction

Nowadays first-order (namely, gradient-type) methods are the prevalent tools for solving large-
scale problems arising in science and engineering. As the size of problems becomes huge, it is,
however, greatly challenging to these methods because gradient evaluation can be prohibitively
expensive. Due to this reason, block coordinate descent (BCD) methods and their variants
have been studied for solving various large-scale problems (see, for example, [4, 12, 37, 14,
31, 32, 34, 35, 22, 38, 26, 13, 23, 27, 25, 29]). Recently, Nesterov [19] proposed a randomized
BCD (RBCD) method, which is promising for solving a class of huge-scale convex optimization
problems, provided the involved partial gradients can be efficiently updated. The iteration
complexity for finding an approximate optimal solution is analyzed in [19]. More recently,
Richtárik and Takáč [24] extended Nesterov’s RBCD method [19] to solve a more general
class of convex optimization problems in the form of

min
x∈<N

{F (x) := f(x) + Ψ(x)} , (1)

where f is convex differentiable in <N and Ψ is a block separable convex function. More
specifically,

Ψ(x) =
n∑
i=1

Ψi(xi),

where each xi denotes a subvector of x with cardinality Ni, {xi : i = 1, . . . , n} form a partition
of the components of x, and each Ψi : <Ni → <∪ {+∞} is a closed convex function.

Given a current iterate xk, the RBCD method [24] picks i ∈ {1, . . . , n} uniformly, solves a
block-wise proximal subproblem in the form of

di(x
k) := arg min

s∈<Ni

{
∇if(xk)T s+

Li
2
‖s‖2 + Ψi(x

k
i + s)

}
, (2)

and sets xk+1
i = xki +di(x

k) and xk+1
j = xkj for all j 6= i, where ∇if ∈ <Ni is the partial gradient

of f with respect to xi and Li > 0 is the Lipschitz constant of∇if with respect to the norm ‖·‖
(see Assumption 1 for details). The iteration complexity of finding an approximate optimal
solution with high probability is established in [24] and has recently been improved by Lu and
Xiao [15]. Very recently, Patrascu and Necoara [21] extended this method to solve problem (1)
in which F is nonconvex, and they studied convergence of the method under the assumption
that the block is chosen uniformly at each iteration.

One can observe that for n = 1, the RBCD method [24, 21] becomes a classical proximal
(full) gradient method with a constant stepsize 1/L. It is known that the latter method tends
to be practically much slower than the same type of methods but with variable stepsizes,
for example, spectral-type stepsize [1, 3, 6, 36, 16]) that utilizes partial local curvature infor-
mation of the smooth component f . The variable stepsize strategy shall also be applicable
to the RBCD method and improve its practical performance dramatically. In addition, the
RBCD method is a monotone method, that is, the objective values generated by the method
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are monotonically decreasing. As mentioned in the literature (see, for example, [8, 9, 39]),
nonmonotone methods often produce solutions of better quality than the monotone coun-
terparts for nonconvex optimization problems. These motivate us to propose a randomized
nonmonotone block proximal gradient method with variable stepsizes for solving a class of
(possibly nonconvex) structured nonlinear programming problems in the form of (1) satisfy-
ing Assumption 1 below.

Throughout this paper we assume that the set of optimal solutions of problem (1), de-
noted by X∗, is nonempty and the optimal value of (1) is denoted by F ?. For simplicity of
presentation, we associate <N with the standard Euclidean norm, denoted by ‖ · ‖. We also
make the following assumption.

Assumption 1 f is differentiable (but possibly nonconvex) in <N . Each Ψi is a (possibly
nonconvex nonsmooth) function from <Ni to < ∪ {+∞} for i = 1, . . . , n. The gradient of
function f is coordinate-wise Lipschitz continuous with constants Li > 0 in <N , that is,

‖∇if(x+ h)−∇if(x)‖ ≤ Li‖h‖ ∀h ∈ Si, i = 1, . . . , n, ∀x ∈ <N ,

where
Si =

{
(h1, . . . , hn) ∈ <N1 × · · · × <Nn : hj = 0 ∀j 6= i

}
.

In this paper we propose a randomized nonmonotone block proximal gradient (RNBPG)
method for solving problem (1) that satisfies the above assumptions. At each iteration, this
method randomly picks a block according to an arbitrary prescribed (not necessarily uniform)
probability distribution and solves typically several associated proximal subproblems in the
form of (2) with Li replaced by some θ, which can be, for example, estimated by the spectral
method (e.g., see [1, 3, 6, 36, 16]), until a certain progress on the objective value is achieved.
In contrast to the usual RBCD method [24, 21], our method enjoys a nonmonotone flavor and
uses variable stepsizes that can partially utilize the local curvature information of the smooth
component f . For arbitrary probability distribution1, we show that the expected objective
values generated by the method converge to the expected limit of the objective values obtained
by a random single run of the method. Moreover, any accumulation point of the solution
sequence of the method is a stationary point of the problem almost surely and the method is
capable of finding an approximate stationary point with high probability. We also establish a
sublinear rate of convergence for the method in terms of the minimal expected squared norm
of certain proximal gradients over the iterations. When the problem under consideration is
convex, we show that the expected objective values generated by RNBPG converge to the
optimal value of the problem. Under some assumptions, we further establish a sublinear and
linear rate of convergence on the expected objective values generated by a monotone version
of RNBPG. Finally, we conduct some preliminary experiments to test the performance of
RNBPG on the `1-regularized least-squares problem, a dual SVM problem in machine learning,
the `0-regularized least-squares problem, and a regularized matrix completion model. The

1The convergence analysis of the RBCD method conducted in [24, 21] is only for uniform probability
distribution.
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computational results demonstrate that our method substantially outperforms the randomized
block coordinate descent method with fixed or variable stepsizes.

This paper is organized as follows. In Section 2 we propose a RNBPG method for solving
structured nonlinear programming problem (1) and analyze its convergence. In Section 3 we
analyze the convergence of RNBPG for solving structured convex problem. In Section 4 we
conduct numerical experiments to compare RNBPG method with the RBCD method with
fixed or variable stepsizes.

Before ending this section we introduce some notations that are used throughout this paper
and also state some known facts. The domain of the function F is denoted by dom(F ). t+

stands for max{0, t} for any real number t. Given a closed set S and a point x, dist(x, S)
denotes the distance between x and S. For symmetric matrices X and Y , X � Y means
that Y − X is positive semidefinite. Given a positive definite matrix Θ and a vector x,
‖x‖Θ =

√
xTΘx. In addition, ‖ · ‖ denotes the Euclidean norm. Finally, it immediately

follows from Assumption 1 that

f(x+ h) ≤ f(x) +∇f(x)Th+
Li
2
‖h‖2 ∀h ∈ Si, i = 1, . . . , n; ∀x ∈ <N . (3)

By Lemma 2 of Nesterov [19] and Assumption 1, we also know that ∇f is Lipschitz continuous
with constant Lf :=

∑
i Li, that is,

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖ x, y ∈ <N . (4)

2 Randomized nonmonotone block proximal gradient

method

In this section we propose a RNBPG method for solving structured nonlinear programming
problem (1) and analyze its convergence.

We start by presenting a RNBPG method as follows. At each iteration, this method
randomly picks a block according to any prescribed (not necessarily uniform) probability
distribution and solves typically several associated proximal subproblems in the form of (2)
with Li replaced by some θk until a certain progress on objective value is achieved.

Randomized nonmonotone block proximal gradient (RNBPG) method

Choose x0 ∈ dom(F ), η > 1, σ > 0, 0 < θ ≤ θ̄, integer M ≥ 0, and 0 < pi < 1 for i = 1, . . . , n
such that

∑n
i=1 pi = 1. Set k = 0.

1) Set dk = 0. Pick ik = i ∈ {1, . . . , n} with probability pi. Choose θ0
k ∈ [θ, θ̄].

2) For j = 0, 1, . . .

2a) Let θk = θ0
kη

j. Compute

(dk)ik = arg min
s

{
∇ikf(xk)T s+

θk
2
‖s‖2 + Ψik(x

k
ik

+ s)

}
. (5)
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2b) If dk satisfies

F (xk + dk) ≤ max
[k−M ]+≤i≤k

F (xi)− σ

2
‖dk‖2, (6)

go to step 3).

3) Set xk+1 = xk + dk, k ← k + 1 and go to step 1).

end

Remark 2.1 The above method becomes a monotone method if M = 0.

