
Nonmonotone Enhanced Proximal DC Algorithms for a Class of

Structured Nonsmooth DC Programming

Zhaosong Lu∗ Zirui Zhou†

Abstract

In this paper we consider a class of structured nonsmooth difference-of-convex (DC) minimiza-

tion in which the first convex component is the sum of a smooth and a nonsmooth function while

the second convex component is the supremum of finitely many convex smooth functions. The

existing methods for this problem usually have weak convergence guarantee or exhibit slow con-

vergence. Due to this, we propose two nonmonotone enhanced proximal DC algorithms for solving

this problem. For possible acceleration, one uses a nonmonotone line search scheme in which

the associated Lipschitz constant is adaptively approximated by some local curvature information

of the smooth function in the first convex component, and the other employs an extrapolation

scheme. It is shown that every accumulation point of the solution sequence generated by them is

a D-stationary point of the problem. These methods may, however, become inefficient when the

number of convex smooth functions in defining the second convex component is large. To remedy

this issue, we propose randomized counterparts for them and show that every accumulation point

of the generated solution sequence is a D-stationary point of the problem almost surely. Some

preliminary numerical experiments are conducted to demonstrate the efficiency of the proposed

algorithms.

Keywords: nonsmooth DC programming, D-stationary point, proximal DCA, nonmonotone line

search, extrapolation.

AMS subject classifications: 90C26, 90C30, 65K05

1 Introduction

Difference-of-convex (DC) minimization, which refers to the problem of minimizing the difference of

two convex functions, has been widely studied in the literature and also has found rich applications

in science and engineering (e.g., see [1, 8, 9, 11, 18]). In this paper we consider a class of nonsmooth

DC programming in the form of

min
x∈<n

{F (x) := f(x)− g(x)} , (1.1)

∗Department of Mathematics, Simon Fraser University, Canada. (email: zhaosong@sfu.ca). This author was sup-

ported in part by NSERC Discovery Grant.
†Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong. (email:

zirui-zhou@hkbu.edu.hk). Most of this work was conducted while this author was a postdoctoral fellow at Simon

Fraser University, Canada. This author was supported by NSERC Discovery Grant and the SFU Alan Mekler postdoc-

toral fellowship.

1

where

f(x) = fs(x) + fn(x), g(x) = max
1≤i≤I

ψi(x). (1.2)

We make the following assumptions for problem (1.1) throughout the paper.

Assumption 1.

(a) fn is a proper closed convex function with a nonempty domain denoted by dom(fn). Moreover,

the proximal operator associated with fn can be evaluated.1

(b) fs is convex and continuously differentiable on <n, and its gradient ∇fs is Lipschitz continuous

with Lipschitz constant L > 0.

(c) For all i = 1, . . . , I, ψi is convex and continuously differentiable on <n.

(d) The optimal value of (1.1), denoted as F ∗, is finite.

Many optimization problems arising in applications can be formulated as (1.1). For example, in

the context of sparse regression, the model

min
x∈<n

{
1

2
‖Ax− b‖2 + λP (x)

}
(1.3)

is often used, where ‖ · ‖ is the Euclidean norm, A ∈ <p×n, b ∈ <p, and λ > 0 are given, and P is a

penalty function for promoting sparse solutions. As shown in [2], the model (1.3) can be recast into

(1.1) for some popular penalty functions P such as SCAD [6], MCP [22], and K-sparsity [8]. Some

other applications of DC minimization (1.1) can be found, for example, in digital communication

system [1] and assignment allocation [18].

The classical difference-of-convex algorithm (DCA) is broadly used in DC programming (e.g., see

[7, 11, 8]) and can be applied to problem (1.1). Given an iterate xk, DCA generates the next one by

solving the convex optimization problem

xk+1 ∈ Argmin
x∈<n

{
f(x)− 〈vk, x〉

}
2

for some vk ∈ ∂g(xk). By exploiting the structure of f in (1.2), the proximal DCA (PDCA) has been

proposed for solving a class of DC programming (e.g., see [8]). It can be suitably applied to (1.1) for

which the new iterate is obtained by solving the proximal subproblem

xk+1 = argmin
x∈<n

{
fn(x) + 〈∇fs(xk)− vk, x〉+

L

2
‖x− xk‖2

}
(1.4)

for some vk ∈ ∂g(xk). Recently, Tono et al. [19] proposed a proximal DCA with nonmonotone line

search (NPDCA) for possible acceleration, which solves almost the same subproblems as (1.4) except

that the Lipschitz constant L is adaptively approximated by some local curvature information of fs.

In addition, for possibly accelerating PDCA, Wen et al. [20] recently proposed a proximal DCA with

1The proximal operator associated with fn is defined as proxfn(x) = argminy{ 12‖y − x‖
2 + fn(y)}.

2By convention, the symbol “Argmin” stands for the set of the solutions of the associated minimization problem.

When this set is known to be a singleton, we use the symbol “argmin” to stand for it instead.

2

extrapolation (PDCAe) that is also applicable to solve (1.1). In particular, let {βt}t≥0 ⊆ [0, 1) with

supt βt < 1 be given. The PDCAe first constructs an extrapolation point zk = xk + βk(x
k − xk−1),

and then computes the next iterate by letting

xk+1 = argmin
x∈<n

{
fn(x) + 〈∇fs(zk)− vk, x〉+

L

2
‖x− zk‖2

}
(1.5)

for some vk ∈ ∂g(xk). It has been shown that every accumulation point x∞ of the sequence {xk}
generated by DCA, PDCA, NPDCA and PDCAe is a critical point of problem (1.1), that is, ∂f(x∞)∩
∂g(x∞) 6= ∅.

By exploiting the structure of g in (1.2), Pang et al. [15] recently proposed a novel enhanced DCA

(EDCA) for solving (1.1). Given an iterate xk, EDCA first solves the following convex optimization

problems

xk,i = argmin
x∈<n

{
f(x)− 〈∇ψi(xk), x〉+

1

2
‖x− xk‖2

}
(1.6)

for each i ∈ Aη(xk), where Aη(x) = {i : ψi(x) ≥ g(x)−η, 1 ≤ i ≤ I} for some η > 0. It then generates

the next iterate by letting xk+1 = xk,̂i with î given by

î ∈ Argmin
i∈Aη(xk)

{
F (xk,i) +

1

2
‖xk,i − xk‖2

}
.

It is shown in [15] that any accumulation point x∞ of the sequence {xk} generated by EDCA is

a directional-stationary (D-stationary) point of problem (1.1), that is, ∂g(x∞) ⊆ ∂f(x∞), which is

generally stronger than the aforementioned critical point.3

Given that finding the exact solution of the subproblems (1.6) of EDCA is generally impossible, Lu

et al. [13] recently proposed an enhanced PDCA (EPDCA) for solving problem (1.1), which has much

simpler subproblems than EDCA but maintains its strong convergence guarantee. In particular, let

c > 0 and {βt}t≥0 ⊆ [0,
√
c/L) with supt βt <

√
c/L be given. Analogous to PDCAe, EPDCA first

constructs an extrapolation point zk = xk + βk(x
k − xk−1). It then solves the convex subproblems

xk,i = argmin
x∈<n

{
fn(x) + 〈∇fs(zk)−∇ψi(xk), x〉+

L

2
‖x− zk‖2 +

c

2
‖x− xk‖2

}
(1.7)

for each i ∈ Aη(xk) for some η > 0. Finally, it generates the next iterate by letting xk+1 = xk,̂i with

î given by

î ∈ Argmin
i∈Aη(xk)

{
F (xk,i) +

c

2
‖xk,i − xk‖2

}
.

