
Optimization Methods & Software
Vol. 24, No. 1, February 2009, 123–143

An iterative solver-based long-step infeasible primal-dual
path-following algorithm for convex QP based on a

class of preconditioners

Zhaosong Lua*, Renato D.C. Monteirob and Jerome W. O’Nealc

aDepartment of Mathematics, Simon Fraser University, Burnaby, Canada; bSchool of Industrial and
Systems Engineering, Georgia Institute of Technology, Atlanta, GA; cColumbus, OH, USA

(Received 28 August 2006; final version received 11 August 2008)

In this paper, we present a long-step infeasible primal-dual path-following algorithm for convex quadratic
programming (CQP) whose search directions are computed by means of a preconditioned iterative linear
solver. In contrast to the authors’ previous paper [Z. Lu, R.D.C. Monteiro, and J.W. O’Neal. An iterative
solver-based infeasible primal-dual path-following algorithm for convex quadratic programming, SIAM
J. Optim. 17(1) (2006), pp. 287–310], we propose a new linear system, which we refer to as the hybrid
augmented normal equation (HANE), to determine the primal-dual search directions. Since the iterative
linear solver can only generate an approximate solution to the HANE, this solution does not yield a
primal-dual search direction satisfying all equations of the primal-dual Newton system. We propose a
recipe to compute an inexact primal-dual search direction, based on a suitable approximate solution to
the HANE. The second difference between this paper and [Z. Lu, R.D.C. Monteiro, and J.W. O’Neal. An
iterative solver-based infeasible primal-dual path-following algorithm for convex quadratic programming,
SIAM J. Optim. 17(1)(2006), pp. 287–310] is that, instead of using the maximum weight basis (MWB)
preconditioner in the aforesaid recipe for constructing the inexact search direction, this paper proposes
the use of any member of a whole class of preconditioners, of which the MWB preconditioner is just a
special case. The proposed recipe allows us to: (i) establish a polynomial bound on the number of iterations
performed by our path-following algorithm and (ii) establish a uniform bound, depending on the quality
of the preconditioner, on the number of iterations performed by the iterative solver.

Keywords: convex quadratic programming; iterative linear solver; primal-dual path-following methods;
interior-point methods; hybrid augmented normal equation; inexact search directions; polynomial
convergence

AMS Subject Classification: 65F10; 65F35; 90C20; 90C25; 90C51

1. Introduction

In this paper, we develop a long-step infeasible primal-dual path-following (IPDPF) algorithm
for solving convex quadratic programming (CQP) based on inexact search directions. The CQP

*Corresponding author. Email: zhaosong@sfu.ca

ISSN 1055-6788 print/ISSN 1029-4937 online
© 2009 Taylor & Francis
DOI: 10.1080/10556780802414049
http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

124 Z. Lu et al.

problem we consider has the form

min
x

{
1
2xT Qx + cT x : Ax = b, x ≥ 0

}
, (1)

where the data are Q ∈ R
n×n, A ∈ R

m×n, b ∈ R
m, and c ∈ R

n, and the decision vector is x ∈ R
n.

We assume that Q is given in the form Q = V E2V T + Q, where V ∈ R
n×l , E is a l × l positive

diagonal matrix, and Q is a n × n positive semidefinite matrix.
In [15], the authors also developed an inexact IPDPF algorithm for solving Equation (1) with

Q assumed to be given in the form Q = V E2V T , or equivalently Q = 0. This inexact IPDPF
algorithm is essentially the long-step IPDPF algorithm in [10,28], the only difference being that
the search directions are computed by means of an iterative linear solver. We refer to the iterations
of the iterative linear solver as the inner iterations, and the iterations performed by the actual
path-following method as the outer iterations. The main step in the inexact IPDPF algorithm
in [15] is the computation of a primal-dual search direction (�x, �s, �y, �z), whose subvector
(�y, �z) can be found by solving the so-called augmented normal equation, or ANE. This ANE
is of the form ÃD̃2ÃT (�y, �z) = g, where D̃ is a positive diagonal matrix, and Ã is a 2 × 2
block matrix whose blocks consist of A, V T , the zero matrix, and the identity matrix. In contrast
to IPDPF methods based on exact search directions, the inexact IPDPF algorithm in [15] assumes
that an approximate solution to the ANE is obtained via an iterative linear solver. Since the
condition number of the ANE matrix may become excessively large on degenerate QP problems
(see e.g. [14]), the maximum weight basis (MWB) preconditioner T introduced in [22,25,27] is
used to better precondition the matrix. A suitable approximate solution can then be determined
within a uniformly bounded number of iterations of an iterative linear solver. Since the ANE is
solved only approximately, it cannot yield a search direction that satisfies all equations of the
primal-dual Newton system. Thus, we developed a recipe in [15] for determining an inexact
search direction, based on an approximate solution to the ANE and the MWB preconditioner,
which accomplishes the following two goals: (i) problem (1) can be solved within a polynomial
number of iterations, and (ii) the required approximate solution to the ANE can be found within
a uniformly bounded number of inner iterations.

This paper extends the authors’previous work [15] in the following two ways. The first extension
that we present in this paper is to introduce a new linear system, which we refer to as the hybrid
augmented normal equation (HANE), as a means to determine the search directions for the IPDPF
algorithm studied in this paper. The development of the HANE stems from the desire to take into
account the structure of Q, given by Q = V E2V T + Q, in the computation of the search direction.
To motivate the approach based on the HANE, we will assume in this paragraph that Q is a non-
negative diagonal matrix. Consider the two extreme cases where V = 0 or Q = 0. In the first
case, since Q = Q is diagonal, computing the search directions via the standard normal equation
is appealing, since it has the same structure as the one corresponding to a linear programming
problem. In the second case, the approach based on the ANE developed in [15] provides a viable
alternative for computing the search direction. The approach based on the HANE combines the
ideas involved in these two extreme cases in order to handle the mixed structure of Q as stated
before. The second extension, which is the major contribution of this paper, is to show that a
large class of preconditioners can be used instead of the MWB preconditioner in the recipe for
determining inexact search directions proposed in [15]. In this regard, this extension will be done
in the more general context of the HANE equation, rather than in the context of the ANE used
by [15]. We will also discuss the situation where the preconditioned conjugate gradient method
is used in conjunction with the partial update preconditioner proposed by Karmarkar in [8] (see
also [6,11,18]) and derive the corresponding inner iteration complexity bound.

We observe that the use of iterative linear solvers to compute the primal-dual Newton
search directions of interior-point path-following algorithms has been extensively studied in

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 125

[1,3–5,13,21–23,25]. The use of inexact search directions in interior-point methods has been
investigated in the context of conic programming problems (see, e.g. [1,2,5,13,17,21,26,29]). For
feasibility problems of the form {x ∈ H1 : Ax = b, x ∈ C}, where H1 and H2 are Hilbert spaces,
C ⊆ H1 is a closed convex cone satisfying some mild assumptions, and A : H1 → H2 is a con-
tinuous linear operator. Renegar [24] has proposed an interior-point method where the Newton
system that determines the search directions is approximately solved by performing a uniformly
bounded number of iterations of the conjugate gradient (CG) method.

Our paper is divided into five sections. In Subsection 1.1, we present some terminology and
notation that will be used throughout this paper. In Section 2, we present an inexact IPDPF
algorithm based on a class of inexact search directions, and we also partially describe a recipe
based on the HANE for determining inexact search directions for our algorithm. In Section 3, we
introduce the class of preconditioners used in a crucial step of the aforesaid recipe for constructing a
vector of a required size, thereby providing the final details of the aforementioned recipe. Section 4
gives proofs of some of the results presented in Section 3. Finally, some concluding remarks are
given in Section 5.

1.1 Terminology and notation

Throughout this paper, upper-case Roman letters denote matrices, lower-case Roman letters denote
vectors, and lower-case Greek letters denote scalars. We let R

n, R
n+, and R

n++ denote the set of
n-vectors having real, non-negative real, and positive real components, respectively. Also, we let
R

m×n denote the set of m × n matrices with real entries, and let Sn+ denote the set of n × n positive
semidefinite real symmetric matrices. For a vector v ∈ R

n, we let |v| denote the vector whose ith
component is |vi |, for every i = 1, . . . , n, and we let Diag(v) denote the diagonal matrix whose
ith diagonal element is vi , for every i = 1, . . . , n. In addition, given vectors u ∈ R

m and v ∈ R
n,

we denote by (u, v) the vector (uT , vT)T ∈ R
m+n.

