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Abstract. In this paper, we consider the problem of estimating multiple graphical models
simultaneously using the fused lasso penalty, which encourages adjacent graphs to share similar
structures. A motivating example is the analysis of brain networks of Alzheimer’s disease using
neuroimaging data. Specifically, we may wish to estimate a brain network for the normal controls
(NC), a brain network for the patients with mild cognitive impairment (MCI), and a brain network
for Alzheimer’s patients (AD). We expect the two brain networks for NC and MCI to share common
structures but not to be identical to each other; similarly for the two brain networks for MCI
and AD. The proposed formulation can be solved using a second-order method. Our key technical
contribution is to establish the necessary and sufficient condition for the graphs to be decomposable.
Based on this key property, a simple screening rule is presented, which decomposes the large graphs
into small subgraphs and allows an efficient estimation of multiple independent (small) subgraphs,
dramatically reducing the computational cost. We perform experiments on both synthetic and real
data; our results demonstrate the effectiveness and efficiency of the proposed approach.
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1. Introduction. Undirected graphical models explore the relationships among
a set of random variables through their joint distribution. The estimation of undi-
rected graphical models has applications in many domains, such as computer vision,
biology, and medicine [11, 17, 44]. One instance is the analysis of gene expression data.
As shown in many biological studies, genes tend to work in groups based on their bi-
ological functions, and there exist some regulatory relationships between genes [5].
Such biological knowledge can be represented as a graph, where nodes are the genes,
and edges describe the regulatory relationships. Graphical models provide a useful
tool for modeling these relationships, and can be used to explore gene activities. One
of the most widely used graphical models is the Gaussian graphical model (GGM),
which assumes the variables to be Gaussian distributed [2, 47]. In the framework of
GGM, the problem of learning a graph is equivalent to estimating the inverse of the
covariance matrix (precision matrix), since the nonzero off-diagonal elements of the
precision matrix represent edges in the graph [2, 47].

In recent years many research efforts have focused on estimating the precision
matrix and the corresponding graphical model (see, for example [2, 10, 16, 17, 22, 23,
25, 26, 29, 30, 33, 47]. Meinshausen and Bühlmann [30] estimated edges for each node
in the graph by fitting a lasso problem [36] using the remaining variables as predictors.
Yuan and Lin [47] and Banerjee et al. [2] proposed a penalized maximum likelihood
model using ℓ1 regularization to estimate the sparse precision matrix. Numerous
methods have been developed for solving this model. For example, d’Aspremont et
al. [8] and Lu [25, 26] studied Nesterov’s smooth gradient methods [32] for solving
this problem or its dual. Banerjee et al. [2] and Friedman et al. [10] proposed block
coordinate ascent methods for solving the dual problem. The latter method [10] is
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widely referred to as Graphical lasso (GLasso). Mazumder and Hastie [29] proposed a
new algorithm called DP-GLasso, each step of which is a box-constrained QP problem.
Scheinberg and Rish [35] proposed a coordinate descent method for solving this model
in a greedy approach. Yuan [48] and Scheinberg et al. [34] applied alternating direc-
tion method of multipliers (ADMM) [4] to this problem. Li and Toh [22] and Yuan
and Lin [47] proposed to solve this problem using interior point methods. Wang et
al. [40], Hsieh et al. [16], Olsen et al. [33], and Dinh et al. [9] studied Newton method
for solving this model. The main challenge of estimating a sparse precision matrix for
the problems with a large number of nodes (variables) is its intensive computation.
Witten et al. [42] and Mazumder and Hastie [28] independently derived a necessary
and sufficient condition for the solution of a single graphical lasso to be block diagonal
(subject to some rearrangement of variables). This can be used as a simple screening
test to identify the associated blocks, and the original problem can thus be decom-
posed into a group of smaller sized but independent problems corresponding to these
blocks. When the number of blocks is large, it can achieve massive computational
gain. However, these formulations assume that observations are independently drawn
from a single Gaussian distribution. In many applications the observations may be
drawn from multiple Gaussian distributions; in this case, multiple graphical models
need to be estimated.

There are some recent works on the estimation of multiple precision matrices [7,
11, 12, 13, 19, 20, 31, 49]. Guo et al. [11] proposed a method to jointly estimate multi-
ple graphical models using a hierarchical penalty. However, their model is not convex.
Honorio and Samaras [13] proposed a convex formulation to estimate multiple graph-
ical models using the ℓ1,∞ regularizer. Hara and Washio [12] introduced a method
to learn common substructures among multiple graphical models. Danaher et al. [7]
estimated multiple precision matrices simultaneously using a pairwise fused penalty
and grouping penalty. ADMM was used to solve the problem, but it requires com-
puting multiple eigen decompositions at each iteration. Mohan et al. [31] proposed
to estimate multiple precision matrices based on the assumption that the network
differences are generated from node perturbations. Compared with single graphical
model learning, learning multiple precision matrices jointly is even more challenging
to solve. Recently, a necessary and sufficient condition for multiple graphs to be de-
composable was proposed in [7]. However, such necessary and sufficient condition was
restricted to two graphs only when the fused penalty is used. It is not clear whether
this screening rule can be extended to the more general case with more than two
graphs, which is the case in brain network modeling.

There are two types of fused penalties that can be used for estimating multiple
(more than two) graphs: (a) pairwise fused or (b) sequential fused [37]. In this paper
we set out to address the sequential fused case first, because we work on practical
applications that can be more appropriately formulated using the sequential formu-
lation. Specifically, we consider the problem of estimating multiple graphical models
by maximizing a penalized log likelihood with ℓ1 and sequential fused regularization.
The ℓ1 regularization yields a sparse solution, and the fused regularization encourages
adjacent graphs to be similar. The graphs considered in this paper have a natural
order, which is common in many applications. A motivating example is the modeling
of brain networks for Alzheimer’s disease using neuroimaging data such as Positron
emission tomography (PET). In this case, we want to estimate graphical models for
three groups: normal controls (NC), patients of mild cognitive impairment (MCI), and
Alzheimer’s patients (AD). These networks are expected to share some common con-
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nections, but they are not identical. Furthermore, the networks are expected to evolve
over time, in the order of disease progression from NC to MCI to AD. Estimating the
graphical models separately fails to exploit the common structures among them. It
is thus desirable to jointly estimate the three networks (graphs). Our key technical
contribution is to establish the necessary and sufficient condition for the solution of
the fused multiple graphical lasso (FMGL) to be block diagonal. The duality theory
and several other tools in linear programming are used to drive the necessary and
sufficient condition. Based on this crucial property of FMGL, we develop a screen-
ing rule which enables the efficient estimation of large multiple precision matrices for
FMGL. The proposed screening rule can be combined with any algorithms to reduce
computational cost. We employ a second-order method [16, 21, 38] to solve the fused
multiple graphical lasso, where each step is solved by the spectral projected gradient
method [27, 43]. In addition, we propose a shrinking scheme to identify the variables
to be updated in each step of the second-order method, which reduces the computa-
tion cost of each step. We conduct experiments on both synthetic and real data; our
results demonstrate the effectiveness and efficiency of the proposed approach.

1.1. Notation. In this paper, ℜ stands for the set of all real numbers, ℜn denotes
the n-dimensional Euclidean space, and the set of allm×nmatrices with real entries is
denoted by ℜm×n. All matrices are presented in bold format. The space of symmetric
matrices is denoted by Sn. If X ∈ Sn is positive semidefinite (resp. definite), we write
X ≽ 0 (resp. X ≻ 0). Also, we write X ≽ Y to mean X−Y ≽ 0. The cone of positive
semidefinite matrices in Sn is denoted by Sn

+. Given matrices X and Y in ℜm×n,
the standard inner product is defined by ⟨X,Y⟩ := tr(XYT ), where tr(·) denotes the
trace of a matrix. X ◦ Y and X ⊗ Y means the Hadamard and Kronecker product
of X and Y, respectively. We denote the identity matrix by I, whose dimension
should be clear from the context. The determinant and the minimal eigenvalue of a
real symmetric matrix X are denoted by det(X) and λmin(X), respectively. Given a
matrix X ∈ ℜn×n, diag(X) denotes the vector formed by the diagonal of X, that is,
diag(X)i = Xii for i = 1, . . . , n. Diag(X) is the diagonal matrix which shares the
same diagonal as X. vec(X) is the vectorization of X. In addition, X > 0 means that
all entries of X are positive.

