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Abstract

In this paper, we study optimal experimental design problems with a broad class of smooth
convex optimality criteria, including the classical A-, D- and pth mean criterion. In particu-
lar, we propose an interior point (IP) method for them and establish its global convergence.
Further, by exploiting the structure of the Hessian matrix of the optimality criteria, we derive
an explicit formula for computing its rank. Using this result, we then demonstrate that the
Newton direction arising in the IP method can be computed efficiently via Sherman-Morrison-
Woodbury formula when the size of the moment matrix is small relative to the size of design
space. Finally, we compare our IP method with the widely used multiplicative algorithm in-
troduced by Silvey et al. [33] and the standard IP solver SDPT3 [36, 40]. The computational
results show that our IP method generally outperforms these two methods in both speed and
solution quality.

Key words: Optimal experimental design, A-criterion, c-criterion, D-criterion, pth mean
criterion, interior point method

1 Introduction

In this paper, we consider the optimal experimental design problems on a given finite design space
χ = {x1, . . . , xn} ⊆ <m. In this setting, we consider a coefficient matrix K ∈ <m×k of full column
rank and the moment matrix defined as

M(w) =

n∑
i=1

wiAi

for w ∈ Ω := {w : wi ≥ 0,
∑n
i=1 wi = 1}, where Ai is a real symmetric positive semidefinite matrix

related to xi, i = 1, ..., n (see, for example, [29, Section 1.24]). As in [45], throughout this paper
we assume that Ai’s are m×m real symmetric positive semidefinite matrices and that there exists
a w ∈ Ω such that M(w) is positive definite. This in particular implies that M(w) is positive
definite for all positive w ∈ Ω. The optimal experimental design problem can then be formulated
as the following minimization problem (see [29, Section 7.10]):

f∗ := inf
w

Φ(M(w)) := Ψ(CK(M(w)))

s.t. w ∈ Ω, Range(K) ⊆ Range(M(w)),
(1)

∗This work was supported in part by an NSERC Discovery Grant.
†Department of Mathematics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. (email:

zhaosong@sfu.ca).
‡Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.

(email: ptingkei@math.uwaterloo.ca).

1



where Range(X) denotes the range space of a matrix X; Ψ is a function defined on the set of
positive definite matrices; and CK(M(w)) is the information matrix defined by CK(M(w)) :=
(KT (M(w))†K)−1. Here A† denotes the Moore-Penrose pseudoinverse of a matrix A. The well-
definedness of CK(M(w)) is guaranteed by the range inclusion condition in the constraint of (1)
and the fact that K has full column rank [29, Chapter 3]. The range inclusion condition has
been used in the literature and it is a required condition for estimability (see, for example, [29,
Sections 1.18 and 3.4] for details). The function Φ in the objective is commonly referred to as an
“optimality criterion”. Some classical optimality criteria include (see [29, Chapter 6]):

(i) A-criterion Φ(X) := tr(KTX†K);

(ii) c-criterion Φ(X) := cTX†c;

(iii) D-criterion Φ(X) := log det(KTX†K);

(iv) pth mean criterion Φ(X) := tr((KTX†K)−p).

for some p < 0, c ∈ <m and K ∈ <m×k of full column rank.
It is easy to observe that c-criterion is just a special case of A-criterion with K = c and A-

criterion is a special case of pth mean criterion with p = −1. We shall also mention that pth
mean criterion can be defined more generally to include D-criterion as a special case (see [29,
Chapter 6] for details). Furthermore, it can be shown that the constraint set of (1) is convex
[29, Section 3.3], and the criteria (i)-(iv) are convex functions in the constraint set (by using [29,
Theorem 5.14] and [29, Theorem 6.13], or [28, Proposition IV.14] and [28, Proposition IV.15]).
Hence, problem (1) with these criteria is a convex optimization problem. Indeed, it is known that
(1) with the above criteria can be reformulated as (possibly nonlinear) semidefinite programming
(SDP) problems (see, for example, [14, 8, 10, 27]). Furthermore, problem (1) with c-criterion above
can be reformulated and solved as a linear programming problem (see, for example, [19]).

The optimal design problems (1) with the aforementioned criteria usually do not have closed
form solutions. Numerous procedures have thus been proposed to solve (1) (see, for example,
[13, 44, 5, 6, 43, 7, 20, 9, 28, 3, 38, 1, 12, 30, 39, 32]). Among them, the multiplicative algorithm
introduced in [33] has been widely explored. For example, Titterington [34], Pázman [28], Dette et
al. [12] and Harman and Trnovská [21] studied the multiplicative algorithm for D-criterion. In ad-
dition, Fellman [15] and Torsney [37] considered the multiplicative algorithm for A-criterion under
the assumption that all Ai’s are rank-one. Recently, Yu [45] studied the multiplicative algorithm
for a class of convex optimality criteria and proved its global convergence under some assumptions.
Nevertheless, for several commonly used optimality criteria, some of those assumptions may not
hold and hence there is no theoretical guarantee for its convergence. Indeed, as observed in [45,
Section 5], one of the assumptions does not hold for pth mean criterion with p = −2. Moreover,
for such a criterion, our numerical experiments in Section 5 demonstrate that the multiplicative
algorithm appears not to converge when p < −1. More details about the multiplicative algorithm
for solving (1) are given in Section 2.

In this paper, we consider an alternative approach to solve problem (1). In particular, we
propose an interior point (IP) method for (1) and establish its global convergence. The method
is a Newton-type method that can be efficiently applied to solve problem (1) with a broad class
of convex optimality criteria and moderate-sized matrices Ai’s. By exploiting the structure of
the Hessian matrix of these optimality criteria, we derive an explicit formula for its rank. This
formula applies to the classical A-, D- and pth mean criterion. Using this result, we further
show that the Newton direction arising in the IP method for (1) with the aforementioned classical
optimality criteria can be computed efficiently via Sherman-Morrison-Woodbury formula when
n� m2, i.e., when the size of Ai’s is small relative to the size of design space. We finally compare
the IP method with the multiplicative algorithm and also with the standard IP solver SDPT3
[36, 40] which solves linear/log-determinant SDP reformulations of the problems via a primal-dual
IP method. The computational results show that our IP method usually outperforms these two
methods in both speed and solution quality.
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The rest of this paper is organized as follows. In Subsection 1.1, we introduce the notations that
are used throughout the paper. In Section 2, we review the multiplicative algorithm and address
its convergence. In Section 3, we propose an IP method for solving problem (1) with a large class of
convex optimality criteria and address its convergence. In Section 4, we discuss how the IP method
can be applied to solve problem (1) with criteria (i)–(iv) and demonstrate how the Newton direction
can be computed efficiently when n� m2. In Section 5, we conduct numerical experiments to test
the performance of the method and compare it with the multiplicative algorithm and the standard
IP solver SDPT3. Finally, we present some concluding remarks in Section 6.

1.1 Notations

In this paper, the symbol <++ denotes the set of all positive real numbers and <n denotes the
n-dimensional Euclidean space. For a vector x ∈ <n, ‖x‖ denotes the Euclidean norm of x and
D(x) denotes the diagonal matrix whose ith diagonal entry is xi for all i. For α ∈ < and a vector
x ∈ <n with positive entries, xα denotes the vector whose ith entry is xαi for all i. For x, y ∈ <n,
x ◦ y denotes the Hadamard (entry-wise) product of x and y. The letter e denotes the vector of all
ones, whose dimension should be clear from the context. The set of all m × n matrices with real
entries is denoted by <m×n. Given A, B ∈ <m×n, A⊗B denotes the Kronecker product of A and
B, while A◦B denotes the Hadamard (entry-wise) product of A and B. The trace of a real square
matrix A is denoted by tr(A). We denote by I the identity matrix, whose dimension should be
clear from the context.

The space of n×n symmetric matrices is denoted by Sn. If A ∈ Sn is positive semidefinite (resp.,
definite), we write A � 0 (resp., A � 0). The cone of positive semidefinite (resp., definite) matrices
is denoted by Sn+ (resp., Sn++). For A,B ∈ Sn, A � B (resp., A � B) means A − B � 0 (resp.,

A−B � 0). For any A ∈ Sn, we define the vectors svec(A) ∈ <n(n+1)/2 and svec0(A) ∈ <n(n+1)/2

as

svec(A) = (a11,
√

2a21, . . . ,
√

2an1, a22,
√

2a32, . . . ,
√

2an2, . . . , ann)T ,

svec0(A) = (a11, a21, . . . , an1, a22, a32, . . . , an2, . . . , ann)T .

Notice that svec is an isometry between Sn and <n(n+1)/2 and moreover,

tr(AB) = svec(A)T svec(B) ∀A,B ∈ Sn. (2)

We denote the inverse map of svec by smat. Clearly, they are adjoint of each other, that is,

aT svec(B) = tr(smat(a)B) ∀a ∈ <n(n+1)/2, B ∈ Sn.