If a matrix Z ∈ R
m×m has all positive eigenvalues, we denote by κ(Z) its spectral condition

number, i.e. its maximum eigenvalue divided by its minimum eigenvalue. Given a matrix Z ∈
R

m×n, the range space {Zv : v ∈ R
m} of Z will be denoted by R(Z).Also, if a matrix W ∈ R

m×m is
symmetric (W = WT) and positive definite (resp., positive semidefinite), we write W � 0 (resp.,
W � 0). Certain matrices bear special mention, namely the matrices X and S. These matrices
are the diagonal matrices corresponding to the vectors x and s, respectively, as described in the
previous paragraph. The symbol 0 will be used to denote a scalar, vector, or matrix of all zeroes;
its dimensions should be clear from the context. Also, we denote by e the vector of all 1s, and by
I the identity matrix; their dimensions should be clear from the context.

We will use several different norms throughout the paper. For a vector z ∈ R
n, ‖z‖ = √

zT z

is the Euclidean norm and ‖z‖∞ = maxi=1,...,n |zi | is the ‘infinity norm’. Also, given a matrix
C � 0, we define the norm ‖z‖C = √

zT Cz. Finally, given a matrix V ∈ R
m×n, ‖V ‖ denotes the

operator norm associated with the Euclidean norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖.

2. Outer iteration framework

In this section, we introduce an inexact IPDPF algorithm based on a class of inexact search
directions and discuss its iteration complexity. This section is divided into two subsections. In
Subsection 2.1, we introduce the class of inexact search directions, state the inexact IPDPF
algorithm based on it, and give its iteration complexity result. In Subsection 2.2, we will discuss
how the HANE naturally appears as a way of computing the exact search direction. We will also
describe how an approximate solution to the HANE can be used to compute an approximate
search direction for the inexact IPDPF algorithm.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

126 Z. Lu et al.

2.1 An inexact IPDPF algorithm for CQP

Consider the following primal-dual pair of QP problems:

min
x

{
1

2
xT Qx + cT x : Ax = b, x ≥ 0

}
, (2)

max
(x̂,s,y)

{
−1

2
x̂T Qx̂ + bT y : AT y + s − Qx̂ = c, s ≥ 0

}
, (3)

where the data are Q ∈ Sn+, A ∈ R
m×n, b ∈ R

m and c ∈ R
n, and the decision variables are x ∈ R

n

and (x̂, s, y) ∈ R
n × R

n × R
m. We will assume that Q is given in the form Q = V E2V T + Q

for some V ∈ R
n×l , E ∈ Diag(Rl++), and Q ∈ Sn+. In addition, we will make the following two

assumptions throughout the paper.

ASSUMPTION 2.1 rank(A) = m < n.

ASSUMPTION 2.2 the set of optimal solutions of Equations (2) and (3) is non-empty.

It is well known that if x∗ is an optimal solution for Equation (2) and (x̂∗, s∗, y∗) is an optimal
solution for Equation (3), then (x∗, s∗, y∗) is also an optimal solution for Equation (3). Now, let
S denote the set of all vectors w := (x, s, y, z) ∈ R

2n+m+l satisfying

Ax = b, x ≥ 0, (4)

AT y + s + V z − Qx = c, s ≥ 0, (5)

Xs = 0, (6)

EV T x + E−1z = 0. (7)

It is clear that w ∈ S if and only if x is optimal for Equation (2), (x, s, y) is optimal for
Equation (3), and z = −E2V T x. (Throughout this paper, the symbol w will always denote
the quadruple (x, s, y, z), where the vectors lie in the appropriate dimensions; similarly, �w =
(�x, �s, �y, �z), wk = (xk, sk, yk, zk), etc.)

For a point w ∈ R
2n++ × R

m+l , let us define

μ := μ(w) = xT s

n
, (8)

rp := rp(w) = Ax − b, (9)

rd := rd(w) = AT y + s + V z − Qx − c, (10)

rV := rV (w) = EV T x + E−1z, (11)

r := r(w) = (rp(w), rd(w), rV (w)). (12)

Given a point u ∈ R(Q), it is easy to show that the function tT Qt is constant over the manifold
{t ∈ R

n : Qt = u}. Hence, the function ||| · |||Q : R(Q) �→ R+ given by

|||u|||Q =
√

tT Qt for any t ∈ R
n such that Qt = u (13)

is well defined. The following proposition shows that this function is a norm on R(Q).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 127

PROPOSITION 2.1 Let ||| · |||Q be as defined in Equation (13), and let u ∈ R(Q). Then, the
following statements hold:

1. Given a factorization Q = Ṽ Ṽ T , where Ṽ has full column rank, we have that |||u|||Q = ‖v‖,
where v is the unique vector satisfying Ṽ v = u;

2. ||| · |||Q defines a norm on R(Q); and
3. ‖u‖ ≤ ‖Q‖1/2|||u|||Q.

Proof Let u ∈ R(Q) be given, and let v be the unique vector such that Ṽ v = u. Using the
assumption that Ṽ has full column rank, we easily see that v = Ṽ T t for any vector t satisfying
Qt = u. Then the assumption that Q = Ṽ Ṽ T along with Equation (13) implies that

|||u|||Q =
√

tT Qt = ‖Ṽ T t‖ = ‖v‖, (14)

and statement 1 is proven.
Since u = Ṽ v and Ṽ has full column rank, it is clear that v = [Ṽ T Ṽ]−1Ṽ T u. This together

with statement 1 immediately implies that ||| · |||Q is a seminorm on R(Q). It is indeed a norm,
since, in view of Equation (14), |||u|||Q = 0 implies that v = 0, and hence that u = Ṽ v = 0.

To prove the third statement, let t be a vector such that Qt = u. Then Equation (13) implies that

‖u‖ = ‖Qt‖ ≤ ‖Q1/2‖‖Q1/2t‖ = ‖Q‖1/2
√

tT Qt = ‖Q‖1/2|||u|||Q. �

Next, given a point w ∈ R
2n++ × R

m+l and scalars σ ∈ [0, 1], τp > 0, and τq > 0, we will say
that a search direction �w is a (τp, τq)-search direction at w (with centrality parameter σ) if �w

satisfies

A�x = −rp, (15)

AT �y + �s + V �z − Q�x = −rd − g, (16)

X�s + S�x = −Xs + σμe − p, (17)

EV T �x + E−1�z = −rV + q (18)

for some (g, p, q) ∈ R(Q) × R
n × R

l such that

‖p‖∞ ≤ τpμ, |||g|||2Q + ‖q‖2 ≤ τ 2
q μ, (19)

where μ is given by Equation (8). Note that while p and q can vary over the whole Euclidean
spaces R

n and R
l , respectively, the error g is required to be in R(Q).

We will now point out the relationship between the definition before and the definition of a
(τp, τq)-search direction given in paper [15]. It is clear that system (32)–(35) in [15] for deter-
mining an inexact search direction can be viewed as a special case of system (15)–(18) by setting
Q = 0, which also implies that g = 0 due to the fact that g ∈ R(Q). However, it is also possible
to transform system (15)–(18) into a system of the form specified by Equations (32)–(35) of [15]
(see the proof of Theorem 2.1 in Subsection 4.1. Hence, these two systems for defining inexact
search directions are essentially equivalent. We consider system (15)–(18) in this paper because it
naturally lends itself to the development of the HANE as a means to determine the search direction
�w (see Subsection 2.2).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

128 Z. Lu et al.

Next, given η ∈ [0, 1], γ ∈ (0, 1), θ > 0, and an initial point w0 ∈ R
2n++ × R

m+l , we define the
following set:

Nw0(η, γ, θ) :=
⎧⎨⎩

Xs ≥ (1 − γ)μe, rp = ηr0
p, η ≤ μ/μ0,

w ∈ R
2n++ × R

m+l : rd − ηr0
d ∈ R(Q),

|||rd − ηr0
d |||2Q + ‖rV − ηr0

V ‖2 ≤ θ2μ.

⎫⎬⎭ , (20)

where μ = μ(w), μ0 = μ(w0), r = r(w), and r0 = r(w0). The central path neighbourhood used
by the inexact IPDPF algorithm described next is given by

Nw0(γ, θ) =
⋃

η∈[0,1]
Nw0(η, γ, θ). (21)

We are now ready to state the inexact IPDPF algorithm.

INEXACT IPDPF ALGORITHM

(i) Start: Let ε > 0 and 0 < σ ≤ σ < 4/5 be given. Choose γ ∈ (0, 1), θ > 0 and w0 ∈ R
2n++ ×

R
m+l such that w0 ∈ Nw0(γ, θ). Set k = 0.

