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Abstract

The conjugate gradient (CG) method is an efficient iterative method for solving large-scale strongly
convex quadratic programming (QP). In this paper we propose some generalized CG (GCG) methods for
solving the `1-regularized (possibly not strongly) convex QP that terminate at an optimal solution in a
finite number of iterations. At each iteration, our methods first identify a face of an orthant and then
either perform an exact line search along the direction of the negative projected minimum-norm subgradient
of the objective function or execute a CG subroutine that conducts a sequence of CG iterations until a
CG iterate crosses the boundary of this face or an approximate minimizer of over this face or a subface is
found. We determine which type of step should be taken by comparing the magnitude of some components
of the minimum-norm subgradient of the objective function to that of its rest components. Our analysis
on finite convergence of these methods makes use of an error bound result and some key properties of the
aforementioned exact line search and the CG subroutine. We also show that the proposed methods are
capable of finding an approximate solution of the problem by allowing some inexactness on the execution
of the CG subroutine. The overall arithmetic operation cost of our GCG methods for finding an ε-optimal
solution depends on ε in O(log(1/ε)), which is superior to the accelerated proximal gradient method [2, 23]
that depends on ε in O(1/

√
ε). In addition, our GCG methods can be extended straightforwardly to solve

box-constrained convex QP with finite convergence. Numerical results demonstrate that our methods are
very favorable for solving ill-conditioned problems.

Keywords: conjugate gradient method, convex quadratic programming, `1-regularization, sparse optimization,
finite convergence
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1 Introduction

The conjugate gradient (CG) method is an efficient numerical method for solving strongly convex quadratic
programming (QP) in the form of

min
x∈<n

1

2
xTBx− cTx, (1.1)
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or equivalently, the linear system Bx = c, where B ∈ <n×n is a symmetric positive definite matrix and c ∈ <n.
It terminates at the unique optimal solution of (1.1) in a finite number of iterations. Moreover, it is suitable
for solving large-scale problems since it only requires matrix-vector multiplications per iteration (e.g., see [24]
for details). The CG method has also been generalized to minimize a convex quadratic function over a box or
a ball (e.g., see [11, 12, 25, 26, 27]).

In this paper we are interested in generalizing the CG method to solve the `1 regularized convex QP:

F ∗ = min
x∈<n

F (x) :=
1

2
xTAx− bTx+ τ‖x‖1, (1.2)

where A ∈ <n×n is a symmetric positive semidefinite matrix, b ∈ <n and τ ≥ 0 is a regularized parameter.
Throughout this paper we make the following assumption for problem (1.2).

Assumption 1 The set of optimal solutions of problem (1.2), denoted by S∗, is nonempty. 1

Over the last decade, a great deal of attention has been focused on problem (1.2) due to numerous applications
in image sciences, machine learning, signal processing and statistics (e.g., see [8, 16, 5, 14, 30, 29] and the
references therein). Considerable effort has been devoted to developing efficient algorithms for solving (1.2)
(e.g., see [2, 23, 30, 33, 15, 32, 31, 22]). These methods are iterative methods and capable of producing an
approximate solution to (1.2). Nevertheless, they generally cannot terminate at an optimal solution of (1.2).
Recently, Byrd et al. [6] proposed a method called iiCG to solve (1.2) that combines the iterative soft-thresholding
algorithm (ISTA) [2, 10, 30] with the CG method. Under the assumption that A is symmetric positive definite,
it was shown in [6] that the sequence generated by iiCG converges to the unique optimal solution of (1.2), and
if additionally this solution satisfies strict complementarity, iiCG terminates in a finite number of iterations. Its
convergence is, however, unknown when A is positive semidefinite (but not definite), which is typical for many
instances of (1.2) arising in applications.

In this paper we propose some generalized CG (GCG) methods for solving (1.2) that terminate at an optimal
solution of (1.2) in a finite number of iterations with no additional assumption. At each iteration, our methods
first identify a certain face of some orthant and then either perform an exact line search along the direction of
the negative projected minimum-norm subgradient of F or execute a CG subroutine that conducts a sequence
of CG iterations until a CG iteration crosses the boundary of this face or an approximate minimizer of F over
this face or a subface is found. The purpose of the exact line search step is to release some zero components
of the current iterate so that the value of F is sufficiently reduced. The aim of executing a CG routine is to
update the nonzero components of the current iterate, which also results in a reduction on F . We determine
which type of step should be taken by comparing the magnitude of some components of the minimum-norm
subgradient of F to that of its rest components. Our methods are substantially different from the iiCG method
[6]. In fact, at each iteration, iiCG either performs a proximal gradient step or executes a single CG iteration.
It determines which type of step should be conducted by comparing the magnitude of some components of a
proximal gradient of F to that of its rest components.

In order to analyze the convergence of our GCG methods, we establish some error bound results for problem
(1.2). We also conduct some exclusive analysis on the aforementioned exact line search and the CG subroutine.
Using these results, we show that the GCG methods terminate at an optimal solution of (1.2) in a finite number
of iterations. To the best of our knowledge, the GCG methods are the first methods for solving (1.2) with
finite convergence. We also show that our methods are capable of finding an approximate solution of (1.2) by
allowing some inexactness on the execution of the CG subroutine. The overall arithmetic operation cost of our
GCG methods for finding an ε-optimal solution depends on ε in O(log(1/ε)), which is superior to the accelerated

1Since the objective function of (1.2) is a convex piecewise quadratic function, problem (1.2) has at least an optimal solution if
and only if its objective function is bounded below.

2



proximal gradient method [2, 23] that depends on ε in O(1/
√
ε). In addition, it shall be mentioned that these

methods can be extended to solve the following box-constrained convex QP with finite convergence:

min
l≤x≤u

1

2
xTAx− bTx, (1.3)

where A ∈ <n×n is symmetric positive semidefinite, b ∈ <n, l, u ∈ <̄n with <̄ = [−∞,∞]. As for finite
convergence, the existing CG type methods [11, 12] for (1.3), however, require that A be symmetric positive
definite. The extension of our methods to problem (1.3) is not included in this paper due to the length limitation.

The rest of the paper is organized as follows. In Section 2, we establish some results on error bound for
problem (1.2). In Section 3, we propose several GCG methods for solving problem (1.2) and establish their finite
convergence. In Section 4, we discuss the application of our GCG methods to solve the `1 regularized least-
squares problems and develop a practical termination criterion for them. We conduct numerical experiments in
Section 5 to compare the performance of our GCG methods with some state-of-the-art algorithms for solving
problem (1.2). In Section 6 we present some concluding remarks. Finally, in the appendix we study some
convergence properties of the standard CG method for solving (possibly not strongly) convex QP.

1.1 Notation and terminology

For a nonzero symmetric positive semidefinite matrix A, we define a generalized condition number of A as

κ(A) = ‖A‖‖A+‖ =
λmax(A)

λ+
min(A)

, (1.4)

where A+ is the Moore-Penrose pseudoinverse of A, λmax(A) is the largest eigenvalue of A and λ+
min(A) is the

smallest positive eigenvalue of A. Clearly, it reduces to the standard condition number when A is symmetric
positive definite. In addition, for any index set J ∈ {1, . . . , n}, |J | is the cardinality of J and AJJ is the
submatrix of A formed by its rows and columns indexed by J . Analogously, bJ is the subvector of b ∈ <n
formed by its components indexed by J . In addition, the range space and rank of a matrix B are denoted by
Range(B) and rank(B), respectively.

Let sgn : <n → {−1, 0, 1}n be the standard sign operator, which is conventionally defined as follows

[sgn(x)]i =


1 if xi > 0;

0 if xi = 0;

−1 if xi < 0,

i = 1, . . . .n.

Let F be defined in (1.2) and

f(x) =
1

2
xTAx− bTx. (1.5)

Let v(x) be the minimum-norm subgradient of F at x, which is the projection of the zero vector onto the
subdifferential of F at x. It follows that

vi(x) =

{
∇if(x) + τ sgn(xi) if xi 6= 0;

min (∇if(x) + τ,max(0,∇if(x)− τ)) if xi = 0,
i = 1, . . . , n, (1.6)

where ∇if(x) denotes the ith partial derivative of f at x. It is known that x is an optimal solution of problem
(1.2) if and only if 0 ∈ ∂F (x), where ∂F denotes the subdifferential of F . Since 0 ∈ ∂F (x) is equivalent to
v(x) = 0, x is an optimal solution of (1.2) if and only if v(x) = 0.

For any x ∈ <n, we define

I−(x) = {i : xi < 0}, I+(x) = {i : xi > 0},

I0(x) = {i : xi = 0}, Ic
0(x) = {i : xi 6= 0},

(1.7)
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and also define
H(x) = {y ∈ <n : yi = 0, i ∈ I0(x)}, F ∗x = min{F (y) : y ∈ H(x)}. (1.8)

In addition, given any closed set S ⊆ <n, dist(x, S) denotes the distance from x to S, and PS(x) denotes the
projection of x to S. Finally, we define

I∗ = {J ⊆ I0(x∗) : x∗ ∈ S∗}, L(n) = max {` : Ci /∈ I∗, i = 1, . . . , `, are distinct subsets in {1, . . . , n}}+ 1.

(1.9)

2 Error bound results

In this section we develop some error bound results for problem (1.2). To proceed, let S(δ) := {x : F (x)−F ∗ ≤ δ}
for any δ ≥ 0, where F and F ∗ are defined in (1.2). We first bound the gap between F (x) and F ∗ by ‖v(x)‖
for all x ∈ S(δ).

Theorem 2.1 Let F , F ∗ and v be defined in (1.2) and (1.6), respectively. Then for any δ ≥ 0, there exists
some η > 0 (depending on δ) such that

F (x)− F ∗ ≤ η‖v(x)‖2, ∀x ∈ S(δ).

Proof. Let X∗ denote the set of optimal solutions of (1.2). Notice that F is a convex piecewise quadratic
function. By [21, Theorem 2.7], there exists some η > 0 such that

dist(x,X∗) ≤ √η
√
F (x)− F ∗, ∀x ∈ S(δ). (2.1)

Let x∗ ∈ X∗ be such that ‖x− x∗‖ = dist(x,X∗). By v(x) ∈ ∂F (x) and the convexity of F , one has

F (x)− F ∗ = F (x)− F (x∗) ≤ 〈v(x), x− x∗〉 ≤ ‖v(x)‖‖x− x∗‖ = ‖v(x)‖dist(x,X∗),

which together with (2.1) implies that the conclusion holds.

We next bound the gap between F (x) and F ∗x by the magnitude of some components of v(x) for all x ∈ S(δ).

Theorem 2.2 Let F and F ∗x be defined in (1.2) and (1.8), respectively. Then for any δ ≥ 0, there exists some
η̂ > 0 (depending on δ) such that

F (x)− F ∗x ≤ η̂‖[v(x)]J‖2, ∀x ∈ S(δ),

where J = Ic
0(x).

Proof. Let x ∈ S(δ) be arbitrarily chosen, I = I0(x) and J = Ic
0(x). If J = ∅, it is clear that x = 0 and

hence F ∗x = F (x). Also, by convention ‖[v(x)]J‖ = 0. These imply the conclusion holds. We now assume J 6= ∅.
Consider the problem

F̂ ∗J = min
z∈<|J|

F̂J(z) :=
1

2
zTAJJz − bTJ z + τ‖z‖1. (2.2)

In view of the definitions of F ∗x , F̂J , F̂ ∗J , F , F
∗ and J , one can observe that

F̂J(xJ) = F (x), F̂ ∗J = F ∗x ≥ F ∗.

This together with x ∈ S(δ) implies that F̂J(xJ)− F̂ ∗J ≤ F (x)−F ∗ ≤ δ. By (1.6), (2.2) and the definition of J ,
we also observe that [v(x)]J is the minimum-norm subgradient of F̂J at xJ . In addition, notice that problem
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(2.2) is in the same form as (1.2). By these facts and applying Theorem 2.3 to problem (2.2), there exists some
ηJ > 0 (depending on δ and J) such that

F (x)− F ∗x = F̂J(xJ)− F̂ ∗J ≤ ηJ‖[v(x)]J‖. (2.3)

Let η̂ = max{ηJ : J = Ic
0(x), x ∈ S(δ)}, which is finite due to the fact that all possible choices of J are finite.

The conclusion immediately follows from this and (2.3).

The error bound presented in Theorem 2.2 is a local error bound as it depends on δ. In addition, Theorem
2.2 only ensures the existence of some parameter η for the error bound, but its actual value is generally unknown.
We next derive a global error bound with a known η for problem (1.2) when A is symmetric positive definite.
To proceed, we first establish a lemma as follows.

Lemma 2.1 Suppose A 6= 0 and b ∈ Range(A). Let f(x) be defined in (1.5) and f∗ = minx∈<n f(x). Then
there holds:

1

2‖A‖
‖∇f(x)‖2 ≤ f(x)− f∗ ≤ ‖A

+‖
2
‖∇f(x)‖2, ∀x ∈ <n.

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be all eigenvalues of A and {ui}ni=1 the corresponding orthonormal
eigenvectors. In addition, let x∗ be an optimal solution of the problem minx∈<n f(x). Clearly, Ax∗ = b.
Moreover, for any x ∈ <n, we have x− x∗ =

∑n
i=1 αiui for some {αi}ni=1. These imply

∇f(x) = Ax− b = A(x− x∗) =

n∑
i=1

λiαiui. (2.4)

Let ` = rank(A). It follows that λi = 0 for all i > `. In view of this and (2.4), we have

‖∇f(x)‖2 =

n∑
i=1

λ2
iα

2
i =

∑̀
i=1

λ2
iα

2
i .

