
Rank-One Matrix Pursuit for Matrix Completion

Zheng Wang∗ ZHENGWANG@ASU.EDU
Ming-Jun Lai† MJLAI@MATH.UGA.EDU
Zhaosong Lu‡ ZHAOSONG@SFU.CA
Wei Fan§ DAVID.FANWEI@HUAWEI.COM
Hasan Davulcu¶ HASANDAVULCU@ASU.EDU
Jieping Ye∗¶ JIEPING.YE@ASU.EDU
∗The Biodesign Institue, Arizona State University, Tempe, AZ 85287, USA
†Department of Mathematics, University of Georgia, Athens, GA 30602, USA
‡Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 156, Canada
§Huawei Noah’s Ark Lab, Hong Kong Science Park, Shatin, Hong Kong
¶School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85281, USA

Abstract

Low rank matrix completion has been applied
successfully in a wide range of machine learn-
ing applications, such as collaborative filtering,
image inpainting and Microarray data imputa-
tion. However, many existing algorithms are not
scalable to large-scale problems, as they involve
computing singular value decomposition. In this
paper, we present an efficient and scalable algo-
rithm for matrix completion. The key idea is to
extend the well-known orthogonal matching pur-
suit from the vector case to the matrix case. In
each iteration, we pursue a rank-one matrix ba-
sis generated by the top singular vector pair of
the current approximation residual and update
the weights for all rank-one matrices obtained
up to the current iteration. We further propose
a novel weight updating rule to reduce the time
and storage complexity, making the proposed al-
gorithm scalable to large matrices. We establish
the linear convergence of the proposed algorithm.
The fast convergence is achieved due to the pro-
posed construction of matrix bases and the es-
timation of the weights. We empirically evalu-
ate the proposed algorithm on many real-world
large-scale datasets. Results show that our al-
gorithm is much more efficient than state-of-the-
art matrix completion algorithms while achieving
similar or better prediction performance.

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

1. Introduction
Low rank matrix learning has attracted significant attention
in the machine learning community due to its wide range
of applications, such as collaborative filtering (Koren et al.,
2009; Srebro et al., 2005), compressed sensing (Candès
& Recht, 2009), multi-class learning and multi-task learn-
ing (Argyriou et al., 2008; Negahban & Wainwright, 2010;
Dudı́k et al., 2012). In this paper, we consider the general
form of low rank matrix completion: given a partially ob-
served real-valued matrix Y ∈ <n×m, the low rank matrix
completion problem is to find a matrix X ∈ <n×m with
minimum rank such that PΩ(X) = PΩ(Y), where Ω in-
cludes the index pairs (i, j) of all observed entries, and PΩ

is the orthogonal projector onto the span of matrices van-
ishing outside of Ω. As it is intractable to minimize the
matrix rank exactly in the general case, the trace norm or
nuclear norm is widely used as a convex relaxation of the
matrix rank (Candès & Recht, 2009). It is defined by the
Schatten p-norm with p = 1. For matrix X with rank r, its
Schatten p-norm is defined by (

∑r
i=1 σ

p
i)1/p, where {σi}

are the singular values of X. Thus, the trace norm of X is
the `1 norm of the matrix spectrum as ||X||∗ =

∑r
i=1 |σi|.

Solving the standard low rank or trace norm problem is
computationally expensive for large matrices, as it involves
computing singular value decomposition (SVD). How to
solve these problems efficiently and accurately has at-
tracted much attention in recent years (Avron et al., 2012;
Srebro et al., 2005; Cai et al., 2010; Balzano et al., 2010;
Keshavan & Oh, 2009; Toh & Yun, 2010; Ji & Ye, 2009;
Ma et al., 2011; Mazumder et al., 2010; Mishra et al.,
2011; Wen et al., 2010; Lee & Bresler, 2010; Recht &
Ré, 2013). Most of these methods still involve the com-
putation of SVD or truncated SVD iteratively, which is

Rank-One Matrix Pursuit for Matrix Completion

not scalable to large-scale problems (Cai et al., 2010; Ke-
shavan & Oh, 2009; Toh & Yun, 2010; Ma et al., 2011;
Mazumder et al., 2010; Lee & Bresler, 2010). Several
methods approximate the trace norm using its variational
characterizations (Mishra et al., 2011; Srebro et al., 2005;
Wen et al., 2010; Recht & Ré, 2013), and proceed by alter-
nating optimization. The linear convergence rate is estab-
lished theoretically for properly designed alternating op-
timization algorithm under appropriate initialization (Jain
et al., 2013). However, its computational complexity de-
pends on the square of the rank of the estimated matrix.
Thus in practical problems, especially for large matrices, it
requires the rank of the estimated matrix to be very small,
which sacrifices the estimation accuracy.