The rest of the paper is organized as follows. We introduce the fused multiple
graphical lasso formulation in Section 2. The screening rule is presented in Section 3.
The proposed second-order method is presented in Section 4. The experimental results
are shown in Section 5. We conclude the paper in Section 6.

2. Fused multiple graphical lasso. Assume we are given K data sets, x(k) ∈
Rnk×p, k = 1, . . . ,K with K ≥ 2, where nk is the number of samples, and p is the
number of features. The p features are common for all K data sets, and all

∑K
k=1 nk

samples are independent. Furthermore, the samples within each data set x(k) are
identically distributed with a p-variate Gaussian distribution with zero mean and
positive definite covariance matrixΣ(k), and there are many conditionally independent
pairs of features, i.e., the precision matrix Θ(k) = (Σ(k))−1 should be sparse. For
notational simplicity, we assume that n1 = . . . = nK = n. Denote the sample
covariance matrix for each data set x(k) as S(k) with S(k) = 1

n (x
(k))Tx(k), and Θ =

(Θ(1), . . . ,Θ(K)). Then the negative log likelihood for the data takes the form of

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
.(2.1)
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Clearly, minimizing (2.1) leads to the maximum likelihood estimate (MLE) Θ̂(k) =
(S(k))−1. However, the MLE fails when S(k) is singular. Furthermore, the MLE is
usually dense. The ℓ1 regularization has been employed to induce sparsity, resulting
in the sparse inverse covariance estimation [2, 10, 46]. In this paper, we employ
both the ℓ1 regularization and the fused regularization for simultaneously estimating
multiple graphs. The ℓ1 regularization leads to a sparse solution, and the fused penalty
encourages Θ(k) to be similar to its neighbors. Mathematically, we solve the following
formulation:

min
Θ(k)≻0,k=1...K

K∑
k=1

(
− log det(Θ(k)) + tr(S(k)Θ(k))

)
+ P (Θ),(2.2)

where

P (Θ) = λ1

K∑
k=1

∑
i̸=j

|Θ(k)
ij |+ λ2

K−1∑
k=1

∑
i ̸=j

|Θ(k)
ij −Θ

(k+1)
ij |,

λ1 > 0 and λ2 > 0 are positive regularization parameters. This model is referred to
as the fused multiple graphical lasso (FMGL).

To ensure the existence of a solution for problem (2.2), we assume throughout
this paper that diag(S(k)) > 0, k = 1, . . . ,K. Recall that S(k) is a sample covariance
matrix, and hence diag(S(k)) ≥ 0. The diagonal entries may be not, however, strictly
positive. But we can always add a small perturbation (say 10−8) to ensure the above
assumption holds.

The following theorem shows that under this assumption the FMGL (2.2) has a
unique solution.

Theorem 2.1. Under the assumption that diag(S(k)) > 0, k = 1, . . . ,K, problem
(2.2) has a unique optimal solution.

To prove Theorem 2.1, we first establish a technical lemma which regards the
existence of a solution for a standard graphical lasso problem.

Lemma 2.2. Let S ∈ Sp
+ and Λ ∈ Sp be such that Diag(S) + Λ > 0 and

diag(Λ) ≥ 0. Consider the problem

min
X≻0

− log det(X) + tr(SX) +
∑
ij

Λij |Xij |︸ ︷︷ ︸
f(X)

.(2.3)

Then the following statements hold:
(a) Problem (2.3) has a unique optimal solution;
(b) The sub-level set L = {X ≻ 0 : f(X) ≤ α} is compact for any α ≥ f∗, where

f∗ is the optimal value of (2.3).
Proof. (a) Let U = {U ∈ Sp : Uij ∈ [−1, 1], ∀i, j}. Consider the problem

max
U∈U

{log det(S+Λ ◦U) : S+Λ ◦U ≻ 0} .(2.4)

We first claim that the feasible region of problem (2.4) is nonempty, or equiva-
lently, there exists Ū ∈ U such that λmin(S + Λ ◦ Ū) > 0. Indeed, one can observe
that

max
U∈U

λmin(S+Λ ◦U) = max
t,U∈U

{t : Λ ◦U+ S− tI ≽ 0},
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= min
X≽0

max
t,U∈U

{t+ tr(X(Λ ◦U+ S− tI))} ,

= min
X≽0

tr(SX) +
∑
ij

Λij |Xij | : tr(X) = 1

 ,(2.5)

where the second equality follows from the Lagrangian duality since its associated
Slater condition is satisfied. Let Ω := {X ∈ Sp : tr(X) = 1, X ≽ 0}. By the
assumption Diag(S) +Λ > 0, we see that Λij > 0 for all i ̸= j and Sii +Λii > 0 for
every i. Since Ω ⊂ Sp

+, we have tr(SX) ≥ 0 for all X ∈ Ω. If there exists some k ̸= l
such that Xkl > 0, then

∑
i ̸=j

Λij |Xij | > 0 and hence,

tr(SX) +
∑
ij

Λij |Xij | > 0, ∀X ∈ Ω.(2.6)

Otherwise, one hasXij = 0 for all i ̸= j, which, together with the facts that Sii+Λii >
0 for all i and tr(X) = 1, implies that for all X ∈ Ω,

tr(SX) +
∑
ij

Λij |Xij | =
∑
i

(Sii +Λii)Xii ≥ tr(X)min
i
(Sii +Λii) > 0.

Hence, (2.6) again holds. Combining (2.5) with (2.6), one can see that max
U∈U

λmin(S+

Λ ◦U) > 0. Therefore, problem (2.4) has at least a feasible solution.
We next show that problem (2.4) has an optimal solution. Let Ū be a feasible

point of (2.4), and

Ω̄ := {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U ≻ 0}.

One can observe that {S+Λ ◦U : U ∈ U} is compact. Using this fact, it is not hard
to see that log det(S+Λ ◦U) → −∞ as U ∈ U and λmin(S+Λ ◦U) ↓ 0. Thus there
exists some δ > 0 such that

Ω̄ ⊆ {U ∈ U : S+Λ ◦U ≽ δI},

which implies that

Ω̄ = {U ∈ U : log det(S+Λ ◦U) ≥ log det(S+Λ ◦ Ū), S+Λ ◦U ≽ δI}.

Hence, Ω̄ is a compact set. In addition, one can observe that problem (2.4) is equiv-
alent to

max
U∈Ω̄

log det(S+Λ ◦U).

The latter problem clearly has an optimal solution and so is problem (2.4).
Finally we show that X∗ = (S+Λ◦U∗)−1 is the unique optimal solution of (2.3),

where U∗ is an optimal solution of (2.4). Since S+Λ ◦U∗ ≻ 0, we have X∗ ≻ 0. By
the definitions of U and X∗, and the first-order optimality conditions of (2.4) at U∗,
one can have

U∗
ij =


1 if X∗

ij > 0;
β ∈ [−1, 1] if X∗

ij = 0;
−1 otherwise.
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It follows that Λ ◦ U∗ ∈ ∂(
∑

ij Λij |Xij |) at X = X∗, where ∂(·) stands for the
subdifferential of the associated convex function. For convenience, let f(X) denote
the objective function of (2.3). Then we have

−(X∗)−1 + S+Λ ◦U∗ ∈ ∂f(X∗),

which, together with X∗ = (S + Λ ◦U∗)−1, implies that 0 ∈ ∂f(X∗). Hence, X∗ is
an optimal solution of (2.3) and moreover it is unique due to the strict convexity of
− log det(·).