This together with the fact λ1 ≥ · · · ≥ λ` > 0 yields

1

λ1
‖∇f(x)‖2 =

1

λ1

∑̀
i=1

λ2
iα

2
i ≤

∑̀
i=1

λiα
2
i ≤

1

λ`

∑̀
i=1

λ2
iα

2
i =

1

λ`
‖∇f(x)‖2.

Using the definitions of f and x∗, (2.4), x− x∗ =
∑n
i=1 αiui and λi = 0 for all i > `, one can observe that

f(x)− f∗ =
1

2
(x− x∗)TA(x− x∗) =

1

2

n∑
i=1

λiα
2
i =

1

2

∑̀
i=1

λiα
2
i .

The conclusion then immediately follows from the last two relations and the fact that λ1 = ‖A‖ and λ` =

1/‖A+‖.

Theorem 2.3 Let F and F ∗x be defined in (1.2) and (1.8), respectively. Suppose that A is symmetric positive
definite. Then there holds:

F (x)− F ∗x ≤
‖A−1‖

2
‖[v(x)]J‖2, ∀x ∈ <n,

where J = Ic
0(x).
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Proof. Let x ∈ <n be arbitrarily chosen and let J = Ic
0(x). If J = ∅, it is clear that x = 0 and hence

F ∗x = F (x). Also, by convention ‖[v(x)]J‖ = 0. These imply the conclusion holds. We now assume J 6= ∅.
Consider the problem

F̃ ∗J = min
z∈<|J|

F̃J(z) :=
1

2
zTAJJz + (−bJ + sgn(xJ))T z.

Since A is positive definite, so is AJJ . It then follows that sgn(xJ) − bJ ∈ Range(AJJ). By applying Lemma
2.1 to this problem, we obtain that

F̃J(xJ)− F̃ ∗J ≤
‖(AJJ)−1‖

2
‖∇F̃J(xJ)‖2. (2.5)

In addition, by the definitions of F , F̃J and J , one can observe that F̃J(yJ) ≤ F (y) for all y ∈ H(x), where
H(x) is defined in (1.8). This together with the definitions of F̃ ∗J and F ∗x implies F̃ ∗J ≤ F ∗x . Also, we observe
that F̃J(xJ) = F (x) and [v(x)]J = ∇F̃J(xJ). Using these relations and (2.5), we have

F (x)− F ∗x ≤ F̃J(xJ)− F̃ ∗J ≤
‖(AJJ)−1‖

2
‖∇F̃J(xJ)‖2 ≤ ‖A−1‖

2
‖[v(x)]J‖2,

and hence the conclusion holds.

3 Generalized conjugate gradient methods for (1.2)

In this section we propose several GCG methods for solving problem (1.2), which terminate at an optimal
solution in a finite number iterations. A key ingredient of these methods is to apply a truncated projected CG
(TPCG) method to a sequence of convex QP over certain faces of some orthants in <n.

3.1 Truncated projected conjugate gradient methods

In this subsection we present two TPCG methods for finding an (perhaps very roughly) approximate solution
to a convex QP on a face of some orthant in <n in the form of

min
x

q(x) := f(x) + cTx

s.t. xj = 0, j ∈ J0,

xj ≤ 0, j ∈ J−,
xj ≥ 0, j ∈ J+,

(3.1)

where f is defined in (1.5), c ∈ <n, and J−, J0, J+ ⊆ {1, . . . , n} form a partition of {1, . . . , n}. For convenience
of presentation, we denote by Ω the feasible region of (3.1).

For the first TPCG method, each iterate is obtained by applying the standard projected CG (PCG) method
2 to the problem

min
x
{q(x) : xj = 0, j ∈ J0} (3.2)

until an approximate solution of (3.2) is found or a PCG iterate crosses the boundary of Ω. In the former case,
the method outputs the resulting approximate solution. But in the latter case, it outputs the intersection point
between the boundary of Ω and the line segment joining the last two PCG iterates. Let x0 be an arbitrary
feasible point of problem (3.1) and ε ≥ 0 be given. We now present the first TPCG method for problem (3.1).

2The PCG method applied to problem (3.2) is equivalent to the CG method applied to the problem min q(xJc
0
, 0), where Jc

0 is
the complement of J0 in {1, . . . , n}.
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Subroutine 1: y = TPCG1(A, b, c, J0, J−, J+, x
0, ε)

Input: A, b, c, J0, J−, J+, x0, ε.

Set r0 = Ax0 − b+ c, H = {x ∈ <n : xj = 0, j ∈ J0}, p0 = PH(r0), d0 = −p0, k = 0.

Repeat

1) αk = min{αcg
k , α

tc
k }, where

αcg
k = ‖pk‖2

(dk)TAdk
, 3 αtc

k = max{α : xk + αdk ∈ Ω}.

2) xk+1 = xk + αkd
k.

3) If αcg
k > αk, return y = xk+1 and terminate.

4) rk+1 = rk + αkAd
k.

5) pk+1 = PH(rk+1). If ‖pk+1‖∞ ≤ ε, return y = xk+1 and terminate.

6) dk+1 = −pk+1 + ‖pk+1‖2
‖pk‖2 dk.

7) k ← k + 1.

Output: y.

Remark 1: The iterations of the above TPCG method are almost identical to those of PCG applied to
problem (3.2) except that the step length αk is chosen to be an intermediate one when an iterate of PCG
crosses the boundary of Ω. In addition, if αcg

k > αk holds at some k, the output y is on the boundary of Ω. If
‖pk+1‖∞ ≤ ε holds at some k, the output y is an approximate optimal solution of problem (3.1).

We next show that under a mild assumption the above method terminates in a finite number of iterations.

Theorem 3.1 Assume that problem (3.1) has at least an optimal solution. Suppose that x0 is a feasible point
of problem (3.1) and ε ≥ 0. Let B = AJc

0J
c
0
, where Jc

0 is the complement of J0 in {1, . . . , n}. The following
statements hold:

(i) If problem (3.2) is bounded below, Subroutine 1 terminates in at most min(M, rank(B)) 4 iterations, where

M =

⌈
log ε− log(2

√
κ(B)‖p0‖)

log(κ(B)− 1)− log(κ(B) + 1)

⌉
.

(ii) If problem (3.2) is unbounded below, Subroutine 1 terminates in at most rank(B) + 1 iterations.

Proof. (i) Assume that problem (3.2) is bounded. Suppose for contradiction that Subroutine 1 does not
terminate in min(M, rank(B)) iterations. Then the iterates xk, k = 1, . . . ,min(M, rank(B)) of Subroutine 1 are

3If ‖pk‖ 6= 0 and (dk)TAdk = 0, we set αcg
k =∞.

4By convention, we define log 0 = −∞. It follows that M = −∞ and hence min(M, rank(B)) = rank(B) when ε = 0.

7



identical to those generated by the PCG method applied to problem (3.2). Let q∗ denote the optimal value of
(3.2). It follows from Theorem A.3 (iii) that for k = 1, . . . ,min(M, rank(B)),

q(xk)− q∗ ≤ 4

(√
κ(B)− 1√
κ(B) + 1

)2k (
q(x0)− q∗

)
.

By the definition of pk and Lemma 2.1, we have

‖pk‖2 ≤ 2‖B‖(q(xk)− q∗), q(x0)− q∗ ≤ ‖B+‖‖p0‖2/2.

Using these relations, we obtain that

‖pk‖2 ≤ 4κ(B)

(√
κ(B)− 1√
κ(B) + 1

)2k

‖p0‖2.

In view of this and Theorem A.2 (i), one can easily conclude that the PCG method must terminate at xk

satisfying ‖pk‖∞ ≤ ε for some 0 ≤ k ≤ min(M, rank(B)). This contradict the above supposition.
(ii) Assume that problem (3.2) is unbounded. Suppose for contradiction that Subroutine 1 does not terminate

in rank(B) + 1 iterations. Then the iterates xk, k = 1, . . . , rank(B) + 1, of Subroutine 1 are identical to
those generated by the PCG method applied to problem (3.2). By Theorem A.2 (ii), there must exist some
0 ≤ i ≤ rank(B) + 1 such that q(xi + αdi) → −∞ as α → ∞. Recall that xl is in Ω and problem (3.1) has at
least an optimal solution. Thus there exists a least α ≥ 0 such that xi+1 = xi + αdi lies on the boundary of Ω

and Subroutine 1 thus terminates at iteration i, which is a contradiction to the above supposition.

Remark 2: It follows from Theorem 3.1 that when ε = 0, TPCG1 executes at most (but possibly much
less than) n + 1 PCG iterations. On the other hand, when ε > 0, the number of PCG iterations executed in
TPCG1 depends on ε in O(log(1/ε)).

As seen from step 3) of Subroutine 1, it immediately terminates once an iterate crosses the boundary of Ω.
In this case, the output y may be a rather poor approximate solution to problem (3.1). In order to improve
the quality of y, we resort an active set approach by iteratively applying Subroutine 1 to minimize q over a
decremental subset of Ω, which is formed by incorporating the active constraints of the iterate obtained from
the immediately preceding execution of Subroutine 1. Let x0 be an arbitrary feasible point of problem (3.1)
and ε ≥ 0 be given. We now present this improved TPCG method for problem (3.1) as follows.

Subroutine 2: y = TPCG2(A, b, c, J0, J−, J+, x
0, ε)

Input: A, b, c, J0, J−, J+, x0, ε.

Set H0 = {x ∈ <n : xj = 0, j ∈ J0}, J0
0 = J0, J0

− = J−, J0
+ = J+, k = 0.

Repeat

1) If ‖PHk
(Axk − b+ c)‖∞ ≤ ε, return y = xk and terminate.

2) xk+1 = TPCG1(A, b, c, Jk0 , J
k
−, J

k
+, x

k, ε).

3) Jk+1
0 = I0(xk+1), Jk+1

− = I−(xk+1), Jk+1
+ = I+(xk+1), Hk+1 = H(xk+1).

4) k ← k + 1.

Output: y.

We next show that under some suitable assumptions, Subroutine 2 terminates in a finite number of iterations.
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Theorem 3.2 Assume that problem (3.1) has at least an optimal solution. Let H0 = {x ∈ <n : xj = 0, j ∈ J0}
and Ω be the feasible region of problem (3.1). Suppose that x0 is a feasible point (3.1) and ε ≥ 0. Then the
following statements hold:

(i) Subroutine 2 is well defined.

(ii) Subroutine 2 terminates in at most n + 1 − |J0| iterations. Moreover, its output y satisfies y ∈ Ω and
‖PH(y)(Ay − b+ c)‖∞ ≤ ε, where H(·) is defined in (1.8).

(iii) Suppose additionally that ‖PH0
(Ax0− b+ c)‖∞ > ε and x0−αPH0

(Ax0− b+ c) ∈ Ω for sufficiently small
α > 0. Then q(y) < q(x0), where q is defined in (3.1).

Proof. (i) Observe that in step 2) of Subroutine 2, Subroutine 1 (namely, TPCG1) is applied to the problem

min
x

q(x)

s.t. xj = 0, j ∈ Jk0 ,
xj ≤ 0, j ∈ Jk−,
xj ≥ 0, j ∈ Jk+,

(3.3)

where q is defined in (3.1). Let Ωk denote the feasible region of (3.3). In view of the updating scheme of
Subroutine 2 and the definitions of Jk0 , Jk− and Jk+, it is not hard to observe that ∅ 6= Ωk ⊆ Ω. By the
assumption that (3.1) has at least an optimal solution, so does (3.3). It then follows from Theorem 3.1 that
xk+1 shall be successfully generated by Subroutine 1. Using this observation and an inductive argument, we
can conclude that Subroutine 2 is well defined.

(ii) Suppose for contradiction that Subroutine 2 does not terminate in K = n + 1 − |J0| iterations. Then
‖PHk+1

(Axk+1− b+ c)‖∞ > ε for all 0 ≤ k ≤ K. Since {xk}Kk=0 are generated by Subroutine 1, one can observe
that I0(xk) ⊆ I0(xk+1) and hence Hk ⊇ Hk+1 for every 0 ≤ k ≤ K. It then follows from these and the definition
of H(·) that for all 0 ≤ k ≤ K,

‖PHk
(Axk+1 − b+ c)‖∞ ≥ ‖PHk+1

(Axk+1 − b+ c)‖∞ > ε.

This implies that when Subroutine 1 is applied to (3.3), it terminates at a boundary point xk+1 of the feasible
region of (3.3). It then follows that

I0(x0) ( I0(x1) ( · · · ( I0(xK).

Thus {|I0(xk)|}Kk=0 is strictly increasing, which along with K = n + 1 − |J0| and |I0(x0)| ≥ |J0| leads to
|I0(xK)| ≥ n + 1. This contradicts the trivial fact |I0(xK)| ≤ n. Therefore, Subroutine 2 must terminate at
some y in at most n+1−|J0| iterations. Clearly, y ∈ Ω. We now prove ‖PH(y)(Ay−b+c)‖∞ ≤ ε by considering
two separate cases as follows.