(ii) While μk := μ(wk) > ε do
(a) Let w := wk and μ := μk; choose σ := σk ∈ [σ , σ].
(b) Set

τp = γ σ

4
(22)

and

τq =
[√

1 + (1 − 0.5γ)σ − 1
]
θ. (23)

(c) Compute a (τp, τq)-search direction �w := �wk .
(d) Compute α̃ := argmax{α ∈ [0, 1] : w + α′�w ∈ Nw0(γ, θ), ∀α′ ∈ [0, α]}.
(e) Compute ᾱ := argmin{(x + α�x)T (s + α�s) : α ∈ [0, α̃]}.
(f) Let wk+1 = w + ᾱ�w, and set k ← k + 1.
End (while).

The following result gives a bound on the number of iterations needed by the inexact IPDPF
algorithm to obtain an ε-solution to the KKT conditions (4)–(7). Its proof will be given in
Subsection 4.1.

THEOREM 2.1 Assume that the constants γ, σ , σ and θ are such that

max
{
γ −1, (1 − γ)−1, σ−1,

(
1 − 5

4σ
)−1

}
= O(1), θ = O(

√
n), (24)

and that the initial point w0 ∈ R
2n++ × R

m+l satisfies (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.
Then, the inexact IPDPF algorithm generates an iterate wk ∈ R

2n++ × R
m+l satisfying μk ≤

εμ0, ‖rk
p‖ ≤ ε‖r0

p‖, ‖rk
d‖ ≤ ε‖r0

d‖ + ε1/2θ‖Q‖1/2μ
1/2
0 and ‖rk

V ‖ ≤ ε‖r0
V ‖ + ε1/2θμ

1/2
0 within

O
(
n2 log ε−1

)
iterations.

It is possible to show that if w0 is a strictly feasible point, i.e. w0 ∈ R
2n++ × R

m+l and r0 =
0, then the iteration complexity of the aforementioned algorithm is bounded by O(n log ε−1)

iterations. It is also possible to develop a primal-dual short-step path-following algorithm based
on the inexact search directions introduced before, which would have iteration complexity bounds
O(n log ε−1) and O(

√
n log ε−1) for infeasible and feasible starting points, respectively. One

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 129

interesting characteristic of the feasible algorithms discussed in this paragraph is that, although
the algorithms start with a primal- and dual-feasible point w0, the algorithms only maintain primal
feasibility throughout, while the dual residuals satisfy ‖rd‖ = O(

√
μ). For the sake of brevity,

we will only deal with the long-step IPDPF algorithm stated before.

2.2 Framework for computing an inexact search direction

In this subsection, we will provide a framework for computing inexact search directions and give
sufficient conditions for them to be (τp, τq)-search directions.

We begin by defining the following matrices:

D := (Q + X−1S)−1/2, (25)

D̂ :=
(

D 0
0 E−1

)
∈ R

(n+l)×(n+l), (26)

Â :=
(

A 0
V T I

)
∈ R

(m+l)×(n+l), (27)

H := ÂD̂2ÂT , (28)

and the vector

h := Â

(
D2(s − σμX−1e − rd)

0

)
−

(
rp

E−1rV

)
. (29)

One approach to compute an exact search direction, i.e. a direction �w satisfying (15)–(18) with
(g, p, q) = 0, is as follows. First, we solve the following system of equations for (�y, �z):

H

(
�y

�z

)
= h.

This system is what we refer to as the HANE. (We observe that if V = 0, i.e. Q = Q, then this
system reduces to the standard normal equation for QP, while if Q = 0, i.e. Q = V E2V T , it
reduces to the ANE in [15].) Once (�y, �z) is determined, we obtain �x and �s according to
formulae (31) and (32) with g = p = 0.

Suppose now that the HANE is solved only inexactly, i.e. that the vector (�y, �z) satisfies

H

(
�y

�z

)
= h + f (30)

for some error vector f . We then compute �x and �s according to the following formulae:

�x = D2
(
rd + AT �y + V �z − s + σμX−1e + g − X−1p

)
, (31)

�s = −rd − AT �y + Q�x − V �z − g, (32)

where the pair of correction vectors (g, p) ∈ R(Q) × R
n will be required to satisfy some con-

ditions that we describe next. Clearly, the search direction �w = (�x, �s, �y, �z) computed
as before satisfies Equation (16) in view of Equation (32). Moreover, Equation (17) is satisfied,

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

130 Z. Lu et al.

since Equations (25), (31), and (32) imply that

X�s + S�x = −Xrd − XAT �y − XV �z − Xg + (XQ + S)�x

= −Xrd − XAT �y − XV �z − Xg + XD−2�x

= −Xs + σμe − p.

To motivate the conditions, we will impose on the pair (g, p) ∈ R(Q) × R
n; we note that

Equations (26)–(32) imply that

Â

(
�x

E−2�z

)
+

(
rp

E−1rV

)
= Â

(
D2

(
(AT �y + V �z) + (−s + σμX−1e + rd) + (g − X−1p)

)
E−2�z

)
+

(
rp

E−1rV

)
= ÂD̂2

(
AT �y + V �z

�z

)
− h − Â

(
D2(X−1p − g)

0

)
= H

(
�y

�z

)
− h − Â

(
D2(X−1p − g)

0

)
= f − Â

(
D2(X−1p − g)

0

)
. (33)

Our strategy will be to choose the pair (g, p) ∈ R(Q) × R
n so that the first component of

Equation (33) is zero, and hence that Equation (15) is satisfied. Specifically, let us partition
f = (f1, f2) ∈ R

m × R
l . We will choose (g, p) ∈ R(Q) × R

n such that

AD2(X−1p − g) = f1. (34)

Observe that g and p are not uniquely defined. Letting

q = E
(
f2 − V T D2(X−1p − g)

)
and using Equation (27), we easily see that Equation (34) is equivalent to

f = Â

(
D2(X−1p − g)

E−1q

)
. (35)

Then, using Equations (27), (33), and (35), we conclude that

Â

(
�x

E−2�z

)
+

(
rp

E−1rV

)
= f − Â

(
D2(X−1p − g)

E−1q

)
+ Â

(
0

E−1q

)
= Â

(
0

E−1q

)
=

(
0

E−1q

)
, (36)

from which we see that the first component of Equation (33) is set to 0 and the second component
is exactly E−1q. We have thus shown that this construction yields a search direction �w satisfying
Equations (15)–(18).

Before ending this subsection, we provide a framework for computing a triple (g, p, q) ∈
R(Q) × R

n × R
l satisfying Equation (35). First, choose a vector v := (v1, v2) ∈ R

n × R
l

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 131

satisfying

Âv = f. (37)

Next, we choose the triple (g, p, q) ∈ R(Q) × R
n × R

l according to

g := −Qv1, p := Sv1, q := Ev2. (38)

Then, Equations (25), (37), and (38) imply that

Â

(
D2(X−1p − g)

E−1q

)
= Â

(
D2(X−1S + Q)v1

v2

)
= Âv = f,

i.e. (g, p, q) ∈ R(Q) × R
n × R

l satisfies Equation (35). Note that in view of Assumption 2.1
and Equation (27), system Equation (37) has multiple solutions. Strategies for choosing a specific
vector v satisfying Equation (37) will be discussed in Subsection 3.1.

The following result relates the size of D̂−1v with the magnitude of the triple (g, p, q) ∈
R(Q) × R

n × R
l , and gives a sufficient condition for the search direction described to be a

(τp, τq)-search direction.

PROPOSITION 2.2 Let w ∈ R
2n++ × R

m+l be given, and consider the vector v ∈ R
n+l and the triple

(g, p, q) ∈ R(Q) × R
n × R

l as defined in Equations (37) and (38). Then, we have

‖p‖ ≤ √
nμ‖D̂−1v‖, |||g|||2Q + ‖q‖2 ≤ ‖D̂−1v‖2. (39)

As a consequence, if ‖D̂−1v‖ ≤ ξ
√

μ, where ξ is defined as

ξ := min{n−1/2τp, τq}, (40)

then the corresponding inexact search direction �w as described before is a (τp, τq)-search
direction.

