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Dynamic pricing for a network of resources over a finite selling horizon has received consid-

erable attention in recent years, yet few papers provide effective computational approaches

to solve the problem. We consider a resource decomposition approach to solve the problem

and investigate the performance of the approach in a computational study. We compare

the performance of the approach to static pricing and choice-based availability control. Our

numerical results show that dynamic pricing policies from network resource decomposition

can achieve significant revenue lift compared with choice-based availability control and static

pricing, even when the latter is frequently resolved. As a by-product of our approach, net-

work decomposition provides an upper bound in revenue, which is provably tighter than the

well-known upper bound from a deterministic approximation.
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1. Introduction

Dynamic pricing, whereby product prices are changed periodically over time to maximize rev-

enue, has received considerable attention in research and application in recent years. As early

as 2002, Hal Varian proclaimed that “dynamic pricing has become the rule” (Schrage 2002).

However, many revenue management (RM) applications are based on product availability

control, in which product prices are fixed and product availability is adjusted dynamically

over time. Static pricing, whereby the price for each product is fixed, is also frequently

observed in practice.
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There are many reasons for why these simpler approaches are more desirable than full-

scale dynamic pricing. First of all, companies may not have full pricing power, especially

when their products are not sufficiently differentiated from competitive offerings. Second,

dynamic pricing faces customer acceptance issues (Phillips 2005). If not properly imple-

mented, dynamic pricing can alienate customers because different customers can pay very

different prices for essentially the same product. Finally, computing and implementing a

dynamic pricing strategy can be much more complicated than these simpler alternatives. In-

deed, despite years of research in dynamic pricing, practical solution approaches for dynamic

pricing problems that involve multiple resource and product types are very limited (Bitran

and Caldentey 2003).

Given the practical limitations of dynamic pricing, a pivotal research question is whether

simpler alternatives can achieve revenue close to what can be achieved via dynamic pricing.

This paper attempts to answer this question via a computational study. We compare dynamic

pricing to static pricing and choice-based availability control. We also consider a version of

static pricing control, which is updated periodically over the selling horizon.

A static pricing strategy fixes the price of each product at the beginning of the selling

horizon. Static pricing strategy is clearly attractive from the implementation point-of-view,

as it does not involve periodical revision of prices. Choice-based availability control is moti-

vated by the recent literature on choice-based network revenue management (Talluri and van

Ryzin 2004a, Zhang and Cooper 2005, Liu and van Ryzin 2008). In choice-based availability

control, product prices are fixed, and product availability is controlled over time. An impor-

tant aspect of the approach is the enriched demand model, whereby customers are assumed

to choose among all available products according to pre-specified choice probabilities. The

demand model can be viewed as a generalization to the widely used independent demand

model. Unlike a choice-based demand model, an independent demand model assumes de-

mand for each product comes from different customers and the demand for a product is lost

when the product is not available. The recent work of Liu and van Ryzin (2008) shows that

choice-based availability control can significantly improve revenue, compared with models

based on the independent demand model.

In order to achieve our research goals, it is necessary to compute a reasonable dynamic

pricing policy, which is quite difficult, even for relatively small problems. In fact, even for

conceptually simpler models, such as the network RM model with independent demand,

existing research and application rely on heuristics. The widely used dynamic programming
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formulation for network RM suffers from the curse of dimensionality, as the state space

grows exponentially with the number of resources. We adopt a resource decomposition

approach to decompose the network problem into a collection of single resource problems,

which are then solved and are subsequently used to provide approximate dynamic pricing

policies. This approach uses dual values from a deterministic approximation model, which

is a constrained nonlinear programming problem, for which we proposed an augmented

Lagrangian approach. The approach is provably convergent and is quite efficient, even for

relatively large problems in our numerical experiment. Since the computational time for

the approach is approximately increasing linearly in the number of resources, we believe the

overall approach has the potential to be used for realistic-sized problems.

As a by-product of the decomposition approach, we show that it leads to an upper bound

on revenue, which is tighter than the upper bound from the deterministic approximation.

This new upper bound provides a better benchmark in our numerical study.

A central component of our approach is the solution of the deterministic approximation

model, which is a constrained nonlinear programming problem. Deterministic approximation

for network revenue management problems is widely used in research and practice of revenue

management, and can at least be traced back to the earlier work of Gallego and van Ryzin

(1997). Deterministic approximation of network RM with independent demand leads to

a linear programming formulation. Similarly, deterministic approximation of choice-based

network revenue management also leads to a linear programming formulation. The recent

work of Karaesman and van Ryzin (2004) considers a network capacity allocation model with

overbooking. They consider an augmented Lagrangian approach to solve a large nonlinear

program, which is related to our solution approach for deterministic approximation. Our

experience in this paper suggests that reasonably structured nonlinear programming prob-

lems are still practical and should be considered as a serious alternative in the research and

application of RM.

1.1. Literature Review

Our research is relevant to several different streams of work in the area of revenue manage-

ment and pricing. A comprehensive review of the revenue management literature is given

by Talluri and van Ryzin (2004b). Dynamic pricing is often considered as a sub-area of

revenue management and has grown considerably in recent years. Two excellent review ar-

ticles on dynamic pricing are offered by Bitran and Caldentey (2003) and Elmaghraby and
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Keskinocak (2003).

Early work in the area of revenue management focuses on quantity-based availability

control, such as booking-limit type policies; see, for example, Belobaba (1989) and Brumelle

and McGill (1993). The work assumes that customers belong to different fare classes, with

each paying a fixed fare and the decisions are the booking limits for each fare class. Even

though the above cited work considers single resource problems, they can be extended to

network settings via approaches such as fare proration and virtual nesting (Talluri and van

Ryzin 2004b).

Dynamic pricing models differ from quantity-based models in that they assume product

prices can be adjusted within a given price set. Gallego and van Ryzin (1994) consider

the dynamic pricing problem for selling a finite inventory of a given product within a finite

selling horizon. Their work inspired much follow-up research for the problem (Bitran and

Mondschein 1997, Zhao and Zheng 2000, Maglaras and Meissner 2006).