The symmetric Kronecker product of any two (not necessarily symmetric) matrices C, D ∈ <n×n
is a square matrix of order n(n+ 1)/2 such that

(C⊗sD)svec(A) =
1

2
svec(CADT +DACT ) ∀A ∈ Sn. (3)

As mentioned in [35], C⊗sD can be expressed in terms of the standard Kronecker product of C
and D as follows:

C⊗sD =
1

2
Q(C ⊗D +D ⊗ C)QT ,

where Q ∈ <n(n+1)/2×n2

is such that

Qvec(A) = svec(A), QT svec(A) = vec(A) ∀A ∈ Sn. (4)

It is easy to observe that the above Q exists and is unique. Moreover, QQT = I.
A function f : Sn → < is said to be increasing (resp., decreasing) if for any A � B, it holds

that
f(A) ≥ f(B) (resp., f(A) ≤ f(B)).
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2 The multiplicative algorithm

In this section we review the multiplicative algorithm introduced in [33] for solving problem (1)
and discuss its convergence. In particular, we first describe the multiplicative algorithm as follows,
which is specified through a power parameter λ ∈ (0, 1].

Multiplicative Algorithm:

1. Start: Let a positive w0 ∈ Ω and λ ∈ (0, 1] be given.

2. For t = 0, 1, . . .

wt+1
i = wti

(di(w
t))λ∑n

j=1 w
t
j(dj(w

t))λ
, i = 1, . . . , n, (5)

where di(w) = −tr(∇Φ(M(w))Ai) and ∇Φ(M(w)) is the gradient of Φ at M(w).
End (for)

Remark 2.1. The above algorithm is the same as the one described in [45], in the sense that both
algorithms generate exactly the same sequence {wt} provided the initial points w0 are identical.

We now state a global convergence result recently established by Yu [45, Theorem 2] for the
multiplicative algorithm when applied to solve the following problem, which is closely related to
(1):

val := sup
w

−Φ(M(w))

s.t. w ∈ Ω, M(w) � 0.
(6)

Observe that (1) and (6) are equivalent (i.e., the optimal value being negative of each other) if
there exists an optimal solution w∗ of (1) with M(w∗) � 0, or if Φ is convex in

Sm+ (K) := {X ∈ Sm+ : Range(K) ⊆ Range(X)}.

and (6) has an optimal solution.

Proposition 2.1. Let {wt} be the sequence generated from the above multiplicative algorithm.
Suppose the following assumptions hold:

(a) for any feasible point w of (6), ∇Φ(M(w)) � 0 and ∇Φ(M(w))Ai 6= 0 for i = 1, . . . , n;

(b) for any feasible point w of (6), if T (w) 6= w, then Φ(M(T (w))) < Φ(M(w)), where

[T (w)]i := wi
(di(w))λ∑n

j=1 wj(dj(w))λ
, i = 1, . . . , n;

(c) Φ is strictly convex and ∇Φ is continuous in Sm++;

(d) for any {Xt} ⊂ Sm++, if Xt → X∗ and {Φ(Xt)} is decreasing, then X∗ � 0.

Then Φ(M(wt)) → −val monotonically, and moreover, any accumulation point of {wt} is an
optimal solution of (6).

Remark 2.2. Notice that the assumptions in the above proposition imply that any accumulation
point w∗ of {wt} satisfies M(w∗) � 0. Hence, if the assumptions in Proposition 2.1 hold and Φ is
convex in Sm+ (K), then (1) is equivalent to (6) and any accumulation point of the sequence {wt}
generated from the above multiplicative algorithm solves (1).

Using Proposition 2.1 and some technical results developed in [45], one can establish the con-
vergence of the above multiplicative algorithm when applied to problem (1) with A-, D- and pth
mean criterion for p ∈ (−1, 0) and K = I, which is summarized as follows.
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Corollary 2.1. Assume that K = I and Ai 6= 0 for i = 1, . . . , n. Then the multiplicative algorithm
converges for any λ ∈ (0, 1] when applied to problem (1) with D- and pth mean criterion for
p ∈ (−1, 0). Also, it converges for A-criterion when λ ∈ (0, 1).

As seen from Proposition 2.1 and Corollary 2.1, the multiplicative algorithm converges for a
large class of optimality criteria Φ. Nevertheless, for some interesting convex optimality criteria,
the assumptions stated in Proposition 2.1 may not hold and hence there is no theoretical guarantee
for its convergence. Indeed, as observed in [45, Section 5], the assumption (b) with λ = 1 does not
hold for pth mean criterion with p = −2. Moreover, for such a criterion, our numerical experiments
in Section 5 demonstrate that the multiplicative algorithm appears not to converge when p < −1.

Due to the aforementioned potential drawbacks of the multiplicative algorithm, we will propose
an IP method for solving problem (1) with a broad class of optimality criteria Φ including A-, D-
and pth mean criterion in subsequent sections.

3 IP method for a class of convex optimality criteria

In this section, we propose an IP method for solving (1) with a class of convex optimality criteria
Φ = Ψ ◦ CK , where ◦ denotes composition of functions. We make the following assumption on Ψ
throughout this paper.

Assumption 3.1. The function Ψ is convex, decreasing, twice continuously differentiable and
bounded below on any bounded subset of Sk++. Moreover, for any bounded sequence {Xt} ⊆ Sk++

with λmin(Xt)→ 0, one has Ψ(Xt)→∞.

Remark 3.1. We now make some brief comments on the above assumptions.

(a) Assumption 3.1 is fairly reasonable. Indeed, all optimality criteria described in Section 1 satisfy
this assumption.

(b) Since the feasible set is not necessarily closed, problem (1) with a general convex optimality
criterion may not have an optimal solution. However, when the optimality criterion satisfies
Assumption 3.1, it must have an optimal solution as shown in Theorem 3.1(a). We refer the
readers to [29, Chapter 5] for more discussion on conditions guaranteeing existence of solutions
for problem (1).

(c) In contrast to Proposition 2.1, we do not require the existence of a positive definite optimal
moment matrix M(w∗). Indeed, Assumption 3.1 may hold even when problem (1) does not
have a positive definite optimal moment matrix. For instance, the design problem

min
w,X

(
1
0

)T
X†
(

1
0

)
s.t. X =

(
w1 0
0 w2

)
, w1 + w2 = 1, w1, w2 ≥ 0,(

1
0

)
∈ Range(X),

has a unique optimal solution at (w1, w2) = (1, 0). The corresponding optimal moment matrix
is not positive definite; thus, the assumption (d) of Proposition 2.1 does not hold. However, it
is easy to check that Assumption 3.1 is satisfied for this design problem (with Ψ(t) = 1/t). In
general, the assumption (d) of Proposition 2.1 is likely not satisfied when K is not invertible,
while our Assumption 3.1 is independent of K.

Under Assumption 3.1, it is not hard to show that the function Φ(M(·)) is bounded below on the
feasible set of (1). Also, it is routine to show that the function Φ is twice continuously differentiable
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in Sm++. Furthermore, it can be shown that Φ is convex in Sm+ (K) by considering suitable Schur
complements (see, for example, [27, Section 6]). We include a short proof below for the convenience
of readers. Before proceeding, we state the following well-known fact, which concerns the Schur
complement of a positive semidefinite submatrix (see, for example, [29, Lemma 3.12]).

Lemma 3.1. Let A ∈ Sk, B ∈ <m×k and C ∈ Sm. Then the matrix

(
A BT

B C

)
is positive

semidefinite if and only if A � BTC†B, C � 0 and Range(B) ⊆ Range(C).

Proposition 3.1. The optimality criterion Φ is convex in Sm+ (K).

Proof. First of all, it can be shown that the set Sm+ (K) is convex (see, for example, [29, Section 3.3]).
In addition, notice that for any X ∈ Sm+ (K), we have

Φ(X) = Ψ((KTX†K)−1) = inf
U

{
Ψ(U) : (KTX†K)−1 � U � 0

}
= inf

U

{
Ψ(U) : U−1 � KTX†K,U � 0

}
= inf

U

{
Ψ(U) :

(
U−1 KT

K X

)
� 0, U � 0

}
= inf

U

{
Ψ(U) : X � KUKT , U � 0

}
, (7)

where the second equality follows from the fact that Ψ is decreasing, the fourth and last equalities
follow from Lemma 3.1, while the third equality holds because KTX†K is invertible for X ∈ Sm+ (K)
when K has full column rank. Convexity of Φ in Sm+ (K) now follows from [31, Theorem 5.7].

Observe thatM(w) � 0 whenever w > 0. Thus, under Assumption 3.1, the function Φ is twice
continuously differentiable for any positive w ∈ Ω. It is hence natural to develop an IP method
to solve (1) since such a method keeps all iterates in the relative interior of Ω until convergence.
To proceed, we first reformulate the problem by eliminating the equality constraint. The resulting
equivalent problem is given by

f∗ = inf
w̃

f(w̃) := Φ(M(Pw̃ + q))

s.t. eT w̃ ≤ 1, w̃ ≥ 0,
Range(K) ⊆ Range(M(Pw̃ + q)),

(8)

where P ∈ <n×(n−1) and q ∈ <n are such that

Pw̃ + q =

(
w̃

1− eT w̃

)
∀w̃ ∈ <n−1. (9)

We next develop an IP method for solving problem (8) instead. First, we need to build a
suitable barrier function. Given any w̃ > 0 satisfying eT w̃ < 1, one can observe that Pw̃ + q > 0
and hence M(Pw̃ + q) � 0, which leads to Range(K) ⊆ Range(M(Pw̃ + q)). This implies that
any barrier function that takes into account the first two inequality constraints of (8) is sufficient
for the development of an IP method. Here we naturally choose the logarithmic barrier function
and then solve the barrier subproblem in the form of

min
w̃
fµ(w̃) := f(w̃)− µ

n−1∑
i=1

log(w̃i)− µ log
(
1− eT w̃

)
(10)

for a sequence of parameters µ ↓ 0. In view of Assumption 3.1, we see that any level set of fµ is
compact. Moreover, fµ is strictly convex. Thus, there exists a unique minimizer to (10) for any
µ > 0. Furthermore, it follows from Assumption 3.1 that fµ is twice continuously differentiable
and its Hessian is positive definite in its domain. Therefore, problem (10) can be suitably solved
by the Newton’s method with a line search whose stepsize is chosen by Armijo rule.
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We are now ready to present our IP method for solving problem (8).