It is shown in [13] that any accumulation point x∞ of the sequence {xk} generated by EPDCA is an

(α, η̃)-D-stationary point of problem (1.1) for any α ∈ (0, (L+ c)−1] and η̃ ∈ [0, η), that is,

F (x∞) ≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
1

2α
‖x− x∞‖2, ∀x ∈ <n, ∀i ∈ Aη̃(x∞),

which is generally stronger than the aforementioned D-stationary point.

3The convergence result of EDCA established in [15] can be strengthened. In fact, it is shown in [13] that any

accumulation point of the sequence generated by EDCA is an (α, η̃)-D-stationary point of problem (1.1) for any α ∈ (0, 1]

and η̃ ∈ [0, η), which is generally stronger than the aforementioned D-stationary point.

3

It is nice that EPDCA has stronger convergence guarantee than PDCAe in terms of solution

quality, while its subproblems (1.7) are as simple as those of PDCAe in (1.5). Nevertheless, EPDCA

can converge much more slowly than PDCAe. In fact, akin to PDCAe, to make the extrapolation

effective on EPDCA, c shall not be chosen too small. Due to the proximal term c‖x−xk‖2/2 in (1.7),

a large c makes the step size of EPDCA much smaller than that of PDCAe and thus renders a slower

convergence of EPDCA. To speed up computation while maintaining a similar strong convergence

guarantee as EPDCA, we propose in this paper two nonmonotone EPDCA (NEPDCA) for solving

problem (1.1). The first NEPDCA solves the subproblems (1.7) with c = 0, zk = xk, and L being

adaptively approximated by some local curvature information of fs in a similar vein as in [19]. The

second NEPDCA is similar to EPDCA except that: (i) it solves the subproblems (1.7) with c = 0;

and (ii) βk ∈ [0, β] with β ∈ [0,
√
c/L)∪{0}. We show that every accumulation point of the sequence

generated by both NEPDCA is a D-stationary point of problem (1.1). Since both EPDCA require

solving a number of subproblems (1.7) per iteration, they may become computationally inefficient

when the I in defining g is large. Inspired by a randomized algorithm proposed in [15, Section

5.2], we remedy this issue by proposing two randomized NEPDCA for solving problem (1.1), which

solve subproblems in the form of (1.7) only once per iteration. We also show that any accumulation

point of the sequence generated by both randomized NEPDCA is a D-stationary point of (1.1) almost

surely. In addition, we conduct some preliminary numerical experiments to compare the performance

of the proposed methods with EPDCA and PDCAe. The computational results demonstrate that the

proposed methods inherit the advantages of EPDCA and PDCAe. In particular, they are comparable

to EPDCA but substantially outperform PDCAe in terms of solution quality. Moreover, they are

comparable to PDCAe but much faster than EPDCA in terms of speed.

The rest of this paper is organized as follows. In Section 2, we present some technical preliminaries.

In Sections 3 and 4, we propose two nonmonotone EPDCA and also their randomized counterparts

for solving problem (1.1), and establish their convergence. In Section 5, we present some numercial

results for the proposed algorithms. Finally, we present some concluding remarks in Section 6 .

1.1 Notation

Let <n be the n-dimensional Euclidean space, 〈·, ·〉 the standard inner product, and ‖·‖ the Euclidean

norm. For a real number t, let t+ = max{0, t}. Given a function h : <n → (−∞,∞], we use dom(h)

to denote the domain of h, that is, dom(h) = {x ∈ <n : h(x) < ∞}. The directional derivative of h

at a point x ∈ dom(h) along a direction d ∈ <n is defined as

h′(x; d) = lim
τ↓0

h(x+ τd)− h(x)

τ

if the limit exists. Suppose that h is additionally convex. We use ∂h to denote the subdifferential of

h (e.g., see [16]). The proximal operator of h, denoted as proxh, is a mapping from <n to <n defined

as

proxh(z) = argmin
x∈<n

{
1

2
‖x− z‖2 + h(x)

}
.

For the function g given in (1.2) and any η ≥ 0, we denote I = {1, . . . , I} and define

A(x) = {i ∈ I | ψi(x) = g(x)}, Aη(x) = {i ∈ I | ψi(x) ≥ g(x)− η}. (1.8)

4

Clearly, A(x) consists of the associated active indices in defining g(x). Moreover, A0(x) = A(x) and

A(x) ⊆ Aη(x) ⊆ I. Given any i ∈ I and y, z ∈ dom(F), we define

`i(x; y, z) = fs(y) + 〈∇fs(y), x− y〉+ fn(x)− ψi(z)− 〈∇ψi(z), x− z〉, (1.9)

which is clearly a convex function in x. With a slight abuse of notation, we write `i(x; y, y) as `i(x; y),

that is,

`i(x; y) = fs(y) + 〈∇fs(y), x− y〉+ fn(x)− ψi(y)− 〈∇ψi(y), x− y〉. (1.10)

Given x ∈ dom(F) and η ≥ 0, we denote the associated η-level set by L(x; η), that is,

L(x; η) = {z ∈ <n : F (z) ≤ F (x) + η}.

For simplicity, we let L(x) = L(x; 0). Also, x is said to be a critical point of problem (1.1) if

0 ∈ ∂f(x)− ∂g(x), or equivalently, ∂f(x)∩ ∂g(x) 6= ∅. In addition, x is called a directional-stationary

(D-stationary) point of (1.1) if F ′(x; d) ≥ 0 for all d ∈ <n, or equivalently, ∂g(x) ⊂ ∂f(x). It is known

that any local minimizer of problem (1.1) must be a critical point and also a D-stationary point of

(1.1). In addition, a D-stationary point of (1.1) must be a critical point of (1.1), but the converse

generally does not hold (see [15] for the detailed discussion).

2 Technical preliminaries

In this section we present some technical prelimaries that will be used subsequently.

Proposition 1. x ∈ dom(F) is a D-stationary point of (1.1) if and only if

0 ∈ ∇fs(x) + ∂fn(x)−∇ψi(x), ∀i ∈ A(x).

Proof. The conclusion immediately follows from [13, Proposition 1]. tu

Proposition 2. Let h : <n → (−∞,∞] be a proper closed convex function, {yk} a sequence of

vectors in <n converging to some y∞ ∈ <n, and {αk} a sequence of positive scalars converging to

some α∞ > 0. Suppose that the sequence {xk} is given by

xk = argmin
x∈<n

{
h(x) +

αk
2
‖x− yk‖2

}
. (2.1)

Then {xk} converges to x∞, where x∞ is given by

x∞ = argmin
x∈<n

{
h(x) +

α∞
2
‖x− y∞‖2

}
. (2.2)

Proof. The first-order optimality conditions of (2.1) and (2.2) yield

αk(y
k − xk) ∈ ∂h(xk), α∞(y∞ − x∞) ∈ ∂h(x∞).

These together with the monotonicity of ∂h imply that〈
xk − x∞, αk(yk − xk)− α∞(y∞ − x∞)

〉
≥ 0.

5

Upon some simple manipulation on this inequality, one has that

αk‖xk − x∞‖2 ≤
〈
xk − x∞, αk(yk − y∞) + (αk − α∞)(y∞ − x∞)

〉
≤ ‖xk − x∞‖‖αk(yk − y∞) + (αk − α∞)(y∞ − x∞)‖.

