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Abstract

In this paper we study general lp regularized unconstrained minimization problems.
In particular, we derive lower bounds for nonzero entries of the first- and second-order
stationary points and hence also of local minimizers of the lp minimization problems.
We extend some existing iterative reweighted l1 (IRL1) and l2 (IRL2) minimization
methods to solve these problems and propose new variants for them in which each sub-
problem has a closed-form solution. Also, we provide a unified convergence analysis for
these methods. In addition, we propose a novel Lipschitz continuous ε-approximation to
‖x‖pp. Using this result, we develop new IRL1 methods for the lp minimization problems
and show that any accumulation point of the sequence generated by these methods is
a first-order stationary point, provided that the approximation parameter ε is below
a computable threshold value. This is a remarkable result since all existing iterative
reweighted minimization methods require that ε be dynamically updated and approach
zero. Our computational results demonstrate that the new IRL1 method and the new
variants generally outperform the existing IRL1 methods [20, 17].

Key words: lp minimization, iterative reweighted l1 minimization, iterative reweighted
l2 minimization

1 Introduction

Recently numerous optimization models and methods have been proposed for finding sparse
solutions to a system or an optimization problem (e.g., see [30, 13, 8, 7, 23, 10, 9, 12, 31, 20,
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6, 2, 22, 32, 34, 26, 35]). In this paper we are interested in one of those models, namely, the
lp regularized unconstrained nonlinear programming model

min
x∈<n
{F (x) := f(x) + λ‖x‖pp} (1)

for some λ > 0 and p ∈ (0, 1), where f is a smooth function with Lf -Lipschitz-continuous
gradient in <n, that is,

‖∇f(x)−∇f(y)‖2 ≤ Lf‖x− y‖2, ∀x, y ∈ <n, (2)

and f is bounded below in <n. Here, ‖x‖p := (
∑n

i=1 |xi|p)1/p for any x ∈ <n. One can observe
that as p ↓ 0, problem (1) approaches the l0 minimization problem

min
x∈<n

f(x) + λ‖x‖0, (3)

which is an exact formulation of finding a sparse vector to minimize the function f . Some
efficient numerical methods such as iterative hard thresholding [6] and penalty decomposition
methods [26] have recently been proposed for solving (3). In addition, as p ↑ 1, problem (1)
approaches the l1 minimization problem

min
x∈<n

f(x) + λ‖x‖1, (4)

which is a widely used convex relaxation for (3). When f is a convex quadratic function, model
(4) is shown to be extremely effective in finding a sparse vector to minimize f . A variety of
efficient methods were proposed for solving (4) over last few years (e.g., see [31, 2, 22, 32, 34]).
Since problem (1) is intermediate between problems (3) and (4), one can expect that it is
also capable of seeking out a sparse vector to minimize f . As demonstrated by extensive
computational studies in [10, 33], problem (1) can even produce a sparser solution than (4)
does while both achieve similar values of f .

A great deal of effort was recently made by many researchers (e.g., see [10, 11, 12, 20, 33,
25, 16, 17, 19, 27, 14, 21, 29, 3, 15]) for studying problem (1) or its related problem

min
x∈<n
{‖x‖pp : Ax = b}. (5)

In particular, Chartrand [10], Chartrand and Staneva [11], Foucart and Lai [20], and Sun [29]
established some sufficient conditions for recovering the sparest solution to a undetermined
linear system Ax = b by model (5). Efficient iterative reweighted l1 (IRL1) and l2 (IRL2)
minimization algorithms were also proposed for finding an approximate solution to (5) by Rao
and Kreutz-Delgado [28], Chartrand and Yin [12], Foucart and Lai [20] and Daubechies et al.
[19]. Though problem (5) is generally NP hard (see [14, 21]), it is shown in [19, Theorem 7.7(i)]
that under some assumptions including a null space property on A and a posteriori check, the
sequence generated by IRL2 algorithm converges to the sparest solution to the above linear
system, which is also the global minimizer of (5). Mourad and Reilly [27] proposed a smooth
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convex approximation approach to solving (5) in which ‖x‖pp is approximated by a smooth
convex function at each iteration. In addition, Chen et al. [16] considered a special case of
problem (1) with f(x) = 1

2
‖Ax− b‖2

2, namely, the problem

min
x∈<n

1

2
‖Ax− b‖2

2 + λ‖x‖pp. (6)

They derived lower bounds for nonzero entries of local minimizers of (6) and also proposed a
hybrid orthogonal matching pursuit-smoothing gradient method for solving (6). Since ‖x‖pp is
non-Lipschitz continuous, Chen and Zhou [17] recently considered the following approximation
to (6):

min
x∈<n

1

2
‖Ax− b‖2

2 + λ
n∑
i=1

(|xi|+ ε)p

for some small ε > 0. And they also proposed an IRL1 algorithm to solve this approximation
problem. Recently, Lai and Wang [25] considered another approximation to (6), which is

min
x∈<n

1

2
‖Ax− b‖2

2 + λ
n∑
i=1

(|xi|2 + ε)p/2,

and proposed an IRL2 algorithm for solving this approximation. Very recently, Bian and
Chen [3] and Chen et al. [15] proposed a smoothing sequential quadratic programming (SQP)
algorithm and a smoothing trust region Newton (TRN) method, respectively, for solving a
class of nonsmooth nonconvex problems that include (1) as a special case. When applied to
problem (1), their methods first approximate ‖x‖pp by a suitable smooth function and then
apply an SQP or a TRN algorithm to solve the resulting approximation problem. Lately,
Bian et al. [4] proposed first- and second-order interior point algorithms for solving a class of
non-Lipschitz nonconvex minimization problems with bounded box constraints, which can be
suitably applied to lp regularized minimization problems over a compact box.

In this paper we consider general lp regularized unconstrained optimization problem (1). In
particular, we first derive lower bounds for nonzero entries of first- and second-order stationary
points and hence also of local minimizers of (1). We then extend the aforementioned IRL1 and
IRL2 methods [20, 19, 25, 17] to solve (1) and propose some new variants for them. We also
provide a unified convergence analysis for these methods. Finally, we propose a novel Lipschitz
continuous ε-approximation to ‖x‖pp and also propose a locally Lipschitz continuous function
Fε(x) to approximate F (x). Subsequently, we develop IRL1 minimization methods for solving
the resulting approximation problem minx∈<n Fε(x). We show that any accumulation point
of the sequence generated by these methods is a first-order stationary point of problem (1),
provided that ε is below a computable threshold value. This is a remarkable result since all
existing iterative reweighted minimization methods for lp minimization problems require that
ε be dynamically updated and approach zero.

The outline of this paper is as follows. In Subsection 1.1 we introduce some notations that
are used in the paper. In Section 2 we derive lower bounds for nonzero entries of stationary
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points, and hence also of local minimizers of problem (1). We also propose a locally Lipschitz
continuous function Fε(x) to approximate F (x) and study some properties of the approxima-
tion problem minx∈<n Fε(x). In Section 3 we extend the existing IRL1 and IRL2 minimization
methods from problems (5) and (6) to general problems (1) and propose new variants for them.
We also provide a unified convergence analysis for these methods. In Section 4 we propose
new IRL1 methods for solving (1) and establish their convergence. In Section 5 we conduct
numerical experiments to compare the performance of the IRL1 minimization methods and
their variants that are studied in this paper for (1). Finally, in Section 6 we present some
concluding remarks.

1.1 Notation

Given any x ∈ <n and a scalar τ , |x|τ denotes an n-dimensional vector whose ith component
is |xi|τ . The set of all n-dimensional positive vectors is denoted by <n+. In addition, x > 0
means that x ∈ <n+ and Diag(x) denotes an n× n diagonal matrix whose diagonal is formed
by the vector x. Given an index set B ⊆ {1, . . . , n}, xB denotes the sub-vector of x indexed
by B. Similarly, XBB denotes the sub-matrix of X whose rows and columns are indexed by
B. In addition, if a matrix X is positive semidefinite, we write X � 0. The sign operator is
denoted by sgn, that is,

sgn(t) =


1 if t > 0,
[−1, 1] if t = 0,
−1 otherwise.

For any β < 0, we define 0β =∞. Finally, we define

f = inf
x∈<n

f(x). (7)

It follows from the early assumption on f that −∞ < f <∞.

2 Technical results

In this section we derive lower bounds for nonzero entries of stationary points and hence
also of local minimizers of problem (1). We also propose a nonsmooth but locally Lipschitz
continuous function Fε(x) to approximate F (x). Moreover, we show that when ε is below a
computable threshold value, a certain stationary point of the corresponding approximation
problem minx∈<n Fε(x) is also that of (1). This result plays a crucial role in developing new
IRL1 methods for solving (1) in Section 4.

2.1 Lower bounds for nonzero entries of stationary points of (1)

Chen et al. [15] recently studied optimality conditions for a class of non-Lipschitz optimization
problems which include (1) as a special case. We first review some of these results in the
context of problem (1). In particular, we will review the definition of first- and second-order
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stationary points of problem (1) and state some necessary optimality conditions for (1). Then
we derive lower bounds for nonzero entries of the stationary points and hence also of local
minimizers of problem (1).