Relatively few papers consider the dynamic pricing problem for network RM. Gallego

and van Ryzin (1997) consider dynamic pricing for network RM and establish bounds from

deterministic versions of the problem showing useful heuristic approaches to the problem from

the bounds. The deterministic approximation model in the current paper is conceptually

the same as the one in Gallego and van Ryzin (1997), and therefore, constitutes an upper

bound on the optimal revenue. Their results show that static pricing can do relatively

well when the problem is relatively large, which is verified by our numerical results using

multinomial logit demand model. Nevertheless, we show that a heuristic dynamic pricing

policy can do much better, producing revenues up to 6% higher than static pricing policies.

The reported revenue gap between dynamic and static pricing is rather significant for most

RM applications. Therefore, we argue that dynamic pricing should be considered whenever

possible in practice. In an earlier paper, Dong et al. (2007) consider the dynamic pricing

problem for substitutable products. The model they studied can be viewed as a dynamic

pricing problem for a network with multiple flights sharing the same origin and destination.

However, their focus is on structural analysis, and their approach cannot be easily extended

to the network setting. Another related paper is the earlier work by Aydin and Ryan (2002),

in which they consider a product line selection and pricing problem under the multinomial

logit choice model. Zhang and Cooper (2009) consider the dynamic pricing problem for

substitutable flights on a single leg. They provide bounds and heuristics for the problem.

Much work in the network RM literature considers availability control based RM ap-
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proaches where fares are fixed. Classic approaches assume that customers belong to differ-

ent fare classes and the decisions to make concern the availability of different fare classes

(Talluri and van Ryzin 1998, Cooper 2002). In recent years, this line of research has been

expanded to consider customer choice behavior among different fare classes (Talluri and van

Ryzin 2004a, Zhang and Cooper 2005, Liu and van Ryzin 2008, Zhang and Adelman 2009).

Models that consider customer choice behavior can lead to much higher revenue than mod-

els based on independent demand by customer class assumptions (Liu and van Ryzin 2008).

However, we demonstrate numerically that choice-based RM is rather ineffective, beaten by

static pricing policies in our numerical example, when the static prices are appropriately

chosen in advance. This observation is consistent with the popular view that availability

control is most useful when (fixed) prices are not properly chosen (Gallego and van Ryzin

1994).

Bid-price control is widely adopted in revenue management practice, where a marginal

value (bid-price) is assigned to each resource and a product is made available when the

revenue from the product exceeds the sum of bid-prices of all resources consumed. Talluri

and van Ryzin (1998) establish theoretical properties for the use of such policies. One of

the appeals of bid-price control lies in its simplicity relative to other control approaches. It

is common to generate bid-prices from simpler approximations, notably the deterministic

approximation. A popular approach to generate bid-prices in network revenue management

is the deterministic linear program (Williamson 1992), whereby shadow prices for capacity

constraints are taken as the bid-prices. In choice-based revenue management, bid-prices

can be generated from the choice-based linear program (Liu and van Ryzin 2008), and a

bid-price control policy generates revenue maximizing product offer sets based on the bid-

prices. In these papers, product prices are fixed, which is key to the linear programming

formulation. In our setup, however, since product prices are decision variables, deterministic

approximation of the problem is nonlinear. Nevertheless, we can use a similar idea as in

these papers and take the dual variables for capacity constraints as bid-prices.

Approximate dynamic programming (Bertsekas and Tsitsiklis 1996, Powell 2007) is an

active research area that has received considerable attention in recent years. A number

of authors have considered approximate dynamic programming approaches in network RM.

Adelman (2007) considers a linear programming formulation of a finite horizon dynamic pro-

gram and solves the problem under a linear functional approximation for the value function

to obtain time-dependent bid-prices in the network RM context. This research is extended
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to the network RM with customer choice in the follow-up work by Zhang and Adelman

(2009). Topaloglu (2009) considers a Lagrangian relaxation approach to a dynamic pro-

gramming formulation of the network RM problem. More recently, Erdelyi and Topaloglu

(2010) apply similar techniques to dynamic pricing problems in the network setting. In their

setting, the price for each product is chosen from a discrete set and the demand for each

product depends on the price of the product only. As a result, the deterministic problem

can be formulated as a linear program. Our work differs from theirs in the following way.

First, the corresponding mathematical programming formulation of the dynamic program is

not a linear program. Nevertheless, we show that most existing theoretical results can be

carried over. Second, the deterministic formulation of the problem is a constrained nonlinear

program, requiring solution techniques different from the deterministic linear programming

formulation in their work. We show that this issue can be overcome under the multinomial

logit demand model with disjoint consideration sets, which can be transformed into a convex

optimization problem for which we give an efficient solution approach.

We assume that customer demand follows a multinomial logit (MNL) demand function,

which is a widely used demand function in the research and practice of RM (Phillips 2005).

General references on MNL demand models are given by Ben-Akiva and Lerman (1985) and

Anderson et al. (1992). The specific model we use, the multinomial logit demand model with

disjoint consideration sets is first introduced in Liu and van Ryzin (2008). One advantage

of the MNL demand function is that it can be easily linked to the MNL choice models

considered in the literature on choice-based revenue management (Talluri and van Ryzin

2004b, Liu and van Ryzin 2008, Zhang and Adelman 2009), which enables us to compare

dynamic pricing to choice-based availability control.

1.2. Overview of Results and Outline

Dynamic pricing for a network of resources is an important research problem, but is notori-

ously difficult to solve. This paper considers a network resource decomposition approach to

solve the problem. A central element of such an approach is a deterministic approximation

model, which turns out to be a constrained nonlinear programming problem. We show that

under a particular class of demand models, called a multinomial logit demand model with

disjoint consideration sets, the problem can be reduced to a convex programming problem,

for which we give an efficient and provably convergent solution algorithm.

We compare the dynamic pricing policy from the network resource decomposition with
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three alternative control approaches: static pricing, static pricing with resolving, and choice-

based availability control. The static pricing policy comes from the nonlinear programming

problem, extending similar approaches in the literature.