(b) By statement (a), problem (2.3) has a finite optimal value f∗. Hence, the
above sub-level set L is nonempty. We can observe that for any X ∈ L,

1

2

∑
ij

Λij |Xij | = f(X)− [− log det(X) + tr(SX) +
1

2

∑
ij

Λij |Xij |︸ ︷︷ ︸
f(X)

],

≤ α− f∗,(2.7)

where f∗ := inf{f(X) : X ≻ 0}. By the assumption Diag(S) + Λ > 0, one has
Diag(S) + Λ/2 > 0. This together with statement (a) yields f∗ ∈ ℜ. Notice that
Λij > 0 for all i ̸= j. This relation and (2.7) imply that Xij is bounded for all X ∈ L
and i ̸= j. In addition, it is well-known that det(X) ≤ X11X22 · · ·Xpp for all X ≽ 0.
Using this relation, the definition of f(·), and the boundedness of Xij for all X ∈ L
and i ̸= j, we have that for every X ∈ L,∑

i

− log(Xii) + (Sii + Λii)Xii ≤ f(X)−
∑
i ̸=j

(SijXij + Λij |Xij |),

≤ α−
∑
i ̸=j

(SijXij + Λij |Xij |) ≤ δ(2.8)

for some δ > 0. In addition, notice from the assumption that Sii + Λii > 0 for all i,
and hence

− log(Xii) + (Sii + Λii)Xii ≥ 1 + min
k

log(Skk + Λkk) =: σ

for all i. This relation together with (2.8) implies that for every X ∈ L and all i,

− log(Xii) + (Sii + Λii)Xii ≤ δ − (p− 1)σ,

and hence Xii is bounded for all i and X ∈ L. We thus conclude that L is bounded.
In view of this result and the definition of f , it is not hard to see that there exists
some ν > 0 such that λmin(X) ≥ ν for all X ∈ L. Hence, one has

L = {X ≽ νI : f(X) ≤ α}.

By the continuity of f on {X : X ≽ νI}, it follows that L is closed. Hence, L is
compact.

We are now ready to prove Theorem 2.1.
Proof. Since λ1 > 0 and diag(S(k)) > 0, k = 1, . . . ,K, it follows from Lemma 2.2

that there exists some δ such that for each k = 1, . . . ,K,

− log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i ̸=j

|Θ(k)
ij | ≥ δ, ∀Θ(k) ≻ 0.
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For convenience, let h(Θ) denote the objective function of (2.2) and Θ̄ = (Θ̄(1), . . . , Θ̄(K))
an arbitrary feasible point of (2.2). Let

Ω =
{
Θ = (Θ(1), . . . ,Θ(K)) : h(Θ) ≤ h(Θ̄), Θ(k) ≻ 0, k = 1, . . . ,K

}
,

Ωk =
{
Θ(k) ≻ 0 : − log det(Θ(k)) + tr(S(k)Θ(k)) + λ1

∑
i̸=j |Θ

(k)
ij | ≤ δ̄

}
for k = 1, . . . ,K, where δ̄ = h(Θ̄) − (K − 1)δ. Then it is not hard to observe that
Ω ⊆ Ω̄ := Ω1 × · · · × ΩK . Moreover, problem (2.2) is equivalent to

min
Θ∈Ω̄

h(Θ).(2.9)

In view of Lemma 2.2, we know that Ωk is compact for all k, which implies that Ω̄ is
also compact. Notice that h is continuous and strictly convex on Ω̄. Hence, problem
(2.9) has a unique optimal solution and so is problem (2.2).

3. The screening rule for fused multiple graphical lasso. Due to the pres-
ence of the log determinant, it is challenging to solve the formulations involving the
penalized log-likelihood efficiently. The existing methods for single graphical lasso
are not scalable to the problems with a large amount of features because of the high
computational complexity. Recent studies have shown that the graphical model may
contain many connected components, which are disjoint with each other, due to the
sparsity of the graphical model, i.e., the corresponding precision matrix has a block
diagonal structure (subject to some rearrangement of features). To reduce the com-
putational complexity, it is advantageous to first identify the block structure and
then compute the diagonal blocks of the precision matrix instead of the whole matrix.
Danaher et al. [7] developed a similar necessary and sufficient condition for fused
graphical lasso with two graphs, thus the block structure can be identified. However,
it remains a challenge to derive the necessary and sufficient condition for the solution
of fused multiple graphical lasso to be block diagonal for K > 2 graphs.

In this section, we first present a theorem demonstrating that FMGL can be
decomposable once its solution has a block diagonal structure. Then we derive a
necessary and sufficient condition for the solution of FMGL to be block diagonal for
arbitrary number of graphs.

Let C1, . . . , CL be a partition of the p features into L non-overlapping sets, with
Cl ∩ Cl′ = ∅, ∀l ̸= l′ and

∪L
l=1 Cl = {1, . . . , p}. We say that the solution Θ̂ of

FMGL (2.2) is block diagonal with L known blocks consisting of features in the sets
Cl, l = 1, . . . , L if there exists a permutation matrix U ∈ ℜp×p such that each
estimation precision matrix takes the form of

Θ̂(k) = U


Θ̂

(k)
1

. . .

Θ̂
(k)
L

UT , k = 1, . . . ,K.(3.1)

For simplicity of presentation, we assume throughout this paper that U = I.

The following decomposition result for problem (2.2) is straightforward. Its proof
is thus omitted.

Theorem 3.1. Suppose that the solution Θ̂ of FMGL (2.2) is block diagonal with
L known Cl, l = 1, . . . , L, i.e., each estimated precision matrix has the form (3.1)
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with U = I. Let Θ̂l = (Θ̂
(1)
l , . . . , Θ̂

(K)
l ) for l = 1, . . . , L. Then there holds:

Θ̂l = arg min
Θl≻0

K∑
k=1

(
− log det(Θ

(k)
l ) + tr(S

(k)
l Θ

(k)
l )

)
+ P (Θl), l = 1, . . . , L,(3.2)

where Θ
(k)
l and S

(k)
l are the |Cl| × |Cl| symmetric submatrices of Θ(k) and S(k)

corresponding to the l-th diagonal block, respectively, for k = 1, . . . ,K, and Θl =

(Θ
(1)
l , . . . ,Θ

(K)
l ) for l = 1, . . . , L.

The above theorem demonstrates that if a large-scale FMGL problem has a block
diagonal solution, it can then be decomposed into a group of smaller sized FMGL
problems. The computational cost for the latter problems can be much cheaper. Now
one natural question is how to efficiently identify the block diagonal structure of the
FMGL solution before solving the problem. We address this question in the remaining
part of this section.

The following theorem provides a necessary and sufficient condition for the solu-
tion of FMGL to be block diagonal with L blocks Cl, l = 1, . . . , L, which is a key for
developing efficient decomposition scheme for solving FMGL. Since its proof requires
some substantial development of other technical results, we shall postpone the proof
until the end of this section.

Theorem 3.2. The FMGL (2.2) has a block diagonal solution Θ̂(k), k = 1, . . . ,K
with L known blocks Cl, l = 1, . . . , L if and only if S(k), k = 1, . . . ,K satisfy the
following inequalities:

|
∑t

k=1 S
(k)
ij | ≤ tλ1 + λ2,

|
∑t−1

k=0 S
(r+k)
ij | ≤ tλ1 + 2λ2, 2 ≤ r ≤ K − t,

|
∑t

k=1 S
(K−t+k)
ij | ≤ tλ1 + λ2,

|
∑K

k=1 S
(k)
ij | ≤ Kλ1

(3.3)

for t = 1, . . . ,K − 1, i ∈ Cl, j ∈ Cl′ , l ̸= l′.

One immediate consequence of Theorem 3.2 is that the conditions (3.3) can be
used as a screening rule to identify the block diagonal structure of the FMGL solution.
The steps about this rule are described as follows.