Before studying convergence of RNBPG, we introduce some notations and state some facts
that will be used subsequently.

Let d̄k,i denote the vector dk obtained in Step (2) of RNBPG if ik is chosen to be i. Define

d̄k =
n∑
i=1

d̄k,i, x̄k = xk + d̄k. (7)

One can observe that (d̄k,i)t = 0 for t 6= i and there exist θ0
k,i ∈ [θ, θ̄] and the smallest

nonnegative integer j such that θk,i = θ0
k,iη

j and

F (xk + d̄k,i) ≤ F (x`(k))− σ

2
‖d̄k,i‖2, (8)

where

(d̄k,i)i = arg min
s

{
∇if(xk)T s+

θk,i
2
‖s‖2 + Ψi(x

k
i + s)

}
, (9)

`(k) = arg max
i
{F (xi) : i = [k −M ]+, . . . , k} ∀k ≥ 0. (10)

Let Θk denote the block diagonal matrix (θk,1I1, . . . , θk,nIn), where Ii is the Ni ×Ni identity
matrix. By the definition of d̄k and (9), we observe that

d̄k = arg min
d

{
∇f(xk)Td+

1

2
dTΘkd+ Ψ(xk + d)

}
. (11)

After k iterations, RNBPG generates a random output (xk, F (xk)), which depends on the
observed realization of random vector

ξk = {i0, . . . , ik}.

We define Eξ−1 [F (x0)] = F (x0). Also, define

Ω(x0) = {x ∈ <N : F (x) ≤ F (x0)}, (12)

Lmax = max
i
Li, pmin = min

i
pi, (13)

c = max
{
θ̄, η(Lmax + σ)

}
. (14)

The following lemma establishes some relations between the expectations of ‖dk‖ and ‖d̄k‖.
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Lemma 2.2 Let dk be generated by RNBPG and d̄k defined in (7). There hold

Eξk [‖dk‖2] ≥ pmin Eξk−1
[‖d̄k‖2], (15)

Eξk [‖dk‖] ≥ pmin Eξk−1
[‖d̄k‖]. (16)

Proof. By (13) and the definitions of dk and d̄k, we can observe that

Eik [‖dk‖2] =
∑
i

pi‖d̄k,i‖2 ≥ (mini pi)
∑
i

‖d̄k,i‖2 = pmin‖d̄k‖2,

Eik [‖dk‖] =
∑
i

pi‖d̄k,i‖ ≥ (mini pi)
∑
i

‖d̄k,i‖ ≥ pmin

√∑
i

‖d̄k,i‖2 ≥ pmin‖d̄k‖.

The conclusion of this lemma follows by taking expectation with respect to ξk−1 on both sides
of the above inequalities.

We next show that the inner loops of the above RNBPG method must terminate finitely.
As a byproduct, we provide a uniform upper bound on Θk.

Lemma 2.3 Let {θk} be the sequence generated by RNBPG, Θk defined above, and c defined
in (14). There hold

(i) θ ≤ θk ≤ c ∀k.

(ii) θI � Θk � cI ∀k.

Proof. (i) It is clear that θk ≥ θ. We now show θk ≤ c by dividing the proof into two cases.
Case (i) θk = θ0

k. Since θ0
k ≤ θ̄, it follows that θk ≤ θ̄ and the conclusion holds.

Case (ii) θk = θ0
kη

j for some integer j > 0. Suppose for contradiction that θk > c. By (13)
and (14), we then have

θ̃k := θk/η > c/η ≥ Lmax + σ ≥ Lik + σ. (17)

Let d ∈ <N such that di = 0 for i 6= ik and

dik = arg min
s

{
∇ikf(xk)T s+

θ̃k
2
‖s‖2 + Ψik(x

k
ik

+ s)

}
. (18)

It follows that

∇ikf(xk)Tdik +
θ̃k
2
‖dik‖2 + Ψik(x

k
ik

+ dik)−Ψik(x
k
ik

) ≤ 0.

Also, by (10) and the definitions of θk and θ̃k, one knows that

F (xk + d) > F (x`(k))− σ

2
‖d‖2. (19)
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On the other hand, using (3), (10), (17), (18) and the definition of d, we have

F (xk + d) = f(xk + d) + Ψ(xk + d) ≤ f(xk) +∇ikf(xk)Tdik +
Lik
2
‖dik‖2 + Ψ(xk + d)

= F (xk) +∇ikf(xk)Tdik +
θ̃k
2
‖dik‖2 + Ψik(x

k
ik

+ dik)−Ψik(x
k
ik

)︸ ︷︷ ︸
≤0

+
Lik−θ̃k

2
‖dik‖2

≤ F (xk) +
Lik−θ̃k

2
‖dik‖2 ≤ F (x`(k))− σ

2
‖d‖2,

which is a contradiction to (19). Hence, θk ≤ c and the conclusion holds.
(ii) Let θk,i be defined above. It follows from statement (i) that θ ≤ θk,i ≤ c, which together

with the definition of Θk implies that statement (ii) holds.

The next result provides some bound on the norm of a proximal gradient, which will be
used in the subsequent analysis on convergence rate of RNBPG.

Lemma 2.4 Let {xk} be generated by RNBPG, d̄k and c defined in (11) and (14), respectively,
and

ĝk = arg min
d

{
∇f(xk)Td+

1

2
‖d‖2 + Ψ(xk + d)

}
. (20)

Assume that Ψ is convex. There holds

‖ĝk‖ ≤ c

2

[
1 +

1

θ
+

√
1− 2

c
+

1

θ2

]
‖d̄k‖. (21)

Proof. The conclusion of this lemma follows from (11), (20), Lemma 2.3 (ii), and [16,
Lemma 3.5] with H = Θk, H̃ = I, Q = Θ−1

k , d = d̄k and d̃ = ĝk.
We note that by the definition in (14), we have c ≥ θ > θ, which implies

1− 2

c
+

1

θ2 =

(
1− 1

θ

)2

+
2

θ
− 2

c
> 0.

Therefore, the expression under the square root in (21) is always positive.

2.1 Convergence of expected objective value

In this subsection we show that the sequence of expected objective values generated by the
method converge to the expected limit of the objective values obtained by a random single
run of the method.

The following lemma studies uniform continuity of the expectation of F with respect to
random sequences.
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Lemma 2.5 Suppose that F is uniform continuous in some S ⊆ dom(F ). Let yk and zk

be two random vectors in S generated from ξk−1. Assume that there exists C > 0 such that
|F (yk)− F (zk)| ≤ C for all k, and moreover,

lim
k→∞

Eξk−1
[‖yk − zk‖] = 0.

Then there hold

lim
k→∞

Eξk−1
[|F (yk)− F (zk)|] = 0, lim

k→∞
Eξk−1

[F (yk)− F (zk)] = 0.

Proof. Since F is uniformly continuous in S, it follows that given any ε > 0, there exists
δε > 0 such that |F (x) − F (y)| < ε/2 for all x, y ∈ S satisfying ‖x − y‖ < δε. Using these
relations, the Markov inequality, and the assumption that |F (yk)− F (zk)| ≤ C for all k and
limk→∞Eξk−1

[‖∆k‖] = 0, where ∆k = yk − zk, we obtain that for sufficiently large k,

Eξk−1
[|F (yk)− F (zk)|] = Eξk−1

[
|F (yk)− F (zk)|

∣∣ ‖∆k‖ ≥ δε
]
P(‖∆k‖ ≥ δε)

+ Eξk−1

[
|F (yk)− F (zk)|

∣∣ ‖∆k‖ < δε
]
P(‖∆k‖ < δε)

≤ CEξk−1
[‖∆k‖]

δε
+ ε

2
≤ ε.

Due to the arbitrarily of ε, we see that the first statement of this lemma holds. The second
statement immediately follows from the first statement and the well-known inequality

|Eξk−1
[F (yk)− F (zk)]| ≤ Eξk−1

[
|F (yk)− F (zk)|

]
.

We next establish the first main result, that is, the expected objective values generated
by the RNBPG method converge to the expected limit of the objective values obtained by a
random single run of the method. One can see that when n = 1, the RNBPG method reduces
to a (deterministic) full nonmonotone proximal gradient (NPG) method. The convergence
result of the full NPG method, which can be viewed as a special case of the following result,
has been established by Wright et al. [36]. A key relation used in their analysis is k−M−1 =
`(k)− j for some j = 1, 2, . . . ,M + 1. Given that `(k) is random when n > 1, such a relation
clearly does not hold. Due to this, some of their analysis is no longer applicable to the
RNBPG method. To overcome such a difficulty, we construct an auxiliary sequence {d̃`(k)−j}
and establish its relation with the sequences {d`(k)−j} and {x`(k)− xk−M−1}, which enables us
to prove the following main result.