The performance of the different approaches is compared by simulating the resulting

policies on a set of randomly generated problem instances. Our numerical results show

that the dynamic pricing policy can perform significantly better than the static pricing

policy, leading to revenue improvement in the order of 1-6%. Such revenue improvement

is quite significant in many revenue management contexts, and justifies the use of dynamic

pricing policies. On the other hand, static pricing policy performs better than the choice-

based availability control, suggesting that the latter is rather ineffective when the product

prices are appropriately chosen. Our results, therefore, emphasize the importance of pricing

decision as the main driver of superior revenue performance.

This paper makes two contributions. First, we introduce the dynamic programming de-

composition approach to the dynamic pricing problem for a network of resources. Despite

the popularity of dynamic pricing in research, few papers provide effective computational

approaches to solve the problem. As a by-product of our analysis, we show that dynamic

programming decomposition leads to an upper bound on revenue, which is provably tighter

than the upper bound from a deterministic approximation. Second, we perform a compu-

tational study to compare the policy performance of different approaches. The performance

of full-scale dynamic pricing is compared to static pricing and choice-based availability con-

trol. It is established in the literature that the choice-based approach leads to significant

revenue improvement, compared with the independent demand model where customers are

classified into classes, with each requesting one particular product. Performance comparison

of dynamic pricing and the choice-based approach with fixed prices is not available in the

literature. Our results fill this gap.

The remainder of the paper is organized as follows. Section 2 introduces the model.

Section 3 considers the deterministic nonlinear programming formulation and introduces

a solution approach for a class of MNL demand model. Section 4 considers a dynamic

programming decomposition approach. Section 5 introduces the choice-based availability

control model. Section 6 reports numerical results and Section 7 summarizes.
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2. Model Formulation

We consider the dynamic pricing problem in a network with m resources. The network

capacity is denoted by a vector c = (c1, . . . , cm), where ci is the capacity of resource i;

i = 1, . . . ,m. The resources can be combined to produce n products. An m × n matrix A

is used to represent the resource consumption, where the (i, j)-th element, aij, denotes the

quantity of resource i consumed by one unit of product j; aij = 1 if resource i is used by

product j and aij = 0 otherwise. Let Ai be the i-th row of A and Aj be the j-th column

of A, respectively. The vector Ai is also called the product incidence vector for resource i.

Similarly, the vector Aj is called the resource incidence vector for product j. To simplify the

notation, we use j ∈ Ai to indicate that product j uses resource i and i ∈ Aj to indicate

that resource i is used by product j. Throughout the paper, we reserve i, j, and t as the

indices for resources, products, and time, respectively.

Customer demand arrives over time. The selling horizon is divided into T time periods.

Time runs forward so that the first time period is period 1, and the last time period is

period T . Period T + 1 is used to represent the end of the selling horizon. In period t, the

probability of one customer arrival is λ, and the probability of no customer arrival is 1− λ.

The vector r represents the vector of prices, with rj being the price of product j. Given

price r in time t, an arriving customer purchases product j with probability Pj(r). We use

P0(r) to denote the no-purchase probability so that
∑n

j=1 Pj(r) + P0(r) = 1.

We consider a finite-horizon dynamic programming formulation of the problem. Let x be

the vector of remaining capacity at time t. Then x can be used to represent the state of the

system. Let vt(x) be the maximum expected revenue given state x at time t. The Bellman

equations can be written as follows:

(DP) vt(x) = max
rt∈Rt(x)

{
n∑

j=1

λPj(rt)[rt,j + vt+1(x− Aj)] + (λP0(rt) + 1− λ)vt+1(x)

}

= max
rt∈Rt(x)

{
n∑

j=1

λPj(rt)[rt,j + vt+1(x− Aj)− vt+1(x)]

}
+ vt+1(x)

= max
rt∈Rt(x)

{
n∑

j=1

λPj(rt)[rt,j −∆jvt+1(x)]

}
+ vt+1(x),

where ∆jvt+1(x) = vt+1(x)− vt+1(x−Aj) represents the opportunity cost of selling one unit

of product j in period t. The boundary conditions are vT+1(x) = 0 ∀x and vt(0) = 0 ∀t. In
the above, Rt(x) = ×n

j=1Rt,j(x), where Rt,j(x) = ℜ+ if x ≥ Aj and Rt,j(x) = {r∞} otherwise.
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The price r∞ is called the null price in the literature (Gallego and van Ryzin 1997). It has

the property that Pj(r) = 0 if rj = r∞. Therefore, when there are not enough resources to

satisfy the demand for product j, the demand is effectively shut off by taking rj = r∞.

The formulation (DP) could be difficult to analyze mainly for two reasons: the curse

of dimensionality and the complexity of the maximization in the Bellman equation. We

note that (DP) generalizes the work of Dong et al. (2007) to the network case. Dong et al.

(2007) show that intuitive structural properties do not even hold in their model, where each

product consumes one unit of one resource. Furthermore, even if we are able to identify some

structural properties, it remains unclear whether they will enable us to solve the problem

effectively. Therefore, we focus on heuristic approaches to solve (DP) in the rest of the

paper.

3. Deterministic Nonlinear Programming Formulation

3.1. Formulation

The use of a deterministic and continuous approximation model has been a popular approach

in the RM literature. In the classic network RM setting with fixed prices and independent

demand classes, the resulting model is a deterministic linear program, which has been used to

construct various heuristic policies to the corresponding dynamic programming models, such

as bid-price controls (see Talluri and van Ryzin 1998). Liu and van Ryzin (2008) formulate

the deterministic version of the network RM with customer choice as a linear program,

which they call the choice-based linear program. Unlike these models, the deterministic

approximation of (DP) is a constrained nonlinear programming problem.

In this model, probabilistic and discrete customer arrivals are replaced by continuous

fluid with rate λ. Given price vector r, the fraction of customers purchasing product j is

given by Pj(r). Let d = λT be the expected total customer arrivals over the time horizon

[0, T ]. The deterministic model can be formulated as

(NLP) max
r≥0

d
n∑

j=1

rjPj(r)

s.t. dAP (r) ≤ c. (1)

In the above, (1) is a resource constraint where the inequality holds componentwise. The

Lagrangian multipliers π associated with constraint (1) can be interpreted as the value of
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an additional unit of each resource. The solution to (NLP) can be used to construct several

reasonable heuristics. First, the optimal solution r∗ can be used as the vector of prices.