Proof Using Equation (25) and the fact that (x, s) > 0, we conclude that Q � Q + X−1S =
D−2. Next, the first identity in Equation (38) along with Equation (13) implies that |||g|||2Q =
vT

1 Qv1. Using these facts along with Equations (26) and (38), we obtain

|||g|||2Q + ‖q‖2 = vT
1 Qv1 + ‖Ev2‖2 ≤ vT

1 D−2v1 + ‖Ev2‖2 = ‖D−1v1‖2 + ‖Ev2‖2 = ‖D̂−1v‖2.

Similarly, we have X−1S � D−2, which clearly implies that D2 � XS−1. This result, along with
the fact that xisi ≤ nμ for all i, implies that SD2S � XS � nμI , and hence that ‖SD‖ =
‖SD2S‖1/2 ≤ √

nμ. We use this result along with Equation (26) and the second relation in
Equation (38) to obtain

‖p‖ = ‖Sv1‖ ≤ ‖SD‖‖D−1v1‖ ≤ √
nμ‖D−1v1‖ ≤ √

nμ‖D̂−1v‖.

Thus Equation (39) is proven. The second part of the proposition follows from the fact that
Equations (39), (40), and the assumption that ‖D̂−1v‖ ≤ ξ

√
μ imply that Equation (19) holds. �

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

132 Z. Lu et al.

3. Inner iteration complexity

In this section, we complete the description of the recipe given in Subsection 2.2 to determine a
(τp, τq)-search direction �w. The section is divided into two subsections. In Subsection 3.1, we
derive a uniform upper bound on the number of iterations that a generic iterative linear solver
requires to obtain a sufficiently accurate solution (�y, �z) to the HANE, which will then yield a
(τp, τq)-search direction �w, as required in step 2(d) of the inexact IPDPF algorithm. One of the
key ideas in this paper, which is described in Subsection 2.1, is the use of a suitable approximation
F of D̂2 to define the vector v as a linear function of u. In Subsection 2.2, we present two examples
of matrices F that are suitable approximations of D̂2. We also obtain specific expressions for the
iteration complexity developed in Subsection 2.1 when the iterative solver used to obtain an
approximate solution to the HANE is the preconditioned conjugate gradient (PCG) method with
preconditioner given by ÂF ÂT .

3.1 Inner iteration complexity analysis

In this subsection, we will complete the description of the recipe given in Subsection 2.2 to
determine a (τp, τq)-search direction �w. For simplicity of notation, in this section we will
denote the variable of unknowns in the HANE by u, so that the HANE takes the form Hu = h,
where H and h are given by Equations (28) and (29), respectively. Recall that the only thing
that was unspecified in the recipe of Subsection 2.2 was the choice of a vector v satisfying
Equation (37). Recall also from Lemma 2.2 that by choosing v such that ‖D̂−1v‖ ≤ ξ

√
μ, where

ξ is given by Equation (40), the corresponding inexact search direction �w is guaranteed to be
a (τp, τq)-search direction, simply by choosing (g, p, q) according to Equation (38). One of the
key ideas in this paper, which is described in this subsection, is the use of a generic preconditioner
for H to define the vector v as a linear function of u. This subsection also discusses the iteration
complexity of a generic iterative solver to obtain an iterate u so that the corresponding v = v(u)

satisfies the condition ‖D̂−1v‖ ≤ ξ
√

μ. We also discuss an appropriate choice of the starting point
u0 and conditions on the generic preconditioner for H , which guarantee that the inner iteration
complexity bound is uniformly bounded throughout the iterations of the inexact IPDPF algorithm.

We will first discuss the criterion we use to measure the complexity of an iterative solver to
obtain an approximate solution to a system of the form Hu = h. A common way of measuring
the closeness of u to u∗ := H−1h is by the distance ‖u − u∗‖H = ‖f (u)‖H−1 , where f (u) :=
Hu − h. Many algorithms for solving the system Hu = h produce a sequence of iterates that
decrease this distance at every step (see [7,9,16]). Other equivalent distances could be used in our
following discussion, but we will only consider the previous one without any loss of generality.
We will say that the complexity of an iterative solver (with respect to the earlier distance) is
bounded above by a non-decreasing function ϒ : [1, ∞) �→ Z+ if, for any δ ≥ 1, ϒ(δ) denotes
an upper bound on the number of iterations required by the iterative solver, started at any u0, to
obtain an iterate u such that ‖f (u)‖H−1 ≤ δ−1‖f (u0)‖H−1 .

Next, we will discuss a way of choosing a vector v satisfying Equation (37) and the condition

‖D̂−1v‖ ≤ K‖f (u)‖H−1 (41)

for some suitable constant K ≥ 1. For fixed f (u), consider the ideal case for which we set v = vLS ,
where vLS = argmin{‖D̂−1v‖ : Âv = f (u)}. It is straightforward to show that

vLS = D̂2ÂT H−1f (u) = D̂2ÂT (ÂD̂2ÂT)−1f (u), (42)

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 133

where H is given by Equation (28). Thus, we have that

‖D̂−1vLS‖ =
√

f (u)T (ÂD̂2ÂT)−1f (u) = ‖f (u)‖H−1 , (43)

and hence Equation (41) is satisfied with K = 1. Unfortunately, the computation of vLS requires
the computation of H−1f (u), or equivalently the solution of a system of linear equations with
the same coefficient matrix as the HANE we are trying to solve. To remedy this problem, we will
approximate D̂2 by a matrix F � 0 such that G := ÂF ÂT � 0 and G−1f (u) is much cheaper
to compute than H−1f (u). We then replace D̂2 in Equation (42) by F to obtain a vector v

according to

v := v(F, u) = FÂT G−1f (u) = FÂT (ÂF ÂT)−1f (u). (44)

It is clear that v defined in this manner satisfies Equation (37). By imposing some conditions on
the approximation F according to the following definition, v will also satisfy Equation (41) for
some constant K ≥ 1. We will require that F approximate D̂2 in the following sense.

DEFINITION 3.1 Let constants 0 < λL ≤ λU be given. We will say that a matrix F is a (λL, λU)-
approximation of D̂2 if 0 � F � λU D̂2 and ÂF ÂT � λL ÂD̂2ÂT .

Using this definition, we can now state the following result.

LEMMA 3.1 Suppose that a matrix F is a (λL, λU)-approximation of D̂2. Then the vector v given
by Equation (44) satisfies Equation (41) with K = √

λU/λL.

Proof Recall that G = ÂF ÂT , and recall the definition of H in Equation (28). Using the assump-
tion that F is a (λL, λU)-approximation of D̂2 and Definition 3.1, we have that G−1 � λ−1

L H−1

and D̂−1FD̂−1 � λUI . Using these inequalities along with Equation (44), we conclude that

‖D̂−1v‖ ≤ ‖D̂−1F 1/2‖‖F 1/2ÂT G−1f (u)‖

= ‖D̂−1F 1/2‖
√

f (u)T G−1(ÂF ÂT)G−1f (u)

= ‖D̂−1FD̂−1‖1/2
√

f (u)T G−1f (u) ≤
√

λU

λL

√
f (u)T H−1f (u)

=
√

λU

λL

‖f (u)‖H−1 . �

Note that if u is a point such that ‖f (u)‖H−1 ≤ δ−1‖f (u0)‖H−1 , and if v is formed according
to Equation (44), where F is a (λL, λU)-approximation of D̂2, we have

‖D̂−1v‖
‖f (u0)‖H−1

≤
√

λU

λL

‖f (u)‖H−1

‖f (u0)‖H−1
≤ δ−1

√
λU

λL

(45)

in view of Lemma 3.1. The issues to be considered now are: (i) the choice of the starting point u0

and (ii) the choice of δ. Regarding (i), we will show that a starting point u0 can always be chosen

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

134 Z. Lu et al.

so that

‖f (u0)‖H−1 ≤ �
√

μ (46)

for some universal constant �. Assuming this fact, the constant δ in issue (ii) can be chosen as

δ =
(

�

ξ

) √
λU

λL

, (47)

where ξ is given by Equation (40). Indeed, by Equations (45)–(47), it follows that the resulting
vector v satisfies ‖D̂−1v‖ ≤ ξ

√
μ, as desired.

We will now concentrate our attention on the construction of a starting point u0 satisfying
Equation (46). First, compute a point w′ = (x ′, y ′, s ′, z′) satisfying the following system of linear
equations:

Â

(
x ′

E−2z′

)
=

(
b

0

)
, AT y ′ + s ′ + V z′ − Qx ′ = c. (48)

We then define

u0 = −η

(
y0 − y ′
z0 − z′

)
, (49)

where η = ‖rp‖/‖r0
p‖. Notice that all of the starting points generated by the above formulae are

multiples of the same vector, which can be computed once at the beginning of the inexact IPDPF
algorithm. Moreover, if the starting point w0 of the algorithm is feasible to Equations (2) and
(3), then we may choose w′ = w0, and hence u0 = 0. The following lemma gives a bound on
‖f (u0)‖H−1 .