Recently, the coordinate gradient descent method has been
demonstrated to be efficient in solving sparse learning
problems in the vector case (Friedman et al., 2010; Shalev-
Shwartz & Tewari, 2009). The key idea is to solve a very
simple one-dimensional problem (for one coordinate) in
each iteration. One natural question is whether and how
such method can be applied to solve the matrix comple-
tion problem. Some progress has been made recently along
this direction (Jaggi & Sulovský, 2010; Tewari et al., 2011;
Shalev-Shwartz et al., 2011; Dudı́k et al., 2012; Zhang
et al., 2012). These algorithms proceed in two main steps
in each iteration. The first step involves computing the
top singular vector pair, and the second step refines the
weights of the rank-one matrices formed by all top singu-
lar vector pairs obtained up to the current iteration. The
main differences among these algorithms lie in how they
refine the weights. The Jaggi’s algorithm (JS) (Jaggi &
Sulovský, 2010) directly applies the Hazan’s algorithm,
which adapts the Frank-Wolfe algorithm to the matrix case
(Hazan, 2008). It updates the weights with a small step size
and does not consider further refinement. It does not use
all information in each step, which leads to a slow conver-
gence rate. Similar to JS, Tewari et al. (Tewari et al., 2011)
use a small update step size for a general structure con-
strained problem. A more efficient Frank-Wolfe type algo-
rithm is to fully refine the weights, which is claimed to be
equivalent to orthogonal matching pursuit (OMP) in a wide
range of l1 ball constrained convex optimization problems
(Jaggi, 2013). The greedy efficient component optimiza-
tion (GECO) (Shalev-Shwartz et al., 2011) applies a sim-
ilar approach, which optimizes the weights by solving an-
other time consuming optimization problem. It empirically
reduces the number of iterations without theoretical guar-
antees. However, the sophisticated weight refinement leads
to a higher total computational cost. The lifted coordinate
gradient descent algorithm (Lifted) (Dudı́k et al., 2012) up-
dates the rank-one matrix basis with a constant weight in
each iteration, and conducts a lasso type algorithm (Tibshi-
rani, 1994) to fully correct the weights. The weights for

the basis update are difficult to tune: a large value leads to
divergence; a small value makes the algorithm slow (Zhang
et al., 2012). The matrix norm boosting approach (Boost)
(Zhang et al., 2012) learns the update weights and designs
a local refinement step by a non-convex optimization prob-
lem which is solved by alternating optimization. It has a
sub-linear convergence rate.

In this paper, we present a simple and efficient algorithm
to solve the low rank matrix completion problem. The key
idea is to extend the orthogonal matching pursuit procedure
(Pati et al., 1993) from the vector case to the matrix case. In
each iteration, a rank-one basis matrix is generated by the
left and right top singular vectors of the current approxi-
mation residual. In the standard algorithm, we fully update
the weights for all rank-one matrices in the current basis
set at the end of each iteration by performing an orthogo-
nal projection of the observation matrix onto their spanning
subspace. The most time-consuming step of the proposed
algorithm is to calculate the top singular vector pair of a
sparse matrix, which costs O(|Ω|) operations in each itera-
tion. An appealing feature of the proposed algorithm is that
it has a linear convergence rate. This is quite different from
traditional orthogonal matching pursuit or weak orthogonal
greedy algorithms, whose convergence rate for sparse vec-
tor recovery is sub-linear as shown in (Liu & Temlyakov,
2012). See also (Tropp, 2004) for an extensive study on
various greedy algorithms. With this rate of convergence,
we only need O(log(1/ε)) iterations for achieving an ε-
accuracy solution. One drawback of the standard algorithm
is that it needs to store all rank-one matrices in the current
basis set for full weight updating, which contains r|Ω| el-
ements in the r-th iteration. This makes the storage com-
plexity of the algorithm dependent on the number of iter-
ations, which restricts the approximation rank especially
for large matrices. To tackle this problem, we propose an
economic weight updating rule for this algorithm. In this
economic algorithm, we only track two matrices in each it-
eration. One is the current estimated matrix and the other
one is the pursued rank-one matrix. When restricted to the
observations in Ω, each has |Ω| nonzero elements. Thus
the storage requirement, i.e., 2|Ω|, keeps the same in differ-
ent iterations, which is the same as the greedy algorithms
(Jaggi & Sulovský, 2010; Tewari et al., 2011). Interest-
ingly, we show that using this economic updating rule we
still retain the linear convergence rate. To the best of our
knowledge, our proposed algorithms are the fastest among
all related methods. We verify the efficiency of our algo-
rithms empirically on large-scale matrix completion prob-
lems.

The main contributions of our paper are:

• We propose a computationally efficient and scalable
algorithm for matrix completion, which extends the

Rank-One Matrix Pursuit for Matrix Completion

orthogonal matching pursuit from the vector case to
the matrix case.

• We theoretically prove the linear convergence rate of
our algorithm. As a result, we only need O(log(1/ε))
steps to obtain an ε-accuracy solution, and in each step
we only need to compute the top singular vector pair,
which can be computed efficiently.

• We further reduce the storage complexity of our al-
gorithm based on an economic weight updating rule
while retaining the linear convergence rate. This algo-
rithm has constant storage complexity which is inde-
pendent of the approximation rank and is more practi-
cal for large-scale problems.

• Our proposed algorithm is free of tuning parameter,
except for the accuracy of the solution. And it is guar-
anteed to converge, i.e., no risk of divergence.

Notations: Let Y = (y1, · · · ,ym) ∈ <n×m be an n×m
real matrix, and Ω ⊂ {1, · · · , n} × {1, · · · ,m} denote the
indices of the observed entries of Y. PΩ is the projection
operator onto the space spanned by the matrices vanish-
ing outside of Ω so that the (i, j)-th component of PΩ(Y)
equals to Yi,j for (i, j) ∈ Ω and zero otherwise. The

Frobenius norm of Y is defined as ||Y||F =
√∑

i,j Y2
i,j .