Since r∗ is a constant vector, which is not time- or inventory-dependent, it results in a static

pricing policy where the prices are fixed throughout the selling horizon. Second, the dual

values π can be used as bid-prices. Finally, as we will show later, the vector π can be used

in a dynamic programming decomposition approach.

Conceptually, (NLP) is the same as the deterministic formulation considered in Gallego

and van Ryzin (1997). They show that the solution of the problem is a bound on the

optimal revenue of (DP). For certain special cases, for example when Pj(r) is linear and

the objective function of (NLP) is concave, the problem (NLP) is a convex quadratic

programming problem, and therefore, is easy to handle. For more general demand functions,

the problem is, in general, not convex. However, it can often be transformed into a convex

programming problem by a change of variables. In the following, we consider the solution of

(NLP) under a special multinomial logit (MNL) choice model, which is called multinomial

logit choice model with disjoint consideration sets (MNLD) (Liu and van Ryzin 2008). We

first introduce the demand model in Section 3.2 and then give an efficient solution approach

in Section 3.3.

3.2. MNLD

The multinomial logit (MNL) choice model has been widely used in economics and marketing;

see Anderson et al. (1992) for a comprehensive review. Choice models based on the MNL

demand model, often called MNL choice models, have also been used extensively in the

recent RM literature. The MNLD model is first introduced in Liu and van Ryzin (2008).

Their choice model (like all other choice models) assumes that product prices are fixed. Here

we consider an extension of the model to the pricing case. Let N = {1, . . . , n} denote the

set of products. Customers are assumed to belong to L different customer segments. An

arriving customer in each period belongs to segment l with probability γl with
∑L

l=1 γl = 1.

Therefore, within each period, there is a segment l customer with probability λl = γlλ with

λ =
∑L

l=1 λl.

A customer in segment l considers products in the set Cl ⊆ N . Within each segment,

the choice probability is described by an MNL model as follows. Let r denote the vector of
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prices for products. A segment l customer chooses product j with probability

Plj(r) =

{
e
(ulj−rj)/µl∑

k∈Cl
e(ulk−rk)/µl+eul0/µl

, if j ∈ Cl,

0, if j /∈ Cl.

In the above, the parameters µl, ulj, and ul0 are constants. A segment l customer purchases

nothing with probability

Pl0(r) =
eul0/µl∑

k∈Cl
e(ulk−rk)/µl + eul0/µl

.

The choice model described here is called an MNL model with disjoint consideration sets if

Cl ∩ Cl′ = ∅ for any two segments l and l′.

We assumed that the seller is endowed with the value of γ, but cannot distinguish cus-

tomers from different segments upon arrival. It follows that Pj(r) =
∑L

l=1 γlPlj(r).

3.3. Solution to (NLP) under the multinomial logit model

We next propose a suitable approach to find a solution of (NLP) and its vector of Lagrangian

multipliers π for the MNLD model. In view of the expressions of Pj(r) and Plj(r), it follows

that (NLP) is equivalent to

(NLPr) max
r≥0

d
L∑
l=1

∑
j∈Cl

γlrjPlj(r)

s.t.
L∑
l=1

∑
j∈Cl

AjγlPlj(r) ≤ c/d.

Hanson and Martin (1996) show that the objective function in (NLPr) is not quasi-concave.

By definition of Plj(r), we have that for j ∈ Cl

Plj(r)

Pl0(r)
= e(ulj−rj−ul0)/µl .

It follows that r can be written as functions of purchase probabilities P where

rj(P ) = ulj − ul0 − µl lnPlj + µl lnPl0, ∀j ∈ Cl, l = 1, . . . , L.

Note that a similar argument is used in the earlier work by Dong et al. (2007). Thus, instead

of using the vector r as decision variables for (NLPr), we can perform the above change of

variables and use the vector P as decision variables. The resulting reformulation of (NLPr)
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is given as follows

(NLPp) max
P≥0

d
L∑
l=1

∑
j∈Cl

γlPlj(µlj − µl0 − µl lnPlj + µl lnPl0)

s.t.
L∑
l=1

∑
j∈Cl

AjγlPlj ≤ c/d,

Pl0 +
∑
j∈Cl

Plj = 1, l = 1, . . . , L.

Similarly as in Dong et al. (2007), we can show that (NLPp) is a concave maximization prob-

lem. Also, we can observe that (NLPp) shares with (NLP) the same vector of Lagrangian

multipliers π for the inequality constraints. We next propose an augmented Lagrangian

method for finding a solution of (NLPp) and its vector of Lagrangian multipliers π. Before

proceeding, let

f(P ) =
L∑
l=1

∑
j∈Cl

γlPlj(µlj − µl0 − µl lnPlj + µl lnPl0),

g(P ) =
L∑
l=1

∑
j∈Cl

AjγlPlj − c/d.

Furthermore, for each ϱ > 0, let

Lϱ(P, π) = f(P ) +
1

2ϱ
(∥[π + ϱg(P )]+∥2 − ∥π∥2).

In addition, define the set

∆ = {P ∈ ℜñ
+ : Pl0 +

∑
j∈Cl

Plj = 1, l = 1, . . . , L},

where ñ = L+
∑L

l=1 |Cl|. Also, we define the projection operator Proj∆ : ℜñ → ∆ as follows

Proj∆(P ) = argmin
P̃∈∆
∥P̃ − P∥, ∀P ∈ ℜñ.
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We are now ready to present an augmented Lagrangian method for solving (NLPp).

Augmented Lagrangian method for (NLPp):

Let {ϵk} be a positive decreasing sequence. Let π0 ∈ ℜm
+ , ϱ0 > 0, and σ > 1 be given. Set

k = 0.