Definition 1 Let x∗ be a vector in <n and X∗ = Diag(x∗). x∗ is a first-order stationary point
of (1) if

X∗∇f(x∗) + λp|x∗|p = 0. (8)

In addition, x∗ is a second-order stationary point of (1) if

(X∗)T∇2f(x∗)X∗ + λp(p− 1)Diag(|x∗|p) � 0. (9)

The following result states that any local minimizer of (1) is a stationary point, whose
proof can be found in [15].

Proposition 2.1 Let x∗ be a local minimizer of (1) and X∗ = Diag(x∗). The following
statements hold:

(i) x∗ is a first-order stationary point, that is, (8) holds at x∗.

(ii) Further, if f is twice continuously differentiable in a neighborhood of x∗, then x∗ is a
second-order stationary point, that is, (9) holds at x∗.

Recently, Chen et al. derived in Theorems 3.1(i) and 3.3 of [16] some interesting lower
bounds for the nonzero entries of local minimizers of a special case of problem (1) with
f(x) = 1

2
‖Ax− b‖2 for some A ∈ <m×n and b ∈ <m. We next establish similar lower bounds

for the nonzero entries of stationary points and hence also of local minimizers of general
problem (1).

Theorem 2.2 Let x∗ be a first-order stationary point of (1) satisfying F (x∗) ≤ F (x0) + ε for
some x0 ∈ <n and ε ≥ 0, B = {i : x∗i 6= 0}, Lf and f be defined in (2) and (7) , respectively.
Then there holds:

|x∗i | ≥

 λp√
2Lf [F (x0) + ε− f ]

 1
1−p

, ∀i ∈ B. (10)

Proof. Since f has Lf -Lipschitz-continuous gradient in <n, it is well-known that

f(y) ≤ f(x) +∇f(x)T (y − x) +
Lf
2
‖y − x‖2

2, ∀x, y ∈ <n.

Letting x = x∗ and y = x∗ −∇f(x∗)/Lf , we obtain that

f(x∗ −∇f(x∗)/Lf ) ≤ f(x∗)− 1

2Lf
‖∇f(x∗)‖2

2. (11)

5



Note that

f(x∗ −∇f(x∗)/Lf ) ≥ inf
x∈<n

f(x) = f, f(x∗) ≤ F (x∗) ≤ F (x0) + ε.

Using these relations and (11), we have

‖∇f(x∗)‖2 ≤
√

2Lf [f(x∗)− f(x∗ −∇f(x∗)/Lf )] ≤
√

2Lf [F (x0) + ε− f ]. (12)

Since x∗ satisfies (8), we obtain that for every i ∈ B,

|x∗i | =
(

1

λp

∣∣∣∣∂f(x∗)

∂xi

∣∣∣∣) 1
p−1

≥
(
‖∇f(x∗)‖2

λp

) 1
p−1

,

which together with (12) yields

|x∗i | ≥

 λp√
2Lf [F (x0) + ε− f ]

 1
1−p

, ∀i ∈ B.

Theorem 2.3 Let x∗ be a second-order stationary point of (1), B = {i : x∗i 6= 0}, and Lf be
defined in (2). Suppose further that f is twice continuously differentiable in a neighborhood
of x∗. Then there holds:

|x∗i | ≥
(
λp(1− p)

Lf

) 1
2−p

, ∀i ∈ B, (13)

Proof. It follows from (2) and the assumption that f is twice continuously differentiable
in a neighborhood of x∗ that ‖∇2f(x∗)‖2 ≤ Lf . In addition, since x∗ satisfies (9), we have

eTi [(X∗)T∇2f(x∗)X∗]ei + λp(p− 1)eTi Diag(|x∗|p)]ei ≥ 0,

where ei is the ith coordinate vector. It then follows that for each i ∈ B,

[∇2f(x∗)]ii + λp(p− 1)|x∗i |p−2 ≥ 0,

which yields

|x∗i | ≥
(
λp(1− p)

[∇2f(x∗)]ii

) 1
2−p

≥
(

λp(1− p)
‖∇2f(x∗)‖2

) 1
2−p

≥
(
λp(1− p)

Lf

) 1
2−p

, ∀i ∈ B.
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2.2 Locally Lipschitz continuous approximation to (1)

It is known that for p ∈ (0, 1), the function ‖x‖pp is not locally Lipschitz continuous at some
points in <n. The non-Lipschitzness of ‖x‖pp brings a great deal of challenge for designing
algorithms for solving problem (1) (see, for example, [16]). In this subsection we propose
a nonsmooth but Lipschitz continuous ε-approximation to ‖x‖pp for every ε > 0. As a con-
sequence, we obtain a nonsmooth but locally Lipschitz continuous ε-approximation Fε(x) to
F (x). Furthermore, we show that when ε is below a computable threshold value, a certain
stationary point of the corresponding approximation problem minx∈<n Fε(x) is also that of
(1).

Lemma 2.4 Let u > 0 be arbitrarily given, and let q be such that

1

p
+

1

q
= 1. (14)

Define

hu(t) := min
0≤s≤u

p

(
|t|s− sq

q

)
, ∀t ∈ <. (15)

Then the following statements hold:

(i) 0 ≤ hu(t)− |t|p ≤ uq for every t ∈ <.

(ii) hu is pu-Lipschitz continuous in (−∞,∞), i.e.,

|hu(t1)− hu(t2)| ≤ pu|t1 − t2|, ∀t1, t2 ∈ <.

(iii) The Clarke subdifferential of hu, denoted by ∂hu, exists everywhere, and it is given by

∂hu(t) = pmin{|t|
1
q−1 , u} sgn(t). (16)

Proof. (i) Let gt(s) = p(|t|s− sq/q) for s > 0. Since p ∈ (0, 1), we observe from (14) that
q < 0. It then implies that gt(s)→∞ as s ↓ 0. This together with the continuity of gt implies
that hu(t) is well-defined for all t ∈ <. In addition, it is easy to show that gt(·) is convex in
(0,∞), and moreover, inf

s>0
gt(s) = |t|p. Hence, we have

hu(t) = min
0≤s≤u

gt(s) ≥ inf
s>0

gt(s) = |t|p, ∀t ∈ <.

We next show that hu(t)− |t|p ≤ uq by dividing its proof into two cases.

1) Assume that |t| > uq−1. Then, the optimal value of (15) is achieved at s∗ = |t|
1
q−1 and

hence,

hu(t) = p

(
|t|s∗ − (s∗)q

q

)
= |t|p.
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2) Assume that |t| ≤ uq−1. It can be shown that the optimal value of (15) is achieved at
s∗ = u. Using this result and the relation |t| ≤ uq−1, we obtain that

hu(t) = p

(
|t|u− uq

q

)
≤ p

(
uq−1u− uq

q

)
= uq,

which implies that hu(t)− |t|p ≤ hu(t) ≤ uq.

Combining the above two cases, we conclude that statement (i) holds.

(ii) Let φ : [0,∞)→ < be defined as follows:

φ(t) =

{
tp if t > uq−1,

p(tu− uq/q) if 0 ≤ t ≤ uq−1.

It follows from (14) that (q − 1)(p− 1) = 1. Using this relation, one can show that

φ′(t) = pmin{t
1
q−1 , u}. (17)

Hence, we can see that 0 ≤ φ′(t) ≤ pu for every t ∈ [0,∞), which implies that φ is pu-Lipschitz
continuous on [0,∞). In addition, one can observe from the proof of (i) that hu(t) = φ(|t|)
for all t. Further, by the triangle inequality, we can easily conclude that hu is pu-Lipschitz
continuous in (−∞,∞).

(iii) Since hu is Lipschitz continuous everywhere, it follows from Theorem 2.5.1 of [18] that

∂hu(t) = cov

{
lim

tk∈D→t
h′u(tk)

}
, (18)

where cov denotes convex hull and D is the set of points at which hu is differentiable. Recall
that hu(t) = φ(|t|) for all t. Hence, h′u(t) = φ′(|t|) sgn(t) for every t 6= 0. Using this relation,
(17) and (18), we immediately see that statement (iii) holds.

Corollary 2.5 Let u > 0 be arbitrarily given, and let h(x) =
∑n

i=1 hu(xi) for every x ∈ <n,
where hu is defined in (15). Then the following statements hold:

(i) 0 ≤ h(x)− ‖x‖pp ≤ nuq for every x ∈ <n.

(ii) h is
√
npu-Lipschitz continuous in <n, i.e.,

|h(x)− h(y)| ≤
√
npu‖x− y‖2, ∀x, y ∈ <n.

We are now ready to propose a nonsmooth but locally Lipschitz continuous ε-approximation
to F (x).
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Proposition 2.6 Let ε > 0 be arbitrarily given and q satisfy (14). Define

Fε(x) := f(x) + λ

n∑
i=1

huε(xi), (19)

where

huε(t) := min
0≤s≤uε

p

(
|t|s− sq

q

)
, uε :=

( ε

λn

) 1
q
. (20)

Then the following statements hold:

(i) 0 ≤ Fε(x)− F (x) ≤ ε for every x ∈ <n.