1. Construct an adjacency matrix E = Ip×p. Set Eij = Eji = 0 if S
(k)
ij , k =

1, . . . ,K satisfy the conditions (3.3). Otherwise, set Eij = Eji = 1.
2. Identify the connected components of the adjacency matrix E (for example,

it can be done by calling the Matlab function “graphconncomp”).
In view of Theorem 3.2, it is not hard to observe that the resulting connected

components are the partition of the p features into nonoverlapping sets. It then
follows from Theorem 3.1 that a large-scale FMGL problem can be decomposed into
a group of smaller sized FMGL problems restricted to the features in each connected
component. The computational cost for the latter problems can be much cheaper.
Therefore, this approach may enable us to solve large-scale FMGL problems very
efficiently.

In the remainder of this section we provide a proof for Theorem 3.2. Before
proceeding, we establish several technical lemmas as follows.
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Lemma 3.3. Given any two arbitrary index sets I ⊆ {1, · · · , n} and J ⊆ {1, · · · , n−
1}, let Ī and J̄ be the complement of I and J with respect to {1, · · · , n} and {1, · · · , n−
1}, respectively. Define

PI,J =
{
y ∈ ℜn : yI ≥ 0, yĪ ≤ 0, yJ − yJ+1 ≥ 0, yJ̄ − yJ̄+1 ≤ 0

}
,(3.4)

where J + 1 = {j + 1 : j ∈ J} and J̄ + 1 = {j + 1 : j ∈ J̄}. Then, the following
statements hold:

(i) Either PI,J = {0} or PI,J is unbounded;
(ii) 0 is the unique extreme point of PI,J ;
(iii) Suppose that PI,J is unbounded. Then, ∅ ̸= ext(PI,J) ⊆ Q, where ext(PI,J)

denotes the set of all extreme rays of PI,J , and

Q := {α(0, · · · , 0︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
l

, 0, · · · , 0)T ∈ ℜn : α ̸= 0,m ≥ 0, 1 ≤ l ≤ n}.(3.5)

Proof. (i) We observe that 0 ∈ PI,J . If PI,J ̸= {0}, then there exists 0 ̸= y ∈ PI,J .
Hence, {αy : α ≥ 0} ⊆ PI,J , which implies that PI,J is unbounded.

(ii) It is easy to see that 0 ∈ PI,J and moreover there exist n linearly independent
active inequalities at 0. Hence, 0 is an extreme point of PI,J . On the other hand,
suppose y is an arbitrary extreme point of PI,J . Then there exist n linearly indepen-
dent active inequalities at y, which together with the definition of PI,J immediately
implies y = 0. Therefore, 0 is the unique extreme point of PI,J .

(iii) Suppose that PI,J is unbounded. By statement (ii), we know that PI,J has
a unique extreme point. Using Minkowski’s resolution theorem (e.g., see [3]), we
conclude that ext(PI,J) ̸= ∅. Let d ∈ ext(PI,J) be arbitrarily chosen. Then d ̸= 0. It
follows from (3.4) that d satisfies the inequalities

dI ≥ 0, dĪ ≤ 0, dJ − dJ+1 ≥ 0, dJ̄ − dJ̄+1 ≤ 0,(3.6)

and moreover, the number of independent active inequalities at d is n−1. If all entries
of d are nonzero, then d must satisfy dJ − dJ+1 = 0 and dJ̄ − dJ̄+1 = 0 (with a total
number n − 1), which implies d1 = d2 = · · · = dn and thus d ∈ Q. We now assume
that d has at least one zero entry. Then, there exist positive integers k, {mi}ki=1 and
{ni}ki=1 satisfying mi ≤ ni < mi+1 ≤ ni+1 for i = 1, . . . , k − 1 such that

{i : di = 0} = {m1, · · · , n1} ∪ {m2, · · · , n2} ∪ · · · ∪ {mk, · · · , nk}.(3.7)

One can immediately observe that

dmi = · · · = dni = 0, dj − dj+1 = 0, mi ≤ j ≤ ni − 1, 1 ≤ i ≤ k.(3.8)

We next divide the rest of proof into four cases.
Case (a): m1 = 1 and nk = n. In view of (3.7), one can observe that dmi−1−dmi ̸=

0 and dni−1 − dni−1+1 ̸= 0 for i = 2, . . . , k. We then see from (3.6) that except the
active inequalities given in (3.8), all other possible active inequalities at d are

dj − dj+1 = 0, ni−1 < j < mi − 1, 2 ≤ i ≤ k(3.9)

(with a total number
∑k

i=2(mi − ni−1 − 2)). Notice that the total number of inde-

pendent active inequalities given in (3.8) is
∑k

i=1(ni −mi + 1). Hence, the number
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of independent active inequalities at d is at most

k∑
i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) = nk −m1 − k + 2 = n− k + 1.

Recall that the number of independent active inequalities at d is n − 1. Hence, we
have n − k + 1 ≥ n − 1, which implies k ≤ 2. Due to d ̸= 0, we observe that k ̸= 1
holds for this case. Also, we know that k > 0. Hence, k = 2. We then see that all
possible active inequalities described in (3.9) must be active at d, which together with
k = 2 immediately implies that d ∈ Q.

Case (b): m1 = 1 and nk < n. Using (3.7), we observe that dmi−1 − dmi ̸= 0
for i = 2, . . . , k and dni − dni+1 ̸= 0 for i = 1, . . . , k. In view of these relations and
a similar argument as in case (a), one can see that the number of independent active
inequalities at d is at most

k∑
i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) + n− nk − 1 = n−m1 − k + 1 = n− k.

Similarly as in case (a), we can conclude from the above relation that k = 1 and
d ∈ Q.

Case (c): m1 > 1 and nk = n. By (3.7), one can observe that dmi−1−dmi ̸= 0 for
i = 1, . . . , k and dni−dni+1 ̸= 0 for i = 1, . . . , k−1. Using these relations and a similar
argument as in case (a), we see that the number of independent active inequalities at
d is at most

m1 − 2 +
k∑

i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) = nk − k = n− k.

Similarly as in case (a), we can conclude from the above relation that k = 1 and
d ∈ Q.

Case (d): m1 > 1 and nk < n. From (3.7), one can observe that dmi−1 − dmi ̸= 0
for i = 1, . . . , k and dni − dni+1 ̸= 0 for i = 1, . . . , k. By virtue of these relations and
a similar argument as in case (a), one can see that the number of independent active
inequalities at d is at most

m1 − 2 +
k∑

i=1

(ni −mi + 1) +
k∑

i=2

(mi − ni−1 − 2) + n− nk − 1 = n− k − 1.

Recall that k ≥ 1 and the number of independent active inequalities at d is n − 1.
Hence, this case cannot occur.

Combining the above four cases, we conclude that ext(PI,J) ⊆ Q.

Lemma 3.4. Let PIJ and Q be defined in (3.4) and (3.5), respectively. Then,

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} = Q.

Proof. It follows from Lemma 3.3 (iii) that

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} ⊆ Q.
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We next show that

∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}} ⊇ Q.

Indeed, let d ∈ Q be arbitrarily chosen. Then, there exist α ̸= 0 and positive in-
tegers m1 and n1 satisfying 1 ≤ m1 ≤ n1 such that di = α for m1 ≤ i ≤ n1

and the rest of di’s are 0. If α > 0, it is not hard to see that d ∈ ext(PI,J)
with I = {1, · · · , n} and J = {m1, · · · , n − 1}. Similarly, if α < 0, d ∈ ext(PI,J)
with I = ∅ and J being the complement of J̄ = {m1, · · · , n − 1}. Hence, d ∈
∪{ext(PI,J) : I ⊆ {1, · · · , n}, J ⊆ {1, · · · , n− 1}}.

Lemma 3.5. Let x ∈ ℜn, λ1, λ2 ≥ 0 be given, and let

f(y) := xT y − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|.

Then, f(y) ≤ 0 for all y ∈ ℜn if and only if x satisfies the following inequalities:

|
∑k

j=1 xj | ≤ kλ1 + λ2,

|
∑k−1

j=0 xi+j | ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|
∑k

j=1 xn−k+j | ≤ kλ1 + λ2,

|
∑n

j=1 xj | ≤ nλ1

for k = 1, . . . , n− 1.