1) Find an approximate solution P k ∈ ∆ for the subproblem

min
P∈∆

Lϱk(P, π
k) (2)

satisfying ∥Proj∆(P −∇PLϱk(P, π
k))− P∥ ≤ ϵk.

2) Set πk+1 := [πk + ϱkg(x
k)]+ and ϱk+1 := σϱk.

3) Set k ← k + 1 and go to step 1).

end

We now state a result regarding the global convergence of the above augmented La-

grangian method for (NLPp). Its proof is similar to the one of Theorem 6.7 of Ruszczyński

(2006).

Theorem 1 Assume that ϵk → 0. Let {P k} be the sequence generated by the above aug-

mented Lagrangian method. Suppose that a subsequence {P k}k∈K converges to P ∗. Then the

following statements hold:

(a) P ∗ is a feasible point of (NLPp);

(b) The subsequence {πk+1}k∈K is bounded, and each accumulation point π∗ of {πk+1}k∈K is

a vector of Lagrange multipliers corresponding to the inequality constraints of (NLPp).

Note that Theorem 1 assumes a subsequence of {P k} converges, which can be guaranteed

when the sequence {P k} is bounded. To make the above augmented Lagrangian method

complete, we need a suitable method for solving the subproblem (2). Since the set ∆ is

simple enough, the spectral projected gradient (SPG) method proposed in Birgin et al.

(2000) can be suitably applied to solve (2). The only nontrivial step of the SPG method

for (2) lies in computing Proj∆(P ) for a given P ∈ ℜñ. In view of the definitions of ∆ and

Proj∆(P ) and using the fact that Cl∩C ′
l = ∅ for any two distinct segments l and l′, we easily

observe that Proj∆(P ) can be computed by solving L subproblems of the form

min
x

{
1

2
∥g − x∥2 :

∑
i

xi = 1, x ≥ 0

}
, (3)
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where g is a given vector. By the first-order optimality (KKT) conditions, x∗ is the optimal

solution of (3) if and only if there exists a scalar λ such that
∑

i x
∗
i = 1 and x∗ solves

min
x

{
1

2
∥g − x∥2 − λ

(∑
i

xi − 1

)
: x ≥ 0

}
. (4)

Given any λ, clearly the optimal solution of (4) is x∗(λ) = max(g + λe, 0), where e is an

all-one vector. Thus, the optimal solution x∗ of (3) can be obtained by finding a root to

the equation eT [max(g + λe, 0)] − 1 = 0, which can be readily computed by the bisection

method.

4. Dynamic Programming Decomposition

The formulation (DP) can be written as a semi-infinite linear program with vt(·) as decision
variables as follows:

(LP) min
vt(·)

v1(c)

vt(x) ≥
n∑

j=1

λPj(rt)[rt,j + vt+1(x− Aj)− vt+1(x)] + vt+1(x), ∀t, x, rt ∈ Rt(x).

Proposition 1 Suppose vt(·) solves the optimality equations in (DP) and v̂t(·) is a feasible

solution to (LP). Then v̂t(x) ≥ vt(x) for all t, x.

The proof of Proposition 1 follows by induction and is omitted; see, Adelman (2007). The

formulation (LP) is also difficult to solve because of the huge number of variables and the

infinitely many constraints. One way to reduce the number of variables is to use a functional

approximation for the value function vt(·); see Adelman (2007). In the following, we consider

a dynamic programming decomposition approach to solve the problem, which is shown to

be equivalent to a particular functional approximation approach.

We introduce a dynamic programming decomposition approach to solve (DP) based on

the dual variables π in (NLP). For each fixed i, vt(x) can be approximated by

vt(x) ≈ vt,i(xi) +
∑
k ̸=i

xkπk (5)

for each t and x. Therefore, the value vt(x) is approximated by the sum of a nonlinear term

of resource i and linear terms of all other resources. Note vt,i(xi) can be interpreted as the
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approximate value of xi seats on resource i, and xkπk can be interpreted as the value of

resource k. Using (5) in (DP) and enlarging the feasible set Rt(x) to Rt(xi, c−i), we obtain

(DPi) vt,i(xi) (6)

= max
rt∈Rt(xi,c−i)

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk + vt+1,i(xi − aij)− vt+1,i(xi)

]}
+ vt+1,i(xi)

= max
rt∈Rt(xi,c−i)

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk −∆jvt+1,i(xi)

]}
+ vt+1,i(xi).

The boundary conditions are vT+1,i(x) = 0 ∀x and vt,i(0) = 0 ∀t. In the above, (xi, c−i) is

an m-vector whose i-th component is xi and k-th component is ck for k ̸= i. The set of m

one dimensional dynamic programs can be solved to obtain the values of vt,i(xi) for each i.

Using similar techniques, the maximization in (DPi) for each state xi and time t can

be reformulated as a convex optimization problem similar to (NLPp), but without capacity

constraints. The SPG algorithm discussed at the end of Section 3.3 can be readily applied

to efficiently solve this problem. Note that the SPG algorithm is very efficient because it is

a gradient projection method whose subproblem can be easily solved.

Next, we show that the approximation scheme (5) yields an upper bound. We first note

that (DPi) can be written as the following semi-infinite linear program:

(LPi) min
vt,i(·)

v1,i(ci)

vt,i(xi) ≥

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk + vt+1,i(xi − aij)− vt+1,i(xi)

]}
+ vt+1,i(xi), ∀t, xi, rt ∈ Rt(xi, c−i).

Proposition 2 For each i, let v∗t,i(·) and v̂t,i(·) be an optimal solution and a feasible solution

to (LPi), respectively. Then

min
i

{
v̂1,i(ci) +

∑
k ̸=i

ckπk

}
≥ min

i

{
v∗1,i(ci) +

∑
k ̸=i

ckπk

}
≥ v1(c).

Proof. It suffices to show

v̂1,i(ci) +
∑
k ̸=i

ckπk ≥ v∗1,i(ci) +
∑
k ̸=i

ckπk ≥ v1(c)

for each i. The first inequality above follows from the optimality of v∗1,i(ci). The second

inequality follows from Proposition 1 by observing that {v∗t,i(xi) +
∑

k ̸=i xkπk}∀t,x is feasible

for (LP). Note that here we use the fact that R(x) ⊆ R(xi, c−i).
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Proposition 3 For each i, let v∗t,i(·) be an optimal solution to (LPi) and let v†t,i(·) be an

optimal solution to (DPi). Then v∗1,i(ci) = v†1,i(ci) for all i, t, x.