(ii) Fε is locally Lipschitz continuous in <n. Furthermore, if f is Lipschitz continuous, so
is Fε.

Proof. Using the definitions of Fε and F , we have Fε(x)−F (x) = λ(
∑n

i=1 huε(xi)−‖x‖pp),
which, together with Corollary 2.5 (i) with u = uε, implies that statement (i) holds. Since f
is differentiable in <n, it is known that f is locally Lipschitz continuous. In addition, we know
from Corollary 2.5 (ii) that

∑n
i=1 huε(xi) is Lipschitz continuous in <n. These facts imply that

statement (ii) holds.

From Proposition 2.6, we know that Fε is a locally Lipschitz ε-approximation to the non-
Lipschitz function F . It is very natural to find an approximate solution of (1) by solving the
corresponding ε-approximation problem

min
x∈<n

Fε(x), (21)

where Fε is defined in (19). Strikingly, we can show that when ε is below a computable
threshold value, a certain stationary point of problem (21) is also that of (1).

Theorem 2.7 Let x0 ∈ <n be an arbitrary point, and let ε be such that

0 < ε < nλ


√

2Lf [F (x0) + ε− f ]

λp

q , (22)

where f and q are defined in (7) and (14), respectively. Suppose that x∗ is a first-order
stationary point of (21) such that Fε(x

∗) ≤ Fε(x
0). Then, x∗ is also a first-order stationary

point of (1), i.e., (8) holds at x∗. Moreover, the nonzero entries of x∗ satisfy the first-order
lower bound (10).

Proof. Let B = {i : x∗i 6= 0}. Since x∗ is a first-order stationary point of (21), we have
0 ∈ ∂Fε(x∗). Hence, it follows that

∂f(x∗)

∂xi
+ λ∂huε(x

∗
i ) = 0, ∀i ∈ B. (23)
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In addition, we notice that

f(x∗) ≤ F (x∗) ≤ Fε(x
∗) ≤ Fε(x

0) ≤ F (x0) + ε. (24)

Using this relation and similar arguments as for deriving (12), we see that (12) also holds for
such x∗. It then follows from (23) and (12) that

|∂huε(x∗i )| =
1

λ

∣∣∣∣∂f(x∗)

∂xi

∣∣∣∣ ≤ 1

λ
‖∇f(x∗)‖2 ≤

√
2Lf [F (x0) + ε− f ]

λ
, ∀i ∈ B. (25)

We now claim that |x∗i | > uε
q−1 for all i ∈ B, where uε is defined in (20). Suppose for

contradiction that there exists some i ∈ B such that 0 < |x∗i | ≤ uε
q−1. It then follows from

(16) that |∂huε(x∗i )| = puε. Using this relation, (22) and the definition of uε, we obtain that

|∂huε(x∗i )| = puε = p
( ε

λn

)1/q

>

√
2Lf [F (x0) + ε− f ]

λ
,

which contradicts (25). Therefore, |x∗i | > uε
q−1 for all i ∈ B. Using this fact and (16), we see

that ∂huε(x
∗
i ) = p|x∗i |p−1 sgn(x∗i ) for every i ∈ B. Substituting it into (23), we obtain that

∂f(x∗)

∂xi
+ λp|x∗i |p−1 sgn(x∗i ) = 0, ∀i ∈ B.

Multiplying by x∗i both sides of this equality, we see that (8) holds. In addition, recall from
(24) that F (x∗) ≤ F (x0) + ε. Using this relation and Theorem 2.2, we immediately see that
the second part of this theorem also holds.

Remark. It is not hard to observe that Theorem 2.7 still holds if f and Lf are replaced
by a number below f and a number above Lf in (22), respectively. For practical application,
an upper bound on Lf and a lower bound on f thus suffice for estimating the parameter ε
satisfying (22). These bounds can be easily found for some important regression problems
such as the least squares and the logistic regressions (see Section 5).

Corollary 2.8 Let x0 ∈ <n be an arbitrary point, and let ε be such that (22) holds. Suppose
that x∗ is a local minimizer of (21) such that Fε(x

∗) ≤ Fε(x
0). Then the following statements

hold:

i) x∗ is a first-order stationary point of (1), i.e., (8) holds at x∗. Moreover, the nonzero
entries of x∗ satisfy the first-order lower bound (10).

ii) Suppose further that f is twice continuously differentiable in a neighborhood of x∗. Then,
x∗ is a second-order stationary point of (1), i.e., (9) holds at x∗. Moreover, the nonzero
entries of x∗ satisfy the second-order lower bound (13).
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Proof. (i) Since x∗ is a local minimizer of (21), we know that x∗ is a stationary point of
(21). Statement (i) then immediately follows from Theorem 2.7.

(ii) Let B = {i : x∗i 6= 0}. Since x∗ is a local minimizer of (21), we observe that x∗ is also
a local minimizer of

min
x∈<n

{
f(x) + λ

∑
i∈B

huε(xi) : xi = 0, i /∈ B

}
. (26)

Notice that x∗ is a first-order stationary point of (21). In addition, F (x∗) ≤ F (x0) + ε and ε
satisfies (22). Using the same arguments as in the proof of Theorem 2.7, we have |x∗i | > uε

q−1

for all i ∈ B. Recall from the proof of Lemma 2.4 (i) that huε(t) = |t|p if |t| > uε
q−1. Hence,∑

i∈B
huε(xi) =

∑
i∈B
|xi|p for all x in a neighborhood of x∗. This, together with the fact that x∗ is

a local minimizer of (26), implies that x∗ is also a local minimizer of

min
x∈<n
{f(x) + λ‖xB‖pp : xi = 0, i /∈ B}. (27)

By the assumption, we observe that the objective function of (27) is twice continuously dif-
ferentiable at x∗. The second-order optimality condition of (27) at x∗ yields

∇2f(x∗)BB + λp(p− 1)Diag(|x∗B|p−2) � 0,

which, together with the fact that X∗ = Diag(x∗) and x∗i = 0 for i /∈ B, implies that (9) holds
and hence x∗ is a second-order stationary point of (1). The rest of the statement follows from
Theorem 2.3.

3 A unified analysis for some existing iterative reweighted

minimization methods

Recently two types of IRL1 and IRL2 methods have been proposed in the literature [20, 19,
25, 17] for solving problem (5) or (6). In this section we extend these methods to solve (1)
and also propose a variant of them in which each subproblem has a closed-form solution.
Moreover, we provide a unified convergence analysis for them.

3.1 The first type of IRLα methods and its variant for (1)

In this subsection we consider the iterative reweighted minimization methods proposed in
[25, 17] for solving problem (6), which apply an IRL1 or IRL2 method to solve a sequence of
problems min

x∈<n
Q1,εk(x) or min

x∈<n
Q2,εk(x), where {εk} is a sequence of positive vectors approach-

ing zero as k →∞ and

Qα,ε(x) :=
1

2
‖Ax− b‖2

2 + λ
n∑
i=1

(|xi|α + εi)
p
α . (28)
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In what follows, we extend the above methods to solve (1) and also propose a variant of
them in which each subproblem has a closed-form solution. Moreover, we provide a unified
convergence analysis for them. Our key observation is that problem

min
x∈<n
{Fα,ε(x) := f(x) + λ

n∑
i=1

(|xi|α + εi)
p
α} (29)

for α ≥ 1 and ε ∈ <n+ can be suitably solved by an iterative reweighted lα (IRLα) method.
Problem (1) can then be solved by applying the IRLα method to a sequence of problems (29)
with ε = εk ∈ <n+ → 0 as k →∞.

We start by presenting an IRLα method for solving problem (29) with α ≥ 1 and ε ∈ <n+,
which becomes an IRL1 (resp., IRL2) method studied in [25, 17], respectively, when α = 1
(resp., α = 2) and f(x) = ‖Ax− b‖2

2/2.

Algorithm 1: An IRLα minimization method for (29)

Let α ≥ 1 and ε ∈ <n+ be given. Choose an arbitrary x0 ∈ <n. Set k = 0.

1) Solve the weighted lα minimization problem

xk+1 ∈ Arg min
x∈<n

{
f(x) +

λp

α

n∑
i=1

ski |xi|α
}
, (30)

where ski = (|xki |α + εi)
p
α
−1 for all i.

2) Set k ← k + 1 and go to step 1).

end

We next show that the sequence {xk} generated above is bounded and moreover any
accumulation point of {xk} is a first-order stationary point of (29).

Theorem 3.1 Let the sequence {xk} be generated by the above IRLα minimization method.
There hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(29).