LEMMA 3.2 Assume that w0 and w′ are such that (x0, s0) ≥ |(x ′, s ′)| and (x0, s0) ≥ (x∗, s∗)
for some w∗ ∈ S. Further, assume that w ∈ Nw0(γ, θ) for some γ ∈ (0, 1) and θ > 0, and that
H, h, and u0 are given by Equations (28), (30), and (49), respectively. Then, f (u0) satisfies
Equation (46), where μ is given by Equation (8) and � is defined as

� := 6√
1 − γ

n +
(

1 − 2σ + σ 2

1 − γ

)1/2 √
n + θ2

2
√

1 − γ
+ θ. (50)

The proof of this lemma will be given in Subsection 4.2. Our next lemma provides insight into
the size of the ratio �/ξ in Equation (47).

LEMMA 3.3 Suppose that max{σ, σ−1, γ −1, (1 − γ)−1, θ−1} = O(1) and θ = O(
√

n) in the
inexact IPDPF algorithm, and that τp, τq, ξ, and � are as defined in Equations (22), (23), (40),
and (50), respectively. Then, we have that �/ξ = O(n3/2).

Proof Under the assumptions shown, it is easy to see that � = O(n) and ξ−1 = O(
√

n), and
the result follows immediately. �

We summarize the results of this subsection in the following theorem.

THEOREM 3.1 Suppose that the conditions of Lemmas 3.1–3.3 are met. Then, an iterative solver
with complexity bounded by ϒ(·) generates an iterate u such that v = v(F, u) satisfies ‖D̂−1v‖ ≤
ξ
√

μ in at most

ϒ
(
O

(
n3/2

√
λU/λL

))
iterations.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 135

It is important to observe that, although the requirements given in this subsection are sufficient
to ensure that the resulting �w is a (τp, τq)-search direction, they are not necessary. Indeed, it is
only necessary to check the sizes of ‖p‖∞ and |||g|||2Q + ‖q‖2 to ensure that the resulting �w is a
(τp, τq)-search direction. Once a candidate vector v is generated, then (g, p, q) ∈ R(Q) × R

n ×
R

l (and their corresponding magnitudes) can be easily computed according to Equation (38).

3.2 Specific applications

In this subsection, we present two examples of matrices F , which are (λL, λU)-approximations
of D̂2, and an estimation of their corresponding constants λL and λU . As a consequence, we
will obtain specific expressions for the iteration complexity developed in Theorem 3.1 when the
iterative solver used to obtain an approximate solution to the HANE is the PCG method with
preconditioner given by ÂF ÂT .

The first example of a matrix F we will consider in this subsection is the MWB preconditioner
originally proposed by Vaidya [27] (see also [25]). For the purposes of this example only, we will
assume that Q is diagonal, which clearly implies that D̂ is also diagonal. MWB is a basis B of
Â formed by giving higher priority to columns of Â corresponding to larger diagonal elements
of D̂. The MWB preconditioner is then given by T̂ −1T̂ −T , where T̂ = D̂−1

B B−1 and D̂B is the
diagonal submatrix of D̂ corresponding to the columns of B. (See [20] for a complete description
of the MWB.) Note that this preconditioner can be written as

G = BD̂2
BBT = Â

(
D̂2

B 0
0 0

)
ÂT = ÂF ÂT ,

where

F =
(

D̂2
B 0

0 0

)
.

It is clear from this definition that 0 � F � D̂2. Next, Lemma 2.1 in [20] implies that ‖T̂ ÂD̂‖ ≤
ϕÂ, where ϕÂ is defined as

ϕÂ := max{‖B−1Â‖F : Bis a basis forÂ}.
It follows that T̂ H T̂ T = T̂ (ÂD̂2ÂT)T̂ T � ϕ2

Â
I , which implies that G � ϕ−2

Â
H . In view of

Definition 3.1, we have thus shown that F is a (ϕ−2
Â

, 1)-approximation of D̂2.

Another way of obtaining an approximation of D̂2 is by using the partial updating strategy
that was first proposed by Karmarkar [8] (see also Gonzaga [6]) in the context of primal-only
interior-point methods, and extended by Monteiro and Adler [18] and Kojima et al. [11] to the
context of primal-dual path-following methods. At each iteration of a path-following algorithm,
the strategy consists of generating a diagonal matrix D̄ satisfying

ρ−1 si

xi

≤ D̄ii ≤ ρ
si

xi

, for all i = 1, . . . , n (51)

for some constant ρ ≥ 1, and using

F :=
(

(Q + D̄)−1 0
0 E−2

)
(52)

as the approximation for D̂2. The current approximation D̄ is obtained by updating the approx-
imation used at the previous iterate in the following manner. If the ith diagonal element of D̄

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

136 Z. Lu et al.

used at the previous iterate violates Equation (51), then it is changed to si/xi ; otherwise it is left
unchanged. Using Equations (25), (26), (51), and (52), we easily see that ρ−1D̂2 � F � ρD̂2,
which implies that G = ÂF ÂT � ρ−1H . Hence, F is a (ρ−1, ρ)-approximation of D̂2.

In the remainder of this subsection, we will obtain specific expressions for the iteration com-
plexity developed in Theorem 3.1 when the iterative solver used to obtain an approximate solution
to the HANE is the PCG method with preconditioner ÂF ÂT , where F is obtained via the MWB
and partial update methods, respectively. It should be noted that under exact arithmetic, the PCG
algorithm is in fact a finite termination algorithm, achieving an exact solution to the HANE in at
most m + l iterations, since H ∈ Sm+l

++ (see, e.g. [9,16]). For our purposes, we will view the PCG
method as an iterative method, which is known to satisfy the following convergence property: if
G ∈ Sm+l

++ is used as a preconditioner for the HANE, then the method obtains an iterate u such
that ‖f (u)‖H−1 ≤ δ−1‖f (u0)‖H−1 in at most

ϒ(δ) = O
{√

κ(G−1H) log δ
}

(53)

iterations, where we recall that κ(·) represents the spectral condition number of (·). The following
lemma gives a bound on the spectral condition number of G−1H when G = ÂF ÂT and F is a
(λL, λU)-approximation of D̂2.

LEMMA 3.4 Suppose that F is a (λL, λU)-approximation of D̂2, and define G := ÂF ÂT . Then,
κ(G−1H) ≤ λU/λL.

Proof Let L be an invertible matrix such that LLT = G−1. We observe that G−1H and LT HL

are similar, and hence κ(LT HL) = κ(G−1H). Since F is a (λL, λU)-approximation of D̂2, we
have that F � λUD̂2 and G � λLH . These relations, along with (28) and the definition of G,
imply that λLH � G � λUH . This observation together with the fact that G = L−T L−1 then
implies that λ−1

U I � LT HL � λ−1
L I , and hence that κ(G−1H) = κ(LT HL) ≤ λU/λL. �

Using Lemma 3.4 along with Equation (53), we see that Theorem 3.1 yields the iteration
complexity bound

O
{√

λU

λL

log

(
n
λU

λL

)}
(54)

for the PCG method with preconditioner G = ÂF ÂT , where F is a (λL, λU)-approximation
of D̂2. For the MWB and partial update preconditioners, this bound becomes O(ϕÂ log(nϕÂ))

and O(ρ log(nρ)) iterations, since the respective matrices F are (ϕ−2
Â

, 1)- and (ρ−1, ρ)-

approximations of D̂2, respectively. We observe that the resulting bound for the MWB
preconditioner is precisely the same as the one obtained in [15].

In the remaining part of this subsection, we will make a few observations about the inner
iteration complexity bound (Equation (54)). As mentioned in Subsection 2.1, it is possible to
develop a short-step method based on the inexact search directions introduced in Subsection 2.1.
When this method is started from a feasible point, it can then be shown that the inner iteration
complexity bound is the same as Equation (54), but with the factor n removed from the logarithm.
Recall that the term log n in Equation (54) follows from the fact that the ratio �/ξ in Lemma 3.3
is O(n3/2), which in turn follows from the fact that � in Lemma 3.2 and ξ−1 in Equation (40)
satisfy � = O(n) and ξ−1 = O(

√
n). In the context of a short-step feasible method, it is possible

to show that for an appropriate choice of σ , γ , and θ , � = O(1) and ξ−1 = O(1). The latter
follows from the fact that the bound derived in Equation (39) for ‖p‖ can be reduced by a factor
of O(

√
n), and hence that ξ can be chosen as �(min{τp, τq}).