It then follows from this and αk > 0 that

‖xk − x∞‖ ≤
∥∥∥∥yk − y∞ +

αk − α∞
αk

(y∞ − x∞)

∥∥∥∥ .
This together with limk→∞ y

k = y∞ and limk→∞ αk = α∞ > 0 implies that limk→∞ ‖xk − x∞‖ = 0

and hence limk→∞ x
k = x∞. tu

Corollary 1. Let {yk} and {zk} be two sequences of vectors in dom(F) converging to some y∞ and

z∞, respectively, and {αk} a sequence of positive scalars converging to some α∞ > 0. Suppose that

the sequence {xk} is given by

xk = argmin
x∈<n

{
`i(x; yk, zk) +

αk
2
‖x− yk‖2

}
(2.3)

for some i ∈ I, where `i(x; y, z) is defined in (1.9). Then {xk} converges to x∞, where x∞ is given

by

x∞ = argmin
x∈<n

{
`i(x; y∞, z∞) +

α∞
2
‖x− y∞‖2

}
. (2.4)

Proof. By (1.9) and (2.3), it is not hard to observe that

xk = argmin
x∈<n

{
fn(x) +

αk
2

∥∥∥∥x− [yk − 1

αk

(
∇fs(yk)−∇ψi(zk)

)]∥∥∥∥2
}
. (2.5)

Due to limk→∞ αk = α∞ > 0, limk→∞ y
k = y∞, limk→∞ z

k = z∞ and the continuity of ∇fs and ∇ψi,
we have that

lim
k→∞

[
yk − 1

αk

(
∇fs(yk)−∇ψi(yk)

)]
= y∞ − 1

α∞
(∇fs(y∞)−∇ψi(y∞)) .

It then follows from this, (1.9), (2.4), (2.5) and Proposition 2 that

lim
k→∞

xk = argmin
x∈<n

{
fn(x) +

α∞
2

∥∥∥∥x− [y∞ − 1

α∞
(∇fs(y∞)−∇ψi(z∞))

]∥∥∥∥2
}

= argmin
x∈<n

{
`i(x; y∞, z∞) +

α∞
2
‖x− y∞‖2

}
= x∞.

tu

3 Nonmonotone enhanced proximal DCA with line search

In this section we propose an enhanced PDCA for solving problem (1.1) in which a nonmontone line

search scheme is applied. In particular, the associated Lipschitz constant is adaptively approximated

by some local curvature information of fs in a similar vein as in [19]. We also propose a randomized

counterpart for this method, and establish their convergence.

6

3.1 A deterministic nonmonotone enhanced PDCA with line search

In this subsection, we present a deterministic nonmonotone ehanced PDCA with line search for solving

problem (1.1), and study its convergence properties.

Algorithm 1 (A deterministic nonmonotone enhanced PDCA with line search).

0) Input x0 ∈ dom(F), η > 0, ρ > 1, 0 < c < L/2, 0 < α ≤ α, and integer N ≥ 0. Set k ← 0.

1) Choose αk,0 ∈ [α, α].

2) For m = 0, 1, . . .

2a) Let αk = αk,0ρ
m.

2b) For each i ∈ Aη(xk), compute

xk,i(αk) = argmin
x∈<n

{
`i(x;xk) +

αk
2
‖x− xk‖2

}
. (3.1)

2c) Let î ∈ Argmin
i∈Aη(xk)

{
F (xk,i(αk)) + c

2‖x
k,i(αk)− xk‖2

}
. If xk,̂i(αk) satisfies

F (xk,̂i(αk)) ≤ max

{
fs(x

k) + fn(xk)− ψi(xk), max
[k−N]+≤j≤k

F (xj)

}
− c

2
‖xk,̂i(αk)− xk‖2 −

c

2
‖xk,i(αk)− xk‖2, ∀i ∈ Aη(xk), (3.2)

set xk+1 = xk,̂i(αk), and go to Step 3).

3) Set k ← k + 1 and go to Step 1).

End.

Remark 1. (i) For Algorithm 1, {F (xk)} is monotone when N = 0. It is, however, generally

nonmonotone when N > 0. In addition, when g ≡ 0, Algorithm 1 is reduced to a similar

algorithm as proposed in [21]. Furthermore, when the number I in defining g is equal to one,

Algorithm 1 is reduced to the nonmonotone PDCA proposed in [19].

(ii) A popular choice of αk,0 is by the following formula proposed by Barzilai and Borwein [3], which

adaptively approximates the associated Lipschitz constant by some local curvature information

of fs:

αk,0 =

 max

{
α, min

{
α,
|∆xT∆G|
‖∆x‖2

}}
, if ∆x 6= 0,

α, if ∆x = 0
(3.3)

for some 0 < α < α, where ∆x = xk − xk−1 and ∆G = ∇fs(xk)−∇fs(xk−1).

In what follows, we conduct convergence analysis for Algorithm 1. In particular, we first show

that for each outer loop, its associated inner loops must terminate in a finite number of iterations.

We then show that any accumulation point of {xk} is a D-stationary point of problem (1.1).

7

Theorem 1. For any k ≥ 0, Step 2) of Algorithm 1 terminates at some αk ≤ α̃ in at most M

iterations, where

α̃ = max{α, ρL}, M =

⌊
log(max{α, ρL})− logα

log ρ

⌋
+ 1. (3.4)

Proof. Claim that (3.2) is satisfied whenever αk ≥ L. Indeed, suppose αk ≥ L. Notice that the

objective function in (3.1) is strongly convex with modulus αk. It follows from this, (1.10) and (3.1)

that for every i ∈ Aη(xk),

`i(x
k,i(αk);x

k) +
αk
2
‖xk,i(αk)− xk‖2 ≤ fs(xk) + fn(xk)− ψi(xk)−

αk
2
‖xk,i(αk)− xk‖2. (3.5)

Using this, 0 < c < L/2, αk ≥ L, the Lipschitz continuity of ∇fs, and the convexity of ψi, we have

that for every i ∈ Aη(xk),

fs(x
k) + fn(xk)− ψi(xk)− c‖xk,i(αk)− xk‖2 ≥ fs(xk) + fn(xk)− ψi(xk)−

αk
2
‖xk,i(αk)− xk‖2 (3.6)

≥ fs(xk) + 〈∇fs(xk), xk,i(αk)− xk〉+
αk
2
‖xk,i(αk)− xk‖2 + fn(xk,i(αk))

− ψi(xk)− 〈∇ψi(xk), xk,i(αk)− xk〉 (3.7)

≥ fs(xk,i(αk)) + fn(xk,i(αk))− ψi(xk,i(αk)) (3.8)

≥ fs(xk,i(αk)) + fn(xk,i(αk))−max
i∈I

ψi(x
k,i(αk)) = F (xk,i(αk)), (3.9)

where (3.6) is due to 0 < c < L/2 and αk ≥ L, (3.7) follows from (1.10) and (3.5), and (3.8) follows

from αk ≥ L, the Lipschitz continuity of ∇fs, and the convexity of ψi. By (3.9) and the choice of î in

Step 2c) of Algorithm 1, one has that for every i ∈ Aη(xk),

fs(x
k) + fn(xk)− ψi(xk)−

c

2
‖xk,i(αk)− xk‖2 ≥ F (xk,i(αk)) +

c

2
‖xk,i(αk)− xk‖2

≥ F (xk,̂i(αk)) +
c

2
‖xk,̂i(αk)− xk‖2.