Case 1): ‖PH0(Ax0 − b+ c)‖∞ ≤ ε. In this case, Subroutine 2 terminates at k = 0 and outputs y = x0. By
x0 ∈ Ω and the definition of H(·), one can see that H(x0) ⊆ H0 and hence

‖PH(x0)(Ax
0 − b+ c)‖∞ ≤ ‖PH0(Ax0 − b+ c)‖∞ ≤ ε,

which together with y = x0 implies ‖PH(y)(Ay − b+ c)‖∞ ≤ ε.
Case 2): ‖PH0

(Ax0 − b + c)‖∞ > ε. In this case, Subroutine 2 must terminate at some iteration k ≥ 1. It
then follows that ‖PHk

(Axk − b + c)‖∞ ≤ ε and y = xk. In addition, we observe from the definitions of H(·)
and Hk that H(xk) = Hk for k ≥ 1. It then immediately follows that ‖PH(y)(Ay − b+ c)‖∞ ≤ ε.
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(iii) We now prove statement (iii). Since ‖PH0
(Ax0 − b + c)‖∞ > ε, x1 must be generated by calling the

subroutine TPCG1(A, b, c, J0, x
0, ε), whose first iteration performs a projected gradient step to find a point

x(α∗), where
α∗ = arg min

α≥0
{q(x(α)) : x(α) ∈ Ω},

and x(α) = x0−αPH0(∇q(x0)) = x0−αPH0(Ax0− b+ c). By the assumption that x0−αPH0(Ax0− b+ c) ∈ Ω

for sufficiently small α > 0, one can see that α∗ > 0 and q(x(α∗)) < q(x0). We also observe that the value of q
is non-increasing along the subsequent iterates of the subroutine TPCG1(A, b, c, J0, x

0, ε). These observations
and the definition of x1 imply that q(x1) < q(x0). In addition, q is non-increasing along the iterates generated
in Subroutine 1. Hence, q(xk+1) ≤ q(xk) for all k ≥ 1. It then follows q(xk) < q(x0) for all k ≥ 1. Notice that
y = xk for some k ≥ 1. Hence, q(y) < q(x0).

Remark 3: As seen from Theorem 3.2, the subroutine TPCG1 is executed in TPCG2 at most (but possibly
much less than) n+ 1 times. In view of this and Remark 2, one can see that when ε = 0, the number of PCG
iterations executed in TPCG2 is at most (n+1)2. On the other hand, when ε > 0, its number of PCG iterations
depends on ε in O(log(1/ε)).

3.2 The first generalized conjugate gradient method for (1.2)

In this subsection we propose a GCG method for solving problem (1.2). We show that this method terminates
at an optimal solution of (1.2) in a finite number of iterations. Before proceeding, we introduce some notations
that will be used through the next several subsections.

Given any x ∈ <n, we define

I0
0 (x) = {i ∈ I0(x) : 0 ∈ [∇if(x)− τ,∇if(x) + τ ]},

I+
0 (x) = {i ∈ I0(x) : ∇if(x) + τ < 0},

I−0 (x) = {i ∈ I0(x) : ∇if(x)− τ > 0},

(3.4)

where I0(·) is given in (1.7). Also, we define c(·; τ) : <n → {−τ, 0, τ}n as follows:

ci(x; τ) =


τ if i ∈ I+(x) ∪ I+

0 (x);

0 if i ∈ I0
0 (x);

−τ if i ∈ I−(x) ∪ I−0 (x),

i = 1, . . . , n, (3.5)

where I−(·) and I+(·) are defined in (1.7). It then follows from (1.6) and (3.5) that

vi(x) = ∇if(x) + ci(x; τ), ∀i /∈ I0
0 (x). (3.6)

In addition, given any y ∈ <n, we define

Q(x; y) = f(x) + c(y; τ)Tx.

The main idea of our GCG method is as follows. Given a current iterate xk, we check to see whether
v(xk) = 0 or not. If yes, then xk is an optimal solution of (1.2). Otherwise, we find next iterate xk+1 by
applying Subroutine 2 with initial point xk and ε = 0 to the problem

min
x

Q(x;xk)

s.t. xj = 0, j ∈ Jk0 ,
xj ≤ 0, j ∈ Jk−,
xj ≥ 0, j ∈ Jk+,

(3.7)
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where Jk0 = I0
0 (xk), Jk− = I−(xk) ∪ I−0 (xk) and Jk+ = I+(xk) ∪ I+

0 (xk). That is, xk+1 is obtained by executing
the subroutine TPCG2(A, b, ck, Jk0 , J

k
−, J

k
+, x

k, 0). As later shown, such xk+1 satisfies the following properties:

F (xk+1) < F (xk), (3.8)

xk+1 ∈ Arg min{F (x) : xi = 0, i ∈ I0(xk+1)}.5 (3.9)

By these relations, one can observe that there is no repetition among {I0(xk) : k ≥ 1}. Notice that {I0(x) :

x ∈ <n} is a finite set. Thus the method must terminate in a finite number of iterations. Moreover, we will
show that it terminates at an optimal solution of (1.2). We now present our GCG method as follows.

GCG method 1 for problem (1.2): y = GCG1(A, b, τ, x0, ε)

Input: A, b, τ , x0, ε.

Set k = 0.

Repeat

1) If ‖v(xk)‖∞ ≤ ε, return y = xk and terminate.

2) Jk0 = I0
0 (xk), Jk− = I−(xk) ∪ I−0 (xk), Jk+ = I+(xk) ∪ I+

0 (xk), ck = c(xk; τ).

3) xk+1 = TPCG2(A, b, ck, Jk0 , J
k
−, J

k
+, x

k, 0).

4) k ← k + 1.

Output: y.

We next show that the above GCG method terminates in a finite number of iterations, and moreover it finds
an optimal solution of problem (1.2) when ε = 0.

Theorem 3.3 Under Assumption 1, the following statements hold:

(i) GCG method 1 terminates in at most L(n) iterations, where L(n) is defined in (1.9).

(ii) Let y be the output of GCG method 1. Then s ∈ ∂F (y) for some s with ‖s‖∞ ≤ ε, and moreover, y is an
optimal solution of problem (1.2) when ε = 0.

Proof. (i) We first show that (3.8) and (3.9) hold at iteration k at which GCG method 1 has not yet
terminated, that is, ‖v(xk)‖∞ > ε. Let Ωk denote the feasible region of problem (3.7). By (3.5) and the
definitions of Jk0 , Jk− and Jk+, one can observe that ci(xk; τ)xi = τ |xi| for all x ∈ Ωk. This along with the
definitions of Q(·; ·), f and F yields

F (x) = Q(x;xk), ∀x ∈ Ωk. (3.10)

It then follows from Assumption 1 that problem (3.7) is bounded below and hence has at least an optimal
solution. By this and Theorem 3.2, xk+1 shall be successfully generated in step 3) by the subroutine TPCG2.
We next show that xk+1 satisfies (3.8) and (3.9). To this end, let

H̄ = {x ∈ <n : xi = 0, i ∈ I0
0 (xk)}. (3.11)

5By convention, the symbol Arg stands for the set of the solutions of the associated optimization problem. When this set is
known to be a singleton, we use the symbol arg to stand for it instead.
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By (3.6), (3.11) and the definition of ck, we have

PH̄(Axk − b+ ck) = PH̄(∇f(xk) + c(xk; τ)) = PH̄(v(xk)). (3.12)

Observe from (1.6) and (3.4) that vi(xk) < 0 if i ∈ I+
0 (xk); and vi(xk) > 0 if i ∈ I−0 (xk). By (3.11), one can see

that [PH̄(v(xk))]i = 0 if i ∈ I0
0 (xk) and [PH̄(v(xk))]i = vi(x

k) otherwise. These imply that [PH̄(v(xk))]i = 0 if
i ∈ I0

0 (xk); [PH̄(v(xk))]i < 0 if i ∈ I+
0 (xk); and [PH̄(v(xk))]i > 0 if i ∈ I−0 (xk). In view of these relations, (3.12)

and the definition of Ωk, one can observe that when α > 0 is sufficiently small,

xk − αPH̄(Axk − b+ ck) = xk − αPH̄(v(xk)) ∈ Ωk.

In addition, we observe that ‖PH̄(v(xk))‖∞ = ‖v(xk)‖∞, which along with (3.12) and ‖v(xk)‖∞ > ε yields
‖PH̄(Axk − b+ ck)‖∞ > ε. Recall that xk+1 is resulted from the subroutine TPCG2 when applied to problem
(3.7) starting at xk. It then follows from Theorem 3.2 that xk+1 ∈ Ωk, PĤ(Axk+1−b+ck) = 0 and Q(xk+1;xk) <

Q(xk;xk), where
Ĥ = {x ∈ <n : xi = 0, i ∈ I0(xk+1)}.

In view of (3.10), Q(xk+1;xk) < Q(xk;xk) and xk, xk+1 ∈ Ωk, we see that (3.8) holds. In addition, since
xk+1 ∈ Ωk, the nonzero components of xk+1 share the same sign as the corresponding ones of xk. Using this
fact, (3.5) and the definition of ck, one can observe that ck = c(xk; τ) ∈ τ∂‖xk+1‖1, which along with the
definition of F implies that Axk+1 − b+ ck ∈ ∂F (xk+1). It then follows from this, PĤ(Axk+1 − b+ ck) = 0 and
xk+1 ∈ Ĥ that

xk+1 ∈ Arg min{F (x) : x ∈ Ĥ}.

This relation and the definition of Ĥ immediately imply that (3.9) holds.
We are now ready to prove that GCG method 1 terminates in at most L(n) iterations, where L(n) is defined

in (1.9). Suppose for contradiction that it does not terminate in L(n) iterations. Then this method generates
xk+1 satisfying (3.8) and (3.9) for k = 0, . . . ,L(n). It then follows that for k = 1, . . . ,L(n),

min{F (x) : xi = 0, i ∈ I0(xk+1)} < min{F (x) : xi = 0, i ∈ I0(xk)}.

This implies I0(xi) /∈ I∗ and I0(xi) 6⊆ I0(xj) for all i, j = 1, . . . ,L(n) and j > i, where I∗ is defined in (1.9).
This contradicts the definition of L(n). Thus the method must terminate in at most L(n) iterations.

(ii) Since y is the output of GCG method 1, one has ‖v(y)‖∞ ≤ ε. We also know that v(y) ∈ ∂F (y). Hence,
statement (ii) holds with s = v(y). Clearly, when ε = 0, we have 0 ∈ ∂F (y) and thus y is an optimal solution
of (1.2).

Remark 4: In view of Theorem 3.3 and Remark 3, one can observe that the number of PCG iterations
executed within GCG method 1 is at most L(n)(n+ 1)2.

3.3 The second generalized conjugate gradient method for (1.2)

The first GCG method proposed in Subsection 3.2 enjoys a nice theoretical property, that is, it terminates at
an optimal solution of problem (1.2) in a finite number of iterations when its input parameter ε is set to 0.
Nevertheless, as observed from step 3) of that method, PCG is required to solve some associated optimization
problems exactly. This is not an issue from a theoretical perspective due to the finite convergence of PCG.
It is, however, generally hard to achieve that due to numerical errors. In this subsection we propose a GCG

method for (1.2) in which the involved PCG is only required to find an approximate solution of the associated
optimization problems, which makes the method more practical. To proceed, we introduce some notations and
state several facts as follows.
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Let v(·) and I0(·) be defined in (1.6) and (1.7), respectively. We define the projected minimum-norm
subgradient vp : <n → <n as follows:

(vp(x))i =

{
vi(x) if i ∈ I0(x),

0 otherwise,
∀x ∈ <n, (3.13)

which is the projection of v(x) onto the subspace {y ∈ <n : yi = 0, i /∈ I0(x)}. As later shown, the direction
−vp(x) is a descent direction for F at x when vp(x) 6= 0. We now assume vp(x) 6= 0. The exact line search
starting at x along −vp(x) can be performed by computing

α∗ = arg min
α≥0

F (x− αvp(x)) (3.14)

and setting x+ = x − α∗vp(x). We can show that α∗ has a closed-form expression. Indeed, by virtue of (1.6),
(3.4) and (3.13), one can observe that for all α ≥ 0,

xi − α(vp(x))i =


≥ 0 if i ∈ I+

0 (x),

≤ 0 if i ∈ I−0 (x),

= xi otherwise.

This together with (3.5) implies that

τ‖x− αvp(x)‖1 = c(x; τ)T (x− αvp(x)), ∀α ≥ 0.

It follows from this and the definitions of F and f that

F (x− αvp(x)) = f (x− αvp(x)) + c(x; τ)T (x− αvp(x)), ∀α ≥ 0. (3.15)

Using this relation and (3.14), we obtain that

(vp(x))T [∇f(x− α∗vp(x)) + c(x; τ)] = 0. (3.16)

Observe from (1.6) and (3.13) that [vp(x)]i = 0 for every i ∈ I0
0 (x). This together with (3.6), (3.13), (3.16) and

the definition of f implies that

0 = (vp(x))T [∇f(x)− α∗Avp(x) + c(x; τ)]

= (vp(x))T [v(x)− α∗Avp(x)] = ‖vp(x)‖2 − α∗(vp(x))TAvp(x).

It follows from this and the assumption vp(x) 6= 0 that (vp(x))TAvp(x) 6= 0 and hence

α∗ =
‖vp(x)‖2

(vp(x))TAvp(x)
≥ 0. (3.17)

Given x0 ∈ <n, one knows from Theorem 2.2 that there exists some η > 0 that may depend on x0 such that

F (x)− F ∗x ≤
η

2‖A‖
‖[v(x)]Ic0(x)‖2 for all x with F (x) ≤ F (x0), (3.18)

where F ∗x is defined in (1.8). Especially, when A is symmetric positive definite, one can see from Theorem 2.3
that the above η can be chosen as κ(A), where κ(A) is defined in (1.4). In general, the actual value of the
above η may be unknown. In what follows, we first assume that the η associated with (3.18) is known. For
the case where the η is unknown, we can estimate it by executing a try-and-test strategy that will be discussed
afterwards.
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We next propose the second GCG method for problem (1.2). Unlike the first GCG method that always
performs TPCG2 (namely Subroutine 2), each iteration of the method presented below either executes the
subroutine TPCG2 or performs the exact line search along the negative projected minimum-norm subgradient
of F . Following a similar strategy proposed by Dostal and Schöberl [12] for solving a box-constrained convex
QP, we determine which type of step should be taken by comparing the magnitude of some components of the
minimum-norm subgradient of F to that of its rest components. In particular, given a current iterate xk, if∥∥[v(xk)]I0(xk)

∥∥ > √η ∥∥∥[v(xk)]Ic0(xk)

∥∥∥ , (3.19)

where η is given in (3.18), it indicates that the zero components of xk are more far from being optimal compared
to its nonzero components. It is thus plausible to release some of zero components of xk by minimizing F along
the direction −vp(xk) to obtain a new iterate xk+1, that is,

xk+1 = xk − αkvp(xk),

where αk is computed by (3.17) with x replaced by xk. Analogously, if (3.19) is violated at xk, it is more
beneficial to improve the nonzero components of xk, which can be made by the subroutine TPCG2 to result in
xk+1.