Proof. First, it can be shown by induction that v∗t,i(xi) ≥ v†t,i(xi) for all t, i, xi. Observe

that v∗T+1,i(xi) = v†T+1,i(xi) = 0. Therefore, the inequalities hold for T +1. Now suppose the

inequality holds for t+ 1. It follows from the constraint in (LPi) that

v∗t,i(xi) ≥

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk + v∗t+1,i(xi − aij)− v∗t+1,i(xi)

]}
+ v∗t+1,i(xi)

≥

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk + v†t+1,i(xi − aij)− v†t+1,i(xi)

]}
+ v†t+1,i(xi).

In the above, the second inequality follows from inductive assumption. Since the inequality

holds for all rt ∈ Rt(xi, c−i), we have

v∗t,i(xi) ≥ max
rt∈Rt(xi,c−i)

{
n∑

j=1

λPj(rt)

[
rt,j −

∑
k ̸=i

akjπk + v†t+1,i(xi − aij)− v†t+1,i(xi)

]}
= v†t,i(xi).

It follows that v∗1,i(ci) ≥ v†1,i(ci).

On the other hand, from the optimality equations in (DPi) and the constraints in (LPi),

v†t,i(·) is feasible for (LPi). This implies that v†1,i(ci) ≥ v∗1,i(ci).

Combining the above leads to v†1,i(ci) = v∗1,i(ci). This completes the proof.

Proposition 2 establishes that the solution to (LPi) provides an upper bound to the value

function v1(c) of (DP). Proposition 3 implies that it suffices to solve (DPi) to obtain the

bound. Next we show that for MNLD demand, the decomposition bound is tighter than the

upper bound from deterministic approximation, and therefore provides a useful benchmark

in numerical studies.

Proposition 4 For MNLD demand model, dynamic programming decomposition leads to a

tighter upper bound than the deterministic approximation. That is, suppose {v∗t,i(·)}∀t,i is an
optimal solution to (LPi), then v∗1,i(ci) +

∑
k ̸=i ckπk ≤ zNLP for each i.
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Proof. First note that (NLP) can be transformed into a convex program with linear

constraints for MNLD demand model, therefore strong duality holds; that is

zNLP = max
r≥0

{
d

n∑
j=1

rjPj(r) +
m∑
k=1

πk

(
ck − d

n∑
j=1

akjPj(r)

)}

= max
r≥0

{
d

n∑
j=1

Pj(r)

(
rj −

m∑
k=1

akjπk

)
+

m∑
k=1

πkck

}
.

In the above, d = λT is the the expected total demand.

On the other hand, it can be checked that

vt,i(xi) = πixi +
T∑

τ=t

max
r≥0

n∑
j=1

λPj(r)

(
rj −

m∑
k=1

akjπk

)
, ∀t, xi,

is a feasible solution to (LPi). By Proposition 1, an upper bound of v∗t,i(ci) is given by

v1,i(ci) = πici +
T∑

τ=1

max
r≥0

n∑
j=1

λPj(r)

(
rj −

m∑
k=1

akjπk

)

= πici + dmax
r≥0

n∑
j=1

Pj(r)

(
rj −

m∑
k=1

akjπk

)
.

It follows that

v∗1,i(ci) +
∑
k ̸=i

ckπk ≤ v1,i(ci) +
∑
k ̸=i

ckπk

=
m∑
k=1

πkck + dmax
r≥0

n∑
j=1

Pj(r)

(
rj −

m∑
k=1

akjπk

)
= zNLP .

This completes the proof.

5. Choice-based Network Revenue Management

As a benchmark, we would like to compare the performance of dynamic pricing with a

choice-based availability control, as considered in Liu and van Ryzin (2008). To conduct a

meaningful comparison, we assume that the firm first solves (NLP) and uses the optimal

solution as the prices in the subsequent choice-based formulation. Suppose the price vector

determined from (NLP) is denoted by the vector f .
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After f is determined, a dynamic programming model can be formulated as follows; see

Liu and van Ryzin (2008) and Zhang and Adelman (2009). The state at the beginning of

any period t is an m-vector of unsold seats x. Let ut(x) be the maximum total expected

revenue over periods t, . . . , T starting at state x at the beginning of period t. The optimality

equations are

(DP−CHOICE)

ut(x) = max
S⊆N(x)

{∑
j∈S

λPj(f(S))(fj + ut+1(x− Aj)) + (λP0(f(S)) + 1− λ)ut+1(x)

}

= max
S⊆N(x)

{∑
j∈S

λPj(f(S))[fj − (ut+1(x)− ut+1(x− Aj))]

}
+ ut+1(x), ∀t, x.

The boundary conditions are uT+1(x) = 0 for all x and ut(0) = 0 for all t. In the above,

the set N(x) = {j ∈ N : x ≥ Aj} is the set of products that can be offered when the state

is x. Here N is the set of all products with fares denoted by the vector f . Furthermore,

fj(S) = fj if j ∈ S and fj(S) = r∞ if j /∈ S.

If (DP-CHOICE) is solved to optimality, the policy will perform at least as well as the

static pricing policy from (NLP), since the latter corresponds to offer all products whenever

possible in (DP-CHOICE). However, like (DP), solving (DP-CHOICE) is also difficult

for moderate-sized problems due to the curse of dimensionality. Approximate solution ap-

proaches are proposed in the literature based on a deterministic approximation. Liu and

van Ryzin (2008) develop a choice-based linear programming model; see also Gallego et al.

(2004). Let S denote the firm’s offer set. Customer demand (viewed as continuous quantity)

flows in at rate λ. If the set S is offered, product j is sold at rate λPj(f(S)) (i.e., a proportion

Pj(f(S)) of the demand is satisfied by product j). Let R(S) denote the revenue from one

unit of customer demand when the set S is offered. Then

R(S) =
∑
j∈S

fjPj(f(S)).