Let vec(Y) = (yT1 , · · · ,yTm)T denote a vector reshaped
from matrix Y by concatenating all its column vectors. Let
ẏ = vec(PΩ(Y)) be the vector by concatenating all ob-
served entries in Y. The inner product of two matrices X
and Y is defined as 〈X,Y〉 = 〈vec(X), vec(Y)〉. Given a
matrix A ∈ <n×m, we denote PΩ(A) by AΩ. For any two
matrices A,B ∈ <n×m, we define 〈A,B〉Ω = 〈AΩ,BΩ〉,
‖A‖Ω =

√
〈A,A〉Ω and ‖A‖ =

√
〈A,A〉.

2. Rank-One Matrix Pursuit
It is well-known that any matrix X ∈ <n×m can be written
as a linear combination of rank-one matrices, that is,

X = M(θ) =
∑
i∈I

θiMi, (1)

where {Mi : i ∈ I} is the set of all n × m rank-one
matrices with unit Frobenius norm. Clearly, θ is an infinite
dimensional vector. Such a representation can be obtained
from the standard SVD of X.

The original low rank matrix approximation problem aims
to minimize the zero-norm of θ subject to the constraint:

min
θ

||θ||0
s.t. PΩ(M(θ)) = PΩ(Y),

(2)

where ||θ||0 denotes the cardinality of the number of
nonzero elements of θ.

If we reformulate the problem as

min
θ

||PΩ(M(θ))− PΩ(Y)||2F
s.t. ||θ||0 ≤ r,

(3)

we could solve it by an orthogonal matching pursuit type
greedy algorithm using rank-one matrices as the basis. If
the dictionary {Mi : i ∈ I} is known and finite, this is
equivalent to the compressed sensing problem. However,
in our formulation, the size of the dictionary is infinite and
the bases are to be constructed during the basis pursuit pro-
cess. In particular, we are to find a suitable subset with
over-complete rank-one matrix coordinates, and learn the
weight for each coordinate. This is achieved by executing
two steps alternatively: one is to construct the basis, and
the other one is to learn the weights of the basis.

Suppose that after the (k-1)-th iteration, the rank-one ba-
sis matrices M1, . . . ,Mk−1 and their current weight θk−1

are already computed. In the k-th iteration, we are to
pursue a new rank-one basis matrix Mk with unit Frobe-
nius norm, which is mostly correlated with the current ob-
served regression residual Rk = PΩ(Y) − Xk−1, where
Xk−1 = (M(θk−1))Ω =

∑k−1
i=1 θ

k−1
i (Mi)Ω. Therefore,

Mk can be chosen to be an optimal solution of the follow-
ing problem:

max
M
{〈M,Rk〉 : rank(M) = 1, ‖M‖F = 1}. (4)

Notice that each rank-one matrix M with unit Frobenius
norm can be written as the product of two unit vectors,
namely, M = uvT for some u ∈ <n and v ∈ <m with
‖u‖ = ‖v‖ = 1. We then see that problem (4) can be
equivalently reformulated as

max
u,v
{uTRkv : ‖u‖ = ‖v‖ = 1}. (5)

Clearly, the optimal solution (u∗,v∗) of problem (5) is
a pair of top left and right singular vectors of Rk. It
can be efficiently computed by the power method (Jaggi
& Sulovský, 2010; Dudı́k et al., 2012). The new rank-
one basis matrix Mk is then readily available by setting
Mk = u∗v

T
∗ .

After finding the new rank-one basis matrix Mk, we up-
date the weights θk for all currently available basis matri-
ces {M1, · · · ,Mk} by solving the following least squares
regression problem:

min
θ∈<k

||
k∑
i=1

θiMi −Y||2Ω. (6)

By reshaping the matrices (Y)Ω and (Mi)Ω into vectors ẏ
and ṁi, we can easily see that the optimal solution θk of
(6) is given by

θk = (M̄T
k M̄k)−1M̄T

k ẏ, (7)

Rank-One Matrix Pursuit for Matrix Completion

where M̄k = [ṁ1, · · · , ṁk] is the matrix formed by all
reshaped basis vectors. The row size of matrix M̄k is the
total number of observed entries. It is computationally ex-
pensive to directly calculate the matrix multiplication. An
incremental update rule can be applied to solve this step
efficiently (Wang et al., 2014).

We run the above two steps iteratively until some de-
sired stopping condition is satisfied. We can terminate the
method based on the rank of the estimated matrix or the ap-
proximation residual. In particular, one can choose a pre-
ferred rank of the approximate solution matrix. Alterna-
tively, one can stop the method once the residual ‖Rk‖ is
less than a tolerance parameter ε. The main steps of Rank-
One Matrix Pursuit (R1MP) are given in Algorithm 1.