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 137

In view of the discussion in the previous paragraph, the short-step variant of the inex-
act IPDPF algorithm, started from a feasible point, has inner iteration complexity bound
O(ρ log ρ) if the partial update preconditioner is used to solve the HANE. It is interesting to
compare this bound with the inner iteration complexity bound of the inexact path-following
method presented by Anstreicher in [1]. His paper presents a short-step, dual-only, path-
following method with feasible starting point, where the normal equation is solved by the
PCG method using the partial update preconditioner. It shows that the outer and inner com-
plexity bounds are O(

√
n log ε−1) and O(ρ) iterations, respectively. In order to minimize the

overall arithmetic complexity of his method, including the work of updating the precondi-
tioner through a series of rank-one updates, Anstreicher [1] shows that the best choice for
ρ is ρ = O(mβ) for some β ∈ (0, 1/2), which yields the optimal arithmetic complexity of
O((n3/ log n) log ε−1).

Note that the inner iteration complexity bound in [1] is a factor of log ρ = O(log(λU/λL))

better than the same bound in our method. The main reason for this difference is that, while
Anstreicher’s [1] method generates an iterate u satisfying

‖f (u)‖H−1

‖f (u0)‖H−1
≤ δ−1, (55)

where δ = O(1), our method generates an iterate u such that ‖D̂−1v(F, u)‖/(ξ√
μ) ≤ 1. Noting

that Lemmas 3.1 and 3.2 and inequality Equation (46) imply that

‖D̂−1v(F, u)‖
ξ
√

μ
= �

ξ
· ‖D̂−1v(F, u)‖

�
√

μ
≤ K�

ξ

‖f (u)‖H−1

‖f (u0)‖H−1
,

where K = √
λU/λL, our requirement on the iterate u can be accomplished by enforcing

Equation (55) with δ = K�/ξ . Since, for a short-step method with a feasible starting point,
we have that this choice of δ satisfies δ = O(ρ), it follows that our inner iteration com-
plexity has an additional log δ = O(log ρ) factor compared with the complexity of [1]. Note
that if the ideal choice of v = vLS given by Equation (42) is made, then K = 1 in view of
Equation (43) and δ = O(1). Then we would have an inner iteration complexity bound of O(ρ),
the same as in [1]. Hence, the dual-only method in [1] can be thought of as being compara-
ble, in terms of the number of inner iterations, with the inexact IPDPF algorithm proposed in
this paper, with this ideal (but expensive) choice of inexact search direction. Note that, since
the left-hand side of Equation (55) cannot be computed, and hence cannot be used to check
for early termination of the PCG method, exactly ϒ(δ) iterations of the PCG method must
be performed at each outer iteration of Anstreicher’s [1] algorithm, where ϒ(δ) is given by
Equation (53). In this respect, our approach is preferable to the one in [1], since it has a mea-
surable termination criterion, namely ‖D̂−1v(F, u)‖/(ξ√

μ) ≤ 1. It is possible to incorporate
a measurable stopping criterion into Anstreicher’s [1] approach, but in that case, the result-
ing inner iteration complexity bound would increase to O(ρ log ρ), the same bound as in our
method.

4. Technical results

In this subsection, we present the proofs of Theorem 2.1 and Lemma 3.2. Subsection 4.1 presents
the proof of Theorem 2.3, while Subsection 4.2 gives the proof of Lemma 3.2.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

138 Z. Lu et al.

4.1 Proof of Theorem 2.1

In this subsection, we prove Theorem 2.1 by showing that the inexact IPDPF algorithm of
Subsection 2.1 is completely equivalent to the algorithm presented in [15], and hence has similar
convergence properties as the latter one.

Proof of Theorem 2.1 Let Ṽ ∈ R
n×l̃ be a matrix of full column rank such that Q = Ṽ Ṽ T . It is

clear that we may write Q = VE2VT , where

V := (
V Ṽ

)
, E :=

(
E 0
0 I

)
.

Note that Q has the form required for the inexact IPDPF algorithm in [15]. Recall that the algorithm
in [15] generates a sequence of iterates wk = (xk, sk, yk, (zk, z̃k)) to approximate a solution of
the equivalent reformulation of the optimality conditions (4)–(7):

Ax = b, x ≥ 0,

AT y + s + V z + Ṽ z̃ = c, s ≥ 0,

Xs = 0,

EV T x + E−1z = 0,

Ṽ T x + z̃ = 0.

More specifically, the algorithm in [15] generates a sequence of points wk , which lie in the
neighbourhood Nw0(γ, θ) := ∪η∈[0,1]Nw0(η, γ, θ), where

Nw0(η, γ, θ) :=
⎧⎨⎩w ∈ R

2n
++ × R

m+l+l̃ :
Xs ≥ (1 − γ)μe, (rp, rd) = η(r0

p, r0
d), η ≤ μ

μ0
,

‖rV − ηr0
V ‖2 + ‖rṼ − ηr0

Ṽ
‖2 ≤ θ2μ

⎫⎬⎭ ,

and the residuals rd and rṼ are defined as

rd := AT y + s + V z + Ṽ z̃ − c,

rṼ := Ṽ T x + z̃.

Given a point w ∈ Nw0(γ, θ), the inexact algorithm in [15] generates a (τp, τq)-search direction
�w = (�x, �s, �y, (�z, �z̃)), which in that context means a search direction satisfying

A�x = −rp,

AT �y + �s + V �z + Ṽ �z̃ = −rd ,

X�s + S�x = −Xs + σμe − p,

EV T �x + E−1�z = −rV + q,

Ṽ T �x + �z̃ = −rṼ + q̃,

for some vectors p, q, and q̃ satisfying ‖p‖∞ ≤ τpμ and ‖(q, q̃)‖ ≤ τq
√

μ, where τp and τq are
defined in Equations (22) and (23), respectively. The inexact IPDPF algorithm in [15] determines a
stepsize α in exactly the same manner as steps (d) and (e) of the inexact algorithm in Subsection 2.1,
but with w, �w, and Nw0(γ, θ) replaced by w, �w, and Nw0(γ, θ), respectively, and determines
the next iterate w+ according to w+ = w + α�w.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 139

It is straightforward to show that the inexact IPDPF algorithm in Subsection 2.1, started at
w0, is completely equivalent to the inexact IPDPF algorithm in [15], started at w0 = (x0, s0, y0,
(z0, z̃0)), where z̃0 = −Ṽ T x0, due to the following claims.

1. A vector w = (x, s, y, z) ∈ Nw0(η, γ, θ) if and only if there exists a vector z̃ such that w =
(x, s, y, (z, z̃)) ∈ Nw0(η, γ, θ), in which case z̃ is unique.

2. If w and w are related as in statement 1 here, a search direction �w = (�x, �s, �y, �z) is
a (τp, τq)-search direction at w if and only if there exists a vector �z̃ such that the search
direction �w = (�x, �s, �y, (�z, �z̃)) is a (τp, τq)-search direction at w (in the sense
of [15]), in which case �z̃ is unique.

The proofs of claims 1 and 2 are based on the following observations, which are valid under the
assumption that z̃0 = −Ṽ T x0, or equivalently r0

Ṽ
= 0.

– If w ∈ Nw0(η, γ, θ), let t be the unique vector such that Ṽ t = rd − ηr0
d , and define z̃ =

−Ṽ T x − t . Then w ∈ Nw0(η, γ, θ).
– If w ∈ Nw0(η, γ, θ), then we have that rd = ηr0

d = ηr0
d = rd + Ṽ rṼ . Thus rd − ηr0

d ∈ R(Q),
and statement 1 of Proposition 2.1 and the fact that r0

Ṽ
= 0 imply that |||rd − ηr0

d |||Q = ‖rṼ ‖ =
‖rṼ − ηr0

Ṽ
‖. It follows that w ∈ Nw0(η, γ, θ).

– Let �w be a (τp, τq)-search direction with error terms (g, p, q) ∈ R(Q) × R
n × R

l , let q̃ be
the unique vector such that Ṽ q̃ = g, and let �z̃ be given by �z̃ = −Ṽ T �x − rṼ + q̃. Then
�w is a (τp, τq)-search direction at w with error terms (p, (q, q̃)).

– Let �w be a (τp, τq)-search direction at w with error terms (p, (q, q̃)), and let g = Ṽ q̃. It
follows that �w is a (τp, τq)-search direction with error terms (g, p, q) ∈ R(Q) × R

n × R
l .