Proof. (i) Let q be such that
α

p
+

1

q
= 1. (31)

It is not hard to show that for any δ > 0,

(|t|α + δ)
p
α =

p

α
min
s≥0

{
(|t|α + δ)s− sq

q

}
, ∀t ∈ <, (32)
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and moreover, the minimum is achieved at s = (|t|α + δ)
1
q−1 . Using this result, the definition

of sk, and (31), one can observe that for k ≥ 0,

sk = min
s≥0

Gα,ε(x
k, s), xk+1 ∈ Arg min

x∈<n
Gα,ε(x, s

k), (33)

where sk = (sk1, . . . , s
k
n)T and

Gα,ε(x, s) = f(x) +
λp

α

n∑
i=1

[
(|xi|α + εi)si −

sqi
q

]
. (34)

In addition, we see that Fα,ε(x
k) = Gα,ε(x

k, sk). It then follows that

Fα,ε(x
k+1) = Gα,ε(x

k+1, sk+1) ≤ Gα,ε(x
k+1, sk) ≤ Gα,ε(x

k, sk) = Fα,ε(x
k). (35)

Hence, {Fα,ε(xk)} is non-increasing. It follows that Fα,ε(x
k) ≤ Fα,ε(x

0) for all k. This
together with (7) , ε > 0, and the definition of Fα,ε implies that

f+λ
n∑
i=1

|xki |p ≤ f+λ
n∑
i=1

(|xki |α+εi)
p
α ≤ f(xk)+λ

n∑
i=1

(|xki |α+εi)
p
α = Fα,ε(x

k) ≤ Fα,ε(x
0).

It follows that ‖xk‖pp ≤ (Fα,ε(x
0)− f)/λ and hence {xk} is bounded.

(ii) Since x∗ is an accumulation point of {xk}, there exists a subsequence K such that
{xk}K → x∗. By the continuity of Fα,ε, we have {Fα,ε(xk)}K → Fα,ε(x

∗), which together with
the monotonicity of Fα,ε(x

k) implies that Fα,ε(x
k) → Fα,ε(x

∗). In addition, by the definition
of sk, we have {sk}K → s∗, where s∗ = (s∗1, . . . , s

∗
n)T with s∗i = (|x∗i |α + εi)

p
α
−1 for all i.

Also, we observe that Fα,ε(x
∗) = Gα,ε(x

∗, s∗). Using (35) and Fα,ε(x
k) → Fα,ε(x

∗), we see
that Gα,ε(x

k+1, sk) → Fα,ε(x
∗) = Gα,ε(x

∗, s∗). Further, it follows from (33) that Gα,ε(x, s
k) ≥

Gα,ε(x
k+1, sk) for every x ∈ <n. Upon taking limits on both sides of this inequality as k ∈

K → ∞, we have Gα,ε(x, s
∗) ≥ Gα,ε(x

∗, s∗) for all x ∈ <n, that is, x∗ ∈ Arg min
x∈<n

Gα,ε(x, s
∗),

which, together with the first-order optimality condition and the definition of s∗, yields

0 ∈ ∂f(x∗)

∂xi
+ λp(|x∗i |α + εi)

p
α
−1|x∗i |α−1 sgn(x∗i ), ∀i. (36)

Hence, x∗ is a stationary point of (29).

The above IRLα method needs to solve a sequence of reweighted lα minimization subprob-
lems (30) whose solution generally cannot be computed exactly. Therefore, the sequence {xk}
usually can only be found inexactly. This may bring a great deal challenge to the practical
implementation of this method due to the facts: 1) it is unknown how much inexactness on
{xk} can be allowed to ensure the global convergence of the method; 2) it may not be cheap
to find a good approximate solution to (30). Especially, when f is nonconvex, the subproblem
(30) is also nonconvex and it is clearly hard to find xk in this case. Thus, this method may
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be practically inefficient or numerically unstable. We next propose a variant of this method
in which each subproblem is much simpler and has a closed-form solution for the commonly
used α’s such as α = 1 or 2.

Algorithm 2: A variant of IRLα minimization method for (29)

Let α ≥ 1, 0 < Lmin < Lmax, τ > 1 and c > 0 be given. Choose an arbitrary x0 ∈ <n and set
k = 0.

1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.

1a) Solve the weighted lα minimization problem

xk+1 ∈ Arg min
x∈<n

{
f(xk) +∇f(xk)T (x− xk) +

Lk
2
‖x− xk‖2

2 +
λp

α

n∑
i=1

ski |xi|α
}
,

(37)
where ski = (|xki |α + εi)

p
α
−1 for all i.

1b) If

Fα,ε(x
k)− Fα,ε(xk+1) ≥ c

2
‖xk+1 − xk‖2

2 (38)

is satisfied, where Fα,ε is given in (29), then go to step 2).

1c) Set Lk ← τLk and go to step 1a).

2) Set k ← k + 1 and go to step 1).

end

We first show that for each outer iteration, the number of its inner iterations is finite.

Theorem 3.2 For each k ≥ 0, the inner termination criterion (38) is satisfied after at most⌈
log(Lf+c)−log(2Lmin)

log τ
+ 2
⌉

inner iterations.

Proof. Let H(x) denote the objective function of (37). Notice that H(·) is strongly convex
with modulus Lk due to α ≥ 1. By the first-order optimality condition of (37) at xk+1, we
have

H(xk) ≥ H(xk+1) +
Lk
2
‖xk+1 − xk‖2

2,

which is equivalent to

f(xk) +
λp

α

n∑
i=1

ski |xki |α ≥ f(xk) +∇f(xk)T (xk+1 − xk) +
λp

α

n∑
i=1

ski |xk+1
i |α + Lk‖xk+1 − xk‖2

2.

Recall that ∇f is Lf -Lipschitz continuous. We then have

f(xk+1) ≤ f(xk) +∇f(xk)T (xk+1 − xk) +
Lf
2
‖xk+1 − xk‖2

2.

14



Combining these two inequalities, we obtain that

f(xk) +
λp

α

n∑
i=1

ski |xki |α ≥ f(xk+1) +
λp

α

n∑
i=1

ski |xk+1
i |α + (Lk −

Lf
2

)‖xk+1 − xk‖2
2,

which together with (34) yields

Gα,ε(x
k, sk) ≥ Gα,ε(x

k+1, sk) + (Lk −
Lf
2

)‖xk+1 − xk‖2
2. (39)

Recall that Fα,ε(x
k) = Gα,ε(x

k, sk). In addition, it follows from (32) that Fα,ε(x) = min
s≥0

Gα,ε(x, s).

Using these two equalities and (39), we obtain that

Fα,ε(x
k+1) = Gα,ε(x

k+1, sk+1) ≤ Gα,ε(x
k+1, sk) ≤ Gα,ε(x

k, sk)− (Lk − Lf
2

)‖xk+1 − xk‖2
2

= Fα,ε(x
k)− (Lk − Lf

2
)‖xk+1 − xk‖2

2.

Hence, (38) holds whenever Lk ≥ (Lf +c)/2, which implies that Lk is updated only for a finite
number of times. Let L̄k denote the final value of Lk at the kth outer iteration. It follows that
L̄k/τ < (Lf + c)/2, that is, L̄k < τ(Lf + c)/2. Let nk denote the number of inner iterations
for the kth outer iteration. Then, we have

Lminτ
nk−1 ≤ L0

kτ
nk−1 = L̄k < τ(Lf + c)/2.

Hence, nk ≤
⌈

log(Lf+c)−log(2Lmin)

log τ
+ 2
⌉

and the conclusion holds.

We next establish that the sequence {xk} generated above is bounded and moreover any
accumulation point of {xk} is a first-order stationary point of problem (29).

Theorem 3.3 Let {xk} be the sequence generated by the above variant of IRLα method. There
hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(29).

Proof. (i) It follows from (38) that {Fα,ε(xk)} is non-increasing and hence Fα,ε(x
k) ≤

Fα,ε(x
0) for all k. The rest of this proof is similar to that of Theorem 3.1 (i).

(ii) Since x∗ is an accumulation point of {xk}, there exists a subsequence K such that
{xk}K → x∗. By the continuity of Fα,ε, we have {Fα,ε(xk)}K → Fα,ε(x

∗), which together
with the monotonicity of {Fα,ε(xk)} implies that Fα,ε(x

k) → Fα,ε(x
∗). Using this result and

(38), we can conclude that ‖xk+1 − xk‖ → 0. Let L̄k denote the final value of Lk at the kth
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outer iteration. From the proof of Theorem 3.2, we know that L̄k ∈ [Lmin, τ(Lf + c)/2). The
first-order optimality condition of (37) with Lk = L̄k yields

0 ∈ ∂f(xk)

∂xi
+ L̄k(x

k+1
i − xki ) + λpski |xk+1

i |α−1 sgn(xk+1
i ), ∀i. (40)

Noticing {ski }K → (|x∗i |+εi)
p
α
−1 for all i and taking limits on both sides of (40) as k ∈ K →∞,

we see that x∗ satisfies (36) and hence x∗ is a first-order stationary point of (29).