Remark In our algorithm, we adapt orthogonal matching
pursuit on the observed part of the matrix. This is simi-
lar to the GECO algorithm. However, GECO constructs
the estimated matrix by projecting the observation matrix
onto a much larger subspace, which is a product of two
subspaces spanned by all left singular vectors and all right
singular vectors obtained up to the current iteration. So
it has much higher computational complexity. Lee et al.
(Lee & Bresler, 2010) recently propose the ADMiRA algo-
rithm, which is also a greedy approach. In each step it first
chooses 2r components by top-2r truncated SVD and then
uses another top-r truncated SVD to obtain a rank-r matrix.
Thus, the ADMiRA algorithm is computationally more ex-
pensive than the proposed algorithm. The main difference
between the proposed algorithm and ADMiRA is some-
what similar to the difference between the OMP (Pati et al.,
1993) for learning sparse vectors and CoSaMP (Needell &
Tropp, 2010). In addition, the performance guarantees (in-
cluding recovery guarantee and convergence property) of
ADMiRA rely on strong assumptions, i.e., the matrix in-
volved in the loss function satisfies a rank-restricted isom-
etry property, which is not satisfied in matrix completion
(Lee & Bresler, 2010). Lee et al. sketch a similar idea as
the standard verion of our algorithm in Remark 2.3 without
any further analysis, and their theoretical results cannot be
easily extended to our algorithm. Another contribution of
our work is that we further propose an economic version of
the algorithm and analyze its convergence property.

3. Convergence Analysis
In this section, we will show that our proposed rank-one
matrix pursuit algorithm achieves a linear convergence rate.
This main result is given in the following theorem.

Theorem 3.1. The rank-one matrix pursuit algorithm sat-
isfies

||Rk|| ≤ γk−1‖Y‖Ω, ∀k ≥ 1.

γ is a constant in [0, 1).

Algorithm 1 Rank-One Matrix Pursuit (R1MP)
Input: YΩ and stopping criterion.
Initialize: Set X0 = 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular vec-
tors (uk,vk) of the observed residual matrix Rk =
YΩ −Xk−1 and set Mk = uk(vk)T .
Step 2: Compute the weight θk using the closed form
least squares solution θk = (M̄T

k M̄k)−1M̄T
k ẏ.

Step 3: Set Xk =
∑k
i=1 θ

k
i (Mi)Ω and k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i Mi.

Before proving Theorem 3.1, we need to establish some
useful and preparatory properties of Algorithm 1. The first
property says that Rk+1 is perpendicular to all previously
generated Mi for i = 1, · · · , k.

Property 3.2. 〈Rk+1,Mi〉 = 0 for i = 1, · · · , k.

Proof. Recall that θk is the optimal solution of prob-
lem (6). By the first-order optimality condition, one has
〈Y −

∑k
j=1 θ

k
jMj ,Mi〉Ω = 0 for i = 1, · · · , k, which to-

gether with Rk = YΩ−Xk−1 and Xk =
∑k
j=1 θ

k
j (Mj)Ω

implies that 〈Rk+1,Mi〉 = 0 for i = 1, · · · , k.

The following property shows that as the number of rank-
one basis matrices Mi increases during our learning pro-
cess, the residual ‖Rk‖ does not increase.

Property 3.3. ‖Rk+1‖ ≤ ‖Rk‖ for all k ≥ 1.

Proof. We observe that for all k ≥ 1,

‖Rk+1‖2 = min
θ∈<k

{‖Y −
∑k
i=1 θiMi‖2Ω}

≤ min
θ∈<k−1

{‖Y −
∑k−1
i=1 θiMi‖2Ω} = ‖Rk‖2,

and hence the conclusion holds.

We next establish that {(Mi)Ω}ki=1 is linearly independent
unless ‖Rk‖ = 0. It follows that formula (7) is well-
defined and hence θk is uniquely defined before the algo-
rithm stops.

Property 3.4. Suppose that Rk 6= 0 for some k ≥ 1. Then,
M̄i has a full column rank for all i ≤ k.

Proof. Using Property 3.3 and the assumption Rk 6= 0
for some k ≥ 1, we see that Ri 6= 0 for all i ≤ k.
We now prove this statement by induction on i. Indeed,
since R1 6= 0, we clearly have M̄1 6= 0. Hence the con-
clusion holds for i = 1. We now assume that it holds
for i − 1 < k and need to show that it also holds for
i ≤ k. By the induction hypothesis, M̄i−1 has a full col-
umn rank. Suppose for contradiction that M̄i does not have
a full column rank. Then, there exists α ∈ <i−1 such that

Rank-One Matrix Pursuit for Matrix Completion

(Mi)Ω =
∑i−1
j=1 αj(Mj)Ω, which together with Property

3.2 implies that 〈Ri,Mi〉 = 0. It follows that σmax(Ri) =
uTi Rivi = 〈Ri,Mi〉 = 0, and hence Ri = 0, which con-
tradicts the fact that Rj 6= 0 for all j ≤ k. Therefore, M̄i

has a full column rank and the conclusion holds.

We next build a relationship between two consecutive
residuals ‖Rk+1‖ and ‖Rk‖.

For convenience, define θk−1
k = 0 and let θk = θk−1 +ηk.

In view of (6), one can observe that

ηk = arg min
η
||

k∑
i=1

ηiMi −Rk||2Ω. (8)

Let

Lk =

k∑
i=1

ηki (Mi)Ω. (9)

By the definition of Xk, one can also observe that Xk =
Xk−1 + Lk and Rk+1 = Rk − Lk.

Property 3.5. ||Rk+1||2 = ||Rk||2−||Lk||2 and ||Lk||2 ≥
〈Mk,Rk〉2, where Lk is defined in (9).