We leave a detailed proof of claims 1 and 2 to the reader.
Given ε > 0, Theorem 2.2 of [15] claims that the inexact algorithm in [15] finds a point

wk ∈ Nw0(γ, θ) satisfying μk ≤ εμ0 in at most O(n2 log ε−1) iterations. Translated to the inexact
IPDPF algorithm in Subsection 2.1, this means that a point wk ∈ Nw0(γ, θ) satisfying μk ≤ εμ0

can be found in at most O(n2 log ε−1) iterations. The remaining conditions on wk in our theorem
follow from the definition of Nw0(γ, θ) in Equation (21), the fact that μk ≤ εμ0, and statement 3
of Proposition 2.1. �

4.2 Proof of Lemma 3.2

In this subsection, we present the proof of Lemma 3.2. We first present some technical lemmas.

LEMMA 4.1 Suppose that w0 ∈ R
2n++ × R

m+l such that (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.
Then, for any w ∈ Nw0(η, γ, θ) with η ∈ [0, 1], γ ∈ (0, 1), and θ > 0, we have

η(xT s0 + sT x0) ≤
(

3n + θ2

4

)
μ.

Proof Recall from Subsection 4.1 that any point w ∈ Nw0(η, γ, θ) can be mapped into a point
w ∈ Nw0(η, γ, θ), such that the x and s components of w and w are precisely the same. The result
now follows by applying Lemma 4.1 of [15] to w. �

LEMMA 4.2 Let H be defined as in Equation (28), and suppose that (x, s, y, z) ∈ R
2n++ × R

m+l .

Then, for any w ∈ R
n+l we have that ‖ÂD̂w‖H−1 ≤ ‖w‖.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

140 Z. Lu et al.

Proof Observe that D̂ÂT H−1ÂD̂ is a projection matrix, which implies that D̂ÂT H−1ÂD̂ � I .
Thus, for any w ∈ R

n+l we have that

‖ÂD̂w‖H−1 =
√

wT (D̂ÂT H−1ÂD̂)w ≤
√

wT w = ‖w‖. �

For the purpose of the next proof, let us define

J (σ) := −(XS)1/2e + σμ(XS)−1/2e. (56)

LEMMA 4.3 Suppose w0 ∈ R
2n++ × R

m+l , w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1], γ ∈ (0, 1), and
θ > 0, and w′ satisfies Equation (48). Let H, h, and u0 be given by Equations (28), (30), and
(49), respectively. Then,

Hu0 − h = ÂD̂

(
DX−1/2S1/2J (σ) + ηDX−1

[
X(s0 − s ′) + S(x0 − x ′)

] + D(rd − ηr0
d)

rV − ηr0
V

)
.

(57)

Proof Using the fact that w ∈ Nw0(η, γ, θ) along with Equations (20), (27), and (48), we easily
obtain that (

rp

E−1rV

)
=

(
ηr0

p

ηE−1r0
V + E−1(rV − ηr0

V)

)
= ηÂ

(
x0 − x ′

E−2(z0 − z′)

)
+ Â

(
0

E−1(rV − ηr0
V)

)
(58)

s0 − s ′ = −AT (y0 − y ′) + Q(x0 − x ′) − V (z0 − z′) + r0
d . (59)

From Equation (56), we easily see that

−s + σμX−1e = X−1/2S1/2J (σ). (60)

Equation (25) implies that

I − D2Q = D2(D−2 − Q) = D2X−1S. (61)

Using relations (20), (26), (27), (28), (29), (49), (58), and (59), we obtain

Hu0 − h = ÂD̂2ÂT u0 − Â

(
D2(s − σμX−1e − rd)

0

)
+

(
rp

E−1rV

)
= −ηÂD̂2ÂT

(
y0 − y ′
z0 − z′

)
− Â

(
D2(s − σμX−1e − ηr0

d − (rd − ηr0
d))

0

)
+

(
rp

E−1rV

)
= −ηÂ

(
D2

(
AT (y0 − y ′) − Q(x0 − x ′) + V (z0 − z′) − r0

d

)
E−2(z0 − z′)

)
− Â

(
D2

(
ηQ(x0 − x ′) − (rd − ηr0

d)
)

0

)
− Â

(
D2(s − σμX−1e)

0

)
+

(
rp

E−1rV

)
= −ηÂ

(−D2(s0 − s ′)
E−2(z0 − z′)

)
− Â

(
D2

(
ηQ(x0 − x ′) − (rd − ηr0

d)
)

0

)
− Â

(
D2(s − σμX−1e)

0

)
+ ηÂ

(
x0 − x ′

E−2(z0 − z′)

)
+ Â

(
0

E−1(rV − ηr0
V)

)
= Â

(−D2(s − σμX−1e) + ηD2(s0 − s ′) + η(I − D2Q)(x0 − x ′) + D2(rd − ηr0
d)

E−1(rV − ηr0
V)

)
,

which together with Equations (26), (60), and (61) yields Equation (57), as desired. �

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 141

We now turn to the proof of Lemma 3.2.

Proof of Lemma 3.2 The fact that w ∈ Nw0(γ, θ) implies that w ∈ Nw0(η, γ, θ) for some η ∈
[0, 1]. By Lemmas 4.2 and 4.3, we have that

‖Hu0 − h‖H−1

=
∥∥∥∥ÂD̂

(
DX−1/2S1/2J (σ) + ηDX−1

[
X(s0 − s ′) + S(x0 − x ′)

] + D(rd − ηr0
d)

rV − ηr0
V

)∥∥∥∥
H−1

≤
∥∥∥∥(

DX−1/2S1/2J (σ) + ηDX−1
[
X(s0 − s ′) + S(x0 − x ′)

] + D(rd − ηr0
d)

rV − ηr0
V

)∥∥∥∥
≤ ‖DX−1/2S1/2‖ ‖J (σ)‖ + η‖DX−1‖‖S(x0 − x ′) + X(s0 − s ′)‖ +

∥∥∥∥(
D(rd − ηr0

d)

rV − ηr0
V

)∥∥∥∥ .

(62)

We will examine each norm in Equation (62) in turn. First, since w ∈ Nw0(γ, θ), we have that
xisi ≥ (1 − γ)μ for all i. It follows from a well-known result (see, e.g. [12]) that

‖J (σ)‖ ≤
(

1 − 2σ + σ 2

1 − γ

)1/2 √
nμ. (63)

Moreover, using Equation (25) and the facts that Q � 0 and xisi ≥ (1 − γ)μ for all i, we
obtain that

‖DX−1‖ = ‖X−1D2X−1‖1/2 = ‖X−1(Q + X−1S)−1X−1‖1/2

≤ ‖(XS)−1‖1/2 ≤ 1√
(1 − γ)μ

. (64)

Similarly, we have

max{‖DX−1/2S1/2‖, ‖DQ1/2‖} ≤ 1. (65)

Using the fact that (x0, s0) ≥ |(x ′, s ′)| and (x0, s0) ≥ (x∗, s∗) together with Lemma 4.1, we
obtain that

η‖S(x0 − x ′) + X(s0 − s ′)‖ ≤ η
(‖S(x0 − x ′)‖ + ‖X(s0 − s ′)‖) ≤ 2η

(‖Sx0‖ + ‖Xs0‖)
≤ 2η(xT s0 + xT s0) ≤

(
6n + θ2

2

)
μ. (66)

The fact that ‖DQ1/2‖ ≤ 1 implies that Q1/2D2Q1/2 � I , which in turn implies that QD2Q � Q.
Next, the fact that w ∈ Nw0(γ, θ) implies that rd − ηr0

d = Qt for some vector t . We use these
facts along with Equation (13) to observe that∥∥∥∥(

D(rd − ηr0
d)

rV − ηr0
V

)∥∥∥∥ = [
tT (QD2Q)t + ‖rV − ηr0

V ‖2
]1/2

≤ [
tT Qt + ‖rV − ηr0

V ‖2
]1/2

= [|||rd − ηr0
d |||2Q + ‖rV − ηr0

V ‖2
]1/2 ≤ θ

√
μ. (67)

The result now follows by combining bounds (63)–(67) into Equation (62). �

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

142 Z. Lu et al.

5. Concluding remarks

In this paper, we have presented two important extensions to the results of [15]. First, we have
extended the available choices of preconditioners in the recipe for constructing inexact search
directions to a whole class of preconditioners, which includes the MWB preconditioner used
in [15] as a special case. These preconditioners are indexed by a positive semidefinite matrix F ,
and convergence using these preconditioners depends on how well F approximates D̂2. Second,
we have presented the HANE as a new method to determine an approximate search direction in
the inexact IPDPF algorithm.