Proof. Let PI,J be defined in (3.4) for any I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n− 1}.
We observe that

(a) ℜn = ∪{PI,J : I ⊆ {1, . . . , n}, J ⊆ {1, . . . , n− 1}};
(b) f(y) ≤ 0 for all y ∈ ℜn if and only if f(y) ≤ 0 for all y ∈ PI,J , and every

I ⊆ {1, . . . , n} and J ⊆ {1, . . . , n− 1};
(c) f(y) is a linear function of y when restricted to the set PI,J for every I ⊆

{1, . . . , n} and J ⊆ {1, . . . , n− 1}.
If PI,J is bounded, we have PI,J = {0} and f(y) = 0 for y ∈ PI,J . Suppose that PI,J

is unbounded. By Lemma 3.3 and Minkowski’s resolution theorem, PI,J equals the
finitely generated cone by ext(PI,J). It then follows that f(y) ≤ 0 for all y ∈ PI,J if
and only if f(d) ≤ 0 for all d ∈ ext(PI,J). Using these facts and Lemma 3.4, we see
that f(y) ≤ 0 for all y ∈ ℜn if and only if f(d) ≤ 0 for all d ∈ Q, where Q is defined in
(3.5). By the definitions of Q and f , we further observe that f(y) ≤ 0 for all y ∈ ℜn

if and only if f(d) ≤ 0 for all

d ∈

±(0, · · · , 0︸ ︷︷ ︸
m

, 1, · · · , 1︸ ︷︷ ︸
l

, 0, · · · , 0)T ∈ ℜn : m ≥ 0, 1 ≤ l ≤ n

 ,

which together with the definition of f immediately implies that the conclusion of
this lemma holds.



12 FUSED MULTIPLE GRAPHICAL LASSO

Lemma 3.6. Let x ∈ ℜn, λ1, λ2 ≥ 0 be given. The linear system

x1 + λ1γ1 + λ2v1 = 0,

xi + λ1γi + λ2(vi − vi−1) = 0, 2 ≤ i ≤ n− 1,

xn + λ1γn − λ2vn−1 = 0,

−1 ≤ γi ≤ 1, i = 1, . . . , n,

−1 ≤ vi ≤ 1, i = 1, . . . , n− 1

(3.10)

has a solution (γ, v) if and only if (x, λ1, λ2) satisfies the following inequalities:

|
∑k

j=1 xj | ≤ kλ1 + λ2,

|
∑k−1

j=0 xi+j | ≤ kλ1 + 2λ2, 2 ≤ i ≤ n− k,

|
∑k

j=1 xn−k+j | ≤ kλ1 + λ2,

|
∑n

j=1 xj | ≤ nλ1

for k = 1, . . . , n− 1.
Proof. The linear system (3.10) has a solution if and only if the linear program-

ming

min
γ,v

{0T γ + 0T v : (γ, v) satisfies (3.10)}(3.11)

has an optimal solution. The Lagrangian dual of (3.11) is

max
y

min
γ,v

{
xT y + λ1

n∑
i=1

yiγi + λ2

n−1∑
i=1

(yi − yi+1)vi : −1 ≤ γ, v ≤ 1

}
,

which is equivalent to

max
y

f(y) := xT y − λ1

n∑
i=1

|yi| − λ2

n−1∑
i=1

|yi − yi+1|.(3.12)

By the Lagrangian duality theory, problem (3.11) has an optimal solution if and only
if its dual problem (3.12) has optimal value 0, which is equivalent to f(y) ≤ 0 for all
y ∈ ℜn. The conclusion of this lemma then immediately follows from Lemma 3.5.

We are now ready to prove Theorem 3.2.

Proof. For the sake of convenience, we denote the inverse of Θ̂(k) as Ŵ(k) for
k = 1, . . . ,K. By the first-order optimality conditions, we observe that Θ̂(k) ≻ 0, k =
1, . . . ,K is the optimal solution of problem (2.2) if and only if it satisfies

−Ŵ
(k)
ii + S

(k)
ii = 0, 1 ≤ k ≤ K,(3.13)

−Ŵ
(1)
ij + S

(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0,(3.14)

−Ŵ
(k)
ij + S

(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,(3.15)

−Ŵ
(K)
ij + S

(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0(3.16)
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for all i, j = 1, . . . , p, i ̸= j, where γ
(k)
ij is a subgradient of |Θ(k)

ij | at Θ(k)
ij = Θ̂

(k)
ij ; and

υ
(k,k+1)
ij is a subgradient of |Θ(k)

ij −Θ
(k+1)
ij | with respect to Θ

(k)
ij at (Θ

(k)
ij ,Θ

(k+1)
ij ) =

(Θ̂
(k)
ij , Θ̂

(k+1)
ij ), that is, υ

(k,k+1)
ij = 1 if Θ̂

(k)
ij > Θ̂

(k+1)
ij , υ

(k,k+1)
ij = −1 if Θ̂

(k)
ij < Θ̂

(k+1)
ij ,

and υ
(k,k+1)
ij ∈ [−1, 1] if Θ̂

(k)
ij = Θ̂

(k+1)
ij .

Necessity: Suppose that Θ̂(k), k = 1, . . . ,K is a block diagonal optimal solution

of problem (2.2) with L known blocks Cl, l = 1, . . . , L. Note that Ŵ(k) has the same

block diagonal structure as Θ̂(k). Hence, Ŵ
(k)
ij = Θ̂

(k)
ij = 0 for i ∈ Cl, j ∈ Cl′ , l ̸= l′.

This together with (3.14)-(3.16) implies that for each i ∈ Cl, j ∈ Cl′ , l ̸= l′, there exist

(γ
(k)
ij , v

(k,k+1)
ij ), k = 1, . . . ,K − 1 and γ

(K)
ij such that

S
(1)
ij + λ1γ

(1)
ij + λ2υ

(1,2)
ij = 0,

S
(k)
ij + λ1γ

(k)
ij + λ2(−υ

(k−1,k)
ij + υ

(k,k+1)
ij ) = 0, 2 ≤ k ≤ K − 1,

S
(K)
ij + λ1γ

(K)
ij − λ2υ

(K−1,K)
ij = 0,

−1 ≤ γ
(k)
ij ≤ 1, 1 ≤ k ≤ K,

−1 ≤ v
(k,k+1)
ij ≤ 1, 1 ≤ k ≤ K − 1.

(3.17)

Using (3.17) and Lemma 3.6, we see that (3.3) holds for t = 1, . . . ,K − 1, i ∈ Cl, j ∈
Cl′ , l ̸= l′.

Sufficiency: Suppose that (3.3) holds for t = 1, . . . ,K − 1, i ∈ Cl, j ∈ Cl′ , l ̸= l′.
It then follows from Lemma 3.6 that for each i ∈ Cl, j ∈ Cl′ , l ̸= l′, there exist

(γ
(k)
ij , v

(k,k+1)
ij ), k = 1, . . . ,K − 1 and γ

(K)
ij such that (3.17) holds. Now let Θ̂(k), k =

1, . . . ,K be a block diagonal matrix as defined in (3.1) with U = I, where Θ̂l =

(Θ̂
(1)
l , . . . , Θ̂

(K)
l ) is given by (3.2) for l = 1, . . . , L. Also, let Ŵ(k) be the inverse of

Θ̂(k) for k = 1, . . . ,K. Since Θ̂l is the optimal solution of problem (3.2), the first-order
optimality conditions imply that (3.13)-(3.16) hold for all i, j ∈ Cl, i ̸= j, l = 1, . . . , L.

Notice that Θ̂
(k)
ij = Ŵ

(k)
ij = 0 for every i ∈ Cl, j ∈ Cl′ , l ̸= l′. Using this fact and

(3.17), we observe that (3.13)-(3.16) also hold for all i ∈ Cl, j ∈ Cl′ , l ̸= l′. It then

follows that Θ̂(k), k = 1, . . . ,K is an optimal solution of problem (2.2). In addition,

Θ̂(k), k = 1, . . . ,K is block diagonal with L known blocks Cl, l = 1, . . . , L. The
conclusion thus holds.