Proof. Since Lk =
∑
i≤k η

k
i (Mi)Ω, it follows from Prop-

erty 3.2 that 〈Rk+1,Lk〉 = 0. Thus,

||Rk+1||2

= ||Rk − Lk||2 = ||Rk||2 − 2〈Rk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Rk+1 + Lk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Lk,Lk〉+ ||Lk||2

= ||Rk||2 − ||Lk||2

We next bound ‖Lk‖2 from below. If Rk = 0, ||Lk||2 ≥
〈Mk,Rk〉2 clearly holds. We now suppose throughout
the remaining proof that Rk 6= 0. It then follows from
Property 3.4 that M̄k has a full column rank. Using this
fact and (8), we have ηk =

(
M̄T

k M̄k

)−1
M̄T

k ṙk, where
ṙk is the reshaped residual vector of Rk. Invoking that
Lk =

∑
i≤k η

k
i (Mi)Ω, we then obtain

||Lk||2 = ṙTk M̄k(M̄T
k M̄k)−1M̄T

k ṙk. (10)

Let M̄k = QU be the QR factorization of M̄k, where
QTQ = I and U is a k × k nonsingular upper triangular
matrix. One can observe that (M̄k)k = ṁk, where (M̄k)k
denotes the k-th column of the matrix M̄k and ṁk is the re-
shaped vector of (Mk)Ω. Recall that ‖Mk‖ = ‖ukvTk ‖ =
1. Hence, ‖(M̄k)k‖ ≤ 1. Due to QTQ = I, M̄k = QU
and the definition of U, we have

0 < |Ukk| ≤ ‖Uk‖ = ‖(M̄k)k‖ ≤ 1.

In addition, by Property 3.2, we have

M̄T
k ṙk = [0, · · · , 0, 〈Mk,Rk〉]T . (11)

Substituting M̄k = QU into (10), and using QTQ = I
and (11), we obtain that

‖Lk‖2

= ṙTk M̄k(UTU)−1M̄T
k ṙk

= [0, · · · , 0, 〈Mk,Rk〉] U−1U−T [0, · · · , 0, 〈Mk,Rk〉]T

= 〈Mk,Rk〉2/(Ukk)2 ≥ 〈Mk,Rk〉2.

The last equality follows since U is upper triangular and
the last inequality is due to |Ukk| ≤ 1.

We are now ready to prove Theorem 3.1.

Proof. Using the definition of Mk, we have

〈Mk,Rk〉 = 〈uk(vk)T ,Rk〉 = σ∗(Rk),

where σ∗(Rk) is the maximum singular value of the resid-
ual matrix Rk. Using this inequality and Property 3.5, we
obtain that

||Rk+1||2 = ||Rk||2 − ||Lk||2

≤ ||Rk||2 − 〈Mk,Rk〉2

=
(

1− σ2
∗(Rk)
‖Rk‖2

)
||Rk||2.

In view of this relation and the fact that ‖R1‖ = ‖Y‖2Ω,
we easily conclude that

||Rk|| ≤ ‖Y‖Ω
k−1∏
i=1

√
1− σ2

∗(Ri)

‖Ri‖2
.

As for each step we have 0 < 1
rank(Ri)

≤ σ∗(Ri)
‖Ri‖ ≤ 1,

there must exist 0 ≤ γ < 1 that satisfies ||Rk|| ≤
γk−1‖Y‖Ω. This completes the proof.

Remark In practice, the value of ‖Ri‖2
σ2
∗(Ri)

that controls the
convergence speed is much less than min(m,n). We will
emprically verify this in the experiments.

Remark If Ω is the entire set of all indices of {(i, j), i =
1, · · · ,m, j = 1, · · · , n}, our rank-one matrix pursuit al-
gorithm equals to standard SVD using the power method.

Remark This convergence is obtained for the optimization
residual in the low rank matrix completion problem. We
further extend our algorithm to solve the more general ma-
trix sensing problem and analyze the corresponding statis-
tical convergence behavior under mild conditions, such as
the rank-restricted isometry property (Lee & Bresler, 2010;
Jain et al., 2013). Details are provided in the longer version
of this paper (Wang et al., 2014).

Rank-One Matrix Pursuit for Matrix Completion

4. Economic Rank-One Matrix Pursuit
The proposed R1MP algorithm has to track all pursued
bases and save them in the memory. It demands O(r|Ω|)
storage complexity to obtain a rank-r estimated matrix. For
large-scale problems, such storage requirement is not neg-
ligible and restricts the rank of the matrix to be estimated.
To adapt our algorithm to large-scale problems with a large
approximation rank, we simplify the orthogonal projection
step by only tracking the estimated matrix Xk−1 and the
rank-one update matrix Mk. In this case, we only need to
estimate the weights for these two matrices in Step 2 of our
algorithm by solving the following least squares problem:

αk = arg min
α={α1,α2}

||α1Xk−1 + α2Mk −Y||2Ω. (12)

This still corrects all weights of the existed bases, though
the correction is sub-optimal. If we write the estimated ma-
trix as a linear combination of the bases, we have Xk =∑k
i=1 θ

k
i (Mi)Ω with θkk = αk2 and θki = θk−1

i αk1 , for
i < k. The detailed procedure of this simplified method
is given in Algorithm 2.

Algorithm 2 Economic Rank-One Matrix Pursuit (ER1MP)
Input: YΩ and stopping criterion.
Initialize: Set X0 = 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular vec-
tors (uk,vk) of the observed residual matrix Rk =
YΩ −Xk−1 and set Mk = uk(vk)T .
Step 2: Compute the optimal weights αk for Xk−1

and Mk by solving:

arg min
α
||α1Xk−1 + α2(Mk)Ω −YΩ||2.