Theorem 2.6 Let {xk} and {dk} be the sequences generated by the RNBPG method. Assume
that F is uniform continuous in Ω(x0), where Ω(x0) is defined in (12). Then the following
statements hold:

(i) limk→∞[‖dk‖] = 0 and limk→∞ F (xk) = F ∗ξ∞ for some F ∗ξ∞ ∈ <, where ξ∞ = {i1, i2, · · · }.
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(ii) limk→∞Eξk [‖dk‖] = 0 and

lim
k→∞

Eξk−1
[F (xk)] = lim

k→∞
Eξk−1

[F (x`(k))] = Eξ∞ [F ∗ξ∞ ]. (22)

Proof. By (6) and (10), we have

F (xk+1) ≤ F (x`(k))− σ

2
‖dk‖2 ∀k ≥ 0. (23)

Hence, F (xk+1) ≤ F (x`(k)), which together with (10) implies that F (x`(k+1)) ≤ F (x`(k)). It
then follows that

Eξk [F (x`(k+1))] ≤ Eξk−1
[F (x`(k))] ∀k ≥ 1.

Hence, {F (x`(k))} and {Eξk−1
[F (x`(k))]} are non-increasing. Since F is bounded below, so are

{F (x`(k))} and {Eξk−1
[F (x`(k))]}. It follows that there exist some F ∗ξ∞ , F̃ ∗ ∈ < such that

lim
k→∞

F (x`(k)) = F ∗ξ∞ , lim
k→∞

Eξk−1
[F (x`(k))] = F̃ ∗. (24)

We first show by induction that the following relations hold for all j ≥ 1:

lim
k→∞
‖d`(k)−j‖ = 0, lim

k→∞
F (x`(k)−j) = F ∗ξ∞ . (25)

lim
k→∞

Eξk−1
[‖d`(k)−j‖] = 0, lim

k→∞
Eξk−1

[F (x`(k)−j)] = F̃ ∗. (26)

Indeed, replacing k by `(k)− 1 in (23), we obtain that

F (x`(k)) ≤ F (x`(`(k)−1))− σ

2
‖d`(k)−1‖2 ∀k ≥M + 1,

which together with `(k) ≥ k −M and monotonicity of {F (x`(k))} yields

F (x`(k)) ≤ F (x`(k−M−1))− σ

2
‖d`(k)−1‖2 ∀k ≥M + 1. (27)

Then we have

Eξk−1
[F (x`(k))] ≤ Eξk−1

[F (x`(k−M−1))]− σ

2
Eξk−1

[‖d`(k)−1‖2] ∀k ≥M + 1. (28)

Notice that

Eξk−1
[F (x`(k−M−1))] = Eξk−M−2

[F (x`(k−M−1))] ∀k ≥M + 1.

It follows from this relation and (28) that

Eξk−1
[F (x`(k))] ≤ Eξk−M−2

[F (x`(k−M−1))]− σ

2
Eξk−1

[‖d`(k)−1‖2] ∀k ≥M + 1. (29)
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In view of (24), (27), (29), and (Eξk−1
[‖d`(k)−1‖])2 ≤ Eξk−1

[‖d`(k)−1‖2], one can have

lim
k→∞
‖d`(k)−1‖ = 0, lim

k→∞
Eξk−1

[‖d`(k)−1‖] = 0. (30)

One can also observe that F (xk) ≤ F (x0) and hence {xk} ⊂ Ω(x0). Using this fact, (24), (30),
Lemma 2.5, and uniform continuity of F over Ω(x0), we obtain that

lim
k→∞

F (x`(k)−1) = lim
k→∞

F (x`(k)) = F ∗ξ∞ ,

lim
k→∞

Eξk−1
[F (x`(k)−1)] = lim

k→∞
Eξk−1

[F (x`(k))] = F̃ ∗.

Therefore, (25) and (26) hold for j = 1. Suppose now that they hold for some j ≥ 1. We need
to show that they also hold for j + 1. Replacing k by `(k)− j − 1 in (23) gives

F (x`(k)−j) ≤ F (x`(`(k)−j−1))− σ

2
‖d`(k)−j−1‖2 ∀k ≥M + j + 1.

By this relation, `(k) ≥ k −M , and monotonicity of {F (x`(k))}, one can have

F (x`(k)−j) ≤ F (x`(k−M−j−1))− σ

2
‖d`(k)−j−1‖2 ∀k ≥M + j + 1. (31)

Then we obtain that

Eξk−1
[F (x`(k)−j)] ≤ Eξk−1

[F (x`(k−M−j−1))]− σ

2
‖d`(k)−j−1‖2 ∀k ≥M + j + 1.

Notice that

Eξk−1
[F (x`(k−M−j−1))] = Eξk−M−j−2

[F (x`(k−M−j−1))] ∀k ≥M + j + 1.

It follows from these two relations that

Eξk−1
[F (x`(k)−j)] ≤ Eξk−M−j−2

[F (x`(k−M−j−1))]− σ
2
Eξk−1

[‖d`(k)−j−1‖2], ∀k ≥M+j+1. (32)

Using (24), (31), (32), the induction hypothesis, and a similar argument as above, we can
obtain that

lim
k→∞
‖d`(k)−j−1‖ = 0, lim

k→∞
Eξk−1

[‖d`(k)−j−1‖] = 0.

These relations, together with Lemma 2.5, uniform continuity of F over Ω(x0) and the induc-
tion hypothesis, yield

lim
k→∞

F (x`(k)−j−1) = lim
k→∞

F (x`(k)−j) = F ∗ξ∞ ,

lim
k→∞

Eξk−1
[F (x`(k)−j−1)] = lim

k→∞
Eξk−1

[F (x`(k)−j)] = F̃ ∗.

Hence, (25) and (26) hold for j + 1, and the proof of (25) and (26) is completed.
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For all k ≥ 2M + 1, we define

d̃`(k)−j =

{
d`(k)−j if j ≤ `(k)− (k −M − 1),
0 otherwise,

j = 1, . . . ,M + 1.

It is not hard to observe that

‖d̃`(k)−j‖ ≤ ‖d`(k)−j‖, (33)

x`(k) = xk−M−1 +
M+1∑
j=1

d̃`(k)−j. (34)

It follows from (25), (26) and (33) that lim
k→∞
‖d̃`(k)−j‖ = 0 and lim

k→∞
Eξk−1

[‖d̃`(k)−j‖] = 0 for

j = 1, . . . ,M + 1. Hence,

lim
k→∞

∥∥∥∥∥
M+1∑
j=1

d̃`(k)−j

∥∥∥∥∥ = 0, lim
k→∞

Eξk−1

[∥∥∥∥∥
M+1∑
j=1

d̃`(k)−j

∥∥∥∥∥
]

= 0.

These, together with (25), (26), (34), Lemma 2.5 and uniform continuity of F over Ω(x0),
imply that

lim
k→∞

F (xk−M−1) = lim
k→∞

F (x`(k)) = F ∗ξ∞ , (35)

lim
k→∞

Eξk−1
[F (xk−M−1)] = lim

k→∞
Eξk−1

[F (x`(k))] = F̃ ∗. (36)

It follows from (35) that lim
k→∞

F (xk) = F ∗ξ∞ . Using this, (23) and (24), one can see that

limk→∞ ‖dk‖ = 0. Hence, statement (i) holds. Notice that Eξk−M−2
[F (xk−M−1)] = Eξk−1

[F (xk−M−1)].
Combining this relation with (36), we have

lim
k→∞

Eξk−M−2
[F (xk−M−1)] = F̃ ∗,

which is equivalent to
lim
k→∞

Eξk−1
[F (xk)] = F̃ ∗.