Let η be given in (3.18) and ε ≥ 0. The second GCG method for problem (1.2) is presented in detail as
follows.

GCG method 2 for problem (1.2): y = GCG2(A, b, τ, x0, η, ε)

Input: A, b, τ , x0, η, ε.

Set k = 0.

Repeat

1) If ‖v(xk)‖∞ ≤ ε, return y = xk and terminate.

2) Jk0 = I0
0 (xk), Jk− = I−(xk) ∪ I−0 (xk), Jk+ = I+(xk) ∪ I+

0 (xk), ck = c(xk; τ).

3) If (3.19) holds, do

xk+1 = xk − αkvp(xk), αk =
‖vp(xk)‖2

(vp(xk))TAvp(xk)
; (3.20)

else
xk+1 = TPCG2

(
A, b, ck, Jk0 , J

k
−, J

k
+, x

k,
ε

max(
√
nη, 1)

)
. (3.21)

4) k ← k + 1.

Output: y.

Before establishing convergence of GCG method 2, we study two sufficient descent properties of F at x along
the direction of −vp(x).

Lemma 3.1 Suppose that x ∈ <n satisfies vp(x) 6= 0. Let x+ = x − α∗vp(x), where α∗ be defined in (3.17).
Then there holds:

F (x+) = F (x)− ‖vp(x)‖4

2(vp(x))TAvp(x)
≤ F (x)− ‖v

p(x)‖2

2‖A‖
. (3.22)
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Proof. In view of (3.5), one has c(x; τ)Tx = τ‖x‖1 and hence

F (x) = f(x) + c(x; τ)Tx.

Using this, (3.14)-(3.16) and the definition of f , we have

F (x) = f(x) + c(x; τ)Tx = f (x− α∗vp(x)) + c(x; τ)T (x− α∗vp(x))

+ α∗(vp(x))T [∇f(x− α∗vp(x)) + c(x; τ)] + 1
2 (α∗)2(vp(x))TAvp(x)

= F (x− α∗vp(x)) + 1
2 (α∗)2(vp(x))TAvp(x)

= F (x+) + ‖vp(x)‖4
2(vp(x))TAvp(x)

≥ F (x+) + ‖vp(x)‖2
2‖A‖ ,

where the last inequality follows from zTAz ≤ ‖A‖‖z‖2 for all z ∈ <n.

Lemma 3.2 Let η be given in (3.18). Suppose that x ∈ <n satisfies F (x) ≤ F (x0) and∥∥[v(x)]I0(x)

∥∥ > √η ∥∥[v(x)]Ic0(x)

∥∥ . (3.23)

Let F ∗x be defined in (1.8) and x+ = x− α∗vp(x), where α∗ is defined in (3.17). Then F (x+) < F ∗x .

Proof. Let J = Ic
0(x). It follows from (3.22) and (3.18) that

F (x+) ≤ F (x)− ‖v
p(x)‖2
2‖A‖ ≤ F ∗x + η

2‖A‖‖(v(x))J‖2 − ‖v
p(x)‖2
2‖A‖ ,

= F ∗x + ‖vp(x)‖2
2‖A‖

(
η‖(v(x))J‖2
‖vp(x)‖2 − 1

)
.

The conclusion follows from this inequality, ‖vp(x)‖ = ‖[v(x)]I0(x)‖ and (3.23).

We next show that GCG method 2 terminates in a finite number of iterations, and moreover it terminates
at an optimal solution of problem (1.2) when ε = 0.

Theorem 3.4 Under Assumption 1, the following statements hold:

(i) GCG method 2 terminates in at most 2L(n) iterations, where L(n) is defined in (1.9).

(ii) Let y be the output of GCG method 2. Then s ∈ ∂F (y) for some s with ‖s‖∞ ≤ ε, and moreover, y is an
optimal solution of problem (1.2) if ε = 0.

Proof. (i) We first claim that F (xk+1) ≤ F (xk) for all k ≥ 0. Indeed, xk+1 is generated by (3.20) or (3.21). If
it is generated by (3.20), it follows from (3.22) that F (xk+1) ≤ F (xk). On the other hand , if xk+1 is generated
by (3.21), one can observe from the subroutine TPCG2 that F (xk+1) ≤ F (xk).

Secondly, we claim that the number of executions of (3.20) is at most L(n). Indeed, let

K = {k : xk+1 is generated by (3.20)}.

By the updating scheme of GCG method 2, it can be observed that (3.19) holds at xk for all k ∈ K. In addition,
by the monotonicity of {F (xk)}, it is clear that F (xk) ≤ F (x0) for every k ∈ K. It then follows from Lemma
3.2 that F (xk+1) < F ∗xk for all k ∈ K. By (1.8), we know that F (xk+1) ≥ F ∗xk+1 . In view of these relations and
the monotonicity of {F (xk)}, one has F ∗xj+1 ≤ F (xj) ≤ F (xi+1) < F ∗xi+1 for all i, j ∈ K and j > i. It follows
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from this relation and (1.8) that I0(xi+1) /∈ I∗ and I0(xi+1) 6⊆ I0(xj+1) for all i, j ∈ K and j > i, where I∗ is
defined in (1.9). By this and (1.9), we see that |K| ≤ L(n) and thus this claim holds.

Thirdly, we claim that (3.21) cannot be executed at any two consecutive iterations. Suppose for contradiction
that (3.21) is executed at iterations k and k + 1 for some k ≥ 0. By the updating scheme of GCG method 2,
we then know that (3.19) does not hold at xk and xk+1. It follows from (3.21) and Theorem 3.2 that

‖PH(xk+1)(Ax
k+1 − b+ ck)‖∞ ≤

ε

max(
√
nη, 1)

, (3.24)

where H(·) is defined in (1.8). Observe that all nonzero components of xk+1 share the same sign as the
corresponding ones of xk. This together with (3.5) implies that ci(xk+1; τ) = ci(x

k; τ) = cki for all i ∈ Ic
0(xk+1).

Using this fact, (3.6) and the definition of H(·), we have

‖PH(xk+1)(Ax
k+1 − b+ ck)‖∞ = ‖PH(xk+1)(Ax

k+1 − b+ ck+1)‖∞ = ‖PH(xk+1)(v(xk+1))‖∞.

It follows from this, (3.24) and the definition of H(·) that∥∥∥[v(xk+1)]Ic0(xk+1)

∥∥∥
∞
≤ ε

max(
√
nη, 1)

≤ ε. (3.25)

In view of this and the fact that (3.19) does not hold at k + 1, one has∥∥[v(xk+1)]I0(xk+1)

∥∥
∞ ≤

∥∥[v(xk+1)]I0(xk+1)

∥∥ ≤ √η ∥∥[v(xk+1)](I0(xk+1))c
∥∥ ,

≤ √
nη
∥∥∥[v(xk+1)]Ic0(xk+1)

∥∥∥
∞
≤ ε

√
nη

max(
√
nη,1) ≤ ε.

This together with (3.25) yields ‖v(xK+1)‖∞ ≤ ε. Hence, GCG method 2 terminates at xk+1 and thus (3.21)
will not be executed at iteration k + 1, which contradicts the above supposition. Therefore, this claim holds.

From the last claim above, one can see that (3.21) is executed at most once between every two adjacent
executions of (3.20). In view of this fact, the second claim above and the updating scheme of GCG method 2,
we can conclude that it must terminate in at most 2L(n) iterations.

(ii) The proof of the second statement is similar to that of Theorem 3.3.

Remark 5: From the proof of Theorem 3.4, we know that the subroutine TPCG2 is called in GCG2 at
most L(n) times. In view of this and Remark 3, one can observe that when ε = 0, the number of PCG iterations
executed within GCG method 2 is at most L(n)(n + 1)2. On the other hand, when ε > 0, its number of PCG
iterations depends on ε in O(log(1/ε)).

The above GCG method is suitable for the case where the η associated with (3.18) is known. From the
proof of Theorem 3.4, it can be observed that the error bound (3.18) with a known η ensures that I0(xi) is not
a subset of I0(xj) for all I0(xi), I0(xj) ∈ Cη with j > i, where

Cη =
{
I0(xk) : xk satisfies (3.19) with the given η.

}
. (3.26)

When such η is unknown, we can start with a guess of η, denoted by η̂. Then we run the subroutine GCG2
with η replaced by η̂ until some xk is found with the property: (a) ‖v(xk)‖∞ ≤ ε or (b) xk satisfies (3.19) with
η replaced by η̂ and I0(xk) is a supset of some member in Cη̂ that was previously generated, where Cη̂ is defined
according to (3.26) by replacing η by η̂. If (a) occurs, xk is a desired approximate solution of problem (1.2). On
the other hand , if (b) occurs, it follows from the above observation that η̂ is clearly a wrong guess of η, and
we need to increase η̂ and repeat the above process starting with xk. These observations lead to the following
variant of GCG method 2.
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A variant of GCG method 2 for problem (1.2): y = GCG2v(A, b, τ, x0, η0, ρ, ε)

Input: A, b, τ , x0, η0, ρ > 1, ε.

Set k = 0, η̂ = η0, C = ∅.

Repeat

1) If ‖v(xk)‖∞ ≤ ε, return y = xk and terminate.

2) Jk0 = I0
0 (xk), Jk− = I−(xk) ∪ I−0 (xk), Jk+ = I+(xk) ∪ I+

0 (xk), ck = c(xk; τ).

3) If (3.19) holds with η = η̂, do

if C 6= ∅ and some member in C is a subset of I0(xk), set

η̂ ← ρη̂, C ← ∅, xk+1 = xk; (3.27)

else

C ← C ∪ {I0(xk)},

xk+1 = xk − αkvp(xk), αk =
‖vp(xk)‖2

(vp(xk))TAvp(xk)
; (3.28)

else
xk+1 = TPCG2

(
A, b, ck, Jk0 , J

k
−, J

k
+, x

k,
ε

max(
√
nη̂, 1)

)
. (3.29)

4) k ← k + 1.

Output: y.

We now briefly discuss how to choose η0 for the above method. When the η associated with (3.18) is known,
we simply choose η0 = η. It can be observed from the proof below that the variant of GCG method 2 with such
a choice of η0 is identical to GCG method 2. In addition, when A is symmetric positive definite, we see from
Theorem 2.3 that η = κ(A) satisfies the error bound (3.18). Thus, it is reasonable to choose η0 = κ(A) when
the η associated with (3.18) is unknown.

We next show that the variant of GCG method 2 terminates in a finite number of iterations, and moreover
it terminates at an optimal solution of problem (1.2) when ε = 0.

Theorem 3.5 Under Assumption 1, the following statements hold:

(i) The variant of GCG method 2 terminates in at most

N = max

(⌈
log η∗ − log η0

log ρ

⌉
+ 1, 1

)
(2n+1 − 1) (3.30)

iterations, where η∗ is the smallest η satisfying (3.18).

(ii) Let y be the output of the variant of GCG method 2. Then s ∈ ∂F (y) for some s with ‖s‖∞ ≤ ε, and
moreover, y is an optimal solution of problem (1.2) if ε = 0.

17



Proof. (i) Let η∗ be the smallest η satisfying (3.18). By the monotonicity of {F (xk)} and a similar argument
as in the proof of Theorem 3.4, one can show that if η̂ ≥ η∗ at some iteration K, then I0(xi) 6⊆ I0(xk) for all
I0(xi) ∈ C with i < k and every k ≥ K such that (3.19) holds at xk with η = η̂. Thus η̂ will no longer be
updated for all k ≥ K. By this fact and the updating scheme of the variant of GCG method 2, it is not hard
to show that η̂ can be updated by (3.27) in at most max(d(log η∗ − log η0)/ log ρe, 0) times. Hence, the number
of distinct η̂ arising in this method is at most max(d(log η∗− log η0)/ log ρe, 0) + 1. Observe that if (3.19) holds
at some xk, then I0(xk) 6= ∅. In view of this and the updating scheme of C, one can see that if C 6= ∅, then all
members of C are distinct nonempty subsets of {1, . . . , n}. It follows that for each η̂, the number of members of
C is at most 2n − 1 and hence the number of executions of (3.28) is at most 2n − 1. By this fact and a similar
argument as in the proof of Theorem 3.4, one can show that for each η̂, the number of executions of (3.29) is
also at most 2n − 1. Thus for each η̂, the total number of executions of (3.27), (3.28) and (3.29) is at most
1 + 2(2n − 1) = 2n+1 − 1. The conclusion of the first statement immediately follows from these facts.

(ii) The proof of the second statement is similar to that of Theorem 3.3.