Step 3: Set Xk = αk1Xk−1 + αk2(Mk)Ω; θkk = αk2
and θki = θk−1

i αk1 for i < k; k ← k + 1.
until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i Mi.

The proposed economic rank-one matrix pursuit algorithm
(ER1MP) uses the same amount of storage as the greedy
algorithms (Jaggi & Sulovský, 2010; Tewari et al., 2011),
which is significantly smaller than that required by R1MP
algorithm. Interestingly, we can show that the ER1MP al-
gorithm still retains the linear convergence rate. The main
result is given in the following theorem, and the proof is
provided in the long version of this paper (Wang et al.,
2014).
Theorem 4.1. The economic rank-one matrix pursuit al-
gorithm satisfies

||Rk|| ≤ γ̃k−1‖Y‖Ω, ∀k ≥ 1.

γ̃ is a constant in [0, 1).

5. Experiments
In this section, we compare our rank-one matrix pursuit al-
gorithms R1MP and ER1MP with state-of-the-art matrix
completion algorithms. The competing algorithms include:
singular value projection (SVP) (Jain et al., 2010), sin-
gular value thresholding (SVT) (Candès & Recht, 2009),
Jaggi’s fast algorithm for trace norm constraint (JS) (Jaggi
& Sulovský, 2010), spectral regularization algorithm (Soft-
Impute) (Mazumder et al., 2010), low rank matrix fitting
(LMaFit) (Wen et al., 2010), alternating minimization (Alt-
Min) (Jain et al., 2013), boosting type accelerated matrix-
norm penalized solver (Boost) (Zhang et al., 2012) and
greedy efficient component optimization (GECO) (Shalev-
Shwartz et al., 2011). The general greedy method (Tewari
et al., 2011) is not included in our comparison, as it in-
cludes JS and GECO (included in our comparison) as spe-
cial cases for matrix completion. The lifted coordinate de-
scent method (Lifted) (Dudı́k et al., 2012) is not included in
our comparison, as it is similar to Boost proposed in (Zhang
et al., 2012), but more sensitive to the parameters.

The code for most of these algorithms is available online:

• SVP:
http://www.cs.utexas.edu/∼pjain/svp/

• SVT:
http://svt.stanford.edu/

• SoftImpute:
http://www-stat.stanford.edu/∼rahulm/software.html

• LMaFit:
http://lmafit.blogs.rice.edu/

• Boost:
http://webdocs.cs.ualberta.ca/∼xinhua2/boosting.zip

• GECO:
http://www.cs.huji.ac.il/∼shais/code/geco.zip

We compare these algorithms in two problems, including
image recovery and collaborative filtering. The data size
for image recovery is relatively small, and the recommen-
dation problem is in large-scale. In the experiments, we fol-
low the recommended settings of the parameters for com-
peting algorithms. If no recommended parameter value
is available, we choose the best one from a candidate set
using cross validation. For our R1MP and ER1MP al-
gorithms, we only need a stopping criterion. For sim-
plicity, we stop our algorithms after r iterations. In this
way, we approximate the ground truth using a rank-r ma-
trix. We present the experimental results using root-mean-
square error (RMSE) (Jaggi & Sulovský, 2010; Shalev-
Shwartz et al., 2011). The experiments are implemented
in MATLAB1. They call some external packages for fast

1GECO is written in C++ and we call its executable file in
MATLAB.

Rank-One Matrix Pursuit for Matrix Completion

Table 1. Image recovery results measured in terms of the RMSE: the value below is the actual value times 100 (mean± std).

Image SVT SVP SoftImpute LMaFit AltMin JS R1MP ER1MP
Lenna 3.86± 0.02 5.31± 0.14 4.60± 0.02 7.45± 0.63 4.47± 0.10 5.48± 0.72 3.90± 0.02 3.97± 0.02

Barbara 4.48± 0.02 5.60± 0.08 5.22± 0.01 5.16± 0.28 5.05± 0.06 6.52± 0.88 4.63± 0.01 4.73± 0.02

Clown 3.72± 0.03 10.97± 0.17 4.48± 0.03 4.65± 0.67 5.49± 0.46 7.30± 2.32 3.85± 0.03 3.91± 0.03

Crowd 4.48± 0.02 7.62± 0.13 5.35± 0.02 4.91± 0.05 4.87± 0.02 7.38± 1.41 4.89± 0.03 4.96± 0.03

Girl 3.36± 0.02 4.45± 0.16 4.10± 0.01 4.12± 0.48 5.07± 0.50 4.42± 0.46 3.09± 0.02 3.12± 0.02

Man 4.49± 0.03 5.52± 0.10 5.16± 0.03 5.31± 0.13 5.19± 0.11 6.25± 0.54 4.66± 0.03 4.76± 0.03

computation of SVD2 and sparse matrix computations. The
experiments are run in a PC with WIN7 system, Intel 4 core
3.4 GHz CPU and 8G RAM.