In addition, it follows from (23) that

Eξk [F (xk+1)] ≤ Eξk [F (x`(k))]− σ

2
Eξk [‖dk‖2] ∀k ≥ 0. (37)

Notice that

lim
k→∞

Eξk [F (x`(k))] = lim
k→∞

Eξk−1
[F (x`(k))] = F̃ ∗ = lim

k→∞
Eξk [F (xk+1)]. (38)

Using (37) and (38), we conclude that limk→∞Eξk [‖dk‖] = 0.
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Finally, we claim that limk→∞Eξk−1
[F (xk)] = Eξ∞ [F ∗ξ∞ ]. Indeed, we know that {xk} ⊂

Ω(x0). Hence, F ∗ ≤ F (xk) ≤ F (x0), where F ∗ = minx F (x). It follows that

|F (xk)| ≤ max{|F (x0)|, |F ∗|} ∀k.

Using this relation and dominated convergence theorem (see, for example, [2, Theorem 5.4]),
we have

lim
k→∞

Eξ∞ [F (xk)] = Eξ∞

[
lim
k→∞

F (xk)
]

= Eξ∞

[
F ∗ξ∞

]
,

which, together with limk→∞Eξk−1
[F (xk)] = limk→∞Eξ∞ [F (xk)], implies that limk→∞Eξk−1

[F (xk)] =
Eξ∞ [F ∗ξ∞ ]. Hence, statement (ii) holds.

2.2 Convergence to stationary points

In this subsection we show that when k is sufficiently large, xk is an approximate stationary
point of (1) with high probability.

Theorem 2.7 Let {xk} be generated by RNBPG, and d̄k and x̄k defined in (7). Assume that
F is uniformly continuous and Ψ is locally Lipschitz continuous in Ω(x0), where Ω(x0) is
defined in (12). Then there hold

(i)
lim
k→∞

Eξk−1
[‖d̄k‖] = 0, lim

k→∞
Eξk−1

[dist(−∇f(x̄k), ∂Ψ(x̄k)] = 0, (39)

where ∂Ψ denotes the Clarke subdifferential of Ψ.

(ii) Any accumulation point of {xk} is a stationary point of problem (1) almost surely.

(iii) Suppose further that F is uniformly continuous in

S =
{
x : F (x) ≤ F (x0) + max

{n
σ
|Lf − θ| , 1

}
(F (x0)− F ∗)

}
. (40)

Then limk→∞Eξk−1
[|F (xk)− F (x̄k)|] = 0. Moreover, for any ε > 0 and ρ ∈ (0, 1), there

exists K such that for all k ≥ K,

P
(
max

{
‖xk − x̄k‖, |F (xk)− F (x̄k)|, dist(−∇f(x̄k), ∂Ψ(x̄k))

}
≤ ε
)
≥ 1− ρ.

Proof. (i) We know from Theorem 2.6 (ii) that limk→∞Eξk [‖dk‖] = 0, which together with
(16) implies limk→∞Eξk−1

[‖d̄k‖] = 0. Notice that d̄k is an optimal solution of problem (11).
By the first-order optimality condition (see, for example, Proposition 2.3.2 of [5]) of (11) and
x̄k = xk + d̄k, one can have

0 ∈ ∇f(xk) + Θkd̄
k + ∂Ψ(x̄k). (41)
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In addition, it follows from (4) that

‖∇f(x̄k)−∇f(xk)‖ ≤ Lf‖d̄k‖.

Using this relation along with Lemma 2.3 (ii) and (41), we obtain that

dist(−∇f(x̄k), ∂Ψ(x̄k)) ≤ (c+ Lf ) ‖d̄k‖,

which together with the first relation of (39) implies that the second relation of (39) also holds.
(ii) Let x∗ be an accumulation point of {xk}. There exists a subsequence K such that

limk∈K→∞ x
k = x∗. Since Eξk−1

[‖d̄k‖] → 0, it follows that {d̄k}k∈K → 0 almost surely. This
together with the second relation of (39) and outer semi-continuity of ∂Ψ yields

dist(−∇f(x∗), ∂Ψ(x∗)) = lim
k∈K→∞

dist(−∇f(x̄k), ∂Ψ(x̄k)) = 0

almost surely. Hence, x∗ is a stationary point of problem (1) almost surely.
(iii) Recall that x̄k = xk + d̄k. It follows from (4) that

f(x̄k) ≤ f(xk) +∇f(xk)T d̄k +
1

2
Lf‖d̄k‖2.

Using this relation and Lemma 2.3 (ii), we have

F (x̄k) ≤ f(xk) +∇f(xk)T d̄k +
1

2
Lf‖d̄k‖2 + Ψ(xk + d̄k)

≤ f(xk) +∇f(xk)T d̄k +
1

2
(d̄k)TΘkd̄

k + Ψ(xk + d̄k) +
1

2
(Lf − θ) ‖d̄k‖2. (42)

In view of (11), one has

∇f(xk)T d̄k +
1

2
(d̄k)TΘkd̄

k + Ψ(xk + d̄k) ≤ Ψ(xk),

which together with (42) yields

F (x̄k) ≤ F (xk) +
1

2
(Lf − θ)‖d̄k‖2.

Using this relation and the fact that F (x̄k) ≥ F ∗ and F (xk) ≤ F (x0), one can obtain that

|F (x̄k)− F (xk)| ≤ max

{
1

2
|Lf − θ| ‖d̄k‖2, F (x0)− F ∗

}
∀k. (43)

In addition, since F l(k) ≤ F (x0) and F (x̄k) ≥ F ∗, it follows from (8) that ‖d̄k,i‖2 ≤ 2(F (x0)−
F ∗)/σ. Hence, one has

‖d̄k‖2 =
n∑
i=1

‖d̄k,i‖2 ≤ 2n(F (x0)− F ∗)/σ ∀k.
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This inequality together with (43) yields

|F (x̄k)− F (xk)| ≤ max
{n
σ
|Lf − θ| , 1

}
(F (x0)− F ∗) ∀k,

and hence {|F (x̄k)− F (xk)|} is bounded. Also, this inequality together with F (xk) ≤ F (x0)
and the definition of S implies that x̄k, xk ∈ S for all k. In addition, by statement (i), we
know Eξk−1

[‖xk − x̄k‖]→ 0. In view of these facts and invoking Lemma 2.5, one has

lim
k→∞

Eξk−1
[|F (xk)− F (x̄k)|] = 0. (44)

Observe that

0 ≤ max
{
‖xk − x̄k‖, |F (xk)− F (x̄k)|, dist(−∇f(x̄k), ∂Ψ(x̄k))

}
≤ ‖xk − x̄k‖+ |F (xk)− F (x̄k)|+ dist(−∇f(x̄k), ∂Ψ(x̄k)).

Using these inequalities, (44) and statement (i), we see that

lim
k→∞

Eξk−1

[
max

{
‖xk − x̄k‖, |F (xk)− F (x̄k)|, dist(−∇f(x̄k), ∂Ψ(x̄k))

}]
= 0.

The rest of statement (iii) follows from this relation and the Markov inequality.

2.3 Convergence rate analysis

In this subsection we establish a sublinear rate of convergence of RNBPG in terms of the
minimal expected squared norm of certain proximal gradients over the iterations.

Theorem 2.8 Let ḡk = −Θkd̄
k, pmin, ĝk and c be defined in (13), (20) and (14), respectively,

and F ∗ the optimal value of (1). The following statements hold

(i)

min
1≤t≤k

Eξt−1 [‖ḡt‖2] ≤ 2c2(F (x0)− F ∗)
σpmin

· 1

b(k + 1)/(M + 1)c
∀k ≥M.

(ii) Assume further that Ψ is convex. Then

min
1≤t≤k

Eξt−1 [‖ĝt‖2] ≤ c2(F (x0)− F ∗)
2σpmin

[
1 +

1

θ
+

√
1− 2

c
+

1

θ2

]2

· 1

b(k + 1)/(M + 1)c
∀k ≥M.

Proof. (i) Using ḡk = −Θkd̄
k, Lemma 2.3 (ii), and (15), one can observe that

Eξk [‖dk‖2] ≥ pminEξk−1
[‖d̄k‖2] = pminEξk−1

[‖Θ−1
k ḡk‖2] ≥ pmin

c2
Eξk−1

[‖ḡk‖2]. (45)
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Let j(t) = l((M + 1)t)− 1 and j̄(t) = (M + 1)t− 1 for all t ≥ 0. One can see from (29) that

Eξj̄(t) [F (xj(t)+1)] ≤ Eξj̄(t−1)
[F (xj(t−1)+1)]− σ

2
Eξj̄(t) [‖d

j(t)‖2] ∀t ≥ 1.