The last inequality implies that for all i ∈ Aη(xk),

F (xk,̂i(αk)) ≤ fs(xk) + fn(xk)− ψi(xk)−
c

2
‖xk,̂i(αk)− xk‖2 −

c

2
‖xk,i(αk)− xk‖2

≤ max

{
fs(x

k) + fn(xk)− ψi(xk), max
[k−N]+≤j≤k

F (xj)

}
− c

2
‖xk,̂i(αk)− xk‖2 −

c

2
‖xk,i(αk)− xk‖2.

Hence, (3.2) is satisfied whenever αk ≥ L. By this and the update scheme of αk, it is not hard to see

that the inner loops of the kth outer loop must terminate at some αk ≤ max{α, ρL}. It then follows

that Step 2) of Algorithm 1 terminates in at most M iterations, where M is given in (3.4). tu

We next show that any accumulation point of {xk} is a D-stationary point of problem (1.1). To

proceed, let ι(k) be an integer between [k −N]+ and k such that

F (xι(k)) = max
j

{
F (xj) : j = [k −N]+, . . . , k

}
, ∀k ≥ 0. (3.10)

Theorem 2. Let {xk} be generated by Algorithm 1. Assume that F is uniformly continuous in L(x0).

Then the following statements hold:

8

(i) {xk} ⊆ L(x0).

(ii) limk→∞ ‖xk+1 − xk‖ = 0 and there exists some ζ ∈ < such that

lim
k→∞

F (xk) = ζ. (3.11)

(iii) Any accumulation point of {xk} is a D-stationary point of problem (1.1).

Proof. For notational convenience, let ᾱk be the final value of αk generated at the kth outer loop of

Algorithm 1, and let xk,i = xk,i(ᾱk) for every i ∈ Aη(xk). It follows from Theorem 1 that α ≤ ᾱk ≤ α̃
for all k ≥ 0, where α̃ is given in (3.4). Also, by (3.2), (3.10), and the updating scheme on xk+1, one

has that for all i ∈ Aη(xk),

F (xk+1) ≤ max
{
fs(x

k) + fn(xk)− ψi(xk), F (xι(k))
}
− c

2
‖xk+1 − xk‖2 − c

2
‖xk,i − xk‖2. (3.12)

We are now ready to prove statements (i)-(iii) as follows.

(i) By (3.10), we have that for all k ≥ 0,

F (xι(k+1)) = max
[k+1−N]+≤j≤k+1

F (xj) = max

{
F (xk+1), max

[k+1−N]+≤j≤k
F (xj)

}
≤ max

{
F (xk+1), F (xι(k))

}
. (3.13)

Notice that A(xk) ⊆ Aη(xk) and fs(x
k) + fn(xk) − ψi(xk) = F (xk) for all i ∈ A(xk). By this and

(3.12) with i ∈ A(xk), we have that for all k ≥ 0,

F (xk+1) ≤ max
{
F (xk), F (xι(k))

}
− c

2
‖xk+1 − xk‖2 = F (xι(k))− c

2
‖xk+1 − xk‖2. (3.14)

It then follows from (3.13) and (3.14) that

F (xι(k+1)) ≤ max
{
F (xι(k))− c

2
‖xk+1 − xk‖2, F (xι(k))

}
= F (xι(k)), ∀k ≥ 0.

Hence, {F (xι(k))} is non-increasing. This together with (3.10) and (3.14) implies that

F (xk+1) ≤ F (xι(k)) ≤ F (xι(0)) = F (x0), ∀k ≥ 0,

and hence statement (i) holds.

(ii) Recall that {F (xι(k))} is non-increasing. This together with the assumption that F is bounded

below implies that there exists some ζ ∈ < such that limk→∞ F (xι(k)) = ζ. By this, (3.14), {xk} ⊆
L(x0), the uniform continuity of F in L(x0), and the same arguments as those in the proof of [21,

Lemma 4], one can show that limk→∞ ‖xk+1 − xk‖ = 0 and limk→∞ F (xk) = ζ. The details of this

proof are omitted.

(iii) Let x∞ be an accumulation point of {xk}. Then there exists a subsequence K such that

limK3k→∞ x
k = x∞. By the assumption that F , fs and ψi are continuous in L(x0), one can see

that fn is also continuous in L(x0). Using this, {xk} ⊆ L(x0), limK3k→∞ x
k = x∞, and ψi(x

∞) =

g(x∞),∀i ∈ A(x∞), we obtain that

lim
K3k→∞

[
fs(x

k) + fn(xk)− ψi(xk)
]

= fs(x
∞) + fn(x∞)− ψi(x∞) = F (x∞), ∀i ∈ A(x∞). (3.15)

9

Further, by the assumption that F is continuous in L(x0), one has limK3k→∞ F (xk) = F (x∞), which

together with (3.11) yields F (x∞) = ζ. It follows from this and (3.15) that

lim
K3k→∞

[
fs(x

k) + fn(xk)− ψi(xk)
]

= ζ, ∀i ∈ A(x∞). (3.16)

Using (1.8), limK3k→∞ x
k = x∞, and the continuity of ψi for every i ∈ I, it is not hard to see that

A(x∞) ⊆ Aη(xk) for all k ∈ K sufficiently large. (3.17)

Recall from the proof of statement (ii) that limk→∞ F (xι(k)) = ζ. By this, limk→∞ ‖xk+1 − xk‖ = 0,

limk→∞ F (xk) = ζ, (3.12), (3.16) and (3.17), one has that for any i ∈ A(x∞),

ζ + lim sup
K3k→∞

c

2
‖xk,i − xk‖2 = lim sup

K3k→∞

[
F (xk+1) +

c

2
‖xk+1 − xk‖2 +

c

2
‖xk,i − xk‖2

]
≤ lim sup
K3k→∞

max
{
fs(x

k) + fn(xk)− ψi(xk), F (xι(k))
}

(3.18)

= max

{
lim sup
K3k→∞

fs(x
k) + fn(xk)− ψi(xk), lim sup

K3k→∞
F (xι(k))

}
= ζ, (3.19)

where (3.18) and (3.19) follow from (3.12) and (3.16), respectively. It then follows from (3.19) and

c > 0 that limK3k→∞ ‖xk,i − xk‖ = 0 for all i ∈ A(x∞), which together with limK3k→∞ x
k = x∞

implies that

lim
K3k→∞

xk,i = x∞, ∀i ∈ A(x∞). (3.20)

Recall that xk,i = xk,i(ᾱk) and α ≤ ᾱk ≤ α̃ for all i ∈ Aη(xk) and k ≥ 0. These together with (3.1)

and (3.17) imply that for all k ∈ K sufficiently large,

xk,i = xk,i(ᾱk) = argmin
x∈<n

{
`i(x;xk) +

ᾱk
2
‖x− xk‖2

}
, ∀i ∈ A(x∞). (3.21)

Since α ≤ ᾱk ≤ α̃, by passing to a subsequence of K if necessary, we can assume for convenience that

limK3k→∞ ᾱk = ᾱ∞ for some ᾱ∞ ∈ [α, α̃]. In view of this, limK3k→∞ x
k = x∞, (3.20), (3.21), and

Corollary 1, one has that

x∞ = argmin
x∈<n

{
`i(x;x∞) +

ᾱ∞
2
‖x− x∞‖2

}
, ∀i ∈ A(x∞),

whose first-order optimality condition implies that

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞), ∀i ∈ A(x∞).