IP Method:

1. Start: Let a strictly feasible w̃0, 0 < β, γ, η, σ < 1 and µ1 > 0 be given. Let ε(µ) be an
increasing function of µ so that limµ↓0 ε(µ) = 0. Set w̃ = w̃0 and t = 1.

2. While ‖∇fµt(w̃)‖ > ε(µt) do

(a) Compute the Newton direction

d := −(∇2fµt(w̃))−1∇fµt(w̃). (11)

(b) Let αmax(w̃) := max{α : w̃[α] ≥ 0, eT w̃[α] ≤ 1}, where w̃[α] := w̃ + αd.

(c) Let α be the largest element of {ᾱ(w̃), βᾱ(w̃), β2ᾱ(w̃), · · · } satisfying

fµt
(w̃[α]) ≤ fµt

(w̃) + σα(∇fµt
(w̃))T d,

where ᾱ(w̃) := min{1, ηαmax(w̃)}.
(d) Set w̃ = w̃[α].

End (while)

3. Set w̃t = w̃, µt+1 = γµt, t = t+ 1, and go to step 2.

In standard convergence analysis of IP methods, the feasible set of the problem is usually as-
sumed to be closed and the objective function is at least continuous on the feasible set (see, for
example, [17, Section 3.3], [26, Theorem 19.1] and [18, Section 16.2.3]). An alternative setting was
considered in [25, Section 3.2], where the feasible set is assumed to be closed and the objective
function is assumed to be β-compatible with the associated barrier function. While these assump-
tions are quite general, they do not necessarily hold for our problem (8). In particular, the feasible
set of (8) is not necessarily closed and moreover it is hard to verify whether the second assumption
imposed in [25] holds for (8). The existing convergence results of IP methods in the literature
[25, 17, 26, 18] are thus not directly applicable to our above IP method.

The convergence analysis of our IP method is carried out as follows. We first study the conver-
gence of its outer iterations and then discuss the convergence of its inner iterations. The analysis
on the outer iterations substantially uses the specific structure of Φ, namely, its equivalent refor-
mulation (7) and Assumption 3.1, which enable us to establish the existence of an optimal solution
of (8) and show that any accumulation point of the sequence generated from our IP method is an
optimal solution of (8).

For notational convenience, in the remainder of this section, we associate with each w̃ ∈ <n−1

a unique w ∈ <n by letting w := Pw̃ + q. Analogously, we associate with each w ∈ <n a unique
w̃ ∈ <n−1 by letting w̃i = wi for i = 1, . . . , n− 1. Also, we let ΦM(w) := Φ(M(w)).

We first observe that if problem (1) has an optimal solution w∗ with M(w∗) � 0, then there
exists a Lagrange multiplier u∗ ≥ 0 such that (w∗, u∗) satisfies the following KKT system:

PT (∇ΦM(w)− u) = 0,
eTw = 1,
u ◦ w = 0,

(w, u) ≥ 0.

(12)

Given a strictly feasible point w̃ ∈ <n−1 of problem (10), we notice that

∇fµ(w̃) = PT (∇ΦM(w)− µw−1). (13)
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Then it is not hard to observe that for each µ > 0, the w associated with the approximate solution
w̃ of (10) obtained by the Newton’s method detailed in step 2 above together with u := µw−1

satisfies the following perturbed KKT system,

PT (∇ΦM(w)− u) = v,
eTw = 1,
u ◦ w = µe,

(w, u) > 0

(14)

with v = ∇fµ(w̃) ∈ <n−1 whose norm ‖v‖ ≤ ε(µ). Thus, the convergence regarding the outer
iterations of our IP method is related to the limiting behavior of the solutions of system (14) as
(µ, v)→ (0+, 0), that is, (µ, v)→ (0, 0) with µ > 0.

We first claim that system (14) has a unique solution for any (µ, v) ∈ <++ ×<n−1. Indeed, it
is easy to observe that (w, u) is a solution of (14) if and only if w̃ ∈ <n−1 is an optimal solution of

min
w̃
fµ(w̃)− vT w̃. (15)

Since the objective function of (15) is strictly convex and it has compact level sets, problem (15)
has a unique optimal solution, which immediately implies that system (14) has a unique solution.
From now on, we denote by (w(µ, v), u(µ, v)) the unique solution of (14). Our main theorem below
discusses the limiting behavior of (w(µ, v), u(µ, v)) as (µ, v)→ (0+, 0). The proof of this theorem
can be found in the appendix.

Theorem 3.1. Let (w(µ, v), u(µ, v)) be defined above for (µ, v) ∈ <++×<n−1. Then the following
statements hold:

(a) lim
(µ,v)→(0+,0)

Φ(M(w(µ, v))) = f∗ and any accumulation point of w(µ, v) as (µ, v) → (0+, 0) is

an optimal solution of (1).

(b) Suppose in addition that problem (1) has an optimal solution w∗ with M(w∗) � 0. Then any
accumulation point of w(µ, v) as (µ, v) −−→

ΞC

(0, 0), i.e., (µ, v) → (0, 0) with (µ, v) ∈ ΞC :=

{(µ, v) : ‖v‖∞ < Cµ} for some given C > 0, is an optimal solution of (1) with maximum
cardinality.

As an immediate consequence of Theorem 3.1, we have the following global convergence result
regarding the outer iterations of our IP method, whose simple proof is omitted.

Corollary 3.1. Let {µt} and {w̃t} be the sequences generated in the IP method. Let wt = Pw̃t+q
for all t. Then the following statements hold:

(a) lim
t→∞

Φ(M(wt)) = f∗ and any accumulation point of {wt} is an optimal solution of (1).

(b) Suppose in addition that problem (1) has an optimal solution w∗ with M(w∗) � 0 and ε(µt) =
O(µt). Then any accumulation point of {wt} is an optimal solution of (1) with maximum
cardinality.

We emphasize that in Corollary 3.1 (a), we do not require the existence of an optimal solution
w∗ withM(w∗) � 0. On the other hand, if such an optimal solution does exist, for example, when
K = I, then Corollary 3.1 (b) states that the accumulation point (with ε(µt) = O(µt)) must be
an optimal solution of (1) that has the largest number of non-zero entries among all the optimal
solutions of (1).

Before ending this section, we establish a convergence result regarding the inner iterations of
our IP method.

Proposition 3.2. Let µt > 0 and ε(µt) > 0 be given. Then the Newton’s method detailed in step 2
of the IP method starting from any strictly feasible point w̃init of (8) generates a point w̃t satisfying
‖∇fµt

(w̃t)‖ ≤ ε(µt) within a finite number of iterations.
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Proof. First, observe that all iterates generated by the Newton’s method lie in the compact level
set Υ := {w̃ : fµt(w̃) ≤ fµt(w̃

init)}. Furthermore, it holds that w̃ > 0 and 1 − eT w̃ > 0 for all
w̃ ∈ Υ. This together with the assumption thatM(Ω)∩Sm++ 6= ∅ implies thatM(Υ) ⊂ Sm++. Thus
∇fµt

and ∇2fµt
are continuous in Υ. Using this observation and the strong convexity of fµt

in Υ,
there exist λ, λ > 0 such that λI � ∇2fµt

(w̃) � λI for all w̃ ∈ Υ. This relation along with the
continuity of ∇fµt

and ∇2fµt
implies that d = −(∇2fµt

(w̃))−1∇fµt
(w̃) is continuous in Υ. In view

of this result and the definition of ᾱ(w̃), it is not hard to show that ᾱ(w̃) is positive and continuous
in Υ. This fact together with the compactness of Υ yields α := inf{ᾱ(w̃) : w̃ ∈ Υ} > 0. Thus, all
iterates w̃ generated by the Newton’s method satisfy λI � ∇2fµt(w̃) � λI and ᾱ(w̃) ∈ [α, 1]. The
remaining proof follows the same arguments as in the proof of [24, Theorem 3.13].

4 IP method for classical optimality criteria

In this section, we discuss how to apply our IP method to solve problem (1) with A-, D- and pth
mean criterion. In particular, we will demonstrate how the Newton direction (11) can be efficiently
computed for each criterion.

First, for each optimality criterion Φ and the corresponding function Ψ, we define the associated
functions φ and ψ as follows:

φ(x) = Φ(smat(x)), ψ(y) = Ψ(smat(y)) (16)

for any x ∈ <m(m+1)/2 and y ∈ <k(k+1)/2, provided that Φ(smat(x)) and Ψ(smat(y)) are well-
defined. It is clear that φ and ψ are convex due to the convexity of Φ and Ψ, respectively. Define

M := [svec(A1) . . . svec(An)].

Clearly, M ∈ <m(m+1)/2×n.
With the notations above, the function fµ defined in (10) can be rewritten as

fµ(w̃) = φ(M(Pw̃ + q))− µ
n−1∑
i=1

log(w̃i)− µ log
(
1− eT w̃

)
.