Corollary 3.4 Let δ > 0 be arbitrarily given, and let the sequence {xk} be generated by the
above IRLα method or its variant. Then, there exists some k such that

‖Xk∇f(xk) + λp|Xk|α(|xk|α + ε)
p
α
−1‖ ≤ δ,

where Xk = Diag(xk) and |Xk|α = Diag(|xk|α).

Proof. As seen from Theorem 3.1 or 3.3, {xk} is bounded. Hence, {xk} has at least
one accumulation point x∗. Moreover, it follows from these theorems that x∗ satisfies (36).
Multiplying by x∗i both sides of (36), we have

x∗i
∂f(x∗)

∂xi
+ λp(|x∗i |α + εi)

p
α
−1|x∗i |α = 0 ∀i,

which, together with the continuity of ∇f(x) and |x|α, implies that the conclusion holds.

We are now ready to present the first type of IRLα methods and its variant for solving
problem (1) in which each subproblem is in the form of (29) and solved by the IRLα or its
variant described above. The IRL1 and IRL2 methods proposed in [25, 17] can be viewed
as the special cases of the following general IRLα method (but not its variant) with f(x) =
‖Ax− b‖2

2/2 and α = 1 or 2.

Algorithm 3: The first type of IRLα minimization methods and its variant for (1)

Let α ≥ 1 be given, and {δk} and {εk} be a sequence of positive scalars and vectors, respec-
tively. Choose an arbitrary x0,0 ∈ <n and set k = 0.

1) Apply the IRLα method or its variant to problem (29) with ε = εk starting at xk,0 until
finding xk satisfying

‖Xk∇f(xk) + λp|Xk|α(|xk|α + εk)
p
α
−1‖ ≤ δk, (41)

where Xk = Diag(xk) and |Xk|α = Diag(|xk|α).

2) Set k ← k + 1, xk,0 ← xk−1 and go to step 1).

end

We next establish that the sequence {xk} generated by this IRLα method or its variant is
bounded and moreover any accumulation point of {xk} is a first-order stationary point of (1).
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Theorem 3.5 Let {xk} be the sequence generated by the first type of IRLα method or its
variant. Suppose that {εk} is component-wise non-increasing, {εk} → 0 and {δk} → 0. There
hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(1), i.e., (8) holds at x∗.

Proof. (i) One can see from the proof of Theorem 3.1 (i) or 3.3 (i) that

Fα,εk+1(xk+1) ≤ Fα,εk+1(xk+1,0) = Fα,εk+1(xk), (42)

where the equality is due to xk+1,0 = xk. Since {εk} is non-increasing, we have Fα,εk+1(xk) ≤
Fα,εk(x

k) for all k. This together with (42) implies that Fα,εk+1(xk+1) ≤ Fα,εk(x
k) for all k,

which yields Fα,εk(x
k) ≤ Fα,ε0(x0) for every k. The rest of the proof is similar to that of

Theorem 3.1 (i).
(ii) Let B = {i : x∗i 6= 0}. It follows from (41) that∣∣∣∣xki ∂f(xk)

∂xi
+ λp|xki |α(|xki |α + εki )

p
α
−1

∣∣∣∣ ≤ δk ∀i ∈ B. (43)

Since x∗ is an accumulation point of {xk}, there exists a subsequence K such that {xk}K → x∗.
Upon taking limits on both sides of (43) as k ∈ K →∞, we see that x∗ satisfies (8) and it is
a first-order stationary point of (1).

3.2 The second type of IRLα methods and its variant for (1)

In this subsection we are interested in the IRL1 and IRL2 methods proposed in [20, 19] for
solving problem (5). Given {εk} ⊂ <n+ → 0 as k → ∞, these methods solve a sequence of
problems min

x∈<n
Q1,εk(x) or min

x∈<n
Q2,εk(x) extremely “roughly” by executing IRL1 or IRL2 method

only one iteration for each εk, where Qα,ε is defined in (28).
We next extend the above methods to solve (1) and also propose a variant of them in

which each subproblem has a closed-form solution. Moreover, we provide a unified convergence
analysis for them. We start by presenting the second type of IRLα methods for solving (1),
which becomes the IRL1 or IRL2 method studied in [20, 19] when α = 1 or 2, respectively.

Algorithm 4: The second type of IRLα minimization method for (1)

Let α ≥ 1 be given and {εk} ⊂ <n be a sequence of positive vectors. The rest of the algorithm
is the same as Algorithm 1 except by replacing Step 1) by:

1) Solve problem (30) with ski = (|xki |α + εki )
p
α
−1 for all i to obtain xk+1.

We next show that the sequence {xk} generated by this method is bounded and moreover
any accumulation point of {xk} is a first-order stationary point of (1).
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Theorem 3.6 Suppose that {εk} is a component-wise non-increasing sequence of positive vec-
tors in <n and εk → 0 as k → ∞. Let the sequence {xk} be generated by the second type of
IRLα method. There hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(1), i.e., (8) holds at x∗.

Proof. (i) Let Gα,ε(·, ·) be defined in (34), and sk = (sk1, . . . , s
k
n)T , where ski is defined

above. One can observe that Gα,εk(x
k+1, sk) ≤ Gα,εk(x

k, sk). Also, by a similar argument as
in the proof of Theorem 3.1, we have Gα,εk+1(xk+1, sk+1) = inf

s≥0
Gα,εk+1(xk+1, s). Hence, we

obtain that Gα,εk+1(xk+1, sk+1) ≤ Gα,εk+1(xk+1, sk). Since sk > 0 and {εk} is non-increasing,
we observe that Gα,εk+1(xk+1, sk) ≤ Gα,εk(x

k+1, sk). By these three inequalities, we have

Gα,εk+1(xk+1, sk+1) ≤ Gα,εk+1(xk+1, sk) ≤ Gα,εk(x
k+1, sk) ≤ Gα,εk(x

k, sk), ∀k ≥ 0. (44)

Hence, {Gα,εk(x
k, sk)} is non-increasing. By the definitions of sk and Fα,ε, one can verify that

Gα,εk(x
k, sk) = f(xk) + λ

n∑
i=1

(|xki |α + εki )
p
α = Fα,εk(x

k). (45)

It follows that {Fα,εk(xk)} is non-increasing and hence Fα,εk(x
k) ≤ Fα,ε0(x0) for all k. The

rest of the proof is similar to that of Theorem 3.5 (i).
(ii) Since x∗ is an accumulation point of {xk}, there exists a subsequence K such that

{xk}K → x∗. It then follows from εk → 0 and (45) that {Gα,εk(x
k, sk)}K → f(x∗) + λ‖x∗‖pp.

This together with the monotonicity of {Gα,εk(x
k, sk)} implies that Gα,εk(x

k, sk) → f(x∗) +
λ‖x∗‖pp. Using this relation and (44), we further have

Gα,εk(x
k+1, sk)→ f(x∗) + λ‖x∗‖pp. (46)

Let B = {i : x∗i 6= 0} and B̄ be its complement in {1, . . . , n}. We claim that

x∗ ∈ Arg min
xB̄=0

{
f(x) +

λp

α

∑
i∈B

|x∗i |p−α|xi|α
}
. (47)

Indeed, using the definition of sk, we see that {ski }K → |x∗i |p−α, ∀i ∈ B. Due to εk > 0,
xk ≥ 0, sk > 0 and q < 0, we further observe that

0 <
p

α

∑
i∈B̄

[
εki s

k
i −

(ski )
q

q

]
≤ p

α

∑
i∈B̄

[
(|xki |α + εki )s

k
i −

(ski )
q

q

]
=
∑
i∈B̄

(|xki |α + εki )
p
α ,

which, together with εk → 0 and {xki }K → 0 for i ∈ B̄, implies that

lim
k∈K→∞

∑
i∈B̄

[
εki s

k
i −

(ski )
q

q

]
= 0. (48)
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In addition, by the definition of xk+1, we know that Gα,εk(x, s
k) ≥ Gα,εk(x

k+1, sk). Then for
every x ∈ <n such that xB̄ = 0, we have

f(x)+
λp

α

∑
i∈B

[
(|xi|α + εki )s

k
i −

(ski )
q

q

]
+
λp

α

∑
i∈B̄

[
εki s

k
i −

(ski )
q

q

]
= Gα,εk(x, s

k) ≥ Gα,εk(x
k+1, sk).

Upon taking limits on both sides of this inequality as k ∈ K →∞, and using (46), (48) and
the fact that {ski }K → |x∗i |p−α, ∀i ∈ B, we obtain that

f(x) +
λp

α

∑
i∈B

[
|xi|α|x∗i |p−α −

|x∗i |q(p−α)

q

]
≥ f(x∗) + λ‖x∗‖pp

for all x ∈ <n such that xB̄ = 0. This inequality and (31) immediately yield (47). It then
follows from (31) and the first-order optimality condition of (47) that x∗ satisfies (8) and
hence it is a stationary point of (1).

Notice that the subproblem of the above method generally cannot be solved exactly. For
the similar reasons as mentioned earlier, this may bring a great deal of challenge to the
implementation of this method. We next propose a variant of this method in which each
subproblem is much simpler and has a closed-form solution for some commonly used α’s (e.g.,
α = 1 or 2).