Summing up the above inequality over t = 1, . . . , s, we have

Eξj̄(s) [F (xj(s)+1)] ≤ F (x0)− σ

2

s∑
t=1

Eξj̄(t) [‖d
j(t)‖2] ≤ F (x0)− σs

2
min

1≤t≤s
Eξj̄(t) [‖d

j(t)‖2],

which together with Eξj̄(s) [F (xj(s)+1)] ≥ F ∗ implies that

min
1≤t≤s

Eξj̄(t) [‖d
j(t)‖2] ≤ 2(F (x0)− F ∗)

σs
. (46)

Given any k ≥M , let sk = b(k + 1)/(M + 1)c. Observe that

j̄(sk) = (M + 1)sk − 1 ≤ k.

Using this relation and (46), we have

min
1≤t≤k

Eξt [‖dt‖2] ≤ min
1≤t̃≤sk

Eξj̄(t̃)
[‖dj(t̃)‖2] ≤ 2(F (x0)− F ∗)

σb(k + 1)/(M + 1)c
∀k ≥M,

which together with (45) implies that statement (i) holds.
(ii) It follows from (15) and (46) that

min
1≤t≤s

Eξj̄(t)−1
[‖d̄j(t)‖2] ≤ 2(F (x0)− F ∗)

σspmin

.

Using this relation and a similar argument as above, one has

min
1≤t≤k

Eξt−1 [‖d̄t‖2] ≤ min
1≤t̃≤sk

Eξj̄(t̃)−1
[‖d̄j(t̃)‖2] ≤ 2(F (x0)− F ∗)

σpminb(k + 1)/(M + 1)c
∀k ≥M.

Statement (ii) immediately follows from this inequality and (21).

3 Convergence analysis for structured convex problems

In this section we study convergence of RNBPG for solving structured convex problem (1).
To this end, we assume throughout this section that f and Ψ are both convex functions.

The following result shows that F (xk) can be arbitrarily close to the optimal value F ∗ of
(1) with high probability for sufficiently large k.

Theorem 3.1 Let {xk} be generated by the RNBPG method, and let F ∗ and X∗ the optimal
value and the set of optimal solutions of (1), respectively. Suppose that f and Ψ are convex
functions and F is uniformly continuous in S, where S is defined in (40). Assume that there
exists a subsequence K such that {Eξk−1

[dist(xk, X∗)]}K is bounded. Then there hold:
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(i)
lim
k→∞

Eξk−1
[F (xk)] = F ∗.

(ii) For any ε > 0 and ρ ∈ (0, 1), there exists K such that for all k ≥ K,

P
(
F (xk)− F ∗ ≤ ε

)
≥ 1− ρ.

Proof. (i) Let d̄k be defined in(7). Using the assumption that F is uniformly continuous
in S and Theorem 2.7, one has

lim
k→∞

Eξk−1
[‖d̄k‖] = 0, lim

k→∞
Eξk−1

[‖sk‖] = 0, (47)

lim
k→∞

Eξk−1
[F (xk + d̄k)] = lim

k→∞
Eξk−1

[F (xk)] = F̃ ∗ (48)

for some sk ∈ ∂F (xk + d̄k) and F̃ ∗ ∈ <. Let xk∗ be the projection of xk onto X∗. By the
convexity of F , we have

F (xk + d̄k) ≤ F (xk∗) + (sk)T (xk + d̄k − xk∗). (49)

One can observe that

|Eξk−1
[(sk)T (xk + d̄k − xk∗)]| ≤ Eξk−1

[|(sk)T (xk + d̄k − xk∗)|]

≤ Eξk−1
[‖sk‖‖(xk + d̄k − xk∗)‖]

≤
√
Eξk−1

[‖sk‖2]
√
Eξk−1

[‖(xk + d̄k − xk∗)‖2]

≤
√

Eξk−1
[‖sk‖2]

√
2Eξk−1

[(dist(xk, X∗))2 + ‖d̄k‖2],

which, together with (47) and the assumption that {Eξk−1
[dist(xk, X∗)]}K is bounded, implies

that
lim

k∈K→∞
Eξk−1

[(sk)T (xk + d̄k − xk∗)] = 0.

Using this relation, (48) and (49), we obtain that

F̃ ∗ = lim
k→∞

Eξk−1
[F (xk)] = lim

k→∞
Eξk−1

[F (xk + d̄k)]

= lim
k∈K→∞

Eξk−1
[F (xk + d̄k)] ≤ lim

k∈K→∞
Eξk−1

[F (xk∗)] = F ∗,

which together with F̃ ∗ ≥ F ∗ yields F̃ ∗ = F ∗. Statement (i) follows from this relation and
(48).

(ii) Statement (ii) immediately follows from statement (i), the Markov inequality, and the
fact F (xk) ≥ F ∗.
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In the rest of this section we study the rate of convergence of a monotone version of
RNBPG, i.e., M = 0, or equivalently, (6) is replaced by

F (xk + dk) ≤ F (xk)− σ

2
‖dk‖2. (50)

The following lemma will be subsequently used to establish a sublinear rate of convergence
of RNBPG with M = 0.

Lemma 3.2 Suppose that a nonnegative sequence {∆k} satisfies

∆k ≤ ∆k−1 − α∆2
k ∀k ≥ 1 (51)

for some α > 0. Then

∆k ≤
max{2/α,∆0}

k + 1
∀k ≥ 0.

Proof. We divide the proof into two cases.
Case (i): Suppose ∆k > 0 for all k ≥ 0. Let ∆̄k = 1/∆k. It follows from (51) that

∆̄2
k − ∆̄k−1∆̄k − α∆̄k−1 ≥ 0 ∀k ≥ 1,

which together with ∆̄k > 0 implies that

∆̄k ≥
∆̄k−1 +

√
∆̄2
k−1 + 4α∆̄k−1

2
. (52)

We next show by induction that

∆̄k ≥ β(k + 1) ∀k ≥ 0, (53)

where β = min
{
α/2, ∆̄0

}
. By the definition of β, one can see that (53) holds for k = 0.

Suppose it holds for some k ≥ 0. We now need to show (53) also holds for k+1. Indeed, since
β ≤ α/2, we have

α(k + 1) ≥ α (k/2 + 1) = α(k + 2)/2 ≥ β(k + 2).

which yields

4αβ(k + 1) ≥ β2(4k + 8) = [2β(k + 2)− β(k + 1)]2 − β2(k + 1)2.

It follows that √
β2(k + 1)2 + 4αβ(k + 1) ≥ 2β(k + 2)− β(k + 1),

which is equivalent to

β(k + 1) +
√
β2(k + 1)2 + 4αβ(k + 1) ≥ 2β(k + 2).
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Using this inequality, (52) and the induction hypothesis ∆̄k ≥ β(k + 1), we obtain that

∆̄k+1 ≥
∆̄k +

√
∆̄2
k + 4α∆̄k

2
≥

β(k + 1) +
√
β2(k + 1)2 + 4αβ(k + 1)

2
≥ β(k + 2),

namely, (53) holds for k + 1. Hence, the induction is completed and (53) holds for all k ≥ 0.
The conclusion of this lemma follows from (53) and the definitions of ∆̄k and β.

Case (ii) Suppose there exists some k̃ such that ∆k̃ = 0. Let K be the smallest of such
integers. Since ∆k ≥ 0, it follows from (51) that ∆k = 0 for all k ≥ K and ∆k > 0 for every
0 ≤ k < K. Clearly, the conclusion of this lemma holds for k ≥ K. And it also holds for
0 ≤ k < K due to a similar argument as for Case (i).

We next establish a sublinear rate of convergence on the expected objective values for the
RNBPG method with M = 0 when applied to problem (1), where f and ψ are assumed to be
convex. Before proceeding, we define the following quantities

r = max
x

{
dist(x,X∗) : x ∈ Ω(x0)

}
, (54)

q = max
x

{
‖∇f(x)‖ : x ∈ Ω(x0)

}
, (55)

where X∗ denotes the set of optimal solutions of (1) and Ω(x0) is defined in (12).