Note that R(S) is a scalar. Similarly, let Qi(S) denote the resource consumption rate on

resource i, i = 1, . . . ,m, given that the set S is offered. Let Q(S) = (Q1(S), . . . , Qm(S))
T .

The vector Q(S) satisfies Q(S) = AP (f(S)), where P (f(S)) = (P1(f(S)), . . . , Pn(f(S)))
T is

the vector of purchase probabilities.

Let h(S) be the total time the set S is offered. Since the demand is deterministic, as seen

by the model, and the choice probabilities are time-homogeneous, only the total time a set
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is offered matters. The objective is to find the total time h(S) each set S should be offered

to maximize the firm’s revenue. The linear program can be written as follows

(CDLP) zCDLP =max
h

∑
S⊆N

λR(S)h(S)∑
S⊆N

λQ(S)h(S) ≤ c (7)∑
S⊆N

h(S) = T (8)

h(S) ≥ 0, ∀S ⊆ N.

Note that ∅ ⊆ N so that the decision variable h(∅) corresponds to the total time that no

products are offered. Liu and van Ryzin (2008) show that (CDLP) can be solved via a

column generation approach for the MNL choice model with disjoint consideration sets. The

dual variables associated with the resource constraint (7) can be used in dynamic program-

ming decomposition approaches similar to the ones developed in Section 4.

6. Numerical Study

The purpose of the numerical study is twofold. First, we would like to study the com-

putational performance of the decomposition approach to dynamic pricing in the network

setting. We also report performance of the decomposition bounds. Second, perhaps more

importantly, we would like to compare the performance of dynamic pricing policies to other

alternative control strategies.

6.1. Policies and Simulation Approach

The following policies are considered in our numerical study:

• DCOMP: This policy implements the dynamic programming decomposition intro-

duced in Section 4. After the collection of value functions {vt,i(·)}∀t,i is computed, the

value function vt(x) can then be approximated by

vt(x) ≈
m∑
i=1

vt,i(xi). (9)

By using (9), we have

∆jvt(x) = vt(x)− vt(x− Aj) ≈
m∑
i=1

∆jvt,i(xi).
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An approximate policy to (DP) is given by

r∗t (x) = arg max
rt∈Rt(x)

{
n∑

j=1

λPj(rt)

[
rt,j −

m∑
i=1

∆jvt+1,i(xi)

]}
.

• STATIC: This policy implements the optimal prices from (NLP). The product prices

are fixed throughout the booking horizon; a product is not offered when demand for the

product cannot be satisfied with the remaining capacity. This policy is called STATIC

to reflect the fact that prices and availability are not changed over time (except when

it is not feasible to offer a given product).

• NLP5: This policy implements the optimal prices from (NLP), but resolves 5 times

with equally spaced resolving intervals.

• CHOICE: This policy implements the dynamic programming decomposition intro-

duced in Liu and van Ryzin (2008). It is a dynamic availability control policy.

We have also tried bid-price control policies, where the dual values from CDLP are used

as bid-prices. Our numerical results indicate that the policies generate revenues very close

to these of static pricing. We therefore choose not to report the results.

We use simulation to evaluate the performance of the different approaches. For each set

of instances, we randomly generated 5,000 streams of demand arrivals, where the arrival in

each period can be represented by a uniform [0, 1] random variable X. Given product prices

r, an incoming customers chooses product j if
∑j−1

k=1 Pk(r) ≤ X <
∑j

k=1 Pk(r). We choose

not to report information on simulation errors, which when measured by the 95% half-width

divided by the mean is less than 0.5% for all averages we reported below. Note that the

bounds reported are exact and are not subject to simulation errors.

6.2. Computational Time and Bound Performance

In this section, we report the computational time on randomly generated hub-and-spoke

network instances. We consider hub-and-spoke network problems with one hub and several

non-hub locations. Hub-and-spoke network is a widely used network structure in the airline

industry, as it allows an airline to serve many different locations with relatively few scheduled

flights through customer connections at the hub. Figure 1 shows a hub-and-spoke network

with one hub and 4 non-hub locations. There is one flight scheduled from each of the two

non-hub locations on the left to the hub, and one flight from the hub to each of the two
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Figure 1: Hub-and-spoke network with 4
locations.

non-hub locations on the right. Customers can travel in the local markets from non-hub

locations (on the left) to the hub or from the hub to non-hub locations (on the right). These

itineraries are called local itineraries. In addition, customers can travel from the non-hub

locations on the left to the non-hub locations on the right via the hub. These itineraries are

called through itineraries.

The number of periods is in the set {200, 400, 800}. The capacity is varied proportionally

to the number of time periods. The largest problem instance we consider has 16 non-hub

locations and 80 products. The MNL choice parameters are generated as follows. The ulj

values for local products are generated from a uniform [10, 100] distribution. The ulj values

for through products are given by 0.95 times the sum of the ulj values on the corresponding

local products. The value µ0 is generated from a uniform [0, 20] distribution and µl is

generated from a uniform [0, 100] distribution. The arrival probability λ is taken to be 1

in each period. The probability that an arriving customer belongs to segment l is given by

γl = Xl/
∑L

k=1 Xk, where the Xk’s are independent uniform [0, 1] random variables. Note

that, once generated, γl is held constant throughout the booking horizon.

Table 1 reports the CPU seconds for the different problem instances when solvingDCOMP.

For the largest problem instance, the solution time is about 702 seconds (less than 12 min-

utes), which is still practical for real applications. Even though we do not report the compu-

tational time forCHOICE, we observed in our numerical experiments that its computational

time is only slightly shorter. The reason is that the optimization for each dynamic program-

ming recursion in DCOMP can be done very efficiently using a line search. Furthermore,

(NLP) can be solved quickly, and the solution algorithm scales very well with time and
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capacity as it is a continuous optimization problem.