Remark 6: From the proof of Theorem 3.5, we know that the subroutine TPCG2 is called in GCG2v at most
max(d(log η∗−log η0)/ log ρe+1, 1)(2n−1) times. In view of this and Remark 3, one can observe that when ε = 0,
the number of PCG iterations executed in GCG2v is at most max(d(log η∗− log η0)/ log ρe+1, 1)(2n−1)(n+1)2.
On the other hand, when ε > 0, the number of PCG iterations executed in this method depends on ε in
O(log(1/ε)).

3.4 The third generalized conjugate gradient method for (1.2)

Notice that the subroutine TPCG2 is used in the variant of GCG method 2. Given that TPCG2 is generally
more expensive than the subroutine TPCG1, a natural question is whether one could replace TPCG2 by TPCG1

there. In what follows, we propose a third GCG method by performing such a replacement and also modifying
the associated Jk0 , Jk− and Jk+ accordingly.

GCG method 3 for problem (1.2): y = GCG3(A, b, τ, x0, η0, ρ, ε)

Input: A, b, τ , x0, η0, ρ > 1, ε.

Set k = 0, η̂ = η0, C = ∅.
Repeat

1) If ‖v(xk)‖∞ ≤ ε, return y = xk and terminate.

2) Jk0 = I0(xk), Jk− = I−(xk), Jk+ = I+(xk), ck = c(xk; τ).

3) If (3.19) holds with η = η̂, do

if C 6= ∅ and some member in C is a subset of I0(xk), set

η̂ ← ρη̂, C ← ∅, xk+1 = xk; (3.31)

else

C ← C ∪ {I0(xk)},

xk+1 = xk − αkvp(xk), αk =
‖vp(xk)‖2

(vp(xk))TAvp(xk)
; (3.32)

else
xk+1 = TPCG1

(
A, b, ck, Jk0 , J

k
−, J

k
+, x

k,
ε

max(
√
nη̂, 1)

)
. (3.33)
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4) k ← k + 1.

Output: y.

Remark 7: The parameter η0 for this method can be chosen similarly as for the variant of GCG method
2. In particular, when the η associated with (3.18) is known, we choose η0 = η. Otherwise, we can choose
η0 = κ(A).

We next show that GCG method 3 terminates in a finite number of iterations, and moreover it terminates
at an optimal solution of problem (1.2) when ε = 0.

Theorem 3.6 Under Assumption 1, the following statements hold:

(i) GCG method 3 terminates in at most

max

(⌈
log η∗ − log η0

log ρ

⌉
+ 1, 1

)
(1 + (n+ 2)(2n − 1))

iterations, where η∗ is the smallest η satisfying (3.18).

(ii) Let y be the output of GCG method 3. Then s ∈ ∂F (y) for some s with ‖s‖∞ ≤ ε, and moreover, y is an
optimal solution of problem (1.2) if ε = 0.

Proof. (i) We first claim that F (xk+1) ≤ F (xk) for all k ≥ 0. Indeed, if xk+1 is generated by (3.31),
F (xk+1) = F (xk). In addition, if xk+1 is updated by (3.32), it follows from Lemma 3.1 that F (xk+1) ≤ F (xk).
On the other hand , if xk+1 is generated by (3.33), one can observe from the subroutine TPCG1 that F (xk+1) ≤
F (xk).

Secondly, we claim that (3.33) cannot be executed at any n+ 2 consecutive iterations. Suppose for contra-
diction that (3.33) is executed at iterations i, i + 1, . . . , i + n + 1 iterations for some i ≥ 0. This along with
the updating scheme of GCG method 3 implies that (3.19) with η = η̂ does not hold at these n+ 2 iterations.
We now show that the subroutine TPCG1 executed in (3.33) must terminate at a boundary point xk+1 of the
feasible region of problem (3.1) with c = ck, J0 = Jk0 , J− = Jk− and J+ = Jk+ for all i ≤ k ≤ i+n. Suppose not.
By the termination criteria of TPCG1, there exists some i ≤ k ≤ i+ n such that

‖PH(Axk+1 − b+ ck)‖∞ ≤
ε

max(
√
nη̂, 1)

, (3.34)

where
H = {x ∈ <n : xj = 0, j ∈ Jk0 }.

Observe from the subroutine TPCG1 that for such k, Jk0 = I0(xk) ⊆ I0(xk+1) and moreover the nonzero
components of xk+1 share the same sign as the corresponding ones of xk, which implies

ci(x
k+1; τ) = ci(x

k; τ) = cki , ∀i /∈ I0(xk+1).

Using these relations and (3.34), one can have

‖PĤ(Axk+1 − b+ c(xk+1; τ))‖∞ ≤
ε

max(
√
nη̂, 1)

,

where
Ĥ = {x ∈ <n : xi = 0, i ∈ I0(xk+1)}.
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It follows from this and (1.6) that ∥∥∥[v(xk+1)]Ic0(xk+1)

∥∥∥
∞
≤ ε

max(
√
nη̂, 1)

≤ ε.

In view of this, the fact that (3.19) with η = η̂ does not hold at xk+1, and a similar argument as in the proof of
Theorem 3.4, one can show that ‖[v(xk+1)]I0(xk+1)‖∞ ≤ ε. It then follows that ‖v(xk+1)‖∞ ≤ ε, which implies
that GCG method 3 terminates at xk+1 and thus (3.33) will no longer be executed at iteration k + 1. This
contradicts the second supposition above. Therefore, TPCG1 must terminate at a boundary point xk+1 of the
feasible region of problem (3.1) with c = ck, J0 = Jk0 , J− = Jk− and J+ = Jk+ for all i ≤ k ≤ i+n. This together
with the definition of Jk0 , Jk− and Jk+ implies that I0(xk) ( I0(xk+1) and hence |I0(xk)| < |I0(xk+1)| for all
i ≤ k ≤ i + n, which leads to |I0(xi+n+1)| ≥ n + 1 and contradicts the trivial fact |I0(xi+n+1)| ≤ n. Thus the
above claim holds.

From the second claim above, we can see that for each η̂, (3.33) is executed at most n + 1 times between
every two adjacent executions of (3.32). In addition, by the monotonicity of {F (xk)} and a similar argument
as in the proof of Theorem 3.4, one can show that for each η̂, the number of executions of (3.32) is at most
2n − 1. Therefore, for each η̂ the number of executions of (3.33) is at most (n+ 1)(2n − 1). It follows that for
each η̂, the total number of executions of (3.31), (3.32) and (3.33) is at most 1 + (n + 2)(2n − 1). Also, by a
similar argument as in the proof of Theorem 3.5, we know that the number of distinct η̂ arising in this method
is at most max(d(log η∗ − log η0)/ log ρe, 0) + 1. The conclusion of the first statement immediately follows from
these facts.

(ii) The proof of the second statement is similar to that of Theorem 3.3.

Remark 8: From the proof of Theorem 3.6, one knows that the subroutine TPCG1 is called in GCG3 at
most (n+ 1) max(d(log η∗ − log η0)/ log ρe+ 1, 1)(2n − 1) times. In view of this and Remark 2, we can observe
that when ε = 0, the number of PCG iterations executed in GCG3 is at most max(d(log η∗ − log η0)/ log ρe +

1, 1)(2n−1)(n+1)2. On the other hand, when ε > 0, its number of PCG iterations depends on ε in O(log(1/ε)).

3.5 The fourth generalized conjugate gradient method for (1.2)

In this subsection we propose the fourth GCG method for problem (1.2), which enhances GCG method 3 by
incorporating a proximal gradient scheme. In particular, we perform a proximal gradient step over a subspace
immediately after executing the subroutine TPCG1, which makes the iterates cross orthants more rapidly and
also shrinks some nonzero components of the iterates to zero. This strategy is similar to the one proposed by
Dostal and Schöberl [12] for solving a box-constrained convex QP.

GCG method 4 for problem (1.2): y = GCG4(A, b, τ, x0, t, η0, ρ, ξ, ε)

Input: A, b, τ , x0, t ∈ (0, 2/‖A‖), η0, ρ > 1, 0 < ξ < 1, ε.

Set k = 0, η̂ = η0, ε̂ = ε, C = ∅.

Repeat

1) If ‖v(xk)‖∞ ≤ ε, return y = xk and terminate.

2) Jk0 = I0(xk), Jk− = I−(xk), Jk+ = I+(xk), ck = c(xk; τ).

3) If (3.19) holds with η = η̂, do

set ε̂← ε;
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if C 6= ∅ and some member in C is a subset of I0(xk), set

η̂ ← ρη̂, C ← ∅, xk+1 = xk; (3.35)

else

C ← C ∪ {I0(xk)}, (3.36)

xk+1 = xk − αkvp(xk), αk =
‖vp(xk)‖2

(vp(xk))TAvp(xk)
; (3.37)

else

yk+1 = TPCG1

(
A, b, ck, Jk0 , J

k
−, J

k
+, x

k,

√
(2t−1 − ‖A‖)‖A‖ ε̂
(t−1 + ‖A‖)

√
nη̂

)
, (3.38)

xk+1 = arg min

{
1

2
‖x− (yk+1 − t(Ayk+1 − b))‖2 + tτ‖x‖1 : x ∈ H(yk+1)

}
, (3.39)

ε̂← ξε̂.

4) k ← k + 1.

Output: y.

Remark: (a) When the η associated with (3.18) is known, one can choose η0 = η. Otherwise, one can
choose η0 = κ(A).

(b) It is not hard to see that subproblem (3.39) has a closed-form solution, which is given as follows:

xk+1
i =

{
sgn(ai) max(|ai| − tτ, 0) if i /∈ I0(yk+1),

0 otherwise,
i = 1, . . . , n,

where ai = yk+1
i − t((Ayk+1)i − bi) for i = 1, . . . , n.

We next show that GCG method 4 terminates in a finite number of iterations, and moreover it terminates
at an optimal solution of problem (1.2) when ε = 0.

Theorem 3.7 Under Assumption 1, the following statements hold:

(i) GCG method 4 terminates in at most

max

(⌈
log η∗ − log η0

log ρ

⌉
+ 1, 1

)
(1 + (M + 1)(2n − 1)),

iterations, where η∗ is the smallest η satisfying (3.18) and

M = max

(⌈
max(log η0 − log η∗,− log η∗)

2 log ξ

⌉
+ n+ 1, n+ 1

)
. (3.40)

(ii) Let y be the output of GCG method 4. Then s ∈ ∂F (y) for some s with ‖s‖∞ ≤ ε, and moreover, y is an
optimal solution of problem (1.2) if ε = 0.
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Proof. (i) We first claim that F (xk+1) ≤ F (xk) for all k ≥ 0. By the same argument as in the proof of
Theorem 3.6, one can see that this claim holds if xk+1 is generated by (3.35) or (3.36). We now show that it
also holds if xk+1 is obtained by (3.39). Indeed, by the definition of f , it is not hard to observe that

f(xk+1) ≤ f(yk+1) + 〈∇f(yk+1), xk+1 − yk+1〉+
‖A‖

2
‖xk+1 − yk+1‖2. (3.41)

In addition, notice that the objective of (3.39) is strongly convex. Then one can see from (3.39) that for all
x ∈ H(yk+1),

1

2
‖x− (yk+1 − t(Ayk+1 − b))‖2 + tτ‖x‖1 ≥ 1

2
‖xk+1 − (yk+1 − t(Ayk+1 − b))‖2

+tτ‖xk+1‖1 +
1

2
‖x− xk+1‖2. (3.42)

Substituting x = yk+1 into (3.42), using ∇f(yk+1) = Ayk+1 − b, and upon some manipulation, one has

〈∇f(yk+1), xk+1 − yk+1〉 ≤ τ‖yk+1‖1 − τ‖xk+1‖1 − t−1‖xk+1 − yk+1‖2.

Combining this inequality with (3.41) and using the definition of F , we obtain that

F (yk+1) ≥ F (xk+1) +
1

2

(
2

t
− ‖A‖

)
‖xk+1 − yk+1‖2. (3.43)

This together with t ∈ (0, 2/‖A‖) implies F (xk+1) ≤ F (yk+1). In addition, one can observe from (3.38) that
F (yk+1) ≤ F (xk). It thus follows that F (xk+1) ≤ F (xk).

Secondly, we claim that (3.38) cannot be executed at any M + 1 consecutive iterations, where M is defined
in (3.40). Suppose for contradiction that (3.38) is executed at iterations i, i + 1, . . . , i + M iterations for some
i ≥ 0. This along with the updating scheme of GCG method 4 implies that (3.19) with η = η̂ does not hold at
these M + 1 iterations and thus ε̂ is updated at them. By the updating scheme on ε̂, it is not hard to verify
that ε̂ ≤ min(

√
η0, 1)ε/

√
η∗ at the iterations i + M1, . . . , i + M , where M1 = M − (n + 1). We now show that

the subroutine TPCG1 executed in (3.38) must terminate at a boundary point xk+1 of the feasible region of
problem (3.1) with c = ck, J0 = Jk0 , J− = Jk− and J+ = Jk+ for all i + M1 ≤ k ≤ i + M − 1. Suppose not. By
the termination criteria of TPCG1, there exists some i+M1 ≤ k ≤ i+M − 1 such that

‖PH(Ayk+1 − b+ ck)‖∞ ≤
√

(2t−1 − ‖A‖)‖A‖ ε̂
(t−1 + ‖A‖)

√
nη̂

, (3.44)

where
H = {x ∈ <n : xj = 0, j ∈ Jk0 }.

Observe from (3.38) that Jk0 = I0(xk) ⊆ I0(yk+1) and moreover the nonzero components of yk+1 share the same
sign as the corresponding ones of xk, which implies

ci(y
k+1; τ) = ci(x

k; τ) = cki , ∀i /∈ I0(yk+1).