Algorithm 5: A variant of the second type of IRLα minimization method for (1)

Let α ≥ 1 be given and {εk} ⊂ <n be a sequence of positive vectors. The rest of the algorithm
is the same as Algorithm 2 except by replacing Steps 1a) and 1b) by:

1a) Solve problem (37) with ski = (|xki |α + εki )
p
α
−1 for all i to obtain xk+1.

1b) If

Fα,εk(x
k)− Fα,εk+1(xk+1) ≥ c

2
‖xk+1 − xk‖2

2 (49)

is satisfied, then go to step 2).

We first show that for each outer iteration of the above method, the associated inner
iterations terminate in a finite number of iterations.

Theorem 3.7 For each k ≥ 0, the inner termination criterion (49) is satisfied after at most⌈
log(Lf+c)−log(2Lmin)

log τ
+ 2
⌉

inner iterations.

Proof. Let Gα,ε(·, ·) be defined in (34) and sk = (sk1, . . . , s
k
n)T , where ski is defined above

for all i. By a similar argument as in the proof of Theorem 3.2, one can show that (39)
holds for all k ≥ 0. In addition, similar as in the proof of Theorem 3.6, we can show that
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Gα,εk+1(xk+1, sk+1) ≤ Gα,εk(x
k+1, sk). Also, one can verify that Gα,εk(x

k, sk) = Fα,εk(x
k) for all

k. Using these relations and (39), we obtain that

Fα,εk+1(xk+1) = Gα,εk+1(xk+1, sk+1) ≤ Gα,εk(x
k+1, sk) ≤ Gα,εk(x

k, sk)− (Lk − Lf
2

)‖xk+1 − xk‖2
2

= Fα,εk(x
k)− (Lk − Lf

2
)‖xk+1 − xk‖2

2.

Hence, (49) holds whenever Lk ≥ (Lf + c)/2. The rest of the proof is similar to that of
Theorem 3.2.

We next show that the sequence {xk} generated by the variant of the second type of IRLα
method is bounded and moreover any accumulation point of {xk} is a first-order stationary
point of (1).

Theorem 3.8 Suppose that {εk} is a sequence of non-increasing positive vectors in <n and
εk → 0 as k → ∞. Let the sequence {xk} be generated by the variant of the second type of
IRLα method. There hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(1), i.e., (8) holds at x∗.

Proof. (i) It follows from (49) that {Fα,εk(xk)} is non-increasing and hence Fα,εk(x
k) ≤

Fα,ε0(x0) for all k. The rest of this proof is similar to that of Theorem 3.5 (i).
(ii) Let L̄k denote the final value of Lk at the kth outer iteration. By similar arguments as

in the proof of Theorem 3.3, we can show that L̄k ∈ [Lmin, τ(Lf + c)/2) and ‖xk+1− xk‖ → 0.
Let B = {i : x∗i 6= 0}. Since x∗ is an accumulation point of {xk}, there exists a subsequence
K such that {xk}K → x∗. By the definition of ski , we see that limk∈K→∞ s

k
i = |x∗i |p−α for all

i ∈ B. The first-order optimality condition of (37) with Lk = L̄k yields

∂f(xk+1)

∂xi
+ L̄k(x

k+1
i − xki ) + λpski |xk+1

i |α−1 sgn(xk+1
i ) = 0, ∀i ∈ B.

Upon taking limits on both sides of this equality as k ∈ K → ∞, and using the relation
lim

k∈K→∞
ski = |x∗i |p−α, one can see that x∗ satisfies (8).

4 New iterative reweighted l1 minimization for (1)

The IRL1 and IRL2 methods studied in Section 3 require that the parameter ε be dynamically
adjusted and approach to zero. One natural question is whether an iterative reweighted
minimization method can be proposed for (1) that shares a similar convergence with those
methods but does not need to adjust ε. We will address this question by proposing a new
IRL1 method and its variant.

20



As shown in Subsection 2.2, problem (21) has a locally Lipschitz continuous objective
function and it is an ε-approximation to (1). Moreover, when ε is below a computable threshold
value, a certain stationary point of (21) is also that of (1). Therefore, it is natural to find
an approximate solution of problem (1) by solving (21). In this section we propose new IRL1

methods for solving (1), which can be viewed as the IRL1 methods directly applied to problem
(21). The novelty of these methods is in that the parameter ε is chosen only once and then
fixed throughout all iterations. Remarkably, we are able to establish that any accumulation
point of the sequence generated by these methods is a first-order stationary point of (1).

Algorithm 6: A new IRL1 minimization method for (1)

Let q be defined in (14). Choose an arbitrary x0 ∈ <n and ε such that (22) holds. Set k = 0.

1) Solve the weighted l1 minimization problem

xk+1 ∈ Arg min
x∈<n

{
f(x) + λp

n∑
i=1

ski |xi|

}
, (50)

where ski = min
{

( ε
λn

)
1
q , |xki |

1
q−1

}
for all i.

2) Set k ← k + 1 and go to step 1).

end

We next show that the sequence {xk} generated by this method is bounded and moreover
any accumulation point of {xk} is a first-order stationary point of (1).

Theorem 4.1 Let the sequence {xk} be generated by the new IRL1 method. Assume that ε
satisfies (22). There hold:

(i) The sequence {xk} is bounded.

(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(1), i.e., (8) holds at x∗. Moreover, the nonzero entries of x∗ satisfy the first-order bound
(10).

Proof. (i) Let uε = ( ε
λn

)1/q, sk = (sk1, . . . , s
k
n)T , and

G(x, s) = f(x) + λp
n∑
i=1

[
|xi|si −

sqi
q

]
.

By the definition of {sk}, one can observe that for k ≥ 0,

sk = arg min
0≤s≤uε

G(xk, s), xk+1 ∈ Arg min
x∈<n

G(x, sk). (51)
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In addition, we observe that Fε(x) = min
0≤s≤uε

G(x, s) and Fε(x
k) = G(xk, sk) for all k, where Fε

is defined in (19). It then follows that

Fε(x
k+1) = G(xk+1, sk+1) ≤ G(xk+1, sk) ≤ G(xk, sk) = Fε(x

k). (52)

Hence, {Fε(xk)} is non-increasing and Fε(x
k) ≤ Fε(x

0) for all k. This together with Propo-
sition 2.6 (i) implies that F (xk) ≤ Fε(x

0). Using this relation, (1) and (7), we see that
‖xk‖pp ≤ (Fε(x

0)− f)/λ and hence {xk} is bounded.

(ii) Since x∗ is an accumulation point of {xk}, there exists a subsequence K such that
{xk}K → x∗. By the continuity of Fε, we have {Fε(xk)}K → Fε(x

∗), which together with the

monotonicity of {Fε(xk)} implies that Fε(x
k)→ Fε(x

∗). Let s∗i = min{uε, |x∗i |
1
q−1} for all i. We

then observe that {sk}K → s∗ and Fε(x
∗) = G(x∗, s∗). Using (52) and Fε(x

k)→ Fε(x
∗), we see

that G(xk+1, sk)→ Fε(x
∗) = G(x∗, s∗). Also, it follows from (51) that G(x, sk) ≥ G(xk+1, sk)

for all x ∈ <n. Taking limits on both sides of this inequality as k ∈ K → ∞, we have
G(x, s∗) ≥ G(x∗, s∗) for all x ∈ <n. Hence, we have x∗ ∈ Arg minx∈<n G(x, s∗), whose first-
order optimality condition yields

0 ∈ ∂f(x∗)

∂xi
+ λps∗i sgn(x∗i ), ∀i. (53)

Recall that s∗i = min{uε, |x∗i |
1
q−1}. Substituting it into (53) and using (16), we obtain that

0 ∈ ∂f(x∗)

∂xi
+ λ∂huε(x

∗
i ), ∀i.

It then follows from (19) that x∗ is a first-order stationary point of Fε. In addition, by the
monotonicity of {Fε(xk)} and Fε(x

k) → Fε(x
∗), we know that Fε(x

∗) ≤ Fε(x
0). Using these

results and Theorem 2.7, we conclude that x∗ is a first-order stationary point of (1). The rest
of conclusion immediately follows from Theorem 2.2.

The subproblem (50) of the above IRL1 method generally does not have a closed-form
solution. Therefore, it requires some numerical method to find an approximate solution in-
stead. Due to the similar reasons as mentioned in Section 3, this method may be practically
inefficient or numerically unstable. We next propose a variant of this method in which each
subproblem has a closed-form solution.

Algorithm 7: A variant of new IRL1 minimization method for (1)

Let 0 < Lmin < Lmax, τ > 1 and c > 0 be given. Let q be defined in (14). Choose an arbitrary
x0 and ε such that (22) holds. Set k = 0.