It then follows from Proposition 1 that x∞ is a D-stationary point of (1.1). tu

3.2 A randomized nonmonotone enhanced PDCA with line search

It is nice that Algorithm 1 converges subsequentially to a D-stationary point of (1.1). However, it

requires solving a number of subproblems in the form of (3.1) per iteration. Although each subproblem

is assumed to be cheaply solvable, the method may become inefficient when the I in defining g is large.

Inspired by a randomized algorithm proposed in [15, Section 5.2], we remedy this issue by proposing

a randomized counterpart of Algorithm 1 that solves a single subproblem per iteration.

10

Algorithm 2 (A randomized nonmonotone enhanced PDCA with line search).

0) Input x0 ∈ dom(F), η > 0, ρ > 1, 0 < c < L, 0 < α ≤ α, and integer N ≥ 0. Set k ← 0.

1) Pick ik ∈ Aη(xk) uniformly at random. Choose αk,0 ∈ [α, α].

2) For m = 0, 1, . . .

2a) Let αk = αk,0ρ
m. If αk > αk,0 and αk ≥ ρL, set xk+1 = xk and go to Step 3).

2b) Compute

xk,ik(αk) = argmin
x∈<n

{
`ik(x;xk) +

αk
2
‖x− xk‖2

}
.

2c) If xk,ik(αk) satisfies

F (xk,ik(αk)) ≤ max
[k−N]+≤j≤k

F (xj)− c

2
‖xk,ik(αk)− xk‖2,

set xk+1 = xk,ik(αk) and go to Step 3).

3) Set k ← k + 1 and go to Step 1).

End.

Similar to Algorithm 1, a popular choice of αk,0 is by the formula (3.3). Before studying the

convergence of Algorithm 2, we introduce some notations as follows. After k+1 iterations, Algorithm

2 generates a random output (xk+1, F (xk+1)), which depends on the observed realization of the

random vector ξk = {i0, i1, . . . , ik}. For convenience, let

xk,i(α) = argmin
x∈<n

{
`i(x;xk) +

α

2
‖x− xk‖2

}
, ∀i ∈ I, α > 0, (3.22)

M(xk) =

i ∈ Aη(xk)
∣∣∣∣∣∣
F (xk,i(α)) ≤ F (xι(k))− c

2
‖xk,i(α)− xk‖2

for some α = αk,0 or α = αk,0ρ
m < ρL with some integer m ≥ 1

 ,

where ι(k) is defined in (3.10). For each scenario i ∈ Aη(xk), let x̂k+1,i denote the corresponding

xk+1 generated by the procedure detailed in Step 2) of Algorithm 2 with ik replaced by i. Let î be

an arbitrary element in the set Argmaxi∈M(xk) ‖x̂k+1,i − xk‖. Define

d̂k = x̂k+1,̂i − xk, dk = xk+1 − xk. (3.23)

Notice that ‖d̂k‖ only depends on xk, but ‖dk‖ depends on both xk and the realization of ik.

Remark 2. (i) Using an argument similar to the proof of Theorem 1, one can show that A(xk) ⊆
M(xk) and hence M(xk) 6= ∅.

(ii) One can observe that if i ∈ Aη(xk) \M(xk), then x̂k+1,i = xk. Otherwise, if i ∈M(xk), by the

definition of M(xk) and x̂k+1,i, there exists some α̃k ∈ [α, α̃] such that x̂k+1,i = xk,i(α̃k) and

F (xk,i(α̃k)) ≤ F (xι(k))− c‖xk,i(α̃k)−xk‖2/2, where α̃ is defined in (3.4). Combining these two

cases, we can see that

F (x̂k+1,i) ≤ F (xι(k))− c

2
‖x̂k+1,i − xk‖2, ∀i ∈ Aη(xk). (3.24)

11

Theorem 3. Let {xk} be generated by Algorithm 2, and let {dk} and {d̂k} be defined in (3.23).

Assume that F is uniformly continuous in L(x0; η). Then the following statements hold:

(i) {xk} ⊆ L(x0).

(ii) limk→∞ ‖dk‖ = 0 and

lim
k→∞

F (xk) = lim
k→∞

F (xι(k)) = F ∗ξ∞ (3.25)

for some F ∗ξ∞ ∈ <, where ξ∞ = {i0, i1, . . .}.

(iii) limk→∞Eξk [‖dk‖2] = 0 and

lim
k→∞

Eξk−1
[F (xk)] = lim

k→∞
Eξk−1

[F (xι(k))] = Eξ∞ [F ∗ξ∞]. (3.26)

(iv) limk→∞ ‖d̂k‖ = 0 almost surely.

(v) Any accumulation point of {xk} is a D-stationary point of problem (1.1) almost surely.

Proof. (i) By (3.10), (3.23), and the update scheme of xk+1 in Algorithm 2, one can observe that

F (xk+1) ≤ F (xι(k))− c

2
‖dk‖2, ∀k ≥ 0. (3.27)

This together with (3.10) yields that

F (xι(k+1)) = max
[k+1−N]+≤j≤k+1

F (xj) ≤ max{F (xk+1), F (xι(k))} ≤ F (xι(k)), ∀k ≥ 0. (3.28)

Hence, {F (xι(k))} is non-increasing. It then follows from this, (3.10) and (3.27) that

F (xk+1) ≤ F (xι(k)) ≤ F (xι(0)) = F (x0), ∀k ≥ 0,

and hence statement (i) holds.

(ii) We know from above that {F (xι(k))} is non-increasing. By the assumption that F is uniformly

continuous on L(x0; η), so is F on L(x0). Using these, (3.27), and the same arguments as those in

the proof of Theorem 2(ii), one can conclude that statement (ii) holds.

(iii) By (3.27), one has

Eξk [F (xk+1)] ≤ Eξk−1
[F (xι(k))]− c

2
Eξk [‖dk‖2], ∀k ≥ 0. (3.29)

Also, it follows from (3.28) that Eξk [F (xι(k+1))] ≤ Eξk−1
[F (xι(k))] for all k ≥ 0. Hence, {Eξk−1

[F (xι(k))]}
is non-increasing. By this and the assumption that F is bounded below, there exists some F̂ ∗ ∈ <
such that limk→∞Eξk−1

[F (xι(k))] = F̂ ∗. Using this, (3.25), (3.29), {xk} ⊆ L(x0), the uniform con-

tinuity of F on L(x0), and the same arguments as those in the proof of [12, Theorem 2.6], we have

that limk→∞Eξk−1
[F (xk)] = limk→∞Eξk−1

[F (xι(k))] and F̂ ∗ = Eξ∞ [F ∗ξ∞]. It then follows that (3.26)

holds. By (3.26) and (3.29), one has limk→∞Eξk [‖dk‖2] = 0.