5.1. Image Recovery

In the image recovery experiments, we use the following
benchmark test images: Lenna, Barbara, Clown, Crowd,
Girl, Man3. The size of each image is 512× 512. For each
experiment, we present the average RMSE and the corre-
sponding standard derivation of 10 different runs for each
competing algorithm. In each run, we randomly exclude
50% of the pixels in the image, and the remaining ones
are used as the observations. As the image matrix is not
guaranteed to be low rank, we use the rank 200 for the esti-
mation matrix for each experiment. The JS algorithm does
not explicitly control the rank, thus we fix its number of
iterations to 2000. The numerical results are listed in Ta-
ble 1. The results show that SVT, our R1MP and ER1MP
achieve the best numerical performance. However, our al-
gorithm is much faster and more stable than SVT. For each
image, ER1MP uses around 3.5 seconds, but SVT con-
sumes around 400 seconds. Image recovery needs a rel-
atively higher approximation rank; GECO and Boost fail
to find a good recovery in some cases, so we do not include
them in the table.

5.2. Recommendation

In the following experiments, we compare the different
matrix completion algorithms using large recommenda-
tion datasets: Jester (Goldberg et al., 2001) and Movie-
Lens (Miller et al., 2003). We use six datasets including:
Jester1, Jester2, Jester3, MovieLens100K, MovieLens1M,
and MovieLens10M. The statistics of these datasets are
given in Table 2. The Jester datasets were collected from
a joke recommendation system. They contain anonymous
ratings of 100 jokes from the users. The ratings are
real values ranging from −10.00 to +10.00. The Movie-

2PROPACK is used in SVP, SVT, SoftImpute and Boost. It is
an efficient SVD package, which can be downloaded from http:
//soi.stanford.edu/˜rmunk/PROPACK/

3Images are downloaded from http://www.utdallas.
edu/˜cxc123730/mh_bcs_spl.html

Lens datasets were collected from the MovieLens website4.
They contain anonymous ratings of the movies on this
web made by its users. For MovieLens100K and Movie-
Lens1M, there are 5 rating scores (1–5), and for Movie-
Lens10M there are 10 levels of scores with a step size 0.5
in the range of 0.5 to 5. In the following experiments, we
randomly split the ratings into training and test sets. Each
set contains 50% of the ratings. We compare the predic-
tion results from different methods. In the experiments, we
use 100 iterations for the JS algorithm, and for other algo-
rithms we use the same rank for the estimated matrices; the
values of the rank are {10, 10, 5, 10, 10, 20} for the six cor-
responding datasets. The results in terms of the RMSE is
given in Table 3. We also show the running time of different
methods in Table 4. We can observe from the above exper-
iments that our ER1MP algorithm is the fastest among all
competing methods to obtain satisfactory results.

Table 2. Characteristics of the recommendation datasets.

Dataset # row # column # rating
Jester1 24983 100 106

Jester2 23500 100 106

Jester3 24938 100 6×105

MovieLens100k 943 1682 105

MovieLens1M 6040 3706 106

MovieLens10M 69878 10677 107

5.3. Convergence and Efficiency

We present the residual curves on the Lenna image in loga-
rithmic scale for our R1MP and ER1MP algorithms in Fig-
ure 1. The results show that our algorithms reduce the ap-
proximation error in a linear rate. This is consistent with
our theoretical analysis. The empirical results verify the
linear convergence property of our proposed algorithms.

6. Conclusion
In this paper, we propose an efficient and scalable low rank
matrix completion algorithm. The key idea is to extend or-
thogonal matching pursuit method from the vector case to
the matrix case. We also propose a novel weight updating

4http://movielens.umn.edu

http://soi.stanford.edu/~rmunk/PROPACK/
http://soi.stanford.edu/~rmunk/PROPACK/
http://www.utdallas.edu/~cxc123730/mh_bcs_spl.html
http://www.utdallas.edu/~cxc123730/mh_bcs_spl.html
http://movielens.umn.edu

Rank-One Matrix Pursuit for Matrix Completion

Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 4.8616 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 9.7482 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.0042 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 0.9382 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
MovieLens1M 18.90 59.56 30.55 68.77 93.91 13.10 > 104 0.87 0.54
MovieLens10M > 103 > 103 154.38 310.82 – 130.13 > 105 23.05 13.79

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.

rule under this framework to reduce the storage complexity
and make it independent of the approximation rank. Our al-
gorithms are computationally inexpensive for each matrix
pursuit iteration, and find satisfactory results in a few iter-
ations. Another advantage of our proposed algorithms is
they have only one tunable parameter, which is the rank. It
is easy to understand and to use by the user. This becomes
especially important in large-scale learning problems. In
addition, we rigorously show that both algorithms achieve
a linear convergence rate, which is significantly better than
the previous known results (a sub-linear convergence rate).
We also empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our re-
sults show that the proposed algorithms are more efficient
than competing algorithms while achieving similar or bet-
ter prediction performance. We plan to generalize our the-
oretical and empirical analysis to other loss functions in the
future.

7. Acknowledgments
This work was supported in part by China 973 Fundamental
R&D Program (No.2014CB340304), NIH (LM010730),
and NSF (IIS-0953662, CCF-1025177).

References
Argyriou, A., Evgeniou, T., and Pontil, M. Convex multi-

task feature learning. Machine Learning, 73(3):243–
272, 2008.

Avron, H., Kale, S., Kasiviswanathan, S., and Sindhwani,
V. Efficient and practical stochastic subgradient descent
for nuclear norm regularization. In ICML, 2012.