1) Choose L0
k ∈ [Lmin, Lmax] arbitrarily. Set Lk = L0

k.
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1a) Solve the weighted l1 minimization problem

xk+1 ∈ Arg min
x∈<n

{
f(xk) +∇f(xk)T (x− xk) +

Lk
2
‖x− xk‖2

2 + λp

n∑
i=1

ski |xi|

}
,

(54)

where ski = min
{

( ε
λn

)
1
q , |xki |

1
q−1

}
for all i.

1b) If

Fε(x
k)− Fε(xk+1) ≥ c

2
‖xk+1 − xk‖2

2 (55)

is satisfied, where Fε is defined in (19), then go to step 2).

1c) Set Lk ← τLk and go to step 1a).

2) Set k ← k + 1 and go to step 1).

end

We first show that for each outer iteration, the number of its inner iterations is finite.

Theorem 4.2 For each k ≥ 0, the inner termination criterion (55) is satisfied after at most⌈
log(Lf+c)−log(2Lmin)

log τ
+ 2
⌉

inner iterations.

Proof. By a similar argument as for proving (39) , one can show that for all k ≥ 0,

G(xk, sk) ≥ G(xk+1, sk) + (Lk −
Lf
2

)‖xk+1 − xk‖2
2. (56)

Recall that Fε(x) = min
0≤s≤uε

G(x, s) and Fε(x
k) = G(xk, sk), where uε = ( ε

λn
)1/q. Using these

two relations and (56), we obtain that

Fε(x
k+1) = G(xk+1, sk+1) ≤ G(xk+1, sk) ≤ G(xk, sk)− (Lk − Lf

2
)‖xk+1 − xk‖2

2

= Fε(x
k)− (Lk − Lf

2
)‖xk+1 − xk‖2

2.

Hence, (55) holds whenever Lk ≥ (Lf + c)/2. The rest of the proof is similar to that of
Theorem 3.2.

We next establish that the sequence {xk} generated by the above variant of new IRL1

method is bounded and moreover any accumulation point of {xk} is a first-order stationary
point of (1).

Theorem 4.3 Let the sequence {xk} be generated by the above variant of new IRL1 method.
Assume that ε satisfies (22). There hold:

(i) The sequence {xk} is bounded.
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(ii) Let x∗ be any accumulation point of {xk}. Then x∗ is a first-order stationary point of
(1), i.e., (8) holds at x∗. Moreover, the nonzero entries of x∗ satisfy the first-order bound
(10).

Proof. (i) It follows from (55) that {Fε(xk)} is non-increasing. The rest of the proof is
similar to that of Theorem 4.1 (i).

(ii) Let L̄k denote the final value of Lk at the kth outer iteration. By similar arguments as
in the proof of Theorem 3.3, we can show that L̄k ∈ [Lmin, τ(Lf + c)/2) and ‖xk+1− xk‖ → 0.
Let B = {i : x∗i 6= 0}. Since x∗ is an accumulation point of {xk}, there exists a subsequence
K such that {xk}K → x∗. The first-order optimality condition of (54) with Lk = L̄k yields

0 ∈ ∂f(xk)

∂xi
+ L̄k(x

k+1
i − xki ) + λpski sgn(xk+1

i ) = 0, ∀i.

Upon taking limits on both sides of this equality as k ∈ K →∞, we see that (53) holds with

s∗i = min{( ε
λn

)1/q, |x∗i |
1
q−1} for all i. The rest of the proof is similar to that of Theorem 4.1.

5 Computational results

In this section we conduct numerical experiment to compare the performance of the IRL1

methods (Algorithms 3, 4, 6) and their variants (Algorithms 3, 5, 7) studied in Subsections
3.1 and 3.2 and Section 4. In particular, we apply these methods to problem (1) with f being
chosen as a least squares loss and a logistic loss, respectively, on randomly generated data.
For convenience of presentation, we name these IRL1 methods as IRL1-1, IRL1-2 and IRL1-3,
and their variants as IRL1-1-v, IRL1-2-v and IRL1-3-v, respectively. All codes are written in
MATLAB and all computations are performed on a MacBook Pro running with Mac OS X
Lion 10.7.4 and 4GB memory.

The same initial point x0 is used for all methods. In particular, we choose x0 to be a
solution of (4), which can be computed by a variety of methods (e.g., [31, 2, 22, 32, 34]). And
all methods terminate according to the following criterion

‖Diag(x)∇f(x) + λp|x|p‖∞ ≤ 10−6.

For the method IRL1-1 (Algorithms 3), we set δk = 0.1k and εk = 0.1ke, where e is the
all-ones vector. In this method, for each pair of (δk, ε

k), Algorithm 1 is called to find a xk

satisfying (41), whose subproblem (30) with α = 1 is solved by the spectral projected gradient
(SPG) method [32] with the termination criterion

‖Diag(x)∇f(x) + λpDiag(sk)|x|‖∞ ≤ max{0.995i, 0.1δk}, (57)

where sk is given in Step 1) of Algorithm 1 and i denotes the number of subproblem (30)
solved so far in the current call of Algorithm 1. We set εk = 0.5ke for the method IRL1-2
(Algorithm 4). In addition, each subproblem of IRL1-2 and IRL1-3 (Algorithm 6) is solved by
the SPG method [32] with a similar termination criterion as (57).
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For the method IRL1-2-v (Algorithm 5), we choose εk = 0.5ke. Also, for this method and
IRL1-3-v (Algorithm 7), we set Lmin = 10−8, Lmax = 108, c = 10−4, τ = 1.1, and L0

0 = 1. And
we update L0

k by the same strategy as used in [1, 5, 32], that is,

L0
k = max

{
Lmin,min

{
Lmax,

∆xT∆g

‖∆x‖2

}}
,

where ∆x = xk − xk−1 and ∆g = ∇f(xk)−∇f(xk−1). In addition, for the method IRL1-1-v
(Algorithm 3), we choose δk = 0.1k and εk = 0.1ke. In this method, for each pair of (δk, ε

k),
Algorithm 2 is employed to find a xk satisfying (41) with α = 1. And the parameters for
Algorithm 2 are set to be the same as those for IRL1-2-v and IRL1-3-v mentioned above.

In the first experiment, we compare the performance of the above methods for solving
problem (1) with λ = 3× 10−3 and

f(x) =
1

2
‖Ax− b‖2

2 (least squares loss).

It is easy to see that f ≥ 0 and the Lipschiz constant of ∇f is Lf = ‖A‖2. As remarked in
the end of Section 2, for IRL1-3 and IRL1-3-v, ε can be chosen as the one satisfying (22) but
within 10−6 to the supremum of all ε’s satisfying (22) with f being replaced by 0.

We randomly generate matrix A and vector b with entries randomly chosen from standard
uniform distribution. The results of these methods with p = 0.1 and 0.5 on these data are
presented in Tables 1-4, respectively. In detail, the parameters m and n of each instance
are listed in the first two columns, respectively. The objective function value of problem (6)
for these methods is given in columns three to five, and CPU times (in seconds) are given
in the last three columns, respectively. We shall mention that the CPU time reported here
does not include the time for obtaining initial point x0. We can observe that: 1) all methods
produce similar objective function values; 2) the new IRL1 method (i.e, IRL1-3) is generally
faster than the other two IRL1 methods, namely, IRL1-1 and IRL1-2; 3) the variant of the
new IRL1 method (i.e, IRL1-3-v) is generally faster than IRL1-1-v and IRL1-2-v that are the
variants of the other two IRL1 methods; 4) the method IRL1-i-v, namely, the variant of IRL1-i,
substantially outperforms the IRL1-i method in terms of CPU time for i = 1, 2, 3; and 5) the
variant of the new IRL1 method (namely, IRL1-3-v) is generally faster than all other methods.

In the second experiment, we compare the performance of the above methods for solving
problem (1) with λ = 3× 10−3 and

f(x) =
m∑
i=1

log(1 + exp(−bi(ai)Tx)) (logistic loss).

It can be verified that f ≥ 0 and the Lipschiz constant of ∇f is Lf = ‖Ã‖2, where

Ã =
[
b1a

1, · · · , bmam
]
.