12

(iv) Let pk = 1/|Aη(xk)|. Since Aη(xk) ⊆ I, we have pk ≥ 1/I. Recall from (3.23) that d̂k =

x̂k+1,̂i−xk for some î ∈ Argmax
i∈M(xk)

‖x̂k+1,i−xk‖ ⊆ Aη(xk). Notice from (3.24) that F (x̂k+1,i) ≤ F (xι(k))

for all i ∈ Aη(xk). Using these, (3.23) and (3.24), we obtain that

Eik [F (xk+1)|xk] =
∑

i∈Aη(xk)

pkF (x̂k+1,i) =
∑

i∈Aη(xk)\{̂i}

pkF (x̂k+1,i) + pkF (x̂k+1,̂i)

≤ (1− pk)F (xι(k)) + pk

(
F (xι(k))− c

2
‖d̂k‖2

)
≤ F (xι(k))− c

2I
‖d̂k‖2.

Since xι(k) is independent of ik, one has Eik [F (xι(k))|xk] = F (xι(k)). It then follows that

c

2I
‖d̂k‖2 ≤ Eik [F (xι(k))− F (xk+1)|xk]. (3.30)

By statement (i), we have F ∗ ≤ F (xk) ≤ F (x0) for all k, where F ∗ = minx F (x) > −∞. Hence,

|F (xι(k))− F (xk+1)| ≤ 2 max{|F (x0)|, |F ∗|}, ∀k.

In addition, by statement (ii), we have limk→∞ F (xι(k))−F (xk+1) = 0. Using these and [5, Theorem

9.4.8], we obtain that

lim
k→∞

Eik [F (xι(k))− F (xk+1)|xk] = 0 almost surely.

This together with (3.30) implies that limk→∞ ‖d̂k‖ = 0 almost surely.

(v) In view of statement (iv), it suffices to show that if limk→∞ ‖d̂k‖ = 0, any accumulation point of

{xk} is a D-stationary point of problem (1.1). To this end, we assume that limk→∞ ‖d̂k‖ = 0. Let x∞

be an arbitrary accumulation point of {xk}. By passing to a subsequence if necessary, we can assume

for convenience that limk→∞ x
k = x∞. Suppose for contradiction that x∞ is not a D-stationary point

of (1.1). It then follows from Proposition 1 that there exists some i ∈ A(x∞) such that

0 /∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞). (3.31)

By i ∈ A(x∞), limk→∞ x
k = x∞, and the continuity of ψi, it is not hard to see that i ∈ Aη(xk) for

all k sufficiently large.

Claim that i ∈M(xk) for all k sufficiently large. Indeed, suppose for contradiction that this claim

does not hold. Recall that i ∈ Aη(xk) for all k sufficiently large. Then there exists a subsequence K
such that

i ∈ Aη(xk) but i /∈M(xk) for all k ∈ K. (3.32)

We first show that for all k ∈ K, there exists some α̂k ∈ [L, α̃] such that

F (xk,i(α̂k)) > F (xι(k))− c

2
‖xk,i(α̂k)− xk‖2, (3.33)

where α̃ and xk,i(α) are defined in (3.4) and (3.22), respectively. For the proof of (3.33), we consider

two separate cases as follows.

Case 1): αk,0 ≥ L. Notice that αk,0 ∈ [α, α]. By these and the definition of α̃ in (3.4), one has

αk,0 ∈ [L, α̃]. This together with (3.32) and the definition of M(xk) implies that (3.33) holds for

α̂k = αk,0.

13

Case 2): αk,0 < L. It follows from this, (3.32) and the definition of M(xk) that there exists some

α̂ = αk,0ρ
m ∈ [L, ρL) for some integer m ≥ 1 such that F (xk,i(α̂)) > F (xι(k)) − c‖xk,i(α̂) − xk‖2/2.

By α̂ ∈ [L, ρL) and the definition of α̃ in (3.4), one has α̂ ∈ [L, α̃]. Hence, (3.33) holds for α̂k = α̂.

Since [L, α̃] is compact, by passing to a subsequence of K if necessary, we can assume for conve-

nience that limK3k→∞ α̂k = α̂∞ for some α̂∞ ∈ [L, α̃]. By this, limk→∞ x
k = x∞, (3.22) with α = α̂k,

and Corollary 1, one has

lim
K3k→∞

xk,i(α̂k) = x∞,i, (3.34)

where

x∞,i = argmin
x∈<n

{
`i(x;x∞) +

α̂∞
2
‖x− x∞‖2

}
. (3.35)

Using {xk} ⊆ L(x0), the continuity of F on L(x0; η), limk→∞ x
k = x∞ and (3.25), we obtain that

lim
k→∞

F (xι(k)) = lim
k→∞

F (xk) = F (x∞). (3.36)

In addition, by (1.2), (1.10), (3.22), α̂k ≥ L for all k ∈ K, the convexity of fs and ψi, and the Lipschitz

continuity of ∇fs, one has that for all k ∈ K,

F (xk,i(α̂k)) ≤ fs(xk,i(α̂k)) + fn(xk,i(α̂k))− ψi(xk,i(α̂k)) (3.37)

≤ fs(xk) + 〈∇fs(xk), xk,i(α̂k)− xk〉+
L

2
‖xk,i(α̂k)− xk‖2 + fn(xk,i(α̂k))

− ψi(xk)− 〈∇ψi(xk), xk,i(α̂k)− xk〉 (3.38)

= `i(x
k,i(α̂k);x

k) +
L

2
‖xk,i(α̂k)− xk‖2 (3.39)

≤ `i(xk,i(α̂k);xk) +
α̂k
2
‖xk,i(α̂k)− xk‖2 (3.40)

≤ `i(xk;xk) = fs(x
k) + fn(xk)− ψi(xk) (3.41)

≤ F (xk) + η ≤ F (x0) + η, (3.42)

where (3.37) is due to (1.2), (3.38) follows from the convexity of ψi and the Lipschitz continuity of

∇fs, (3.39) follows from (1.10), (3.40) is due to α̂k ≥ L for all k ∈ K, (3.41) follows from (3.22), and

(3.42) is due to i ∈ Aη(xk) for all k ∈ K and {xk} ⊆ L(x0). Hence, {xk,i(α̂k)}k∈K ⊆ L(x0; η), which

together with the continuity of F on L(x0; η) and (3.34) implies that

lim
K3k→∞

F (xk,i(α̂k)) = F (x∞,i).

Using this, (3.34) and (3.36), and taking limit on both sides of (3.33) as K 3 k →∞, we obtain that

F (x∞,i) ≥ F (x∞)− c

2
‖x∞,i − x∞‖2. (3.43)

On the other hand, by the same arguments as those for deriving (3.39), one has

F (x∞,i) ≤ `i(x∞,i;x∞) +
L

2
‖x∞,i − x∞‖2. (3.44)

Also, by (3.35) and the fact that the objective function in (3.35) is strongly convex with modulus α̂∞,

we have

`i(x
∞,i;x∞) +

α̂∞
2
‖x∞,i − x∞‖2 ≤ `i(x∞;x∞)− α̂∞

2
‖x∞,i − x∞‖2 = F (x∞)− α̂∞

2
‖x∞,i − x∞‖2,

14

which together with (3.44) and α̂∞ ≥ L yields

F (x∞,i) ≤ F (x∞)− α̂∞
2
‖x∞,i − x∞‖2. (3.45)

It then follows from this inequality, (3.43) and α̂∞ ≥ L > c that x∞,i = x∞. Combining this with

(3.35) and using the first-order optimality condition of (3.35), we have

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞),

which contradicts (3.31). Therefore, the above claim holds as desired, that is, i ∈ M(xk) for all k

sufficiently large.