By the chain rule, the gradient and Hessian of fµ are given by

∇fµ(w̃) = PTMT∇φ(Mw)− µPTw−1,

∇2fµ(w̃) = PTMT∇2φ(Mw)MP +
µ

(1− eT w̃)2
eeT + µD(w̃−2), (17)

where w = Pw̃ + q.
The main computational effort of our IP method lies in computing the Newton direction d by

solving the system ∇2fµ(w̃)d = −∇fµ(w̃) (see (11)). In applications, n can be significantly larger
than m2. Since the rank of ∇2φ(Mw) is at most m(m + 1)/2, the first matrix in (17) has “low”
rank compared to ∇2fµ(w̃). It is generally more efficient to compute the Newton direction via
the Sherman-Morrison-Woodbury formula, without explicitly forming the Hessian matrix. To this
end, suppose that ∇2φ(Mw) has rank r. Let V DV T be the partial eigenvalue decomposition of
∇2φ(Mw), where D is the r×r diagonal matrix whose diagonal consists of the r largest eigenvalues
of ∇2φ(Mw), and the columns of V are the corresponding eigenvectors.1 Due to the convexity of
φ, one can observe that ∇2φ(Mw) = V DV T . It then follows from (17) that

∇2fµ(w̃) = (PTMTV )D(V TMP ) +
µ

(1− eT w̃)2
eeT + µD(w̃−2)

=
(
PTMTV e

)(D 0
0 µ

(1−eT w̃)2

)(
V TMP
eT

)
+ µD(w̃−2),

1The partial eigenvalue decomposition can be efficiently computed by the package PROPACK [23].
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which together with the Sherman-Morrison-Woodbury formula yields the Newton direction

d = −
(
∇2fµ(w̃)

)−1∇fµ(w̃) = −
[

1

µ
D(w̃2)− 1

µ2
D(w̃2)

(
PTMTV e

)
W

(
V TMP
eT

)
D(w̃2)

]
∇fµ(w̃),

where

W =

((
D−1 0

0 (1−eT w̃)2

µ

)
+

1

µ

(
V TMP
eT

)
D(w̃2)

(
PTMTV e

))−1

.

When n� m2, the above approach is much more efficient than solving the Newton system directly
by performing Cholesky factorization of ∇2fµ(w̃). We remark that the ideas of using Sherman-
Morrison-Woodbury formula to solve specially structured Newton systems have been explored in
the literature (see, for example, [2, 16]).

As seen from above, both ∇φ(Mw) and ∇2φ(Mw) are needed for computing the Newton
direction. In addition, the rank of ∇2φ(Mw) is used in the partial eigenvalue decomposition
of ∇2φ(Mw). Since this Hessian could become ill-conditioned as µ ↓ 0, it is more desirable to
explicitly determine the rank of ∇2φ(Mw) a priori than to compute the rank numerically in each
iteration. We will address these two issues in the next theorem. In particular, we derive generic
formulas for evaluating ∇φ and ∇2φ that will be specialized for the A, D and pth mean criterion
in subsequent subsections. We also determine the rank of ∇2φ under some suitable assumptions
on Ψ.

Theorem 4.1. Consider the function Φ(X) = Ψ(CK(X)) with CK(X) = (KTX†K)−1 and Ψ
satisfying Assumption 3.1. Let φ and ψ be the associated functions of Φ and Ψ as defined in (16).

Let Q1 ∈ <m(m+1)/2×m2

and Q2 ∈ <k(k+1)/2×k2 be defined in (4), in place of Q, for the spaces Sm
and Sk, respectively. Then the gradient and Hessian of φ at any x ∈ svec(Sm++) are given by

∇φ(x) = svec(X−1KCK(X)∇Ψ(CK(X))CK(X)KTX−1), (18)

∇2φ(x) = Q1(G0 ⊗G0)QT2∇2ψ(svec(CK(X)))Q2(G0 ⊗G0)TQT1 − 2X−1 ⊗s G2 + 2G1 ⊗s G2,
(19)

where X = smat(x), G0 := X−1KCK(X), G1 := X−1KCK(X)KTX−1, G2 := G0∇Ψ(CK(X))GT0 .
In addition, if we suppose that −∇Ψ(CK(X)) and ∇2ψ(svec(CK(X))) are positive definite matrices,
then the rank of ∇2φ(x) is m(m + 1)/2 − (m − k)(m − k + 1)/2, which is independent of x ∈
svec(Sm++).

Proof. To derive the gradient of φ, we fix an arbitrary x ∈ svec(Sm++). Let X = smat(x). For all

sufficiently small h ∈ <m(m+1)/2, we have X +H � 0, where H = smat(h), and moreover,

(X +H)−1 = X−1 −X−1HX−1 + o(H), (20)

and hence

CK(X +H) = (KTX−1K −KTX−1HX−1K + o(H))−1

= CK(X) + CK(X)KTX−1HX−1KCK(X) + o(H). (21)

From (21) and the definition of Φ, we obtain further that

Φ(X +H) = Ψ(CK(X +H)) = Ψ(CK(X) + CK(X)KTX−1HX−1KCK(X) + o(H))

= Φ(X) + tr(∇Ψ(CK(X))CK(X)KTX−1HX−1KCK(X)) + o(H)

= Φ(X) + tr(X−1KCK(X)∇Ψ(CK(X))CK(X)KTX−1H) + o(H). (22)

In view of the definitions of φ, Φ, X and H, it follows from (22) and (2) that

φ(x+ h)− φ(x) = Φ(X +H)−Φ(X) = hT svec(X−1KCK(X)∇Ψ(CK(X))CK(X)KTX−1) + o(h),
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We next derive the Hessian of φ at any x ∈ svec(Sm++). To proceed, we first recall the following
well-known results (see, for example, page 243 and Lemma 4.3.1 of [22]):

vec(ABC) = (CT ⊗A)vec(B), (A⊗B)T = AT ⊗BT . (23)

Let X, h and H be defined as above. Using (18), (20) and (21), we have

∇Φ(X +H) = (X +H)−1KCK(X +H)∇Ψ(CK(X +H))CK(X +H)KT (X +H)−1

= ∇Φ(X) +G0∇2Ψ(CK(X))[GT0 HG0]GT0 −X−1HG2 −G2HX
−1

+G1HG2 +G2HG1 + o(H), (24)

where G0, G1 and G2 are defined as above, and ∇2Ψ(CK(X))[·] denotes the linear operator from
Sk to Sk whose matrix representation is ∇2ψ(svec(CK(X))). Using (4), (23), and the definition
of Q1 and Q2, we obtain that

svec(G0∇2Ψ(CK(X))[GT0 HG0]GT0 ) = Q1 vec(G0∇2Ψ(CK(X))[GT0 HG0]GT0 )

= Q1(G0 ⊗G0)vec(∇2Ψ(CK(X))[GT0 HG0]) = Q1(G0 ⊗G0)QT2 svec(∇2Ψ(CK(X))[GT0 HG0])

= Q1(G0 ⊗G0)QT2∇2ψ(svec(CK(X)))svec(GT0 HG0)

= Q1(G0 ⊗G0)QT2∇2ψ(svec(CK(X)))Q2(G0 ⊗G0)TQT1 svec(H). (25)

Moreover, since G1 and G2 are symmetric, we further have from (3) that

svec(G2HX
−1 +X−1HG2) = 2[X−1 ⊗s G2]svec(H), (26)

svec(G2HG1 +G1HG2) = 2[G1 ⊗s G2]svec(H). (27)

These together with (16), the definition of X and H, and the fact that svec is the adjoint operator
of smat yield

∇φ(x+ h)−∇φ(x) = svec(∇Φ(X +H)−∇Φ(X))

= (Q1(G0 ⊗G0)QT2∇2ψ(svec(CK(X)))Q2(G0 ⊗G0)TQT1 − 2X−1 ⊗s G2 + 2G1 ⊗s G2)h+ o(h),

and hence (19) holds.
Finally, suppose in addition that −∇Ψ(CK(X)) and ∇2ψ(svec(CK(X))) are positive definite

matrices. We show that the rank of ∇2φ(x) is m(m+ 1)/2− (m− k)(m− k + 1)/2. To this end,
it suffices to know the dimension of the null space of ∇2φ(x), denoted by Null(∇2φ(x)). Notice
that φ is a twice differentiable convex function in svec(Sm++). Hence, ∇2φ(x) � 0. It implies that
h ∈ Null(∇2φ(x)) if and only if hT∇2φ(x)h = 0. We will subsequently show that

hT∇2φ(x)h = 0 ⇔ KTX−1H = 0, (28)

where H = smat(h). It then follows that

h ∈ Null(∇2φ(x))⇔ KTX−1H = 0.