Using these relations, (3.44) and (1.6), we have∥∥∥[v(yk+1)]Ic0(yk+1)

∥∥∥
∞

= ‖PĤ(Ayk+1 − b+ c(yk+1; τ))‖∞ ≤
√

(2t−1 − ‖A‖)‖A‖ ε̂
(t−1 + ‖A‖)

√
nη̂

, (3.45)

where
Ĥ = {x ∈ <n : xi = 0, i ∈ I0(yk+1)}. (3.46)
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By the monotonicity of {F (xl)}, we know that F (xk) ≤ F (x0), which along with F (yk+1) ≤ F (xk) implies
F (yk+1) ≤ F (x0). Using this relation, (3.18) with η = η∗ and (3.45), we obtain that

F (yk+1)− F ∗yk+1 ≤ η∗

2‖A‖
‖[v(x)]Ic0(yk+1)‖2 ≤

nη∗

2‖A‖
‖[v(x)]Ic0(yk+1)‖2∞

≤ η∗(2t−1 − ‖A‖)ε̂2

2η̂(t−1 + ‖A‖)2
, (3.47)

where η∗ is the smallest η satisfying (3.18). Notice that I0(yk+1) ⊆ I0(xk+1), which along with (1.8) implies
that F (xk+1) ≥ F ∗yk+1 . In view of this, (3.43) and (3.47), one has

1

2

(
2

t
− ‖A‖

)
‖xk+1 − yk+1‖2 ≤ F (yk+1)− F (xk+1) ≤ F (yk+1)− F ∗yk+1 ≤

η∗(2t−1 − ‖A‖)ε̂2

2η̂(t−1 + ‖A‖)2
.

It then follows that
‖xk+1 − yk+1‖ ≤ ε̂

√
η∗√

η̂(t−1 + ‖A‖)
.

By the first-order optimality condition of (3.39), one has

0 ∈ PĤ(t−1(xk+1 − yk+1) +∇f(yk+1) + τ∂‖xk+1‖1),

where Ĥ is defined in (3.46). It then follows from the last two relations that

dist(0,PĤ(∇f(xk+1) + τ∂‖xk+1‖1)) ≤ ‖t−1(xk+1 − yk+1) +∇f(yk+1)−∇f(xk+1)‖

≤ (t−1 + ‖A‖)‖xk+1 − yk+1‖ ≤ ε̂
√
η∗/η̂.

This along with (1.6), (3.46) and I0(yk+1) ⊆ I0(xk+1) implies that∥∥∥[v(xk+1)]Ic0(xk+1)

∥∥∥ ≤ ε̂√η∗/η̂. (3.48)

By the above supposition, we know that (3.38) is executed at iteration k + 1 and hence (3.19) with η = η̂ does
not hold at xk+1. In view of this fact and (3.48), we further have∥∥[v(xk+1)]I0(xk+1)

∥∥ ≤ √
η̂
∥∥∥[v(xk+1)]Ic0(xk+1)

∥∥∥ ≤ ε̂
√
η∗. (3.49)

As shown above, ε̂ ≤ εmin(
√
η0, 1)/

√
η∗ at iteration k + 1. In view of this, η̂ ≥ η0, (3.48) and (3.49), we

have ‖v(xk+1)‖∞ ≤ ε, which implies that GCG method 4 terminates at xk+1 and thus (3.38) will no longer be
executed at iteration k + 1. This contradicts the second supposition above. Therefore, TPCG1 must terminate
at a boundary point xk+1 of the feasible region of problem (3.1) with c = ck, J0 = Jk0 , J− = Jk− and J+ = Jk+ for
all i+M1 ≤ k ≤ i+M − 1. This together with the definitions of Jk0 , Jk− and Jk+ implies that I0(xk) ( I0(xk+1)

and hence |I0(xk)| < |I0(xk+1)| for all i+M1 ≤ k ≤ i+M − 1, which leads to |I0(xi+M )| ≥ M −M1 = n+ 1

and contradicts the trivial fact |I0(xi+M )| ≤ n. Thus the above claim holds.
From the second claim above, we can see that for each η̂, (3.38) is executed at most M times between every

two adjacent executions of (3.37). By a similar argument as in the proof of Theorem 3.6, we know that for each
η̂, the number of executions of (3.37) is at most 2n − 1. Thus, for each η̂ the number of executions of (3.38) is
at most M(2n−1). It then follows that for each η̂, the total number of executions of (3.35), (3.37) and (3.38) is
at most 1 + (M + 1)(2n − 1). In addition, by a similar argument as in the proof of Theorem 3.5, we know that
the number of distinct η̂ arising in this method is at most max(d(log η∗ − log η0)/ log ρe, 0) + 1. The conclusion
of the first statement immediately follows from these facts.
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(ii) The proof the second statement is similar to that of Theorem 3.3.

Remark 9: From the proof of Theorem 3.7, we know that the subroutine TPCG1 is called in GCG4 at
most M max(d(log η∗ − log η0)/ log ρe + 1, 1)(2n − 1) times, where M is defined (3.40). In view of this and
Remark 2, one can observe that when ε = 0, the number of PCG iterations executed within GCG4 is at most
M max(d(log η∗ − log η0)/ log ρe + 1, 1)(2n − 1)(n + 1). On the other hand, when ε > 0, its number of PCG
iterations depends on ε in O(log(1/ε)).

4 The l1 regularized least squares problem

In this section we consider a special class of problem (1.2) in the form of

F̄ ∗ = min
x∈<n

F̄ (x) :=
1

2
‖Āx− b̄‖2 + τ‖x‖1, (4.1)

which has important applications in compressed sensing and sparse regression. The GCG methods proposed
in Section 3 can be suitably applied to solve problem (4.1). As shown in Section 3, these methods are able
to find an exact optimal solution of (4.1) within a finite number of iterations when the associated accuracy
parameter ε is set to 0, assuming no numerical errors. Despite this nice property, in practice it may be more
interesting to find an approximate solution for two mains reasons. One is that only a subset of real numbers
can be represented precisely in computer and thus the truncation errors generally cannot be avoided. Another
reason is that even if an exact optimal solution can be found, it may take many iterations to do that, which can
be too expensive for large-scale problems. An approximate solution usually suffices for practical purpose.

Given a tolerance parameter δ > 0, we are interested in applying the GCG methods to find a δ-optimal
solution for problem (4.1), that is, a point xδ such that F̄ (xδ)− F̄ ∗ ≤ δ. Notice that F̄ ∗ is typically unknown.
To terminate these methods properly, we need a suitable lower bound on F̄ ∗. In what follows, we derive some
lower bounds for F̄ ∗. Before proceeding, we first establish a technical lemma.

Lemma 4.1 Let x∗ be an arbitrary optimal solution of problem (4.1). Then for any x ∈ <n, the following
inequalities hold: ∣∣‖Āx− b̄‖2 − ‖Āx∗ − b̄‖2∣∣ ≤ 2

(√
F̄ (x) +

√
F̄ ∗
)√

F̄ (x)− F̄ ∗,

|‖x‖1 − ‖x∗‖1| ≤
1

τ

[
F̄ (x)− F̄ ∗ +

(√
F̄ (x) +

√
F̄ ∗
)√

F̄ (x)− F̄ ∗
]
. (4.2)

Proof. One can observe that

F̄ ∗ = min
x∈<n

1

2
‖Āx− b̄‖2 + τ‖x‖1] = min

u∈Range(Ā)

1

2
‖u− b̄‖2 + τ min

Āx=u
‖x‖1︸ ︷︷ ︸

φ(u)

. (4.3)

Notice that φ is strongly convex in u. Hence, the latter problem in (4.3) has a unique optimal solution, denoted
by u∗. By the definition of φ, one has

F̄ ∗ ≤ φ(Āx∗) =
1

2
‖Āx∗ − b̄‖2 + τ min

Āx=Āx∗
‖x‖1 ≤

1

2
‖Āx∗ − b̄‖2 + τ‖x∗‖1 = F̄ ∗,

which implies φ(Āx∗) = F̄ ∗ and hence u∗ = Āx∗. In addition, by the strong convexity of φ and the first-order
optimality condition of (4.3), we obtain that

φ(u)− F̄ ∗ ≥ 1

2
‖u− u∗‖2, ∀u ∈ Range(Ā).
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In view of this relation, the definition of φ, and u∗ = Āx∗, one has

F̄ (x)− F̄ ∗ ≥ φ(Āx)− F̄ ∗ ≥ 1

2
‖Ā(x− x∗)‖2, ∀x ∈ <n,

which yields

‖Ā(x− x∗)‖ ≤
√

2(F̄ (x)− F̄ ∗). (4.4)

Notice from the definition of F̄ that

‖Āx∗ − b̄‖ ≤
√

2F̄ ∗, ‖Āx− b̄‖ ≤
√

2F̄ (x), ∀x ∈ <n.

Using these relations, (4.4) and the definition of F̄ , we have∣∣‖Āx− b̄‖2 − ‖Āx∗ − b̄‖2∣∣ ≤ (‖Āx− b̄‖+ ‖Āx∗ − b̄‖)‖Ā(x− x∗)‖

≤ 2
(√

F̄ (x) +
√
F̄ ∗
)√

F̄ (x)− F̄ ∗,

|‖x‖1 − ‖x∗‖1| = 1
τ

∣∣(F̄ (x)− 1
2‖Āx− b̄‖

2)− (F̄ ∗ − 1
2‖Āx

∗ − b̄‖2)
∣∣ ,

≤ 1
τ

[
F̄ (x)− F̄ ∗ + 1

2

∣∣‖Āx− b̄‖2 − ‖Āx∗ − b̄‖2∣∣] ,
≤ 1

τ

[
F̄ (x)− F̄ ∗ +

(√
F̄ (x) +

√
F̄ ∗
)√

F̄ (x)− F̄ ∗
]
.

In the following propositions we derive two computable lower bounds for F̄ ∗.

Proposition 4.1 Let {xk} be a sequence of approximate solutions to problem (4.1), and let

F̄low1(xk) := F̄ (xk)− 〈ĀT (Āxk − b̄), xk〉 − τ‖xk‖1 + min

(
1− ‖Ā

T (Āxk − b̄)‖∞
τ

, 0

)
F̄ (xk), (4.5)

where 〈·, ·〉 denotes the inner product of two associated vectors. Then the following statements hold:

(i) F̄ ∗ ≥ F̄low1
(xk) for all k;

(ii) If F̄ (xk)→ F̄ ∗, then F̄low1
(xk)→ F̄ ∗.

Proof. Let x∗ be an arbitrary optimal solution of (4.1).
(i) Using the definition of F̄ , we have

τ‖x∗‖1 ≤ F̄ (x∗) ≤ F̄ (xk),

which implies
‖x∗‖1 ≤ τ−1F̄ (xk), ∀k. (4.6)

It then follows that x∗ ∈ ∆k := {x ∈ <n : ‖x‖1 ≤ τ−1F̄ (xk)}. By the convexity of ‖Ā · −b̄‖2/2, one has

F̄ (x) =
1

2
‖Āx− b̄‖2 + τ‖x‖1 ≥

1

2
‖Āxk − b̄‖2 + 〈ĀT (Āxk − b̄), x− xk〉+ τ‖x‖1,
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Using this and the fact x∗ ∈ ∆k, we have

F̄ ∗ = min
x∈∆k

F̄ (x) ≥ min
x∈∆k

{
1
2‖Āx

k − b̄‖2 + 〈ĀT (Āxk − b̄), x− xk〉+ τ‖x‖1
}
,

= 1
2‖Āx

k − b̄‖2 − 〈ĀT (Āxk − b̄), xk〉+ min
x∈∆k

{
〈ĀT (Āxk − b̄), x〉+ τ‖x‖1

}
,

= F̄ (xk)− 〈ĀT (Āxk − b̄), xk〉 − τ‖xk‖1 + min
x∈∆k

{
〈ĀT (Āxk − b̄), x〉+ τ‖x‖1

}
,

= F̄ (xk)− 〈ĀT (Āxk − b̄), xk〉 − τ‖xk‖1 + min
(

1− ‖Ā
T (Āxk−b̄)‖∞

τ , 0
)
F̄ (xk),

which together with (4.5) implies that statement (i) holds.
(ii) Suppose F̄ (xk) → F̄ ∗. Recall that x∗ is an optimal solution of (4.1). By the first optimality condition

of (4.1) at x∗, one has
0 ∈ ĀT (Āx∗ − b̄) + τ∂‖x∗‖1 (4.7)

and hence ‖ĀT (Āx∗ − b̄)‖∞ ≤ τ . In view of (4.4) and the assumption F̄ (xk)→ F̄ ∗, we have ‖Ā(xk − x∗)‖ → 0

and hence Āxk → Āx∗, which implies

〈ĀT (Āxk − b̄), xk〉 = 〈Āxk − b̄, Āxk〉 → 〈Āx∗ − b̄, Āx∗〉 = 〈ĀT (Āx∗ − b̄), x∗〉, (4.8)

min

(
1− ‖Ā

T (Āxk − b̄)‖∞
τ

, 0

)
→ min

(
1− ‖Ā

T (Āx∗ − b̄)‖∞
τ

, 0

)
= 0, (4.9)

where the last equality is due to ‖ĀT (Āx∗ − b̄)‖∞ ≤ τ . In addition, by the the assumption F̄ (xk) → F̄ ∗ and
(4.2), we have ‖xk‖1 → ‖x∗‖1. Also, by (4.7), one can observe that x∗ is an optimal solution to the problem

min
x
〈ĀT (Āx∗ − b̄), x〉+ τ‖x‖1.