Theorem 3.3 Let c, r, q be defined in (14), (54), (55), respectively. Assume that r and q are
finite. Suppose that Ψ is LΨ-Lipschitz continuous in dom(Ψ), namely,

|Ψ(x)−Ψ(y)| ≤ LΨ‖x− y‖ x, y ∈ dom(Ψ) (56)

for some LΨ > 0. Let {xk} be generated by RNBPG with M = 0. Then

Eξk−1
[F (xk)]− F ∗ ≤ max{2/α, F (x0)− F ∗}

k + 1
∀k ≥ 0,

where

α =
σp2

min

2(LΨ + q + cr)2
. (57)

Proof. Let x̄k be defined in (7). For each xk, let xk∗ ∈ X∗ such that ‖xk−xk∗‖ = dist(xk, X∗).
Due to xk ∈ Ω(x0) and (54), we know that ‖xk − xk∗‖ ≤ r. By the definition of x̄k+1 and (11),
one can observe that

[∇f(xk) + Θk(x̄
k+1 − xk)]T (x̄k+1 − xk∗) + Ψ(x̄k+1)−Ψ(xk∗) ≤ 0. (58)
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Using this inequality, (55), and (56), we have

F (xk)− F ∗ = f(xk)− f(xk∗) + Ψ(xk)−Ψ(x̄k+1) + Ψ(x̄k+1)−Ψ(xk∗)

≤ ∇f(xk)T (xk − xk∗) + LΨ‖xk − x̄k+1‖+ Ψ(x̄k+1)−Ψ(xk∗)

= ∇f(xk)T (xk − x̄k+1) +∇f(xk)T (x̄k+1 − xk∗) + LΨ‖xk − x̄k+1‖+ Ψ(x̄k+1)−Ψ(xk∗)

≤ (LΨ + q)‖xk − x̄k+1‖+ (xk − x̄k+1)TΘk(x̄
k+1 − xk∗)

+ [∇f(xk) + Θk(x̄
k+1 − xk)]T (x̄k+1 − xk∗) + Ψ(x̄k+1)−Ψ(xk∗)︸ ︷︷ ︸

≤0

≤ (LΨ + q)‖xk − x̄k+1‖+ (xk − x̄k+1)TΘk(x̄
k+1 − xk∗)

≤ (LΨ + q)‖xk − x̄k+1‖+ (xk − x̄k+1)TΘk(x̄
k+1 − xk)︸ ︷︷ ︸

≤0

+(xk − x̄k+1)TΘk(x
k − xk∗)

≤ (LΨ + q)‖xk − x̄k+1‖+ (xk − x̄k+1)TΘk(x
k − xk∗)

≤ (LΨ + q)‖xk − x̄k+1‖+ ‖Θk‖‖xk − x̄k+1‖‖xk − xk∗‖

≤ (LΨ + q + cr)‖xk − x̄k+1‖ = (LΨ + q + cr)‖d̄k‖,

where the first inequality follows from convexity of f and (56), the second inequality is due
to (55), the third inequality follows from (58), and the last inequality is due to ‖xk−xk∗‖ ≤ r.
The preceding inequality, (16) and the fact F (xk+1) ≤ F (xk) yield

Eξk [F (xk+1]− F ∗ ≤ Eξk−1
[F (xk)]− F ∗ ≤ (LΨ + q + cr)Eξk−1

[‖d̄k‖] ≤ LΨ + q + cr

pmin

Eξk−1
[‖dk‖].

In addition, using
(
Eξk−1

[‖dk‖]
)2 ≤ Eξk−1

[‖dk‖2] and (50), one has

Eξk [F (xk+1)] ≤ Eξk−1
[F (xk)]− σ

2
Eξk−1

[‖dk‖2] ≤ Eξk−1
[F (xk)]− σ

2

(
Eξk−1

[‖dk‖]
)2
.

Let ∆k = Eξk−1
[F (xk)]− F ∗. Combining the preceding two inequalities, we obtain that

∆k+1 ≤ ∆k − α∆2
k+1 ∀k ≥ 0,

where α is defined in (57). Notice that ∆0 = F (x0) − F ∗. Using this relation, the definition
of ∆k, and Lemma 3.2, one can see that the conclusion of this theorem holds.

The next result shows that under an error bound assumption the RNBPG method with
M = 0 is globally linearly convergent in terms of the expected objective values.

Theorem 3.4 Let {xk} be generated by RNBPG. Suppose that there exists τ > 0 such that

dist(xk, X∗) ≤ τ‖ĝk‖ ∀k ≥ 0, (59)
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where ĝk is given in (20) and X∗ denotes the set of optimal solutions of (1). Then there holds

Eξk [F (xk)]− F ∗ ≤
[

2$ + (1− pmin)σ

2$ + σ

]k
(F (x0)− F ∗) ∀k ≥ 0,

where

$ =
(c+ Lf )τ

2c2

8

[
1 +

1

θ
+

√
1− 2

c
+

1

θ2

]2

+
Lmax − θ

2
.

Proof. For each xk, let xk∗ ∈ X∗ such that ‖xk − xk∗‖ = dist(xk, X∗). Let d̄k be defined in
(7), and

Φ(d̄k;xk) = f(xk) +∇f(xk)T d̄k +
1

2
‖d̄k‖2

Θk
+ Ψ(xk + d̄k).

It follows from (4) that

f(x+ h) ≥ f(x) +∇f(x)Th− 1

2
Lf‖h‖2 ∀x, h ∈ <N .

Using this inequality, (11) and Lemma 2.3 (ii), we have that

Φ(d̄k;xk) ≤ f(xk) +∇f(xk)T (xk∗ − xk) + 1
2
‖xk∗ − xk‖2

Θk
+ Ψ(xk∗)

≤ f(xk∗) + 1
2
Lf‖xk∗ − xk‖2 + 1

2
‖xk∗ − xk‖2

Θk
+ Ψ(xk∗)

≤ F (xk∗) + 1
2
γ‖xk∗ − xk‖2 = F ∗ + 1

2
γ[dist(xk, X∗)]2.

where γ = c+ Lf . Using this relation and (59), one can obtain that

Φ(d̄k;xk) ≤ F ∗ +
1

2
γτ 2‖ĝk‖2.

It follows from this inequality and (21) that

Φ(d̄k;xk) ≤ F ∗ +
1

8
γτ 2c2

[
1 +

1

θ
+

√
1− 2

c
+

1

θ2

]2

‖d̄k‖2,

which along with (15) yields

Eξk−1
[Φ(d̄k;xk)] ≤ F ∗ +

γτ 2c2

8pmin

[
1 +

1

θ
+

√
1− 2

c
+

1

θ2

]2

Eξk [‖dk‖2]. (60)

In addition, by (3) and the definition of d̄k,i, we have

F (xk + d̄k,i) ≤ f(xk) +∇f(xk)T d̄k,i +
Li
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i) ∀i. (61)
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It also follows from (9) that

∇f(xk)T d̄k,i +
θk,i
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i)−Ψ(xk) ≤ 0 ∀i. (62)

Using these two inequalities, we can obtain that

Eik [F (xk+1)] = Eik [F (xk + d̄k,ik)
∣∣ ξk−1] =

∑n
i=1 piF (xk + d̄k,i)

≤
∑n

i=1 pi[f(xk) +∇f(xk)T d̄k,i + Li
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i)]

= F (xk) +
∑n

i=1 pi[∇f(xk)T d̄k,i + Li
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i)−Ψ(xk)]

= F (xk) +
∑n

i=1 pi [∇f(xk)T d̄k,i +
θk,i
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i)−Ψ(xk)]︸ ︷︷ ︸

≤0

+1
2

∑n
i=1 pi(Li − θk,i)‖d̄k,i‖2

≤ F (xk) + pmin

∑n
i=1[∇f(xk)T d̄k,i +

θk,i
2
‖d̄k,i‖2 + Ψ(xk + d̄k,i)−Ψ(xk)]

+1
2

∑n
i=1 pi(Li − θk,i)‖d̄k,i‖2

= F (xk) + pmin[∇f(xk)T d̄k + 1
2
‖d̄k‖2

Θk
+ Ψ(xk + d̄k)−Ψ(xk)]

+1
2

∑n
i=1 pi(Li − θk,i)‖d̄k,i‖2

≤ (1− pmin)F (xk) + pminΦ(d̄k;xk) + Lmax−θ
2

Eik [‖dk‖2
∣∣ ξk−1],

where the first inequality follows from (61) and the second inequality is due to (62). Taking
expectation with respect to ξk−1 on both sides of the above inequality gives

Eξk [F (xk+1)] ≤ (1− pmin)Eξk−1
[F (xk)] + pminEξk−1

[Φ(d̄k;xk)] +
Lmax − θ

2
Eξk [‖dk‖2].

Using this inequality and (60), we obtain that

Eξk [F (xk+1)] ≤ (1− pmin)Eξk−1
[F (xk)] + pminF

∗ +$Eξk [‖dk‖2] ∀k ≥ 0,

where $ is defined above. In addition, it follows from (50) that

Eξk [F (xk+1)] ≤ Eξk−1
[F (xk)]− σ

2
Eξk [‖dk‖2] ∀k ≥ 0.

Combining these two inequalities, we obtain that

Eξk [F (xk+1)]− F ∗ ≤ 2$ + (1− pmin)σ

2$ + σ

(
Eξk−1

[F (xk)]− F ∗
)

∀k ≥ 0,

and the conclusion of this theorem immediately follows.