Since i ∈ M(xk) for all k sufficiently large, it follows from Remark 2(ii) that there exists some

α̃k ∈ [α, α̃] such that x̂k+1,i = xk,i(α̃k). Since [α, α̃] is compact, by passing to a subsequence if

necessary, we can assume for convenience that limk→∞ α̃k = α̃∞ for some α̃∞ ∈ [α, α̃]. By this,

limk→∞ x
k = x∞, x̂k+1,i = xk,i(α̃k) and (3.22), we obtain from Corollary 1 that

lim
k→∞

x̂k+1,i = lim
k→∞

xk,i(α̃k) = x̃∞,i, (3.46)

where

x̃∞,i = argmin
x∈<n

{
`i(x;x∞) +

α̃∞
2
‖x− x∞‖2

}
. (3.47)

Recall that i ∈M(xk) for all k sufficiently large. By this, (3.23), and the assumption that limk→∞ ‖d̂k‖ =

0, one has limk→∞ ‖x̂k+1,i − xk‖ = 0. This together with (3.46) and limk→∞ x
k = x∞ implies that

x̃∞,i = x∞. Combining this with (3.47), and using the first-order optimality condition of (3.47) and

α̃∞ ≥ α > 0, we obtain that

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞),

which contradicts (3.31). Hence, if limk→∞ ‖d̂k‖ = 0, any accumulation point of {xk} is a D-stationary

point of (1.1). This along with statement (iv) leads to the conclusion in (v). tu

4 Nonmonotone enhanced proximal DCA with extrapolation

In this section we propose a nonmonotone enhanced PDCA for solving problem (1.1) in which an

extrapolation scheme is applied. We also propose a randomized counterpart for this method, and

establish their convergence.

4.1 A deterministic nonmonotone enhanced PDCA with extrapolation

In this subsection we present a deterministic nonmonotone enhanced PDCA with extrapolation for

solving problem (1.1), and study its convergence properties.

Algorithm 3 (A deterministic nonmonotone enhanced PDCA with extrapolation).

0) Input x0 ∈ dom(F), η > 0, 0 ≤ c < L, and β ∈ [0,
√
c/L) ∪ {0}. Set x−1 = x0 and k ← 0.

15

1) Choose βk ∈ [0, β] arbitrarily. Set zk = xk + βk(x
k − xk−1).

2) For each i ∈ Aη(xk), compute xk,i as

xk,i = argmin
x∈<n

{
`i(x; zk, xk) +

L

2
‖x− zk‖2

}
. (4.1)

3) Let î ∈ Argmin
i∈Aη(xk)

{
F (xk,i) + c

2‖x
k,i − xk‖2

}
. Set xk+1 = xk,̂i.

4) Set k ← k + 1 and go to Step 1).

End.

Theorem 4. Let {xk} be generated by Algorithm 3. Then the following statements hold:

(i) {xk} ⊆ L(x0).

(ii) limk→∞ ‖xk − xk−1‖ = 0 if c > 0.

(iii) limk→∞ F (xk) exists and limk→∞ F (xk) = F (x∞) for any accumulation point x∞ of {xk}.

(iv) Any accumulation point of {xk} is a D-stationary point of problem (1.1).

Proof. (i) Notice that the objective function in (4.1) is strongly convex with modulus L. Hence, for

all k ≥ 0 and i ∈ Aη(xk), we obtain that

`i(x
k; zk, xk) +

L

2
‖xk − zk‖2 ≥ `i(xk,i; zk, xk) +

L

2
‖xk,i − zk‖2 +

L

2
‖xk,i − xk‖2. (4.2)

By this, (1.9), the convexity of fs and ψi, the Lipschitz continuity of ∇fs, and the update scheme of

xk+1, we have that for all k ≥ 0 and i ∈ Aη(xk),

fs(x
k) + fn(xk)− ψi(xk) ≥ fs(z

k) + 〈∇fs(zk), xk − zk〉+ fn(xk)− ψi(xk) = `i(x
k; zk, xk) (4.3)

≥ `i(xk,i; zk, xk) +
L

2
‖xk,i − zk‖2 +

L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2 (4.4)

= fs(z
k) + 〈∇fs(zk), xk,i − zk〉+ fn(xk,i)− ψi(xk)− 〈∇ψi(xk), xk,i − xk〉+

L

2
‖xk,i − zk‖2

+
L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2 (4.5)

≥ fs(xk,i) + fn(xk,i)− ψi(xk,i) +
L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2 (4.6)

≥ F (xk,i) +
L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2 (4.7)

≥ F (xk+1) +
c

2
‖xk+1 − xk‖2 +

L− c
2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2 (4.8)

≥ F (xk+1) +
c

2
‖xk+1 − xk‖2 − L

2
‖xk − zk‖2, (4.9)

where (4.3) is due to (1.9) and the convexity of fs, (4.4) and (4.5) follows respectively from (4.2) and

(1.9), (4.6) is due to the Lipschitz continuity of ∇fs and the convexity of ψi, (4.8) follows from the

16

update scheme of xk+1, and (4.9) is due to L > c. Notice that A(xk) ⊆ Aη(xk). It follows from (4.9)

with i ∈ A(xk) that

F (xk) = fs(x
k) + fn(xk)− ψi(xk) ≥ F (xk+1) +

c

2
‖xk+1 − xk‖2 − L

2
‖xk − zk‖2.

This together with βk ∈ [0, β] and zk = xk + βk(x
k − xk−1) implies that

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ F (xk) +

L

2
‖xk − zk‖2 ≤ F (xk) +

Lβ2

2
‖xk − xk−1‖2. (4.10)

Since β ∈ [0,
√
c/L) ∪ {0}, we have β2 ≤ c/L. This together with (4.10) yields

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ F (xk) +

c

2
‖xk − xk−1‖2, ∀k ≥ 0,

that is, {F (xk) + c‖xk − xk−1‖2/2} is non-increasing. It implies that

F (xk) ≤ F (xk) +
c

2
‖xk − xk−1‖2 ≤ F (x0) +

c

2
‖x0 − x−1‖2 = F (x0), ∀k ≥ 0.

Hence, statement (i) holds.

(ii) Suppose c > 0. By this and β ∈ [0,
√
c/L) ∪ {0}, one has c− Lβ2 > 0. In addition, by (4.10),

we have that for all k ≥ 0,

c− Lβ2

2
‖xk+1 − xk‖2 ≤

(
F (xk) +

Lβ2

2
‖xk − xk−1‖2

)
−
(
F (xk+1) +

Lβ2

2
‖xk+1 − xk‖2

)
,

which together with x0 = x−1 yields that

c− Lβ2

2

j∑
k=0

‖xk − xk−1‖2 ≤ F (x0)− F (xj) ≤ F (x0)− F ∗, ∀j ≥ 0.

It then follows from this and c− Lβ2 > 0 that limk→∞ ‖xk − xk−1‖ = 0.

(iii) Recall that {F (xk) + c‖xk − xk−1‖2/2} is non-increasing and F is bounded below. Hence,

limk→∞{F (xk) + c‖xk − xk−1‖2/2}, denoted by ζ, exists. We next show that

lim
k→∞

F (xk) = lim
k→∞

{
F (xk) +

c

2
‖xk − xk−1‖2

}
= ζ. (4.11)

Indeed, if c = 0, (4.11) clearly holds. On the other hand, if c > 0, we know from statement (ii) that

limk→∞ ‖xk − xk−1‖ = 0, which yields (4.11).