Notice that the objective of this problem is positive homogeneous. Hence, its optimal value is 0. It then follows
that

〈ĀT (Āx∗ − b̄), x∗〉+ τ‖x∗‖1 = 0.

Using this relation, F̄ (xk)→ F̄ ∗, ‖xk‖1 → ‖x∗‖1, (4.8), (4.9) and taking limits on both sides of (4.5), we have
F̄low1

(xk)→ F̄ ∗.

As seen from Proposition 4.1, F̄low1
(xk) is a suitable lower bound for F̄ ∗. We next derive another lower

bound.

Proposition 4.2 (i) Let {xk} be a sequence of approximate solutions to problem (4.1), v be defined in (1.6)
with f(x) = ‖Āx− b̄‖2/2, and let

F̄low2(xk) := F̄ (xk)(1− τ−1‖v(xk)‖∞)− 〈v(xk), xk〉. (4.10)

The following statements hold:

(i) F̄ ∗ ≥ F̄low2
(xk) for all k.

(ii) If {xk} is bounded and v(xk)→ 0, then F̄low2
(xk)→ F̄ ∗.
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Proof. (i) Let x∗ be an arbitrary optimal solution of (4.1). In view of (1.6), one knows that v(xk) ∈ ∂F̄ (xk).
Using this relation and (4.6), we obtain that

F̄ ∗ = F̄ (x∗) ≥ F̄ (xk) + 〈v(xk), x∗ − xk〉 = F̄ (xk)− 〈v(xk), xk〉+ 〈v(xk), x∗〉

≥ F̄ (xk)− 〈v(xk), xk〉 − ‖v(xk)‖∞‖x∗‖ ≥ F̄ (xk)(1− τ−1‖v(xk)‖∞)− 〈v(xk), xk〉,

and hence statement (i) holds.
(ii) Assume that {xk} is bounded and v(xk) → 0. Then {F̄ (xk)} is bounded. It follows from this and

Lemma 2.3 with F = F̄ and F ∗ = F̄ ∗ that there exists some η > 0 such that F̄ (xk) − F̄ ∗ ≤ η‖v(xk)‖ for all
k. This along with v(xk) → 0 and the definition of F̄ ∗ implies F̄ (xk) → F̄ ∗. The conclusion of this statement
immediately follows from this relation, (4.10), v(xk)→ 0 and the boundedness of {xk}.

We next propose a practical termination criterion for the GCG methods by using the above two lower bounds
on F̄ ∗. This criterion may also be useful for any other methods for solving problem (4.1).

Theorem 4.1 Let x0 be an arbitrary initial point for the GCG methods. Given any δ ≥ 0, let

ε = τδ/(2F̄ (x0)). (4.11)

Let {xk} be the sequence generated by the GCG methods applied to problem (4.1) starting at x0 with the above
ε as the input accuracy parameter. Suppose that these methods are terminated once ‖v(xk)‖∞ ≤ ε or

F̄ (xk)−max(F̄low1
(xk), F̄low2

(xk)) ≤ δ (4.12)

holds. Then the GCG methods terminate within a finite number of iterations at a δ-optimal solution xk of (4.1),
that is, F̄ (xk)− F̄ ∗ ≤ δ.

Proof. In view of Theorems 3.3-3.7, one can see that at least one of the above termination criteria must be
satisfied at some iteration k. Also, one can observe that F̄ (xk) ≤ F̄ (x0). We next show that F̄ (xk) − F̄ ∗ ≤ δ

holds by considering two cases.
Case 1): ‖v(xk)‖∞ ≤ ε holds. By the definition of F̄ , one has τ‖xk‖1 ≤ F̄ (xk), which yields ‖xk‖1 ≤

τ−1F̄ (xk). Using this relation and (4.10), we obtain that

F̄low2
(xk) ≥ F̄ (xk)(1− τ−1‖v(xk)‖∞)− ‖v(xk)‖∞‖xk‖1 ≥ F̄ (xk)(1− 2τ−1‖v(xk)‖∞).

It follows from this, F̄ ∗ ≥ F̄low2
(xk), ‖v(xk)‖∞ ≤ ε, F̄ (xk) ≤ F̄ (x0) and (4.11) that

F̄ (xk)− F̄ ∗ ≤ 2τ−1F̄ (xk)‖v(xk)‖∞ ≤ 2τ−1F̄ (x0)‖v(xk)‖∞ ≤ 2τ−1F̄ (x0)ε = δ.

Case 2): (4.12) holds. It follows from Propositions 4.1 and 4.2 that

max(F̄low1
(xk), F̄low2

(xk)) ≥ F̄ ∗,

which together with (4.12) implies F̄ (xk)− F̄ ∗ ≤ δ.

5 Numerical results

In this section we conduct numerical experiments to test the performance of the GCG methods proposed
in Section 3 and compare them with some closely related methods, which are the fast iterative shrinkage-
thresholding algorithm (FISTA) [2] with a constant stepsize 1/L, the interleaved ISTA-CG method (iiCG) [6],
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and the nonmonotone proximal gradient method (NPG) [30] without continuation. It shall be mentioned that
four iiCG algorithms were proposed in [6] that differ in the choice of stepsize (fixed or variable) and proximal
step (ISTA or reduced ISTA). As observed in our experiment, the iiCG algorithm with the ISTA step and the
variable stepsize determined by the subroutine ISTA-BB-LS described in [6] outperforms the others. Therefore,
we only include this one in our numerical comparison. In addition, extensive numerical experiments conducted
in [6] demonstrate that the iiCG methods are competitive with the other state-of-the-art codes including PSSgb
[28], N83 [3], pdNCG [13], SALSA [1], TWIST [4], FPC_AS [15], l1_ls [20] and YALL1 [9]. Therefore, we will
not compare our methods with them in this paper.

We choose x0 = 0 as the initial point for all methods and terminate them once the termination criterion
(4.12) with some δ is met. It then follows from Theorem 4.1 that the approximate solution obtained by them is a
δ-optimal solution of (4.1). For the GCG methods, we set t = 2/(‖Ā‖2 +10−4), η0 = κ2(Ā), ρ = 10, ξ = 0.5 and
ε = τδ/(2F̄ (x0)), where τ and F̄ are given in (4.1). For FISTA, iiCG and NPG, we choose the same parameters
as mentioned in [2, 6, 30] except M . In particular, we set L = ‖Ā‖2 (i.e., the Lipschitz constant of the gradient
of ‖Āx− b̄‖2/2) for FISTA, c = 10−4 and ξ = 0.005 for iiCG, and σ = 10−2, αmax = 1/αmin = 1030 and η = 2

for NPG. For the purpose of comparison of these methods, we do not include the time for evaluating these
parameters in the CPU time reported below. The codes of all methods are written in Matlab. All computations
are performed by Matlab R2015b running on a Dell Optiplex 9020 personal computer with a 3.40-GHz Intel
Core i7-4770 processor and 32 GB of RAM.

In the first experiment we test the performance of the GCG methods, particularly, GCG2v, GCG3 and GCG4

and also compare them with FISTA, iiCG and NPG for solving problem (4.1) in which Ā is well-conditioned,
namely, with a small κ(Ā). We randomly generate Ā ∈ <m×n and b̄ ∈ <m in the same manner as described in
l1-magic [7]. In particular, given σ > 0 and positive integers m, n, s with m < n and s < n, we first generate
a matrix W ∈ <n×m with entries randomly chosen from a standard normal distribution. We then compute
an orthonormal basis, denoted by B, for the range space of W , and set Ā = BT . In addition, we randomly
generate a vector x̃ ∈ <n with only s nonzero components that are ±1, and generate a vector v ∈ <m with
entries randomly chosen from a standard normal distribution. Finally, we set b̄ = Āx̃ + σv. In particular, we
choose σ = 10−5 for all instances. In addition, we set τ = 0.1 for problem (4.1), and M = 5 for iiCG and NPG
that is the same as in [6, 30].

In Table 1 we present the computational results obtained by those methods based on the termination
criterion (4.12) with δ = 10−2. The parameters m, n and s of each instance are listed in the first three columns,
respectively. We observe from the experiment that the approximate solutions found by these methods have
almost same cardinality and nearly equal objective value. We only report in the rest of columns of Table 1 the
average cardinality of their approximate solutions and also the CPU times (in seconds) of each method. From
Table 1, one can see that GCG4 consistently outperforms GCG2v and GCG3 in terms of CPU time. Though
GCG4 is slower than FISTA, it is competitive with iiCG and NPG.

We next compare the performance of the aforementioned methods for solving problem (4.1) in which Ā is
ill-conditioned, namely, with a large κ(Ā). The data Ā and b̄ are similarly generated as above except that Ā is
set to BTD rather than BT , where D is an n× n diagonal matrix whose ith diagonal entry is min(i2, 106) for
all i. In addition, we set τ = 1 for (4.1), and M = 15 for iiCG and NPG that generally gives better performance
than the other choices of M in this experiment. We present in Table 2 the computational results obtained by
those methods based on the termination criterion with δ = 10−2. As in the first experiment, the approximate
solutions found by those methods have almost same cardinality and nearly equal objective value. We thus
only report the average cardinality of these approximate solutions and also the CPU times (in seconds) of each
method. One can see from Table 2 that GCG2v consistently outperforms the other methods in terms of CPU
time and appears to be more favorable for solving problem (4.1) with ill-conditioned Ā.
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Table 1: Comparison on the methods for (4.1) with well-conditioned Ā
Problem Cardinality CPU Time

m n s GCG2v GCG3 GCG4 FISTA iiCG NPG
120 512 20 24 0.01 0.01 0.01 0.00 0.01 0.01
240 1024 40 56 0.06 0.05 0.03 0.00 0.03 0.02
360 1536 60 77 0.13 0.18 0.07 0.01 0.07 0.07
480 2048 80 113 0.28 0.50 0.17 0.02 0.14 0.14
600 2560 100 137 0.52 1.23 0.26 0.05 0.26 0.24
720 3072 120 155 0.82 2.41 0.46 0.08 0.42 0.34
840 3584 140 188 1.58 3.47 0.57 0.14 0.54 0.47
960 4096 160 212 1.67 5.19 0.73 0.18 0.79 0.65
1080 4608 180 247 2.93 7.17 1.10 0.25 1.03 0.88
1200 5120 200 269 3.10 9.90 1.34 0.32 1.34 1.19

Table 2: Comparison on the methods for (4.1) with ill-conditioned Ā
Problem Cardinality CPU Time

m n s GCG2v GCG3 GCG4 FISTA iiCG NPG
120 512 20 36 0.17 0.39 0.23 0.36 0.60 6.23
240 1024 40 57 0.85 2.02 1.22 1.06 2.94 16.88
360 1536 60 77 2.48 6.81 3.35 2.72 3.37 7.02
480 2048 80 114 6.19 22.27 9.66 8.26 11.40 50.74
600 2560 100 140 16.72 45.82 20.63 29.17 32.00 251.68
720 3072 120 154 27.67 89.63 39.82 55.43 86.16 171.91
840 3584 140 186 49.55 148.23 67.83 98.76 201.14 84.37
960 4096 160 212 96.08 233.86 110.54 153.72 298.99 635.62
1080 4608 180 261 159.04 351.05 174.62 230.58 406.29 463.51
1200 5120 200 285 227.87 468.09 272.06 320.31 720.73 6198.07

6 Concluding remarks

In this paper we proposed generalized CG (GCG) methods for solving `1 regularized convex QP. When the
tolerance parameter ε is set to 0, our GCG methods terminate at an optimal solution in a finite number of
iterations, assuming no numerical errors. We also show that our methods are capable of finding an approximate
solution of the problem by allowing some inexactness on the execution of the CG subroutine. Numerical results
demonstrate that our methods are very favorable for solving ill-conditioned problems.

It can be observed that the main computation of our GCG methods lies in executing PCG iterations over
a sequence of subspaces. Given any ε > 0, one can see from Remarks 4-9 that the number of PCG iterations
of these methods for finding an approximate solution x satisfying ‖v(x)‖ ≤

√
ε depends on ε in O(log(1/ε)).

It follows from this and Theorem 2.3 that the number of PCG iterations for finding an ε-optimal solution
by these methods depends on ε in O(log(1/ε)). Therefore, the overall operation cost of the GCG methods for
finding an ε-optimal solution depends on ε in O(log(1/ε)), which is superior to the accelerated proximal gradient
(APG) method [2, 23] whose operation cost depends on ε in O(1/

√
ε). In addition, at each iteration the main

computation of APG is on full-dimensional matrix-vector products while that of PCG is on lower-dimensional
matrix-vector products.

Our GCG methods can be extended to solve the box-constrained convex QP (1.3) by properly modifying
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the definitions of v(·), vp(·), I0(·), I+(·), I−(·), I0
0 (·), I+

0 (·), I−0 (·) and also the subroutines TPCG1 and TPCG2.
The similar convergence results as in this paper can also be established. Due to the length limitation, such an
extension is left in a separate paper.

A Appendix: The CG method for convex QP

In this appendix we study CG method for solving (possibly not strongly) convex quadratic programming:

f∗ = inf
x∈<n

f(x) :=
1

2
xTAx− bTx, (A.1)

where A ∈ <n×n is symmetric positive semidefinite, b ∈ <n and f∗ ∈ [−∞,∞). It is well-known that (A.1)
has at least an optimal solution and f∗ is finite if b ∈ Range(A), and f∗ = −∞ otherwise. The standard CG
method (e.g., see [24, Chapter 5]) is proposed mainly for the case where A is symmetric positive definite. In
order to make the CG method applicable to the general convex QP (A.1), one has to modify the termination
criterion of the standard CG method, which is usually in terms of the gradient of the objective of (A.1). The
resulting CG method is presented as follows.