Remark 3.5 The error bound condition (59) holds for a class of problems, especially when f
is strongly convex. More discussion about this condition can be found, for example, in [10].
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4 Numerical experiments

In this section we illustrate the numerical behavior of the RNBPG method on the `1-regularized
least-squares problem, a dual SVM problem in machine learning, the `0-regularized least-
squares problem and a non-convex matrix completion problem.

First we consider the `1-regularized least-squares problem:

F ∗ = min
x∈<N

{
1

2
‖Ax− b‖2

2 + λ‖x‖1

}
,

where A ∈ <m×N , b ∈ <m, and λ > 0 is a regularization parameter. Clearly, this problem is
a special case of the general model (1) with f(x) = ‖Ax− b‖2

2/2 and Ψ(x) = λ‖x‖1 and thus
our proposed RNBPG method can be suitably applied to solve it.

We generated a random instance with m = 1000 and N = 2000 following the procedure
described in [20, Section 6]. The advantage of this procedure is that an optimal solution x∗ is
generated together with A and b, and hence the optimal value F ∗ is known. We generated an
instance where the optimal solution x∗ has only 200 nonzero entries, so this can be considered
as a sparse recovery problem. We compare RNBPG with the following methods:

• RBCD: The RBCD method [24] with constant step sizes 1/Li determined by the Lips-
chitz constants Li. Here, Li = ‖A:,i‖2

2 where A:,i is the ith column block corresponding
to the block partitions of xi and ‖ · ‖2 is the matrix spectral norm.

• RBCD-LS: A variant of RBCD method with variable stepsizes that are determined
by a block-coordinate-wise backtracking line search scheme. This method can also be
regarded as a variant of RNBPG with M = 0, but which has the property of monotone
descent.

As discussed in [19], the structure of the least-squares function f(x) = ‖Ax− b‖2
2/2 allows

efficient computation of coordinate gradients, with cost of O(mNi) operations for block i as
opposed to O(mN) for computing the full gradient. We note that the same structure also
allows efficient computation of the function value, which costs the same order of operations
as computing coordinate gradients. Therefore the backtracking line search used in RBCD-LS
as well as the nonmonotone line search used in RNBPG (both relies on computing function
values), have the same order computational cost as evaluating coordinate gradients at each
iteration. Therefore we can focus on comparing their required number of iterations to obtain
the same accuracy in reducing the objective value.

We run each algorithm with four different block coordinate sizes Ni = 1, 20, 200, 2000 for
all i. For each blocksize, we pick the block coordinates uniformly at random at each iteration.
Note that Ni = 2000 = N gives the full gradient versions of the methods considered, which
are deterministic algorithms. We choose the same initial point x0 = 0 for all three methods.

For the RNBPG method, we used the parameters M = 10, η = 1.1, θ = 10−8, θ̄ = 108 and
σ = 10−4. In addition, we adopted the Barzilai-Borwein spectral method [3] to compute the
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(a) Blocksize Ni = 1.
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(b) Blocksize Ni = 20.
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(c) Blocksize Ni = 200.
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(d) Blocksize Ni = 2000.

Figure 1: Comparison of different methods with block coordinate sizes Ni = 1, 20, 200, 2000.

initial estimate θ0
k that was motivated from [1]. That is, we choose

θ0
k =
‖A:,iku‖2

2

‖u‖2
2

,

where

u = arg min
s

{
∇ikf(xk)T s+

Lik
2
‖s‖2 + Ψik(x

k
ik

+ s)

}
, Lik = ‖A:,ik‖2

2.

Figure 1 shows the behavior of different algorithms with the four different block coordinate
sizes. For Ni = 1 in Figure 1(a), RBCD has slightly better convergence speed than RBCD-LS
and RNBPG. The reason is that in this case, along each block f becomes an one-dimensional
quadratic function, and the value Li = ‖A:,i‖2

2 gives the accurate second partial derivative of
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(a) Number of iterations versus blocksize.
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(b) Number of epochs versus blocksize.
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(c) Computation time versus blocksize.
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(d) Computation time versus blocksize for a different
problem instance with m = 5000 and N = 1000.

Figure 2: Comparison of different methods when varying the block coordinate size Ni.

f along each dimension. Therefore in this case the RBCD method essentially uses the best
step size, which is generally better than the ones used in RBCD-LS and RNBPG.

When the blocksize Ni is larger than one, the value Li = ‖A:,i‖2
2 is the magnitude of second

derivative along the most curved direction. Line search based methods may take advantage
of the possibly much smaller local curvature along the search direction by taking larger step
sizes. Figure 1 (b), (c) and (d) show that RBCD-LS converges much faster that RBCD while
RNBPG (with M = 10) converges substantially faster than RBCD-LS.

Figure 2 shows more comprehensive study of the performance of the three methods: RBCD,
RBCD-LS, and RNBPG. Figure 2(a) shows the number of iterations of different methods
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number of samples N number of features d sparsity λ
RCV1 20,242 47,236 0.16% 0.0001
News20 19,996 1,355,191 0.04% 0.0001

Table 1: Characteristics of two sparse datasets from the LIBSVM web site [7].

required to reach the precision F (xk) − F (x∗) ≤ 10−6, when using 10 different block sizes
ranging from 1 to 2000 with equal logarithmic spacing. Figure 2(b) shows the number of
epochs required to reach the same precision, where each epoch corresponds to one equivalent
pass over the dataset A ∈ <m×N , that is, equivalent to N/Ni iterations. For each method and
each block size, we record the results of 10 runs with different random sequences to pick the
block coordinates, and plot the mean with the standard deviation as error bars. As we can see,
the number of iterations in general decreases when we increase the block size, because each
iteration involves more coordinates and more computation. On the other hand, the number
of epochs required increases with the block size, meaning that larger block size updates are
less efficient than small block size updates.

The above observations suggest that using larger block sizes is less efficient in terms of
the overall computation work (e.g., measured in total flops). However, this does not mean
longer computation time. In particular, using larger block sizes may better take advantage of
modern multi-core computers for parallel computing, thus may take less computation time.
Figure 2(c) shows the computation time required to reach the same precision on a 12 core
Intel Xeon computer. We used the Intel Math Kernel Library (MKL) to carry out parallel
dense matrix and vector operations. The results suggest that using appropriate large block
size may take the least amount of computation time. We note that such timing results
heavily depend on the specific architecture of the computer, in particular its cache size for
fast access, the relative size of the data matrix A, and other implementation details. For
example, Figure 2(d) shows the timing results on the same computer for a different problem
instance with m = 2000 and N = 4000. Here the best block size is smaller than one shown in
Figure 2(c), because the size of each column of A is doubled and the operations involved in
each coordinate (corresponding to a column of the matrix) has increased. However, for any
fixed block size, the relative performance of the three algorithms are consistent; in particular,
RNBPG substantially outperforms the other two methods in most cases.

We also conducted experiments on using randomized block coordinate methods to solve a
dual SVM problem in machine learning (specifically, the dual of a smoothed SVM problem
described in [28, Section 6.2]). We used two real datasets from the LIBSVM web site [7], whose
characteristics are summarized in Table 1. In the dual SVM problem, the dimension of the dual
variables are the same as the number of samples N , and we partition the dual variables into
blocks to apply the three randomized block coordinate gradient methods. Figure 3 shows the
reduction of the objective value with the three methods on the two datasets, each illustrated
with two block sizes: Ni = 100 and Ni = 1000. We observe that the RNBPG method
converges faster than the other two methods, especially with relatively larger block sizes.

To conclude, our experiments on both synthetic and real datasets clearly demonstrate the
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(a) RCV1 dataset with blocksize Ni = 100.
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(b) RCV1 dataset with blocksize Ni = 1000.
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(c) News20 dataset with blocksize Ni = 100.
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(d) News20 dataset with blocksize Ni = 1000.