In the specific case of LP, the results presented in this paper can be simplified considerably. First,
note that in this case Equation (18) is not present, and that Equation (16) reduces to AT �y +
�s = −rd , since V = 0 and Q = 0, and hence g = 0. Furthermore, Equation (19) reduces to
‖p‖∞ ≤ γ σμ/4, i.e. the second inequality in Equation (19) disappears. Second, the HANE
reduces to the standard normal equation. Third, the last inequality in the definition of Nw0(η, γ, θ)

in Equation (20) disappears, and hence we may choose θ = 0. Finally, noting that the z-component
of u0 in Equation (49) is not involved in LP, by choosing y ′ = y0 (and s0 sufficiently large so that
the conditions of Lemma 3.2 hold), we see that u0 = 0 is a viable starting point for the iterative
solver.

One feature of the MWB preconditioner T̂ discussed in Subsection 3.2 is that it satisfies
T̂ H T̂ T � I , as was shown in [20]. Thus, the Adaptive PCG (APCG) method in [19] may be used
as the iterative solver to determine an approximate solution to the preconditioned HANE. The
APCG method, applied to the preconditioned HANE with initial preconditioner T̂ , determines a
solution u such that ‖f ‖H−1 ≤ δ−1‖f 0‖H−1 in at most

O(log det(T̂ H T̂ T) + (m + l)1/2 log δ)

iterations (see [19]). Since

log det(T̂ H T̂ T) ≤ (m + l) log λmax(T̂ H T̂ T) ≤ 2(m + l) log ϕÂ,

it follows that a suitable approximate solution to the HANE can be found in at most

O((m + l) log ϕÂ + (m + l)1/2 log(nϕÂ)) (68)

iterations of the APCG method. One unique feature of the APCG method is that the preconditioner
T̂ is periodically updated to better condition the HANE matrix. The bound (68) assumes that
we form v according to Equation (44) using the preconditioner G = T̂ −1T̂ −T employed at the
beginning of the APCG method. It would be interesting to investigate whether v could be formed
using the updated preconditioners generated during the course of theAPCG method. One question
that would need to be addressed is whether the updated preconditioner fits into the form G =
ÂF ÂT required for the results in Section 3 to hold. Exploring adaptive preconditioning strategies,
such as the one employed by the APCG method, for generating inexact search directions in the
context of the inexact IPDPF algorithm, is certainly an interesting area for future research.

Acknowledgements

Z. Lu was partially supported by SFU Presidential Grant and NSERC Discovery Grant. R.D.C. Monteiro was partially
supported by NSF Grants CCR-0203113 and CCF-0430644 and CCF-0808863 and ONR Grants N00014-05-1-0183 and
N00014-08-1-0033. J.W. O’Neal was supported in part by the NDSEG Fellowship Program sponsored by the Department
of Defense.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

Optimization Methods & Software 143

References

[1] K.M. Anstreicher, Linear programming in O(n3L/ln n) operations, SIAM J. Optim. 9(4) (1999), pp. 803–812.
[2] V. Baryamureeba and T. Steihaug, On the convergence of an inexact primal-dual interior point method for linear

programming, J. Optim. Theory Appl., to appear.
[3] V. Baryamureeba, T. Steihaug, and Y. Zhang, Properties of a class of preconditioners for weighted least squares

problems, Tech. Rep. 16, Department of Computational and Applied Mathematics, Rice University, 1999.
[4] L. Bergamaschi, J. Gondzio, and G. Zilli, Preconditioning indefinite systems in interior point methods for

optimization, Comput. Optim. Appl. 28(2) (2004), pp. 149–171.
[5] R.W. Freund, F. Jarre, and S. Mizuno, Convergence of a class of inexact interior-point algorithms for linear programs,

Math. Oper. Res. 24(1) (1999), pp. 50–71.
[6] C.C. Gonzaga. An algorithm for solving linear programming problems in O(n3L) operations, in Progress in

Mathematical Programming: Interior-Point and Related Methods, ch. 1, 1989, pp. 1–28.
[7] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, 1997.
[8] N. Karmarkar, A new polynomial-time algorithm for linear programming, Combinatorica 4 (1984), pp. 373–395.
[9] C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

[10] M. Kojima, N. Megiddo, and S. Mizuno, A primal-dual infeasible-interior-point algorithm for linear programming,
Math. Program. 61(3) (1993), pp. 263–280.

[11] M. Kojima, S. Mizuno, and A.Yoshise, A polyonimal-time algorithm for a class of linear complementarity problems,
Math. Program. 44(1) (1989), pp. 1–26.

[12] ———, A primal-dual interior point algorithm for linear programming, in Progress in Mathematical Programming:
Interior-Point and Related Methods, ch. 2, 1989, pp. 29–47.

[13] J. Korzak, Convergence analysis of inexact infeasible-interior-point algorithms for solving linear programming
problems, SIAM J. Optim. 11(1) (2000), pp. 133–148.

[14] V.V. Kovacevic-Vujcic and M.D. Asic, Stabilization of interior-point methods for linear programming, Comput.
Optim. Appl. 14 (1999), pp. 331–346.

[15] Z. Lu, R.D.C. Monteiro, and J.W. O’Neal, An iterative solver-based infeasible primal-dual path-following algorithm
for convex quadratic programming, SIAM J. Optim. 17(1) (2006), pp. 287–310.

[16] D.G. Luenberger, Linear and Nonlinear Programming, Addison-Wesley, 1984.
[17] S. Mizuno and F. Jarre, Global and polynomial-time convergence of an infeasible-interior-point algorithm using

inexact computation, Math. Program. 84 (1999), pp. 357–373.
[18] R.D.C. Monteiro and I. Adler, Interior path-following primal-dual algorithms, part I: linear programming, Math.

Program. 44 (1989), pp. 27–41.
[19] R.D.C. Monteiro, J.W. O’Neal, and A.S. Nemirovski, A new conjugate gradient algorithm incorporating adaptive

ellipsoid preconditioning, Tech. Rep., Georgia Institute of Technology, 2004.
[20] R.D.C. Monteiro, J.W. O’Neal, and T. Tsuchiya, Uniform boundedness of a preconditioned normal matrix used in

interior point methods, SIAM J. Optim. 15(1) (2004), pp. 96–100.
[21] Y. Nesterov and A. Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming, SIAM, 1995.
[22] A.R.L. Oliveira and D.C. Sorensen, Computational experience with a preconditioner for interior point methods for

linear programming, Tech. Rep. 28, Department of Computational and Applied Mathematics, Rice University, 1997.
[23] L.F. Portugal, M.G.C. Resende, G.Veiga, and J.J. Judice, A truncated primal-infeasible dual feasible network interior

point method, Networks, 35 (2000), pp. 91–108.
[24] J. Renegar, Condition numbers, the barrier method, and the conjugate-gradient method, SIAM J. Optim. 6 (1996),

pp. 879–912.
[25] M.G.C. Resende and G. Veiga, An implementation of the dual affine scaling algorithm for minimum cost flow on

bipartite uncapacitated networks, SIAM J. Optim. 3 (1993), pp. 516–537.
[26] K.C. Toh, R.H. Tütüncü, and M.J. Todd, Inexact primal-dual path-following algorithms for a special class of convex

quadratic SDP and related problems, Tech. Rep., Cornell University, 2005.
[27] P.M. Vaidya, Solving linear equations with symmetric diagonally dominant matrices by constructing good precon-

ditioners, Tech. Rep., a talk based on the manuscript was presented at the IMA Workshop on Graph Theory and
Sparse Matrix Computation, October 1991, Minneapolis.

[28] Y. Zhang, On the convergence of a class of infeasible interior-point methods for the horizontal linear complementarity
problem, SIAM J. Optim. 4(1) (1994), pp. 208–227.

[29] G. Zhou and K.-C. Toh, Polynomiality of an inexact infeasible interior point algorithm for semidefinite programming,
Math. Program. 99 (2004), pp. 261–282.

D
o
w
n
l
o
a
d
e
d

B
y
:

[
C
a
n
a
d
i
a
n

R
e
s
e
a
r
c
h

K
n
o
w
l
e
d
g
e

N
e
t
w
o
r
k
]

A
t
:

1
7
:
0
4

2
0

A
p
r
i
l

2
0
0
9