4. Second-order method. The screening rule proposed in Section 3 is capable
of partitioning all features into a group of smaller sized blocks. Accordingly, a large-
scale FMGL (2.2) can be decomposed into a number of smaller sized FMGL problems.

For each block l, we need to compute its individual estimated precision matrix Θ
(k)
l

by solving the FMGL (2.2) with S(k) replaced by S
(k)
l . In this section, we discuss how

to solve those single block FMGL problems efficiently. For simplicity of presentation,
we assume throughout this section that the FMGL (2.2) has only one block, that is,
L = 1.

We now propose a second-order method to solve the FMGL (2.2). For simplicity
of notation, we let Θ := (Θ(1), . . . ,Θ(K)) and use t to denote the Newton iteration

index. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be the approximate solution obtained at the t-th

Newton iteration.
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The optimization problem (2.2) can be rewritten as

min
Θ≻0

F (Θ) :=
K∑

k=1

fk(Θ
(k)) + P (Θ),(4.1)

where

fk(Θ
(k)) = − log det(Θ(k)) + tr(S(k)Θ(k)).

In the second-order method, we approximate the objective function F (Θ) at the
current iterate Θt by a “quadratic” model Qt(Θ):

min
Θ

Qt(Θ) :=
K∑

k=1

qk(Θ
(k)) + P (Θ),(4.2)

where qk is the quadratic approximation of fk at Θ
(k)
t , that is,

qk(Θ
(k)) =

1

2
tr(W

(k)
t D(k)W

(k)
t D(k)) + tr((S(k) −W

(k)
t )D(k)) + fk(Θ

(k)
t )

with W
(k)
t = (Θ

(k)
t )−1 and D(k) = Θ(k) − Θ

(k)
t . Suppose that Θ̄t+1 is the optimal

solution of (4.2). Then we obtain the Newton search direction

D = Θ̄t+1 −Θt.(4.3)

We shall mention that the subproblem (4.2) can be suitably solved by the non-
monotone spectral projected gradient (NSPG) method (see, for example, [43, 27]). It
was shown by Lu and Zhang [27] that the NSPG method is locally linearly convergent.
Numerous computational studies have demonstrated that the NSPG method is very
efficient though its global convergence rate is so far unknown. When applied to (4.2),
the NSPG method requires solving the proximal subproblems in the form of

min
Θ

1

2

K∑
k=1

∥Θ(k) −G(k)∥2F + αP (Θ)(4.4)

for some G = (G(1), . . . ,G(K)) and α > 0. By the definition of P (Θ), it is not hard
to see that problem (4.4) can be decomposed into a set of independent and smaller
sized problems

min
Θ

(k)
ij

,k=1,...,K

1

2

K∑
k=1

(Θ
(k)
ij −G

(k)
ij )2 + α1

K∑
k=1

|Θ(k)
ij |+ α2

K−1∑
k=1

|Θ(k)
ij −Θ

(k+1)
ij |(4.5)

for all i ≥ j, j = 1, . . . , p, where (α1, α2) = α(λ1, λ2). The problem (4.5) is known as
the fused lasso signal approximator, which can be solved very efficiently and exactly [6,
24]. In addition, they are independent from each other and thus can be solved in
parallel.

Given the current search direction D = (D(1), . . . ,D(K)) that is computed above,
we need to find the suitable step length β ∈ (0, 1] to ensure a sufficient reduction in

the objective function of (2.2) and positive definiteness of the next iterate Θ
(k)
t+1 =

Θ
(k)
t + βD(k), k = 1, . . . ,K. In the context of the standard (single) graphical lasso,
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Hsieh et al. [16] have shown that a step length satisfying the above requirements
always exists. We can similarly prove that the desired step length also exists for the
FMGL (2.2).

Lemma 4.1. Let Θt = (Θ
(1)
t , . . . ,Θ

(K)
t ) be such that Θ

(k)
t ≻ 0 for k = 1, . . . ,K,

and let D = (D(1), . . . ,D(K)) be the associated Newton search direction computed

according to (4.2). Suppose D ̸= 0.1 Then there exists a β̄ > 0 such that Θ
(k)
t +

βD(k) ≻ 0 and the sufficient reduction condition

F (Θt + βD) ≤ F (Θt) + σβδ(4.6)

holds for all 0 < β < β̄, where σ ∈ (0, 1) is a given constant and

δ =
K∑

k=1

tr((S(k) −W
(k)
t )D(k)) + P (Θt +D)− P (Θt).

Proof. Let β̃ = 1/max{∥(Θ(k)
t )−1D(k)∥2 : k = 1, . . . ,K}, where ∥ · ∥2 denotes

the spectral norm of a matrix. Since D ̸= 0 and Θ
(k)
t ≻ 0, k = 1, . . . ,K, we see that

β̃ > 0. Moreover, we have for all 0 < β < β̃ and k = 1, . . . ,K,

(Θ
(k)
t )−

1
2

(
Θ

(k)
t + βD(k)

)
(Θ

(k)
t )−

1
2 = I+ β(Θ

(k)
t )−

1
2D(k)(Θ

(k)
t )−

1
2

≽ (1− β∥(Θ(k)
t )−1D(k)∥2)I ≻ 0.

By the definition of D and (4.2), one can easily show that

δ ≤ −
K∑

k=1

tr(W
(k)
t D(k)W

(k)
t D(k)),

which together with the fact that W
(k)
t ≻ 0, k = 1, . . . ,K and D ̸= 0 implies that

δ < 0. Using differentiability of fk, convexity of P , and the definition of δ, we obtain
that for all sufficiently small β > 0,

F (Θt + βD)− F (Θt) =
∑K

k=1(fk(Θ
(k)
t + βD(k))− fk(Θ

(k)
t )) + P (Θt + βD)− P (Θt),

=
∑K

k=1 tr((S
(k) −W

(k)
t )D(k))β + o(β) + P (β(Θt +D) + (1− β)Θt)− P (Θt),

≤
∑K

k=1 tr((S
(k) −W

(k)
t )D(k))β + o(β) + βP (Θt +D) + (1− β)P (Θt)− P (Θt),

≤ βδ + o(β).

This inequality together with δ < 0 and σ ∈ (0, 1) implies that there exists β̂ > 0

such that for all β ∈ (0, β̂), F (Θt + βD) − F (Θt) ≤ σβδ. It then follows that the

conclusion of this lemma holds for β̄ = min{β̃, β̂}.

By virtue of Lemma 4.1, we can adopt the well-known Armijo’s backtracking

line search rule [38] to select a step length β ∈ (0, 1] so that Θ
(k)
t + βD(k) ≻ 0 and

(4.6) holds. In particular, we choose β to be the largest number of the sequence
{1, 1/2, . . . , 1/2i, . . .} that satisfies these requirements. We can use the Cholesky fac-

torization to check the positive definiteness of Θ
(k)
t + βD(k), k = 1, . . . ,K [16]. In

addition, the associated terms log det(Θ
(k)
t + βD(k)) and (Θ

(k)
t + βD(k))−1 can be

efficiently computed as a byproduct of the Cholesky decomposition of Θ
(k)
t + βD(k).

1It is well known that if D = 0, Θt is the optimal solution of problem (2.2).
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4.1. Shrinking scheme. Given the large number of unknown variables in (4.2),
it is advantageous to minimize (4.2) in a reduced space. The issue now is how to
identify the reduced space. In the case of a single graph (K = 1), problem (4.2)
degenerates to a lasso problem of size p2. Hsieh et al. [16] proposed a strategy to de-
termine a subset of variables that are allowed to be updated in each Newton iteration
for single graphical lasso. Specifically, the p2 variables in single graphical lasso are
partitioned into two sets, Jfree and Jfixed, based on the gradient at the start of each
Newton iteration, and then the minimization is only performed on the variables in
Jfree. We call this technique “shrinking” in this paper. Due to the sparsity of the pre-
cision matrix, the size of Jfree is usually much smaller than p2. Moreover, it has been
shown in the single graph case that the size of Jfree will decrease quickly [16]. The
shrinking technique can thus improve the computational efficiency. This technique
was also successfully used in [18, 33, 45]. We show that shrinking can be extended to
the fused multiple graphical lasso based on the results established in Section 3.