Balzano, L., Nowak, R., and Recht, B. Online identifica-
tion and tracking of subspaces from highly incomplete
information. In Allerton, 2010.

Cai, J., Candès, E. J., and Shen, Z. A singular value thresh-
olding algorithm for matrix completion. SIAM Journal
on Optimization, 20(4):1956–1982, 2010.

Candès, E. J. and Recht, B. Exact matrix completion
via convex optimization. Foundations of Computational
Mathematics, 9(6):717–772, 2009.

Dudı́k, M., Harchaoui, Z., and Malick, J. Lifted coordinate
descent for learning with trace-norm regularization. In
AISTATS, 2012.

Friedman, J. H., Hastie, T., and Tibshirani, R. Regular-
ization paths for generalized linear models via coordi-
nate descent. Journal of Statistical Software, 33(1):1–22,
2010.

Rank-One Matrix Pursuit for Matrix Completion

Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. Eigen-
taste: A constant time collaborative filtering algorithm.
Information Retrieval, 4(2):133–151, 2001.

Hazan, E. Sparse approximate solutions to semidefinite
programs. In LATIN, 2008.

Jaggi, M. Revisiting Frank-Wolfe: Projection-free sparse
convex optimization. In ICML, 2013.

Jaggi, M. and Sulovský, M. A simple algorithm for nuclear
norm regularized problems. In ICML, 2010.

Jain, P., Meka, R., and Dhillon, I. S. Guaranteed rank min-
imization via singular value projection. In NIPS, 2010.

Jain, P., Netrapalli, P., and Sanghavi, S. Low-rank matrix
completion using alternating minimization. In STOC,
2013.

Ji, S. and Ye, J. An accelerated gradient method for trace
norm minimization. In ICML, 2009.

Keshavan, R. and Oh, S. Optspace: A gradient descent
algorithm on grassmann manifold for matrix completion.
http://arxiv.org/abs/0910.5260, 2009.

Koren, Y., Bell, R., and Volinsky, C. Matrix factorization
techniques for recommender systems. Computer, 2009.

Lee, K. and Bresler, Y. Admira: atomic decomposition for
minimum rank approximation. IEEE Transactions on
Information Theory, 56(9):4402–4416, 2010.

Liu, E. and Temlyakov, T. N. The orthogonal super
greedy algorithm and applications in compressed sens-
ing. IEEE Transactions on Information Theory, 58:
2040–2047, 2012.

Ma, S., Goldfarb, D., and Chen, L. Fixed point and
bregman iterative methods for matrix rank minimization.
Mathematical Programming, 128(1-2):321–353, 2011.

Mazumder, R., Hastie, T., and Tibshirani, R. Spectral reg-
ularization algorithms for learning large incomplete ma-
trices. Journal of Machine Learning Research, 99:2287–
2322, August 2010.

Miller, B. N., Albert, I., Lam, S. K., Konstan, J. A., and
Riedl, J. Movielens unplugged: experiences with an
occasionally connected recommender system. In IUI,
2003.

Mishra, B., Meyer, G., Bach, F., and Sepulchre,
R. Low-rank optimization with trace norm penalty.
http://arxiv.org/abs/1112.2318, 2011.

Needell, D. and Tropp, J. A. Cosamp: iterative signal re-
covery from incomplete and inaccurate samples. Com-
munications of the ACM, 53(12):93–100, 2010.

Negahban, S. and Wainwright, M.J. Estimation of (near)
low-rank matrices with noise and high-dimensional scal-
ing. In ICML, 2010.

Pati, Y. C., Rezaiifar, R., Rezaiifar, Y. C. Pati R., and Krish-
naprasad, P. S. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet de-
composition. In Asilomar SSC, 1993.

Recht, B. and Ré, C. Parallel stochastic gradient algorithms
for large-scale matrix completion. Mathematical Pro-
gramming Computation, 5(2):201–226, 2013.

Shalev-Shwartz, S. and Tewari, A. Stochastic methods for
`1 regularized loss minimization. In ICML, 2009.

Shalev-Shwartz, S., Gonen, A., and Shamir, O. Large-
scale convex minimization with a low-rank constraint.
In ICML, 2011.

Srebro, N., Rennie, J., and Jaakkola, T. Maximum margin
matrix factorizations. In NIPS, 2005.

Tewari, A., Ravikumar, P., and Dhillon, I. S. Greedy al-
gorithms for structurally constrained high dimensional
problems. In NIPS, 2011.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994.

Toh, K. and Yun, S. An accelerated proximal gradient al-
gorithm for nuclear norm regularized least squares prob-
lems. Pacific Journal of Optimization, 6:615 – 640,
2010.

Tropp, J. A. Greed is good: algorithmic results for sparse
approximation. IEEE Transactions on Information The-
ory, 50:2231–2242, 2004.

Wang, Z., Lai, M., Lu, Z., Fan, W., Davulcu, H., and Ye, J.
Orthogonal rank-one matrix pursuit for low rank matrix
completion. http://arxiv.org/abs/1404.1377, 2014.

Wen, Z., Yin, W., and Zhang, Y. Low-rank factorization
model for matrix completion by a non-linear successive
over-relaxation algorithm. Rice CAAM Tech Report 10-
07, University of Rice, 2010.

Zhang, X., Yu, Y., and Schuurmans, D. Accelerated
training for matrix-norm regularization: A boosting ap-
proach. In NIPS, 2012.