Table 2 reports the bounds from NLP and DCOMP. Table 3 reports the ratio between

the NLP bound and the decomposition bound. We observe that the DCOMP bound is

always tighter than the NLP bound. Furthermore, the difference between the bounds tend

to be larger for smaller problem instances. In the set of examples we consider, the relative

difference of the two bounds ranges between 1-5%. For large problem instances, the relative

difference between the two bounds is relatively small. This is not surprising since the NLP

bound is asymptotically tight; see Gallego and van Ryzin (1997). Nevertheless, as shown

in our simulation results later, the performance lift from DCOMP can be quite significant,

even when the bounds are close.

6.3. Policy Performance

6.3.1. Problem Instances

We conduct numerical experiments using two sets of randomly generated hub-and-spoke

instances. The network structure is similar to the one presented in Figure 1. In the first

set of examples, which we call HS1, there are 4 non-hub locations, and the total number of

periods T = 500. There are 4 scheduled flights, each with a capacity of 30, two of which are

to the hub, and the other two are from the hub, as shown in Figure 1. In total, there are 4

local itineraries and 4 through itineraries. There are two products offered for each itinerary,

belonging to two different consideration sets. The ulj values for the first and the second

consideration sets on each local itinerary are generated from uniform [10, 1000] and uniform

[10, 100] distributions, respectively. The ulj values for through products are given by 0.95

times the sum of the ulj values on the corresponding local products. The values of µl and

µl0 are generated from uniform [0, 100] distributions. The arrival probability λ is taken to

be 1 in each period. The probability that an arriving customer belongs to segment l is given

by γl = Xl/
∑L

k=1 Xk, where the Xk’s are independent uniform [0, 1] random variables. Note

that, once generated, γl is held constant throughout the booking horizon. This procedure is

used to generate 10 different problem instances, which we label cases 1 through 10.

Another set of hub-and-spoke example, which we call HS2, has 8 non-hub locations.

The network topology is essentially the same as HS1. The problem data are generated in

a similar fashion, except that only one product is offered for each itinerary. There are 8

scheduled flights, each with a capacity of 30, four of which are to the hub, and the other

four are from the hub. The number of periods is 1000, and the total number of products is
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24. The ulj values for local itineraries are generated from a uniform [10, 100] distribution.

The ulj values for through products are given by 0.95 times the sum of the ulj values on

the corresponding local products. The values of µl and µl0 are generated from uniform

[0, 100] and uniform [0, 20] distributions, respectively. All other parameters are generated in

the same way as for HS1. Ten different problem instances, labeled cases 1 through 10 are

generated.

6.3.2. Results for HS1

Table 4 reports the simulated average revenues for the policies we consider. We also report

the bounds from dynamic programming decomposition and the deterministic approximation.

The performance of DCOMP is compared against the decomposition bound. The optimality

gap is the percentage gap between the DCOMP REV and the decomposition bound. This

gap is 1-4%. It should be pointed out that the decomposition bound is tighter than the

bound from NLP, confirming our analytical results in Proposition 4. We also compare the

performance of DCOMP to STATIC, NLP5, and CHOICE. Observe that CHOICE is

not performing as well as STATIC in almost all problem instances. This is quite surprising,

given that CHOICE is a dynamic capacity-dependent policy, while STATIC (as its name

suggests) is purely static. In particular, this shows that choice-based RM strategies, while

effective when prices are not chosen appropriately, are not very effective when prices are

optimized. On the other hand, STATIC does not perform as well as the dynamic pricing

strategy DCOMP. Indeed, DCOMP shows a consistent 3-6% revenue improvement across

the board. In most RM settings, this improvement is quite significant. A comparison between

NLP5 and DCOMP shows that the former performs worse, even though it is re-optimized

a few times throughout the booking horizon. This shows that the dynamic pricing strategy

should be considered when possible in practice. When the dynamic pricing strategy is not

feasible, STATIC provides a very strong heuristic, considering its strong performance and

its static nature.

6.3.3. Results for HS2

Table 5 reports the results for HS2. The sub-optimality gap of DCOMP is slightly larger

at 3-5%. The policy STATIC performs better than CHOICE in the majority of problem

instances, confirming the robustness of the policy observed in HS1. The dynamic pricing

policy DCOMP shows significant revenue improvement, up to 6% against the three alter-
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native policies. The difference between DCOMP and NLP5 is smaller, but can still be

considered as practically significant. Overall, the observations are in line with those for

HS1.

It is also of considerable interest to look at the price path of different products. Figure 2

shows the price path of four different products over 100 periods for one problem instance

in HS2 for DCOMP. To obtain a cleaner picture, we did not show the price path for all

products over the whole booking horizon (1000 time periods), but the pattern looks very

similar. We note that pricing decisions need to balance two aspects of the problem. First,

as time goes by, there are less opportunities to sell, and therefore prices may go down. On

the other hand, prices may go up since capacities may be consumed over time and become

scarce as sales take place. Indeed, Figure 2 shows that prices may go up or down over time,

presumably reflecting these two aspects. It is also interesting to note that price changes

in the figure tend to be slow. This should be contrasted with choice-based availability

control, where each product is either available at a fixed price or is not available (which

is conceptually equivalent to charging an extremely high price). We believe the relative

strength of DCOMP over CHOICE comes from this finer control of pricing.

7. Summary and Future Directions

This paper studies the value of dynamic pricing by comparing it with several other reasonable

RM approaches, including static pricing and choice-based availability control. Our results

show that dynamic pricing can lead to a significant across the board revenue lift, in the order

of 1-6% in our numerical study. On the other hand, choice-based availability control does

not perform well, compared even with static pricing. Therefore, dynamic pricing approaches

should be implemented whenever possible in practice. We also show that dynamic program-

ming decomposition leads to an upper bound on revenue, which is provably tighter than the

bound from a deterministic approximation.

Our research suffers from the following limitation. First of all, the static prices considered

in this research were generated from a deterministic approximation, which ignores demand

uncertainty. Because of this, the gap reported in this paper between dynamic and static

pricing may be an overestimate of the true gap between the two. In the same vein, the

fixed prices fed to the choice-based availability control were sub-optimal. Future research

will benefit from more realistic modeling of static pricing.
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