Denote the gradient of fk at t-th iteration by G̃
(k)
t = S(k)−W

(k)
t , and its (i, j)-th

element by G̃
(k)
t,ij . Then we have the following result.

Lemma 4.2. For Θt in the t-th iteration, define the fixed set Jfixed as

Jfixed = {(i, j)|Θ(1)
t,ij = . . . = Θ

(K)
t,ij = 0 and G̃

(1)
t,ij , . . . , G̃

(K)
t,ij satisfy the inequalities

below}.



|
∑u

k=1 G̃
(k)
t,ij | < uλ1 + λ2,

|
∑u−1

k=0 G̃
(r+k)
t,ij | < uλ1 + 2λ2, 2 ≤ r ≤ K − u,

|
∑u

k=1 G̃
(K−u+k)
t,ij | < uλ1 + λ2,

|
∑K

k=1 G̃
(k)
t,ij | < Kλ1

(4.7)

for u = 1, . . . ,K − 1.
Then, the solution of the following optimization problem is D(1) = . . . = D(K) =

0 :

min
D

Qt(Θt +D) such that D
(1)
ij = . . . = D

(K)
ij = 0, (i, j) /∈ Jfixed.(4.8)

Proof. Consider problem (4.8), which can be reformulated to

minD
∑K

k=1

(
1
2vec(D

(k))TH
(k)
t vec(D(k)) + vec(G̃

(k)
t )Tvec(D(k))

)
+P (Θt +D),

s.t. D
(1)
ij = . . . = D

(K)
ij = 0, (i, j) /∈ Jfixed,

(4.9)

where H
(k)
t = W

(k)
t ⊗W

(k)
t . Because of the constraint D

(1)
ij = . . . = D

(K)
ij = 0, (i, j) /∈

Jfixed, we only consider the variables in the set Jfixed. According to Lemma 3.6, it is
easy to see that DJfixed

= 0 satisfies the optimality condition of the following problem

min
DJfixed

K∑
k=1

vec(G̃
(k)
t,Jfixed

)Tvec(D
(k)
Jfixed

) + P (DJfixed
).
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Since
∑K

k=1 vec(D
(k))TH

(k)
t vec(D(k)) ≥ 0, the optimal solution of (4.8) is given by

D(1) = . . . = D(K) = 0.

Lemma 4.2 provides a shrinking scheme to partition the variables into the free
set Jfree and the fixed set Jfixed. With shrinking, each Newton step of the proposed
second-order method falls into a block coordinate gradient descent framework [38].
Lemma 4.2 shows that when the variables in the free set Jfree are fixed, no update
is needed for the variables in the fixed set Jfixed. Minimization of (4.2) restricted to
the free set can therefore guarantee the convergence to the unique optimal solution
[16, 38]. In addition, it has been shown that local quadratic convergence rate can be
achieved when the exact Hessian is used (see, for example, [16, 21]).

The resulting second-order method for solving the fused multiple graphical lasso
is summarized in Algorithm 1.

Algorithm 1: Proposed second-order method for Fused Multiple Graphical
Lasso (FMGL)

Input: S(k), k = 1, . . . ,K, λ1, λ2

Output: Θ(k), k = 1, . . . ,K

Initialization: Θ
(k)
0 = (diag(S(k)))−1;

while Not Converged do
Determine the sets of free and fixed indices Jfree and Jfixed using Lemma
4.2.
Compute the Newton direction D(k), k = 1, . . . ,K by solving (4.2) and
(4.3) over the free variables Jfree.

Choose Θ
(k)
t+1 by performing the Armijo backtracking line search along

Θ
(k)
t + βD(k) for k = 1, . . . ,K.

end

return Θ(k), k = 1, . . . ,K;

5. Experimental results. In this section, we evaluate the proposed algorithm
and screening rule on synthetic datasets and two real datasets: ADHD-2002 and FDG-
PET images3. The experiments are performed on a PC with quad-core Intel 2.67GHz
CPU and 9GB memory.

5.1. Simulation.

5.1.1. Efficiency. We conduct experiments to demonstrate the effectiveness of
the proposed screening rule and the efficiency of our method FMGL. The following
algorithms are included in our comparisons:

• FMGL: the proposed second-order method in Algorithm 1.
• ADMM: ADMM method.
• FMGL-S: FMGL with screening.
• ADMM-S: ADMM with screening.

Both FMGL and ADMM are written in Matlab. Since both methods involve solv-
ing (4.4) which involves a double loop, we implement the sub-routine for solving (4.4)
in C for a fair comparison.

2http://fcon_1000.projects.nitrc.org/indi/adhd200/
3http://adni.loni.ucla.edu/
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The synthetic covariance matrices are generated as follows. We first generate K
block diagonal ground truth precision matrices Θ(k) with L blocks, and each block

Θ
(k)
l is of size (p/L) × (p/L). Each Θ

(k)
l , l = 1, . . . , L, k = 1, . . . ,K has random

sparsity structures. We control the number of nonzeros in each Θ
(k)
l to be about

10p/L so that the total number of nonzeros in the K precision matrices is 10Kp.
Given the precision matrices, we draw 5p samples from each Gaussian distribution
to compute the sample covariance matrices. The fused penalty parameter λ2 is fixed
to 0.1, and the ℓ1 regularization parameter λ1 is selected so that the total number
of nonzeros in the solution is about 10Kp. We terminate the NSPG in the FMGL

when the relative error
max{∥Θ(k)

r −Θ
(k)
r−1

∥∞}

max{∥Θ(k)
r−1

∥∞}
≤ 1e-6. The FMGL is terminated when

the relative error of the objective value is smaller than 1e-5, and ADMM stops until
it achieves an objective value equal to or smaller than that of FMGL. The results
presented in Table 5.1 show that FMGL is consistently faster than ADMM. FMGL
converges much more quickly than ADMM. Moreover, the screening rule can achieve
great computational gain. The speedup with the screening rule is about 10 and 20
times for L = 5 and 10 respectively.

Table 5.1
Comparison of the proposed FMGL and ADMM with and without screening in terms of aver-

age computational time (seconds). FMGL-S and ADMM-S are FMGL and ADMM with screening
respectively. p stands for the dimension, K is the number of graphs, L is the number of blocks, and
λ1 is the ℓ1 regularization parameter. The fused penalty parameter λ2 is fixed to 0.1. ∥Θ∥0 rep-
resents the total number of nonzero entries in ground truth precision matrices Θ(k), k = 1, . . . ,K,
and ∥Θ∗∥0 is the number of nonzeros in the solution.

Data and parameter setting Computational time (iteration numbers)
p K L ∥Θ∥0 λ1 ∥Θ∗∥0 FMGL-S FMGL ADMM-S ADMM
500

2

5

9766 0.08 10228 0.86 11.19 (6) 13.78 98.89 (152)
1000 19832 0.088 19322 6.21 57.78 (6) 58.75 529.36 (140)
500

5
24494 0.055 23878 2.62 33.15 (6) 34.85 256.33 (146)

1000 50836 0.054 44724 14.70 197.53 (6) 171.68 1431.91 (150)
500

10
49500 0.051 45756 6.01 70.87 (6) 73.42 524.84 (152)

1000 100292 0.046 86774 30.49 383.46 (6) 357.34 2991.16 (155)

500
2

10

9528 0.07 9884 0.81 16.25 (7) 5.01 109.24 (155)
1000 19658 0.08 20612 1.65 75.44 (6) 25.89 560.75 (155)
500

5
23562 0.055 23600 1.69 47.32 (7) 11.17 261.00 (153)

1000 49274 0.054 46582 5.72 207.97 (6) 75.61 1661.24 (172)
500

10
47364 0.051 48360 3.70 103.54 (6) 24.75 552.09 (157)

1000 98650 0.046 96216 12.16 409.94 (6) 150.62 3192.02 (168)