Figure 3: Comparison on the dual empirical risk minimization problem with real datasets.

advantage of the nonmonotone line search strategy (with spectral initialization) for random-
ized block coordinate gradient methods.

In the following experiment we compare the performance of RBCD and RNBPG for solving
the `0-regularized least-squares problem:

min
x∈<N

{
‖Ax− b‖2 + λ‖x‖0

}
, (63)

where the matrix A ∈ <m×N and the vector b ∈ <m are randomly generated according to
the standard normal distribution, and λ is set to 10−2. We choose x0 = 0 as the initial point
for both methods. In addition, the decision vector x is divided sequentially into 10 blocks
of equal size for both methods. At each iteration both methods choose a block uniformly
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Table 2: RBCD and RNBPG for `0-regularized least squares

Problem Objective Value CPU Time
m n RBCD RNBPG RBCD RNBPG
100 500 0.38 0.29 0.01 0.01
200 1000 0.69 0.60 0.04 0.02
300 1500 1.16 0.94 0.05 0.04
400 2000 1.36 1.19 0.09 0.07
500 2500 1.92 1.54 0.13 0.11
600 3000 2.03 1.64 0.16 0.16
700 3500 2.48 1.95 0.30 0.24
800 4000 2.93 2.31 0.36 0.31
900 4500 3.22 3.06 0.41 0.58

1000 5000 3.86 2.95 0.45 0.48

at random for updating. The aforementioned parameters are used for both methods. We
terminate them once the change of objective over two consecutive iterations is within 10−8.
The computational results are presented in Table 2. In detail, the parameters m and n of each
instance are listed in the first two columns, respectively. The objective function values of (63)
for both methods are given in the next two columns, and CPU times (in seconds) are given
in the last two columns, respectively. One can observe that both methods are comparable
in terms of CPU time, but RNBPG substantially outperforms RBCD in terms of objective
value.

We next compare the performance of RBCD and RNBPG for solving a regularized non-
convex matrix completion model:

min
{
‖PΩ(M − UTV )‖2

F + λ(‖U‖2
F + ‖V ‖2

F ) : U ∈ <r×m, V ∈ <r×n
}

(64)

for some λ > 0, where M ∈ <m×n, r ≤ min(m,n), Ω is a subset of index pairs (i, j), and
PΩ(·) is the projection onto the subspace of matrices with nonzeros restricted to the index
subset Ω. This model can be used to approximately recover a random matrix M ∈ <m×n
with rank r based on a subset of entries {Mij}(i,j)∈Ω. We randomly generate M and Ω by a
similar procedure as described in [18]. More specifically, we first generate random matrices
ML ∈ <m×r and MR ∈ <n×r with i.i.d. standard Gaussian entries and let M = MLM

T
R . We

then sample a subset Ω with sampling ratio SR uniformly at random, where SR = |Ω|/(mn).
In our experiment, we set λ = 10−1, m = n = 200 and generate Ω with three different values
of SR, which are 0.2, 0.5 and 0.8.

For each sample ratio SR and rank r, we apply RBCD and RNBPG to solve (64) on the
instances randomly generated above. We partition the decision variable (U, V ) into m + n
blocks and each block is a column of U or V . At each iteration both methods choose a block
uniformly at random for updating. For each instance, we choose the same initial point (U0, V 0)
for both methods and terminate them once the change of objective over two consecutive
iterations is within 10−8. In particular, we choose U0 and V 0 to be the matrices whose ith
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Table 3: RBCD and RNBPG for problem (64) with SR = 0.2

r Objective Value Relative Error CPU Time
RBCD RNBPG RBCD RNBPG RBCD RNBPG

1 42.47 42.47 0.0034 0.0032 91.7 9.5
2 74.05 74.05 0.0039 0.0038 65.8 4.4
3 116.09 116.08 0.0052 0.0044 74.8 6.9
4 163.40 163.39 0.0045 0.0042 110.2 8.5
5 199.05 199.05 0.0050 0.0047 139.3 10.8
6 241.48 241.48 0.0055 0.0053 167.7 14.3
7 273.34 273.33 0.0064 0.0061 228.4 14.8
8 310.20 310.19 0.0069 0.0066 289.6 16.1
9 358.27 358.26 0.0082 0.0079 311.2 21.8
10 396.26 396.25 0.0094 0.0089 309.5 23.9

Table 4: RBCD and RNBPG for problem (64) with SR = 0.5

r Objective Value Relative Error CPU Time
RBCD RNBPG RBCD RNBPG RBCD RNBPG

1 42.50 42.50 0.0013 0.0012 86.4 7.3
2 76.56 76.56 0.0014 0.0014 66.2 13.0
3 114.68 114.69 0.0015 0.0014 90.3 17.7
4 163.23 163.23 0.0015 0.0014 136.0 19.5
5 200.70 200.70 0.0015 0.0014 198.8 25.2
6 268.96 268.97 0.0014 0.0014 236.1 37.8
7 282.63 282.63 0.0016 0.0015 218.8 38.8
8 313.95 313.95 0.0017 0.0017 241.7 43.4
9 342.25 342.25 0.0019 0.0018 277.8 52.8
10 384.36 384.36 0.0018 0.0018 314.8 54.6

column is emod(i,r)+1, where ej is the r-dimensional jth coordinate vector and mod is the
standard modulo operation.

The computational results are presented in Tables 3-5. In detail, the parameter r of each
instance is listed in the first column. The objective function values of (64) at the approximate
solutions found by RBCD and RNBPG are given in the second and third columns. The
relative errors for them are given in the next two columns, where the relative error for an
approximate solution (U, V ) is defined as ‖M − UTV ‖F/‖M‖F . The CPU times (in seconds)
of both methods are given in the last two columns. One can observe that both methods are
comparable in terms of objective function value and relative error, but RNBPG substantially
outperforms RBCD in terms of CPU time.
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Table 5: RBCD and RNBPG for problem (64) with SR = 0.8

r Objective Value Relative Error CPU Time
RBCD RNBPG RBCD RNBPG RBCD RNBPG

1 42.52 42.51 0.0009 0.0009 86.6 25.2
2 78.47 78.48 0.0010 0.0010 74.1 17.5
3 121.91 121.91 0.0009 0.0009 107.9 23.2
4 159.63 159.63 0.0010 0.0010 125.8 31.4
5 201.15 201.15 0.0010 0.0010 186.0 40.8
6 237.14 237.14 0.0010 0.0010 225.9 55.6
7 273.38 273.38 0.0011 0.0011 234.4 64.9
8 306.68 306.68 0.0011 0.0011 268.5 72.7
9 351.22 351.22 0.0010 0.0010 330.6 85.2
10 393.81 393.80 0.0011 0.0011 375.1 84.9

5 Concluding remarks

In this paper we proposed a randomized nonmonotone block proximal gradient (RNBPG)
method for minimizing the sum of a smooth (possibly nonconvex) function and a block-
separable (possibly nonconvex nonsmooth) function. In contrast to the usual randomized
block coordinate descent (RBCD) method [24, 21], our method is typically nonmonotone and
moreover it uses variable stepsizes that can partially utilize the local curvature information
of the smooth component of objective function. We establish the global convergence of the
algorithm under suitable assumptions and also its rate of convergence. Our analysis overcame
the key difficulty brought by the interplay between randomness and nonmonotonicity in the
coordinate descent setting, and established convergence results under general non-degenerate
probability distributions of picking the block coordinates during each iteration.

Notice that at each iteration RNBPG may need to evaluate objective values multiple times
in order to determine a suitable stepsize. For many interesting problems arising in machine
learning, such as training linear predictors (including SVM and logistic regression), once the
partial gradient of the objective is computed, it takes little extra cost to compute the objective.
Thus, the nonmonotone line search in RNBPG can be carried out quite efficiently.

Our preliminary computational results show that with nontrivial block size (for which
block-wise Lipschitz constant is hard to approximate), RNBPG is consistently more efficient
than RBCD in terms of both number of iterations and number of epochs, and also in com-
putation time. Depending on the multi-core computer architecture, the RNBPG method can
substantially outperform the usual RBCD methods with a suitable range of block coordinate
sizes. It is worthy of a further research on how to design algorithms that can automati-
cally tuned to have the best performance by exploiting the multi-core architecture of modern
computers.
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