CG method for (A.1):

Input: A, b, x0.

Set r0 = Ax0 − b, p0 = −r0, k = 0.

while Apk 6= 0

αk =
‖rk‖2

(pk)TApk
; (A.2)

xk+1 = xk + αkp
k; (A.3)

rk+1 = rk + αkAp
k; (A.4)

βk+1 =
‖rk+1‖2

‖rk‖2
; (A.5)

pk+1 = −rk+1 + βk+1p
k; (A.6)

k ← k + 1.

end (while)

The convergence of the CG method for (A.1) has been well studied when A is symmetric positive definite
(e.g., see [24] and the references therein). Nevertheless, for the case where A is symmetric positive semidefinite,
it has only been partially studied in the literature (e.g., see [19, 18, 17]). As a self-contained reference, we next
provide a more comprehensive study on the convergence of the CG method for problem (A.1) with A being
symmetric positive semidefinite.

Theorem A.1 The following statements hold for the above CG method:

(i) The CG method is well defined.
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(ii) Suppose that the CG method has not yet terminated at the kth iterate, that is, Apk 6= 0 for some k ≥ 0.
Then the following properties hold:

(ri)T rj = 0, for i 6= j, i, j = 0, 1, . . . , k,

span{r0, r1, . . . , rk} = span{r0, Ar0, . . . , Akr0},
span{p0, p1, . . . , pk} = span{r0, Ar0, . . . , Akr0}, (A.7)

(pi)TApj = 0, for i 6= j, i, j = 0, 1, . . . , k, (A.8)

where span denotes the subspace spanned by the associated vectors.

Proof. (i) We first claim that

if Apk 6= 0 for some k ≥ 0, then rk 6= 0. (A.9)

Indeed, since p0 = −r0, it is clear that Ap0 6= 0 yields r0 6= 0. Suppose for contradiction that Apk 6= 0 for some
k > 0 but rk = 0. It then follows from (A.5) that βk = ‖rk‖2/‖rk−1‖2 = 0. This together with (A.6) and rk = 0

gives pk = −rk + βkp
k−1 = 0, which contradicts the assumption Apk 6= 0 and thus (A.9) holds. In addition,

since A is symmetric positive semidefinite, one can see that (pk)TApk 6= 0 if and only if Apk 6= 0. By this fact,
(A.9) and an inductive argument, it is not hard to see that the CG method is well defined.

(ii) The proof of statement (ii) is identical to that of [24, Theorem 5.3].

The following result shows that the CG method terminates in a finite number of iterations and produces
either an optimal solution of (A.1) or a direction along which f is unbounded below.

Theorem A.2 Let ` = rank(A). The following properties hold for the CG method:

(i) If b ∈ Range(A), the CG method terminates at some iteration 0 ≤ k ≤ ` and xk is an optimal solution of
(A.1);

(ii) If b /∈ Range(A), the CG method terminates at some iteration 0 ≤ k ≤ ` + 1 and f(xk + αpk) → −∞ as
α→∞.

Proof. (i) Assume that b ∈ Range(A). Suppose for contradiction that the CG method does not terminate
for all 0 ≤ k ≤ `. It then follows that Apk 6= 0 and hence pk 6= 0 for every 0 ≤ k ≤ `. From (A.8) we also know
that {pi}`i=0 are conjugate with respect to A. Thus {pi}`i=0 are linearly independent. In view of this and (A.7),
one can see that the dimension of span{r0, Ar0, . . . , A`r0} is ` + 1. On the other hand , by the assumption
b ∈ Range(A), we observe that r0 = Ax0 − b ∈ Range(A). It yields span{r0, Ar0, . . . , A`r0} ⊆ Range(A), which
along with ` = rank(A) implies that the dimension of span{r0, Ar0, . . . , A`r0} is at most `. This leads to a
contradiction. Thus the CG method terminates at some 0 ≤ k ≤ ` with Apk = 0. We next show that xk is
an optimal solution of (A.1). Since (A.1) is a convex problem, it suffices to show ∇f(xk) = 0. Notice that
rk = Axk − b, which along with the assumption b ∈ Range(A) implies that rk = Aξ for some vector ξ. By this
and Apk = 0, we have (rk)T pk = ξTApk = 0. Since the exact line search is performed at each iteration of CG,
one has (rk)T pk−1 = 0. In addition, it follows from (A.6) that rk = −pk + βkp

k−1. Using these relations, we
have ‖rk‖2 = (rk)T (−pk + βkp

k−1) = 0. Hence, ∇f(xk) = rk = 0 as desired.
(ii) Assume that b /∈ Range(A). Suppose for contradiction that the CG method does not terminate for all

0 ≤ k ≤ ` + 1. By a similar argument as in statement (i), one knows that {pi}`+1
i=0 are linearly independent.

Using this and (A.7), we see that the dimension of span{r0, Ar0, . . . , A`+1r0} is ` + 2. In addition, notice
that span{r0, Ar0, . . . , A`+1r0} ⊆ span{r0 ∪ Range(A)}. This and ` = rank(A) imply that the dimension of
span{r0, Ar0, . . . , A`+1r0} is at most ` + 1, which leads to a contradiction. Thus the CG method terminates
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at some 0 ≤ k ≤ ` + 1 with Apk = 0. It remains to show that f(xk + αpk) → −∞ as α → ∞. By the same
argument as above, one has (rk)T pk−1 = 0. Also, by the assumption b /∈ Range(A), we know that rk 6= 0. In
addition, notice from (A.6) that pk = −rk +βkp

k−1. It follows from these relations that (rk)T pk = −‖rk‖2 < 0.
In view of this and Apk = 0, we have

f(xk + αpk) = f(xk) + α(rk)T pk +
1

2
α2(pk)TApk = f(xk) + α(rk)T pk → −∞ as α→∞.

We next study some further convergence properties of the CG method under the following assumption.

Assumption 2 b ∈ Range(A).

This Assumption implies that problem (A.1) has at least an optimal solution and f∗ is finite. As shown
above, the CG method terminates at an optimal solution of (A.1) in a finite number of iterations. We next
show that the convergence of CG may depend on the eigenvalue distribution and a certain condition number of
A. To this end, let ` = rank(A) and λ1 ≥ λ2 ≥ · · · ≥ λ` > 0 be all nonzero eigenvalues of A. In addition, let
W ∈ <n×` and V ∈ <n×(n−`) such that

A = [W V ]

[
Â 0

0 0

] [
WT

V T

]
, [W V ]T [W V ] = I, Â = diag(λ1, . . . , λ`),

which is a standard eigenvalue decomposition of A. Clearly, A = WÂWT and Â = WTAW . Moreover, it is not
hard to observe that

A = AWWT , WWTx = x ∀x ∈ Range(A). (A.10)

Let {rk}, {pk} and {xk} be generated by the above CG method. Define

b̂ = WT b, r̂k = WT rk, p̂k = WT pk, x̂k = WTxk. (A.11)

Lemma A.1 Let Â, {αk}, {βk}, {rk}, {r̂k}, {x̂k} and {p̂k} be defined above. Under Assumption 2, the
following relations hold for any k ≥ 0 such that rk 6= 0:

(i) αk = ‖r̂k‖2

(p̂k)T Âp̂k
;

(ii) x̂k+1 = x̂k + αkp̂
k;

(iii) r̂k+1 = r̂k + αkÂp̂
k;

(iv) βk+1 = ‖r̂k+1‖2
‖r̂k‖2 ;

(v) p̂k+1 = −r̂k+1 + βk+1p̂
k.

Proof. We observe from (A.9) and Theorem A.2 (i) that under Assumption 2, Apk 6= 0 if and only if
rk 6= 0. It follows that if rk 6= 0 for some k ≥ 0, the CG method does not terminate at iteration k and
(αk, x

k+1, rk+1, βk+1, p
k+1) must be generated. Thus x̂k+1, r̂k+1 and p̂k+1 are well defined. It is known for the

CG method that rk = Axk − b, which along with Assumption 2 implies that rk ∈ Range(A). It then follows
from (A.10) that WWT rk = rk. Using this relation, A = WÂWT and (A.11), we have

‖r̂k‖2 = (WT rk)T (WT rk) = (rk)T (WWT rk) = (rk)T rk = ‖rk‖2, (A.12)

(p̂k)T Âp̂k = (WT pk)T Â(WT pk) = (pk)T (WÂWT )pk = (pk)TApk,
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which together with (A.2) yields statement (i). Pre-multiplying (A.3) by WT and using (A.11), one can see
that statement (ii) holds. In addition, pre-multiplying (A.4) by WT and using (A.10), (A.11) and Â = WTAW ,
we have

r̂k+1 = WT rk+1 = WT rk + αkW
TApk = r̂k + αk(WTAW )(WT pk) = r̂k + αkÂp̂

k

and thus statement (iii) holds. Statement (iv) follows from (A.5) and (A.12). Finally, statement (v) follows
from (A.11) and the pre-multiplication of (A.6) by WT .

We are now ready to establish some further convergence properties for the CG method for solving problem
(A.1).

Theorem A.3 Let {xk} be generated by the CG method applied to problem (A.1) and ` = rank(A). Under
Assumption 2, the following properties hold:

(i) If A has ˆ̀distinct nonzero eigenvalues, the CG method terminates at an optimal solution of problem (A.1)
in at most ˆ̀ iterations;

(ii) f(xk)− f∗ ≤
(
λk−λ`

λk+λ`

)2 (
f(x0)− f∗

)
for all 1 ≤ k ≤ `;

(iii) f(xk)− f∗ ≤ 4

(√
κ(A)−1√
κ(A)+1

)2k (
f(x0)− f∗

)
for all k ≥ 0, where κ(A) is defined in (1.4).

Proof. Let W , Â, b̂, {αk}, {x̂k}, {r̂k}, {βk} and {p̂k} be defined above. Recall that for the CG method,
Apk 6= 0 if and only if rk 6= 0. This along with (A.12) implies that Apk 6= 0 if and only if r̂k 6= 0. In view of
(A.10), (A.11), Â = WTAW and r0 = Ax0 − b, one has

r̂0 = WT r0 = WT (Ax0 − b) = WT (AWWTx0 − b) = (WTAW )WTx0 −WT b = Âx̂0 − b̂.

Using these and statements (i)-(v) of Lemma A.1, we observe that {αk}, {x̂k}, {r̂k}, {βk} and {p̂k} can be
viewed as the sequences generated by the CG method applied to the problem

f̂∗ = min
x̂∈<`

f̂(x̂) :=
1

2
x̂T Âx̂− b̂T x̂. (A.13)

Claim that the following relations hold for problems (A.1) and (A.13).

(a) f(x) = f̂(WTx) for all x ∈ <n;

(b) f(Wx̂) = f̂(x̂) for all x̂ ∈ <`;

(c) f∗ = f̂∗.

Indeed, since b ∈ Range(A), it follows from (A.10) that WWT b = b. Using this, A = WÂWT and (A.11), we
see that for any x ∈ <n,

(WTx)T Â(WTx) = xTAx, b̂T (WTx) = (bTWWT )x = bTx,

which along with the definitions of f and f̂ imply that property (a) holds. In addition, by (A.11), Â = WTAW

and the definitions of f and f̂ , one has for any x̂ ∈ <`,

f(Wx̂) =
1

2
x̂T (WTAW )x̂+ (WT b)T x̂ =

1

2
x̂T Âx̂+ b̂T x̂ = f̂(x̂)
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and hence property (b) holds. Combining properties (a) and (b), it is not hard to see that property (c) holds.
Notice that Â is symmetric positive definite. Thus {x̂k} is the sequence generated by the CG method for

solving the strongly convex quadratic program (A.13) with x̂0 = WTx0. It follows that the convergence results
of the CG method for strongly convex QP, which are presented in [24, Theorems 5.4 and 5.5 and equation
(5.36)], hold for {x̂k}. Let x̂∗ be the unique optimal solution of (A.13). We are now ready to prove statements
(i)-(iii) by using this observation and the above properties (a)-(c).

(i) Notice that [24, Theorem 5.4] holds for {x̂k}. Then there exists some 0 ≤ k ≤ ˆ̀ such that r̂k = 0, which
along with (A.12) implies rk = 0. It follows that Apk = 0 and xk is an optimal solution of (A.1). Hence, the
CG method terminates at an optimal solution of (A.1) in at most ˆ̀ iterations.

(ii) Applying [24, Theorem 5.5] to problem (A.13), one has

‖x̂k − x̂∗‖2
Â
≤
(
λk − λ`
λk + λ`

)2

‖x̂0 − x̂∗‖2
Â
, ∀1 ≤ k ≤ `,

where ‖x̂‖Â =
√
x̂T Âx̂ for any x̂ ∈ <`. Observe that f̂(x̂)− f̂∗ = ‖x̂− x̂∗‖2

Â
/2 for all x̂. It thus follows that

f̂(x̂k)− f̂∗ ≤
(
λk − λ`
λk + λ`

)2

(f̂(x̂0)− f̂∗), ∀ 1 ≤ k ≤ `.

The conclusion of this statement follows from this relation, x̂k = WTxk and the above properties (a) and (c).
(iii) Applying [24, equation (5.36)] to problem (A.13), we have

‖x̂k − x̂∗‖2
Â
≤ 4


√
κ(Â)− 1√
κ(Â) + 1

2k

‖x̂0 − x̂∗‖2
Â
, ∀k ≥ 0.

Notice that A shares the same nonzero eigenvalues with Â. It follows from (1.4) that κ(A) = κ(Â). The
conclusion of this statement then follows from these relations and a similar argument as for statement (ii).
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