5.1.2. Stability. We conduct experiments to demonstrate the effectiveness of
FMGL. The synthetic sparse precision matrices are generated in the following way:
we set the first precision matrix Θ(1) as 0.25Ip×p, where p = 100. When adding

an edge (i, j) in the graph, we add σ to θ
(1)
ii and θ

(1)
jj , and subtract σ from θ

(1)
ij

and θ
(1)
ji to keep the positive definiteness of Θ(1), where σ is uniformly drawn from

[0.1, 0.3]. When deleting an edge (i, j) from the graph, we reverse the above steps

with σ = θ
(1)
ij . We randomly assign 200 edges for Θ(1). Θ(2) is obtained by adding

25 edges and deleting 25 different edges from Θ(1). Θ(3) is obtained from Θ(2) in
the same way. For each precision matrix, we randomly draw n samples from the
Gaussian distribution with the corresponding precision matrix, where n varies from
40 to 200 with a step of 20. We perform 500 replications for each n. For each n,
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λ2 is fixed to 0.08, and λ1 is adjusted to make sure that the edge number is about
200. The accuracy nd/ng is used to measure the performance of FMGL and GLasso,
where nd is the number of true edges detected by FGML and GLasso, and ng is the
number of true edges. The results are shown in Figure 5.1. We can see from the figure
that FMGL achieves higher accuracies, demonstrating the effectiveness of FMGL for
learning multiple graphical models simultaneously.
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Fig. 5.1. Comparison of FMGL and GLasso in detecting true edges. Sample size varies from
40 to 200 with a step of 20.

5.2. Real data.

5.2.1. ADHD-200. Attention Deficit Hyperactivity Disorder (ADHD) affects
at least 5-10% of school-age children with annual costs exceeding 36 billion/year in the
United States. The ADHD-200 project has released resting-state functional magnetic
resonance images (fMRI) of 491 typically developing children and 285 ADHD children,
aiming to encourage the research on ADHD. The data used in this experiment is
preprocessed using the NIAK pipeline, and downloaded from neurobureau4. More
details about the preprocessing strategy can be found in the same website. The dataset
we choose includes 116 typically developing children (TDC), 29 ADHD-Combined
(ADHD-C), and 49 ADHD-Inattentive (ADHD-I). There are 231 time series and 2834
brain regions for each subject. We want to estimate the graphs of the three groups
simultaneously. The sample covariance matrix is computed using all data from the
same group. Since the number of brain regions p is 2834, obtaining the precision
matrices is computationally intensive. We use this data to test the effectiveness of the
proposed screening rule. λ1 and λ2 are set to 0.6 and 0.015. The convergence criterion
is 1e-5. The comparison of FMGL and ADMM in terms of the objective value curve
is shown in Figure 5.2. The result shows that FMGL converges much faster than
ADMM. The computational times of FMGL and ADMM are 1557.08 and 8306.35
seconds respectively. However, utilizing the screening, the computational times of
FMGL-S and ADMM-S are 18.08 and 119.23 seconds respectively, demonstrating the
superiority of the screening rule. The obtained solution has 1443 blocks. The largest
one including 634 nodes is shown in Figure 5.3.

The block structures of the FMGL solution are the same as those identified by the
screening rule. The screening rule can be used to analyze the rough structures of the
graphs. The cost of identifying blocks using the screening rule is negligible compared
to that of estimating the graphs. For high-dimensional data such as ADHD-200, it

4http://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:NIAKPipeline/
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Fig. 5.2. Comparison of FMGL and ADMM in terms of objective value curve on the ADHD-
200 dataset. The dimension p is 2834, and the number of graphs K is 3.

Fig. 5.3. A subgraph of ADHD-200 identified by FMGL with the proposed screening rule. The
grey edges are common edges among the three graphs; the red, green, and blue edges are the specific
edges for TDC, ADHD-I, and ADHD-C respectively.

is practical to use the screening rule to identify the block structure before estimating
the large graphs. We use the screening rule to identify block structures on ADHD-200
data with varying λ1 and λ2. The size distribution is shown in Figure 5.4. We can
observe that the number of blocks increases, and the size of blocks deceases when the
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Fig. 5.4. The size distribution of blocks (in the logarithmic scale) identified by the proposed
screening rule. The color represents the number of blocks of a specified size. (a): λ1 varies from
0.5 to 0.95 with λ2 fixed to 0.015. (b): λ2 varies from 0 to 0.2 with λ1 fixed to 0.55.

regularization parameter value increases.

5.2.2. FDG-PET. In this experiment, we use FDG-PET images from 74 Alzhei-
mer’s disease (AD), 172 mild cognitive impairment (MCI), and 81 normal control (NC)
subjects downloaded from the Alzheimer’s disease neuroimaging initiative (ADNI)
database. The different regions of the whole brain volume can be represented by 116
anatomical volumes of interest (AVOI), defined by Automated Anatomical Labeling
(AAL) [39]. Then we extracted data from each of the 116 AVOIs, and derived the
average of each AVOI for each subject. The 116 AVOIs can be categorized into
10 groups: prefrontal lobe, other parts of the frontal lobe, parietal lobe, occipital
lobe, thalamus, insula, temporal lobe, corpus striatum, cerebellum, and vermis. More
details about the categories can be found in [39, 41]. We remove two small groups
(thalamus and insula) containing only 4 AVOIs in our experiments.

To examine whether FMGL can effectively utilize the information of common
structures, we randomly select g percent samples from each group, where g varies
from 20 to 100 with a step size of 10. For each g, λ2 is fixed to 0.1, and λ1 is adjusted
to make sure the number of edges in each group is about the same. We perform 500
replications for each g. The edges with probability larger than 0.85 are considered
as stable edges. The results showing the numbers of stable edges are summarized
in Figure 5.5. We can observe that FMGL is more stable than GLasso. When the
sample size is too small (say 20%), there are only 20 stable edges in the graph of NC
obtained by GLasso. But the graph of NC obtained by FMGL still has about 140
stable edges, illustrating the superiority of FMGL in stability.

The brain connectivity models obtained by FMGL are shown in Figure 5.6. We
can see that the number of connections within the prefrontal lobe significantly in-
creases, and the number of connections within the temporal lobe significantly de-
creases from NC to AD, which are supported by previous literatures [1, 14]. The
connections between the prefrontal and occipital lobes increase from NC to AD, and
connections within cerebellum decrease. We can also find that the adjacent graphs
are similar, indicating that FMGL can identify the common structures, but also keep
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Fig. 5.5. The average number of stable edges detected by FMGL and GLasso in NC, MCI, and
AD of 500 replications. Sample size varies from 20% to 100% with a step of 10%.
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Fig. 5.6. Brain connection models with 265 edges: NC, MCI, and AD. In each figure, the
diagonal blocks are prefrontal lobe, other parts of frontal lobe, parietal lobe, occipital lobe, temporal
lobe, corpus striatum, cerebellum, and vermis respectively.

the meaningful differences.

6. Conclusion. In this paper, we consider simultaneously estimating multiple
graphical models by maximizing a fused penalized log likelihood. We have derived a
set of necessary and sufficient conditions for the FMGL solution to be block diagonal
for an arbitrary number of graphs. A screening rule has been developed to enable the
efficient estimation of large multiple graphs. The second-order method is employed
to solve the fused multiple graphical lasso. The global convergence of the proposed
method is guaranteed, and the convergence rate is local quadratic. A shrinking scheme
is proposed to identify the variables to be updated during the Newton iterations,
thus reduces the computation. Numerical experiments on synthetic and real data
demonstrate the efficiency and effectiveness of the proposed method and the screening
rule. We plan to explore the convergence properties of the second-order method using
the inexact Newton direction. Due to the shrinking scheme, the proposed second-order
method is suitable for warm-start techniques. A good initial solution can further
speedup the computation. As part of the future work, we plan to explore how to
efficiently find a good initial solution to further improve the efficiency of the proposed
method. One possibility is to use divide-and-conquer techniques [15].
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