Notice that KTX−1 has full row rank. Thus, there exist nonsingular matrices E1 and E2 such
that KTX−1 = E1

(
I 0

)
E2, where I is the identity matrix of order k. It then follows that

KTX−1H = 0 ⇔
(
I 0

)
U = 0,

where U = E2HE
T
2 ∈ Sm. It is easy to see that the dimension of {U ∈ Sm :

(
I 0

)
U = 0}

is (m − k)(m − k + 1)/2. Since E2 is invertible, we conclude that the dimension of {H ∈ Sm :
KTX−1H = 0} and hence of Null(∇2φ(x)) is also (m−k)(m−k+1)/2. Since smat is a one-to-one
map between <m(m+1)/2 and Sm, the rank of ∇2φ(x) is m(m+ 1)/2− (m− k)(m− k + 1)/2. To
complete the proof, we next show that (28) holds.
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To proceed, we first note from (2), (25), (26), (27) and the definition of ∇2Ψ(CK(X))[·] that

hT∇2φ(x)h = tr(∇2Ψ(CK(X))[GT0 HG0]GT0 HG0) + 2tr(G1HG2H)− 2tr(X−1HG2H),

where H = smat(h). Hence, hT∇2φ(x)h = 0 if and only if

tr(∇2Ψ(CK(X))[GT0 HG0]GT0 HG0) + 2tr(G1HG2H)− 2tr(X−1HG2H) = 0. (29)

We claim that
tr(G1HG2H)− tr(X−1HG2H) ≥ 0. (30)

Indeed, it follows from the definition of CK(X) and Lemma 3.1 that

(CK(X))−1 = KTX−1K ⇒
(
X K
KT (CK(X))−1

)
� 0 ⇒ X −KCK(X)KT � 0.

Using this relation, the definition of G1 and G2 along with the assumption −∇Ψ(CK(X)) � 0, we
have

tr(G1HG2H)− tr(X−1HG2H)

= tr(X−1H(−G2)H)− tr(G1H(−G2)H)

= tr([X−1 −X−1KCK(X)KTX−1] [H(−G2)H])

= tr([X −KCK(X)KT ] [X−1HG0(−∇Ψ(CK(X)))GT0 HX
−1]) ≥ 0,

(31)

and hence (30) holds. In addition, from the assumption ∇2ψ(svec(CK(X))) � 0, we can observe
that tr(∇2Ψ(CK(X))[GT0 HG0]GT0 HG0) ≥ 0. In view of this relation and (30), we conclude that
(29) is equivalent to

tr(∇2Ψ(CK(X))[GT0 HG0]GT0 HG0) = 0 = tr(G1HG2H)− tr(X−1HG2H). (32)

Further, using the assumption ∇2ψ(svec(CK(X))) � 0 and the fact that CK(X) � 0, one can see
that the first equality in (32) is equivalent to

0 = GT0 HG0 = CK(X)KTX−1HX−1KCK(X) ⇔ KTX−1HX−1K = 0. (33)

Also, using (31), the definition of G0, the assumption −∇Ψ(CK(X)) � 0, and the fact that
X−KCK(X)KT � 0 and CK(X) � 0, we can observe that the second equality in (32) is equivalent
to

0 = GT0 HX
−1[X −KCK(X)KT ]

1
2 ⇔ KTX−1HX−1[X −KCK(X)KT ]

1
2 = 0. (34)

Furthermore, notice that

<m = Range(X) = Range(X −KCK(X)KT +KCK(X)KT )

= Range(X −KCK(X)KT ) + Range(KCK(X)KT )

= Range([X −KCK(X)KT ]
1
2 ) + Range(K),

where the third equality follows from [29, Section 2.3] and the fact that both X − KCK(X)KT

and KCK(X)KT are positive semidefinite. Combining this last relation with (33) and (34), we
immediately conclude that (32), and hence (29), is equivalent to

KTX−1HX−1 = 0 ⇔ KTX−1H = 0.

Thus, (28) holds. This completes the proof.
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Remark 4.1. Recall from Assumption 3.1 that Ψ is convex and decreasing. Using these facts, it
is not hard to observe that −∇Ψ(U) and ∇2ψ(svec(U)) are positive semidefinite at any U ∈ Sk++,
which are slightly weaker than the conditions required in the second part of the above theorem.
Nevertheless, for the commonly used criteria such as classical A-, D- and pth mean criterion, we
can easily verify that they satisfy the latter conditions.

In the remainder of this section we tailor the above IP method to problem (1) with classical A-,
D- and pth mean criterion, respectively. Recall that ∇φ and ∇2φ are needed for computing the
Newton direction arising in the IP method, where φ is defined in (16). Though generic formulas
for ∇φ and ∇2φ are provided in Theorem 4.1, the structure of the associated function Ψ for
each specific optimality criterion is not exploited. We next derive more computationally efficient
formulas for them in the context of classical A-, D- and pth mean criterion.

4.1 IP method for pth mean criterion

Recall from Section 1 that the pth mean criterion Φ is

Φ(X) = tr((KTX†K)−p) (35)

for some p < 0 and K ∈ <m×k with full column rank. It is not hard to verify that Assumption 3.1
holds for Φ. Hence, problem (1) with this criterion can be suitably solved by our IP method
proposed in Section 3. We next derive computationally efficient formulas for the gradient and
the Hessian of φ. Before proceeding, we state the following classical result (see, for example, [11,
Proposition 4.3]) that will be used subsequently.

Lemma 4.1. Let g : < → < be a differentiable function and let g� : Sm → Sm be defined by

g�(Y ) := V


g(d1)

g(d2)
. . .

g(dm)

V T ,

where VD(d)V T is an eigenvalue decomposition of Y for some d ∈ <m. Then the function g� is
well-defined, i.e., it is independent of the choice of V and d, and is also differentiable. Moreover,
let Sg,d ∈ Sm be a symmetric matrix whose (i, j)th entry is given by

sg,dij :=


g(di)− g(dj)

di − dj
if di 6= dj ,

g′(di) otherwise.

Then the directional derivative of g� at Y along the direction H ∈ Sm is given by

V (Sg,d ◦ (V THV ))V T .

Proposition 4.1. Let Φ be defined in (35) and the associated φ be defined in (16). Let Q ∈
<m(m+1)/2×m2

be defined in (4) for Sm. Then the gradient and Hessian of φ at any x ∈ svec(Sm++)
are given by

∇φ(x) = psvec(X−1K[CK(X)]p+1KTX−1), (36)

∇2φ(x) = Q(−p[(X−1KV )⊗ (X−1KV )]D(vec(Sg,d))[(X−1KV )⊗ (X−1KV )]T )QT

− 2p X−1 ⊗s G, (37)

respectively, where X = smat(x), CK(X) = (KTX†K)−1, VD(d)V T is an eigenvalue decompo-
sition of KTX−1K for some d ∈ <m, g(t) = t−p−1, and G = X−1K[CK(X)]p+1KTX−1. In
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particular, when K = I, the above gradient and Hessian reduce to

∇φ(x) = psvec(Xp−1), (38)

∇2φ(x) = (V⊗sV )D(svec0(Sg,d))(V⊗sV )T , (39)

where g(t) = ptp−1 and VD(d)V T is an eigenvalue decomposition of X for some d ∈ <m.

Proof. We first derive (38). To this aim, we fix an arbitrary x ∈ svec(Sm++). Let X = smat(x).

For all sufficiently small h ∈ <m(m+1)/2, we have X + H � 0, where H = smat(h). Applying
Lemma 4.1 with g(t) = tp and Y = X, we obtain that

Φ(X +H) = tr((X +H)p) = Φ(X) + tr(V (Sg,d ◦ (V THV ))V T ) + o(H), (40)

where VD(d)V T is an eigenvalue decomposition of X. Making use of the definition of Sg,d and
the fact that V TV = I, we further have

tr(V (Sg,d ◦ (V THV ))V T ) = tr(Sg,d ◦ (V THV )) =
m∑
i=1

sg,dii
∑
j,k

vjihjkvki

= p
∑
j,k

(
m∑
i=1

vjid
p−1
i vki

)
hjk = tr(pXp−1H). (41)

In view of the definition of φ, Φ, X and H, it follows from (40), (41) and (2) that

φ(x+ h)− φ(x) = Φ(X +H)− Φ(X) = hT
(
psvec(Xp−1)

)
+ o(h),

which yields (38). Formula (36) now immediately follows from (38) and (18) with Ψ(U) = tr(Up)
for any U ∈ Sk++.

We next derive (37). Let X, h and H be defined as above. Using (20) and Lemma 4.1 with
g(t) = t−p−1 and Y = KTX−1K, we have

∇Φ(X +H) = ∇Φ(X)− p(X−1K)V (Sg,d ◦ (V TKTX−1HX−1KV ))V T (KTX−1)

− pGHX−1 − pX−1HG+ o(H),

where G = X−1K[CK(X)]p+1KTX−1. Notice that by using the definition of Q, (4) and (23), we
have

svec((X−1KV )(Sg,d ◦ (V TKTX−1HX−1KV ))(V TKTX−1))

= Q[(X−1KV )⊗ (X−1KV )]vec(Sg,d ◦ (V TKTX−1HX−1KV ))

= Q[(X−1KV )⊗ (X−1KV )]D(vec(Sg,d))vec(V TKTX−1HX−1KV ))

= Q[(X−1KV )⊗ (X−1KV )]D(vec(Sg,d))[(X−1KV )⊗ (X−1KV )]TQT svec(H),

and also from (3), we have

svec(GHX−1 +X−1HG) = 2[X−1 ⊗s G]svec(H).

Using these relations and proceeding as in Theorem 4.1, we can see that (37) holds.
For the case when K = I, ∇2φ can be directly derived as follows. Since ∇Φ(X) = pXp−1,

letting g(t) = p tp−1 and VD(d)V T be an eigenvalue decomposition of X, we have from Lemma 4.1
that

∇Φ(X +H) = ∇Φ(X) + V (Sg,d ◦ (V THV ))V T + o(H).