Similar as above, for IRL1-3 and IRL1-3-v, ε is chosen as the one satisfying (22) but within
10−6 to the supremum of all ε’s satisfying (22) with f being replaced by 0.
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Table 1: Comparison of three IRL1 methods for least squares loss with p = 0.1
Problem Objective Value CPU Time
m n IRL1-1 IRL1-2 IRL1-3 IRL1-1 IRL1-2 IRL1-3
100 500 0.174 0.177 0.175 7.7 4.7 3.7
200 1000 0.338 0.338 0.338 10.3 11.6 8.9
300 1500 0.465 0.465 0.465 30.6 31.1 30.3
400 2000 0.616 0.616 0.616 94.0 83.5 78.8
500 2500 0.776 0.776 0.776 215.4 218.9 198.7
600 3000 0.923 0.923 0.923 541.1 543.4 499.8
700 3500 1.076 1.069 1.051 353.3 510.4 816.5
800 4000 1.213 1.213 1.213 628.3 689.9 487.8
900 4500 1.352 1.352 1.352 1118.7 1151.9 1229.3

1000 5000 1.512 1.512 1.512 1807.4 1654.3 1610.5

Table 2: Comparison of three variants of IRL1 methods for least squares loss with p = 0.1
Problem Objective Value CPU Time
m n IRL1-1-v IRL1-2-v IRL1-3-v IRL1-1-v IRL1-2-v IRL1-3-v
100 500 0.174 0.175 0.175 4.5 3.0 0.6
200 1000 0.328 0.337 0.337 12.6 6.9 0.8
300 1500 0.468 0.464 0.464 10.3 29.0 6.2
400 2000 0.630 0.620 0.620 31.3 23.0 5.9
500 2500 0.782 0.791 0.791 47.2 60.0 13.9
600 3000 0.918 0.908 0.910 46.8 154.5 21.3
700 3500 1.048 1.066 1.047 90.5 110.7 32.0
800 4000 1.193 1.215 1.215 88.6 146.5 53.2
900 4500 1.353 1.388 1.388 219.3 199.6 45.5

1000 5000 1.511 1.534 1.513 221.6 242.3 64.8

The samples {a1, . . . , am} and the corresponding outcomes b1, . . . , bm are generated in the
same manner as described in [24]. In detail, for each instance we choose equal number of
positive and negative samples, that is, m+ = m− = m/2, where m+ (resp., m−) is the number
of samples with outcome +1 (resp., −1). The features of positive (resp., negative) samples
are independent and identically distributed, drawn from a normal distribution N(µ, 1), where
µ is in turn drawn from a uniform distribution on [0, 1] (resp., [−1, 0]). The results of the
above methods for the these randomly generated instances with p = 0.1 and 0.5 are presented
in Tables 5-8, respectively. The CPU time reported here again does not include the time for
obtaining initial point x0. The similar phenomenon mentioned above can be observed in this
experiment.
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Table 3: Comparison of three IRL1 methods for least squares loss with p = 0.5
Problem Objective Value CPU Time
m n IRL1-1 IRL1-2 IRL1-3 IRL1-1 IRL1-2 IRL1-3
100 500 0.065 0.065 0.065 6.0 5.3 5.3
200 1000 0.106 0.106 0.106 7.8 6.7 6.9
300 1500 0.139 0.139 0.139 29.5 32.2 30.4
400 2000 0.177 0.177 0.177 54.5 60.2 48.5
500 2500 0.217 0.217 0.217 136.9 138.1 118.5
600 3000 0.241 0.241 0.241 219.3 404.5 216.4
700 3500 0.265 0.265 0.265 306.2 465.8 254.3
800 4000 0.299 0.299 0.299 473.8 436.6 557.4
900 4500 0.330 0.330 0.329 612.1 715.7 821.3

1000 5000 0.358 0.358 0.358 974.0 1215.0 877.1

Table 4: Comparison of three variants of IRL1 methods for least squares loss with p = 0.5
Problem Objective Value CPU Time
m n IRL1-1-v IRL1-2-v IRL1-3-v IRL1-1-v IRL1-2-v IRL1-3-v
100 500 0.065 0.065 0.065 4.4 4.1 4.3
200 1000 0.106 0.106 0.106 5.3 3.9 3.2
300 1500 0.139 0.139 0.139 20.4 13.9 13.8
400 2000 0.176 0.176 0.176 38.2 24.4 27.3
500 2500 0.216 0.217 0.217 74.7 61.0 118.5
600 3000 0.241 0.241 0.241 148.8 94.6 89.8
700 3500 0.265 0.265 0.265 146.2 148.7 144.5
800 4000 0.298 0.300 0.299 409.7 299.4 245.1
900 4500 0.329 0.329 0.329 591.2 423.8. 489.6

1000 5000 0.358 0.358 0.358 748.7 273.2 267.1

6 Concluding remarks

In this paper we studied iterative reweighted minimization methods for lp regularized un-
constrained minimization problems (1). In particular, we derived lower bounds for nonzero
entries of first- and second-order stationary points, and hence also of local minimizers of (1).
We extended some existing IRL1 and IRL2 methods to solve (1) and proposed new variants
for them. Also, we provided a unified convergence analysis for these methods. In addition,
we proposed a novel Lipschitz continuous ε-approximation to ‖x‖pp. Using this result, we de-
veloped new IRL1 methods for (1) and showed that any accumulation point of the sequence
generated by these methods is a first-order stationary point of problem (1), provided that
the approximation parameter ε is below a computable threshold value. This is a remarkable
result since all existing iterative reweighted minimization methods require that ε be dynam-
ically updated and approach to zero. Our computational results demonstrate that the new
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Table 5: Comparison of three IRL1 methods for logistic loss with p = 0.1
Problem Objective Value CPU Time

m n IRL1-1 IRL1-2 IRL1-3 IRL1-1 IRL1-2 IRL1-3
500 1000 0.082 0.082 0.082 2.8 1.1 0.7

1000 2000 0.102 0.105 0.097 9.3 3.8 7.1
1500 3000 0.152 0.152 0.149 11.5 5.5 6.1
2000 4000 0.166 0.158 0.166 19.8 31.1 13.3
2500 5000 0.204 0.197 0.204 15.4 24.4 10.5
3000 6000 0.234 0.227 0.214 26.6 21.4 58.7
3500 7000 0.246 0.251 0.255 50.1 26.8 36.2
4000 8000 0.262 0.271 0.248 90.2 25.7 36.2
4500 9000 0.265 0.266 0.265 52.5 69.8 40.6
5000 10000 0.278 0.293 0.304 253.3 170.1 121.1

Table 6: Comparison of three variants of IRL1 methods for logistic loss with p = 0.1
Problem Objective Value CPU Time

m n IRL1-1-v IRL1-2-v IRL1-3-v IRL1-1-v IRL1-2-v IRL1-3-v
500 1000 0.069 0.085 0.090 0.7 0.2 0.1

1000 2000 0.100 0.105 0.097 3.5 1.6 1.3
1500 3000 0.149 0.143 0.146 2.9 2.3 1.4
2000 4000 0.166 0.166 0.166 5.4 7.6 2.6
2500 5000 0.189 0.194 0.184 16.6 11.4 6.0
3000 6000 0.224 0.237 0.231 9.0 20.8 3.5
3500 7000 0.241 0.246 0.245 22.7 16.1 4.4
4000 8000 0.269 0.271 0.266 34.8 24.1 14.7
4500 9000 0.265 0.260 0.238 45.9 37.6 25.9
5000 10000 0.288 0.303 0.293 86.7 23.5 17.3

IRL1 method and the new variants generally outperform the existing IRL1 methods [20, 17].
Recently, Zhao and Li [35] proposed an IRL1 minimization method to identify sparse so-

lutions to undetermined linear systems based on a class of regularizers. When applied to the
lp regularizer, their method becomes one of the first type of IRL1 methods discussed in Sub-
section 3.1. Though we only studied the lp regularized minimization problems, the techniques
developed in our paper can be useful for analyzing the iterative reweighted minimization meth-
ods for the optimization problems with other regularizers. In addition, most of the results in
this paper can be easily generalized to lp regularized matrix optimization problems.
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Table 7: Comparison of three IRL1 methods for logistic loss with p = 0.5
Problem Objective Value CPU Time

m n IRL1-1 IRL1-2 IRL1-3 IRL1-1 IRL1-2 IRL1-3
500 1000 0.127 0.127 0.132 2.5 0.7 0.5

1000 2000 0.158 0.158 0.158 5.3 1.9 1.4
1500 3000 0.202 0.203 0.202 8.9 9.2 3.9
2000 4000 0.236 0.230 0.230 15.7 19.3 8.8
2500 5000 0.256 0.256 0.255 12.4 7.8 7.9
3000 6000 0.285 0.280 0.283 24.1 48.1 18.4
3500 7000 0.316 0.316 0.316 29.5 22.9 13.7
4000 8000 0.319 0.319 0.319 50.2 41.4 39.8
4500 9000 0.331 0.333 0.333 69.5 57.5 48.4
5000 10000 0.358 0.358 0.358 94.4 86.2 69.3

Table 8: Comparison of three variants of IRL1 methods for logistic loss with p = 0.5
Problem Objective Value CPU Time

m n IRL1-1 IRL1-2 IRL1-3 IRL1-1 IRL1-2 IRL1-3
500 1000 0.127 0.127 0.127 0.2 0.1 0.1

1000 2000 0.157 0.155 0.157 1.2 1.1 0.8
1500 3000 0.206 0.203 0.206 1.8 3.1 1.4
2000 4000 0.230 0.234 0.230 4.0 3.2 4.1
2500 5000 0.254 0.258 0.253 9.1 6.0 5.5
3000 6000 0.282 0.285 0.282 12.5 15.2 9.0
3500 7000 0.312 0.311 0.313 11.5 25.2 12.4
4000 8000 0.326 0.320 0.325 32.2 32.8 12.0
4500 9000 0.333 0.333 0.333 23.7 22.9 20.7
5000 10000 0.359 0.357 0.358 16.9 21.7 15.8
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