In view of (3), one can see that

svec(V (Sg,d ◦ (V THV ))V T ) = (V⊗sV )svec(Sg,d ◦ (V THV ))

= (V⊗sV )[svec0(Sg,d) ◦ svec(V THV )]

= (V⊗sV )(svec0(Sg,d) ◦ [(V⊗sV )T svec(H)])

= (V⊗sV )D(svec0(Sg,d))(V⊗sV )T svec(H).
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Using these relations and proceeding as in Theorem 4.1, we conclude that (39) holds.

For pth mean criterion, the associated function Ψ is given by Ψ(U) = tr(Up) for any U ∈ Sk++.
It is clear that −∇Ψ(U) and ∇2ψ(svec(U)) are positive definite for any U ∈ Sk++. The following
result is an immediate consequence of Theorem 4.1 on the rank of ∇2φ(x) at any x ∈ svec(Sm++).

Corollary 4.1. Let Φ be defined in (35) and the associated φ be defined in (16). Then the rank
of ∇2φ(x) is m(m+ 1)/2− (m− k)(m− k + 1)/2 for any x ∈ svec(Sm++).

4.2 IP method for A-criterion

Recall from Section 1 that the A-criterion Φ is

Φ(X) = tr(KTX†K) (42)

for some K ∈ <m×k with full column rank. Since A-criterion is a special case of pth mean criterion
with p = −1, the IP method discussed in Sections 3 and 4.1 can be suitably applied to solve
problem (1) with A-criterion. By exploiting the special structure of such Φ, we next present a
more compact representation of the associated Hessian matrix that is used to compute Newton
direction for our IP method. The proof is routine and is thus omitted.

Proposition 4.2. Let Φ be defined in (42) and the associated φ be defined in (16). Then the
gradient and Hessian of φ at any x ∈ svec(Sm++) are given by

∇φ(x) = −svec(X−1KKTX−1),

∇2φ(x) = 2X−1⊗s(X−1KKTX−1),

where X = smat(x).

Since A-criterion is a special case of pth mean criterion, it follows from Corollary 4.1 that the
rank of ∇2φ(x) is also m(m+ 1)/2− (m− k)(m− k + 1)/2 for every x ∈ svec(Sm++).

4.3 IP method for D-criterion

Recall from Section 1 that the D-criterion Φ is

Φ(X) = log det(KTX†K) (43)

for some K ∈ <m×k with full column rank. It is not hard to verify that Assumption 3.1 is satisfied.
Hence, problem (1) with this criterion can be suitably solved by the IP method studied in Section
3. We next present computationally efficient formulas for evaluating gradient and Hessian of the
associated function φ that are used in the IP method. The proof is routine and is thus omitted.

Proposition 4.3. Let Φ be defined in (43) and the associated φ be defined in (16). Then the
gradient and Hessian of φ at any x ∈ svec(Sm++) are given by

∇φ(x) = −svec(X−1KCK(X)KTX−1),

∇2φ(x) = 2X−1⊗s(X−1KCK(X)KTX−1)− (X−1KCK(X)KTX−1)⊗s(X−1KCK(X)KTX−1),

where X = smat(x).

For D-criterion, the associated function Ψ is given by Ψ(U) = − log det(U) for any U ∈ Sk++.
It is clear that −∇Ψ(U) and ∇2ψ(svec(U)) are positive definite for any U ∈ Sk++. The following
result is again an immediate consequence of Theorem 4.1 on the rank of ∇2φ(x) at any x ∈
svec(Sm++).

Corollary 4.2. Let Φ be defined in (43) and the associated φ be defined in (16). Then the rank
of ∇2φ(x) is m(m+ 1)/2− (m− k)(m− k + 1)/2 for any x ∈ svec(Sm++).
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5 Computational results

In this section, we conduct numerical experiments to test the performance of the IP method
discussed in this paper for solving problem (1) with A-, D- and pth mean criterion and also
compare its performance with the multiplicative algorithm and the standard IP solver SDPT3.

We develop Matlab codes for our IP method to solve (1) with A-, D- and pth mean criterion. We
also implement the multiplicative algorithm in Matlab for solving (1) with A-, D- and pth mean
criterion. To benchmark the performance of our IP method, we also report the computational
results using a general SDP solver, namely, SDPT3 [36, 40] (Version 4.0) on solving a linear SDP
reformulation of (1) with A-criterion (see [14, Page 532]) and a log-determinant SDP reformulation
of (1) with D-criterion (see [27, Equation (10)]). We shall mention that it is not clear whether
problem (1) with pth mean criterion can be reformulated into a problem that can be efficiently
solved by SDPT3. As SDPT3 implements an infeasible path-following algorithm, we project the
approximate solution w found by SDPT3 onto the unit simplex to obtain an approximate optimal
feasible solution for problem (1) and the final objective value reported in our tests is based on
the latter solution.2 All computations in this section are performed in Matlab 7.14.0 (2012a) on a
workstation with an Intel Xeon E5410 CPU (2.33 GHz) and 8GB RAM running Red Hat Enterprise
Linux (kernel 2.6.18).

For our IP method, we set w̃0 = 1
ne ∈ <

n−1, µ1 = 10, β = γ = 0.5, σ = 0.1 and η = 0.95.
In addition, we set ε(µ) = max{µ, 10−10} and terminate the algorithm once µt ≤ 10−10. On the
other hand, for the multiplicative algorithm, similarly as in [45], we set λ = 1, w0 = 1

ne ∈ <
n, and

terminate the algorithm when it reaches 10000 iterations or

max
1≤i≤n

di(w
t) ≤ (1 + δ)

n∑
i=1

wtidi(w
t)

holds with δ = 2 × 10−4, where di(w) is defined in (5).3 Furthermore, for SDPT3, we use the
default tolerance. Finally, we use the mex files skron, smat and svec from the SDPT3 package
for efficient operations on symmetric matrices in our implementation of the IP method and the
multiplicative algorithm.

In our tests below, we consider the following four design spaces:

χ1(n) = {xi = (e−si , sie
−si , e−2si , sie

−2si)T , 1 ≤ i ≤ n},
χ2(n) = {xi = (1, si, s

2
i , s

3
i )
T , 1 ≤ i ≤ n},

χ3(n) = {x(i−1)d
√
ne+j = (1, ri, r

2
i , tj , ritj)

T , 1 ≤ i, j ≤ d
√
ne},

χ4(n) = {xi = (ti, t
2
i , sin(2πti), cos(2πti))

T , 1 ≤ i ≤ n},

where si = 3i
n , ri = 2i

n − 1 and ti = i
n . The space χ1(n) represents the linearization of a com-

partmental model [4]. The space χ2(n) corresponds to polynomial regression. The third space, as
described in [46], represents a response surface with a nonlinear effect and an interaction, while
the fourth space is the quadratic/trigonometric example proposed in [44]. The test sets χ1, χ3 and
a variant of the test set χ2 are also used in [46].

In our first test, for each design space, we set Ai = xix
T
i in (1) for i = 1, . . . , n, with n = 10000,

50000, 100000 for χ1, χ2, χ4, and n = 10000, 40000, 90000 for χ3. For each n and each design
space, we randomly generate 30 different matrices K ∈ <m×3 (i.e., we set k = 3), each having i.i.d.
Gaussian entries of mean 0 and variance 1. We then apply our IP method and the multiplicative
algorithm to solve problem (1) with A-, D- and pth mean criterion on these instances and also
apply SDPT3 to solve (1) with A- and D-criterion. The computational results averaged over the
30 instances are reported in Tables 1–4. In particular, the performance of our IP method, the
multiplicative algorithm and SDPT3 are reported under the columns named “IP”, “MUL” and

2Such projection makes a difference when SDPT3 terminates early at a solution that is highly infeasible, which
could be a consequence of “near infeasibility” of the linear SDP reformulation; see the first three rows of Table 1.

3We also tried δ = 10−4, but the multiplicative algorithm tends to take a long time for relatively little improve-
ment on some instances.
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Table 1: Computational results for A-criterion with random K
cpu obj

χi n MUL IP SDPT3 MUL IP SDPT3

1 10000 13.76 0.69 1.93 193041 191410 211735
1 50000 62.13 3.75 10.64 154584 153219 172514
1 100000 135.26 7.38 19.22 208599 206787 242633
2 10000 17.69 0.77 1.90 215.754 212.356 212.356
2 50000 89.89 4.22 10.94 188.509 185.55 185.551
2 100000 163.28 8.12 21.83 242.414 237.823 237.824
3 10000 33.74 1.02 2.36 54.8551 54.7332 54.7332
3 40000 140.85 5.24 14.17 49.0008 48.9784 48.9791
3 90000 322.52 10.75 35.50 50.8124 50.7906 50.7906
4 10000 13.42 0.90 1.90 572.779 558.088 558.088
4 50000 58.41 4.46 9.89 501.924 487.99 487.991
4 100000 139.62 9.03 20.36 343.827 337.003 337.023

Table 2: Computational results for D-criterion with random K
cpu obj

χi n MUL IP SDPT3 MUL IP SDPT3

1 10000 1.47 0.95 1.47 19.7352 19.7347 19.7356
1 50000 5.40 4.73 6.03 19.9312 19.9307 19.933
1 100000 14.17 9.31 12.34 19.7973 19.7968 19.7987
2 10000 2.10 0.79 1.57 5.95269 5.95229 5.9523
2 50000 20.60 4.07 6.78 5.30436 5.3039 5.3039
2 100000 51.43 8.33 13.32 5.08652 5.08608 5.08609
3 10000 4.31 1.05 1.77 6.58713 6.58694 6.58694
3 40000 18.86 4.28 9.11 6.65124 6.65104 6.65103
3 90000 66.40 9.93 21.48 6.74346 6.74327 6.74382
4 10000 1.67 0.90 1.41 7.40587 7.40535 7.40535
4 50000 13.46 4.35 6.09 7.65401 7.6535 7.6535
4 100000 39.01 7.90 12.03 8.66619 8.66575 8.66574

“SDPT3”, respectively. In addition, the CPU time abbreviated as “cpu” is in seconds and the
objective value abbreviated as “obj” is rounded off to six significant digits. We see that our IP
method significantly outperforms the multiplicative algorithm in terms of CPU time, and gives
a smaller objective value in all instances. Moreover, our IP method also outperforms SDPT3 in
CPU time and gives a smaller objective value in most instances. Furthermore, it is worth pointing
out that SDPT3 reports infeasibility and hence early terminates when solving some instances for
χ1 with A-criterion, possibly due to bad scaling ofM(w). This accounts for its significantly larger
objective values in Table 1 corresponding to χ1. Finally, for pth mean criterion with p < −1, our
IP method achieves significantly better objective values than the multiplicative algorithm, where
the objective value of the latter algorithm is chosen to be the minimum over all iterations (see
Table 4). This phenomenon is actually not surprising since the multiplicative algorithm is only
known to converge for p ∈ (−1, 0), but it may not converge when p < −1.

In our second test, we consider the case when K = I. The instances used in this test are the
same as those in the first test except K = I. We also apply our IP method and the multiplicative
algorithm to solve problem (1) with A-, D- and pth mean criterion on these instances and apply
SDPT3 to solve (1) with A- and D-criterion. The computational results are reported in Tables 5–
8. We again observe that our IP method outperforms the multiplicative algorithm in terms of
objective value in all instances, and is generally much faster on large instances. Furthermore, our
IP method is usually faster than SDPT3 and produces comparable or smaller objective values.
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Table 3: Computational results for pth mean criterion with random K for some p ∈ (−1, 0)

p = −0.25 p = −0.75
cpu obj cpu obj

χi n MUL IP MUL IP MUL IP MUL IP

1 10000 6.39 0.85 25.4567 25.4558 9.17 0.79 5187.73 5187.23
1 50000 36.84 4.18 25.1902 25.1894 45.72 4.09 7128.51 7126.32
1 100000 82.59 8.29 25.1312 25.1304 118.04 8.11 7207.59 7205.68
2 10000 6.19 0.76 5.68067 5.68046 13.67 0.79 46.4144 46.4008
2 50000 28.10 3.89 6.00911 6.00886 73.65 4.28 58.2028 58.1903
2 100000 71.37 8.00 6.12458 6.12434 152.84 8.30 60.9256 60.9108
3 10000 5.47 0.98 5.58387 5.58379 3.73 1.07 24.8691 24.868
3 40000 18.97 4.18 5.56727 5.56718 17.21 4.66 23.5463 23.5451
3 90000 58.35 9.91 5.45907 5.45899 56.66 10.98 24.7679 24.7664
4 10000 1.84 0.90 7.30484 7.30456 2.88 0.90 118.871 118.859
4 50000 8.84 4.63 7.27622 7.27589 10.98 4.97 108.079 108.066
4 100000 31.14 8.81 7.30129 7.30102 45.27 9.70 128.676 128.662

Table 4: Computational results for pth mean criterion with random K for some p < −1
p = −1.1 p = −1.2

cpu obj cpu obj
χi n mul IP mul IP mul IP mul IP

1 10000 5.07 0.70 611960 602294 4.66 0.68 1.46813e+06 1.43891e+06
1 50000 20.64 3.59 541355 532904 19.71 3.59 2.0649e+06 2.02777e+06
1 100000 48.85 7.47 371942 365201 51.33 7.35 1.79042e+06 1.75803e+06
2 10000 6.25 0.80 373.376 359.802 5.34 0.79 650.345 629.288
2 50000 21.38 4.12 492.463 476.123 21.15 4.13 667.047 645
2 100000 61.53 8.44 302.083 288.88 62.32 8.41 539.641 514.087
3 10000 19.16 1.11 74.7421 71.4397 20.40 1.18 95.224 88.142
3 40000 71.26 4.76 69.2354 65.8478 68.95 4.79 127.857 116.933
3 90000 204.48 11.78 69.2994 65.8143 160.07 11.85 109.287 100.475
4 10000 6.75 0.92 961.75 910.571 7.17 0.96 1640.19 1524.98
4 50000 27.46 4.91 903.773 846.954 36.12 5.02 1631.8 1520.71
4 100000 75.39 9.85 824.269 776.036 75.90 9.82 1710.28 1596.1

Table 5: Computational results for A-criterion with K = I
cpu obj

χi n mul IP SDPT3 mul IP SDPT3

1 10000 13.69 0.74 2.29 54286.3 53848.3 53848.4
1 50000 62.08 4.17 12.23 54245.2 53807.3 54103.8
1 100000 133.65 7.37 27.46 54240.1 53802.1 54103.8
2 10000 16.53 0.81 1.82 73.4521 72.4443 72.4443
2 50000 75.99 4.26 11.03 73.391 72.385 72.3853
2 100000 164.18 8.60 20.23 73.3837 72.3778 72.3777
3 10000 1.58 0.93 2.13 21.6203 21.6191 21.6191
3 40000 12.81 4.38 11.38 21.2826 21.2812 21.2812
3 90000 36.66 9.14 30.21 21.1721 21.1706 21.1706
4 10000 12.84 0.96 1.58 174.279 170.775 170.775
4 50000 59.76 5.19 9.51 174.276 170.775 170.775
4 100000 128.73 9.93 17.13 174.277 170.775 170.776

6 Concluding remarks

In this paper we propose an IP method for solving problem (1) with a broad class of convex
optimality criteria and establish its global convergence. We demonstrate how the Newton direction
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Table 6: Computational results for D-criterion with K = I
cpu obj

χi n mul IP SDPT3 mul IP SDPT3

1 10000 1.11 1.02 0.87 20.5125 20.5119 20.5125
1 50000 4.86 4.67 3.86 20.5098 20.5091 20.5091
1 100000 14.77 9.13 7.59 20.5094 20.5087 20.5088
2 10000 1.92 0.74 1.01 0.410745 0.410221 0.41022
2 50000 16.74 3.80 4.75 0.409964 0.409267 0.40926
2 100000 55.28 6.96 8.89 0.409795 0.409154 0.409145
3 10000 1.76 0.89 1.16 5.14292 5.14267 5.14267
3 40000 15.90 3.99 6.53 5.08236 5.08212 5.08211
3 90000 47.07 8.70 15.38 5.06226 5.06202 5.06201
4 10000 1.35 1.02 0.94 7.25257 7.25189 7.25189
4 50000 11.16 5.04 4.17 7.25253 7.2519 7.25189
4 100000 35.09 9.86 8.14 7.25246 7.2519 7.25189

Table 7: Computational results for pth mean criterion with K = I for some p ∈ (−1, 0)

p = −0.25 p = −0.75
cpu obj cpu obj

χi n mul IP mul IP mul IP mul IP

1 10000 7.48 0.91 23.3728 23.372 3.53 0.82 3635.71 3635.29
1 50000 42.29 4.21 23.3683 23.3675 24.12 4.37 3633.58 3633.2
1 100000 91.80 8.29 23.3677 23.367 57.01 8.86 3633.31 3632.94
2 10000 3.43 0.74 5.58855 5.58838 2.55 0.80 27.4836 27.4811
2 50000 20.56 4.00 5.58796 5.58771 11.69 4.14 27.4691 27.4653
2 100000 69.43 7.67 5.58785 5.58763 37.49 8.60 27.467 27.4634
3 10000 1.65 0.77 6.70457 6.70448 1.56 0.99 14.1435 14.1429
3 40000 14.46 4.24 6.68235 6.68225 13.22 3.82 13.9841 13.9834
3 90000 42.01 8.24 6.675 6.67491 37.85 9.25 13.9318 13.9311
4 10000 1.75 0.92 7.25984 7.25955 1.43 0.92 52.2922 52.286
4 50000 8.97 4.58 7.25988 7.25956 6.05 4.52 52.2937 52.286
4 100000 30.50 8.85 7.25983 7.25957 20.67 9.20 52.2927 52.2861

Table 8: Computational results for pth mean criterion with K = I for some p < −1
p = −1.1 p = −1.2

cpu obj cpu obj
χi n mul IP mul IP mul IP mul IP

1 10000 4.62 0.72 162818 159210 4.64 0.67 485415 471459
1 50000 18.15 3.64 162740 159077 18.28 3.63 482380 471030
1 100000 49.28 7.47 162732 159060 47.57 7.56 485149 470975
2 10000 4.59 0.79 108.922 108.171 4.65 0.80 165.133 162.297
2 50000 18.44 4.19 109.588 108.072 19.23 4.27 164.314 162.134
2 100000 47.95 8.66 109.495 108.06 45.78 8.87 165.458 162.114
3 10000 36.72 1.02 25.9565 25.7793 36.40 1.04 31.8264 30.8276
3 40000 142.62 4.17 25.599 25.3307 139.85 4.50 31.5254 30.2362
3 90000 328.00 9.60 25.5115 25.1841 322.93 9.68 31.46 30.0431
4 10000 6.51 0.95 297.604 277.597 7.99 0.89 497.138 453
4 50000 27.17 4.83 297.686 277.597 33.88 4.89 497.287 453
4 100000 63.40 9.57 297.696 277.597 81.00 10.02 497.306 453

can be efficiently computed when the method is applied to (1) with classical optimality criteria.
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Our computational results show that the IP method outperforms the widely used multiplicative
algorithm as well as the standard IP solver SDPT3 in both speed and solution quality. The
codes for this paper, including our implementation of the multiplicative algorithm and our codes
generating inputs for SDPT3, are available online at www.math.sfu.ca/∼zhaosong.

Finally, we would like to remark that the performance of our IP method depends on whether the
Newton direction can be computed accurately and efficiently. In our implementation, we observe
that for pth mean criterion with large |p|, as well as for the design space {xi = (1, si, s

2
i , s

3
i , s

4
i )
T , 1 ≤

i ≤ n} with n ≥ 50000 and some random K ∈ <m×3, the Newton direction cannot be computed
accurately due to numerical errors and hence our IP method fails to terminate with a good ap-
proximate solution, compared with the multiplicative algorithm. Indeed, it is known [41, 42] that
the performance of a barrier method deteriorates as µ → 0. It is conceivable that such issues
would not arise if a primal-dual IP method was used instead. However, it is much more involved to
develop a primal-dual IP method for solving (1): since the feasible set of (1) is not closed in gen-
eral, one would have to develop a primal-dual IP method on an equivalent nonlinear semidefinite
programming reformulation of (1). We leave this as a future research direction.

Appendix

We present the proof of Theorem 3.1 in this appendix.

Proof. In this proof, we denote by w̃(µ, v) the vector obtained from w(µ, v) by dropping the last
entry for all (µ, v) ∈ <++ ×<n−1. Notice that w̃(µ, v) is the unique optimal solution of (15).

We now prove part (a). Let

f̄∗ := inf
w
{ΦM(w) : eTw = 1, w > 0}. (44)

We first show that lim
(µ,v)→(0+,0)

ΦM(w(µ, v)) = f̄∗.

Given an arbitrary ε > 0, there exists a positive w̃ satisfying eT w̃ < 1 such that f(w̃) < f̄∗+ε/2.
Then we have that for any v ∈ <n−1,

fµ(w̃(µ, v))− vT w̃(µ, v) ≤ fµ(w̃)− vT w̃. (45)

On the other hand, note that w̃(µ, v) > 0 and eT w̃(µ, v) < 1. Hence,

−
n−1∑
i=1

log(w̃i(µ, v))− log
(
1− eT w̃(µ, v)

)
> 0

and f(w̃(µ, v)) ≥ f̄∗. In view of these inequalities, (45) and the fact that ‖w̃(µ, v)‖1 ≤ 1 and
‖w̃‖1 ≤ 1, one can obtain that for any (µ, v) ∈ <++ ×<n−1,

f̄∗ ≤ f(w̃(µ, v)) = fµ(w̃(µ, v)) + µ

n−1∑
i=1

log(w̃i(µ, v)) + µ log
(
1− eT w̃(µ, v)

)
≤ fµ(w̃(µ, v)) ≤ fµ(w̃) + vT w̃(µ, v)− vT w̃

≤ f(w̃)− µ
n−1∑
i=1

log(w̃i)− µ log
(
1− eT w̃

)
+ 2‖v‖∞

≤ f̄∗ +
ε

2
− µ

n−1∑
i=1

log(w̃i)− µ log
(
1− eT w̃

)
+ 2‖v‖∞.

Thus, there exists some δ > 0 such that f̄∗ ≤ f(w̃(µ, v)) ≤ f̄∗ + ε whenever ‖(µ, v)‖ < δ, µ > 0.
Hence, ΦM(w(µ, v)) = f(w̃(µ, v))→ f̄∗ as (µ, v)→ (0+, 0).
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We next show that f∗ = f̄∗. Clearly, f∗ ≤ f̄∗. We now suppose for contradiction that f∗ < f̄∗.
By the definition of f∗ and f̄∗, there exist w1 and w2 which are feasible points of (1) and (44),
respectively, so that ΦM(w1) < (f∗+ f̄∗)/2 and ΦM(w2) < f̄∗+(f̄∗−f∗)/2. Let w = (w1 +w2)/2.
Clearly, w > 0, eTw = 1 and Range(K) ⊆ Range(M(w)) due to M(w) � 0. By convexity of Φ in
Sm+ (K), we obtain that ΦM(w) ≤ (ΦM(w1) + ΦM(w2))/2 < f̄∗, which is a contradiction to the
definition of f̄∗. Thus, lim

(µ,v)→(0+,0)
ΦM(w(µ, v)) = f̄∗ = f∗.

Now suppose that w∗ is an accumulation point of w(µ, v) as (µ, v) → (0+, 0). We next show
that w∗ is an optimal solution of (1). Indeed, it follows from (7) that for any feasible point w of
(1),

ΦM(w) = inf
U

{
Ψ(U) : M(w) � KUKT , U � 0

}
. (46)

In view of (46), for each (µ, v) ∈ <++ ×<n−1, there exists U(µ, v) � 0 such that

ΦM(w(µ, v)) + ‖(µ, v)‖ > Ψ(U(µ, v)) and M(w(µ, v)) � KU(µ, v)KT . (47)

From the second relation in (47), we see that tr(M(w(µ, v))) ≥ λmin(KTK)tr(U(µ, v)), from which
it follows that U(µ, v) is bounded and thus it has an accumulation point as (µ, v) → (0+, 0). Let
U∗ be such an accumulation point. In view of the first relation in (47) and the assumption on Ψ,
we see that U∗ � 0. Moreover, we obtain by taking limit in (47) upon (µ, v)→ (0+, 0) that

lim
(µ,v)→(0+,0)

ΦM(w(µ, v)) ≥ Ψ(U∗), M(w∗) � KU∗KT . (48)

The second relation in (48) together with Lemma 3.1 implies that

M(w∗) � KU∗KT ⇒
(
U∗−1 KT

K M(w∗)

)
� 0 ⇒ Range(K) ⊆ Range(M(w∗)).

Hence, w∗ is a feasible point of (1). In view of (46), the first relation in (48) and the result
lim

(µ,v)→(0+,0)
ΦM(w(µ, v)) = f∗, we have

ΦM(w∗) ≤ Ψ(U∗) ≤ lim
(µ,v)→(0+,0)

ΦM(w(µ, v)) = f∗.

Thus, w∗ is an optimal solution of (1). This proves part (a).
We next show that part (b) holds. Let w? be an optimal solution of (1) with maximum

cardinality. Then it follows immediately from assumption that M(w?) � 0. Thus, there exists a
corresponding Lagrange multiplier u? so that (w?, u?) satisfies (12). Let w̃? be the vector obtained
from w? by dropping the last entry. In view of (9) and the first equation of (12) and (14), we
observe that for any (µ, v) ∈ ΞC ,

(w(µ, v)− w?)T (u(µ, v)− u?)
= (Pw̃(µ, v)− Pw̃?)T (u(µ, v)− u?)
= (w̃(µ, v)− w̃?)TPT (∇ΦM(w(µ, v))−∇ΦM(w?))− (w̃(µ, v)− w̃?)T v
= (w(µ, v)− w?)T (∇ΦM(w(µ, v))−∇ΦM(w?))− (w̃(µ, v)− w̃?)T v
≥ − 2Cµ,

where the last inequality holds since Φ is convex in Sm++, w(µ, v), w? ∈ Ω and ‖v‖∞ < Cµ. Using
this inequality and the third equation in (12) and (14), we see that

w?Tu(µ, v) + w(µ, v)
T
u? ≤ w?Tu? + w(µ, v)

T
u(µ, v) + 2Cµ = (2C + n)µ. (49)

Dividing both sides of the above inequality by µ and using the third equation of (14), we obtain
that

n∑
i=1

w?i
wi(µ, v)

+

n∑
i=1

u?i
ui(µ, v)

≤ 2C + n. (50)
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Since (w?, u?) ≥ 0 and (w(µ, v), u(µ, v)) > 0, it follows from (50) that for all i,

wi(µ, v) ≥ w?i
2C + n

, ui(µ, v) ≥ u?i
2C + n

. (51)

It immediately implies that the ith entry of any accumulation point w� of w(µ, v) as (µ, v) −−→
ΞC

(0, 0)

must be positive whenever w?i > 0. Since w� is an optimal solution of (1) by part (a), we conclude
that part (b) holds.
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[36] K. C. Toh, M. J. Todd and R. H. Tütüncü. SDPT3 — a Matlab software package for semidef-
inite programming. Optimization Methods and Software 11, pp. 545–581 (1999).

23



[37] B. Torsney. A moment inequality and monotonicity of an algorithm. In Kortanek, K.O. and Fi-
acco, A.V. (Eds.), Proceedings of the International Symposium on Semi-Infinite Programming
and Applications, Lecture Notes in Economics and Mathematical Systems 215. University of
Texas at Austin, pp. 249–260 (1983).

[38] B. Torsney. W-iterations and ripples therefrom. In Pronzato, L., Zhigljavsky, A. (Eds.),
Optimal Design and Related Areas in Optimization and Statistics. Springer-Verlag, New York,
pp. 1–12 (2007).

[39] B. Torsney and R. Mart́ın-Mart́ın. Multiplicative algorithms for computing optimum designs.
Journal of Statistical Planning and Inference 139, pp. 3947–3961 (2009).
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