Let x∞ be any accumulation point of {xk}. Suppose thatK is a subsequence such that limK3k→∞ x
k =

x∞. By this, (1.8), and the continuity of ψi for every i ∈ I, it is not hard to see that

A(x∞) ⊆ Aη(xk) for all k ∈ K sufficiently large. (4.12)

Claim that

lim
K3k→∞

zk = lim
K3k→∞

xk = x∞. (4.13)

Indeed, if c = 0, it follows from β ∈ [0,
√
c/L)∪{0} that β = 0, which together with zk = xk+βk(x

k−
xk−1) and βk ∈ [0, β] yields that zk = xk for all k. Hence, (4.13) holds for c = 0. On the other hand,

17

if c > 0, we have from statement (ii) that limk→∞ ‖xk − xk−1‖ = 0. By this, zk = xk + βk(x
k − xk−1)

and βk ∈ [0, β], one can easily see that (4.13) also holds for c > 0. We next show that

lim
K3k→∞

xk,i = lim
K3k→∞

xk = x∞, ∀i ∈ A(x∞). (4.14)

To this end, let i ∈ A(x∞) be arbitrarily chosen. By the continuity of ψi, limK3k→∞ x
k = x∞, and

i ∈ A(x∞), one can see that limK3k→∞ ψi(x
k) = ψi(x

∞) = g(x∞). This together with (4.11) and the

continuity of g implies that

lim
K3k→∞

{
fs(x

k) + fn(xk)
}

= lim
K3k→∞

{
F (xk) + g(xk)

}
= ζ + g(x∞) = ζ + lim

K3k→∞
ψi(x

k),

which leads to

lim
K3k→∞

{
fs(x

k) + fn(xk)− ψi(xk)
}

= ζ. (4.15)

By i ∈ A(x∞) and (4.12), one has that i ∈ Aη(xk) for all k ∈ K sufficiently large. Using this, (4.8),

(4.11), (4.13) and (4.15), we obtain that

ζ = lim
K3k→∞

{
fs(x

k) + fn(xk)− ψi(xk)
}

≥ lim sup
K3k→∞

{
F (xk+1) +

c

2
‖xk+1 − xk‖2 +

L− c
2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2

}
(4.16)

= ζ + lim sup
K3k→∞

L− c
2
‖xk,i − xk‖2, (4.17)

where (4.16) is due to (4.8), and (4.17) follows from (4.11) and (4.13). It then follows from (4.17) and

L > c that limK3k→∞ ‖xk,i − xk‖ = 0, which along with limK3k→∞ x
k = x∞ and the arbitrariness of

i ∈ A(x∞) implies that (4.14) holds.

We are now ready to show that F (x∞) = limk→∞ F (xk). Indeed, by (4.1), (4.5) and (4.9), we

have that for all i ∈ Aη(xk),

F (xk+1) +
c

2
‖xk − xk+1‖2 ≤ fs(zk) + fn(xk,i) + 〈∇fs(zk), xk,i − zk〉 − ψi(xk)− 〈∇ψi(xk), xk,i − xk〉

+
L

2
‖xk,i − zk‖2 +

L

2
‖xk,i − xk‖2 (4.18)

≤ fs(zk) + fn(x) + 〈∇fs(zk), x− zk〉 − ψi(xk)− 〈∇ψi(xk), x− xk〉

+
L

2
‖x− zk‖2 +

L

2
‖xk,i − xk‖2, ∀x ∈ <n, (4.19)

where (4.18) follows from (4.5) and (4.9), and (4.19) is due to (4.1). Recall from Assumption 1 that

fs, ∇fs, ψi and ∇ψi are continuous. Using this, (4.11), (4.13), (4.14), and taking limit of both sides

of (4.19) as K 3 k →∞, we obtain that

ζ ≤ fs(x∞) + fn(x)− ψi(x∞) + 〈∇fs(x∞)−∇ψi(x∞), x− x∞〉+
L

2
‖x− x∞‖2

≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
L

2
‖x− x∞‖2, ∀x ∈ <n, ∀i ∈ A(x∞), (4.20)

where (4.20) follows from the convexity of fs and f = fs + fn. Letting x = x∞ in (4.20), we have

ζ ≤ f(x∞)−ψi(x∞) for all i ∈ A(x∞), which along with (1.8) yields ζ ≤ F (x∞). On the other hand,

18

by limK3k→∞ x
k = x∞, ζ = limk→∞ F (xk) and the lower-semicontinuity of F , one has F (x∞) ≤ ζ.

Hence, limk→∞ F (xk) = ζ = F (x∞).

(iv) By ζ = F (x∞), it follows from (4.20) that

F (x∞) ≤ f(x)− ψi(x∞)− 〈∇ψi(x∞), x− x∞〉+
L

2
‖x− x∞‖2, ∀x ∈ <n, ∀i ∈ A(x∞),

which together with F (x∞) = f(x∞)− ψi(x∞) for all i ∈ A(x∞) implies that

x∞ = argmin
x∈<n

{
f(x)− 〈∇ψi(x∞), x− x∞〉+

L

2
‖x− x∞‖2

}
, ∀i ∈ A(x∞).

Its first-order optimality condition yields that

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞), ∀i ∈ A(x∞).

It then follows from Proposition 1 that x∞ is a D-stationary point of (1.1). tu

Before ending this subsection, we make some remarks on the difference between Algorithm 3 and

EPDCA [13, Algorithm 2].

(i) The main difference between Algorithm 3 and EPDCA is that instead of (4.1), EPDCA computes

xk,i as

xk,i = argmin
x∈<n

{
`i(x; zk, xk) +

c

2
‖x− xk‖2 +

L

2
‖x− zk‖2

}
. (4.21)

Compared to (4.1), the subproblem (4.21) has an extra proximal term c‖x − xk‖2/2 in (4.21),

which can lead to a slow convergence for EPDCA. In fact, to make the extrapolation scheme

effective, {βk} shall not be chosen too small, which together with βk ≤ β ≤
√
c/L implies that

c shall not be chosen too small. One can observe from (4.21) that a large c typically results

in a small step size of EPDCA and thus renders a slow convergence for EPDCA. Nevertheless,

one can see from (4.1) that the step size of Algorithm 3 does not depend on c and a large c can

be chosen in Algorithm 3 to make the extrapolation scheme effective. Due to these, EPDCA

generally has a slower convergence than Algorithm 3.

(ii) The proof of subsequential convergence to a D-stationary point of problem (1.1) for Algorithm

3 is very different from that for EPDCA [13]. In particular, the property (4.14) is a new

observation and plays a crucial role in the proof of Theorem 4.

(iii) From theoretical point of view, the convergence property of Algorithm 3 is weaker than that

of EPDCA. In particular, it is shown in [13, Theorem 2] that any accumulation point of the

solution sequence generated by EPDCA is an (α, η̃)-D-stationary point of problem (1.1) for any

α ∈ (0, (L + c)−1] and η̃ ∈ [0, η), which is generally stronger than a D-stationary point. It is,

however, not clear whether or not such a result holds for Algorithm 3. We shall leave it for our

future research.

19

4.2 A randomized nonmonotone enhanced PDCA with extrapolation

For the same reason as mentioned in Section 3.2, Algorithm 3 may become inefficient when the I in

defining g is large. Inspired by a randomized algorithm proposed in [15, Section 5.2], we remedy this

issue by proposing its randomized counterpart as follows.

Algorithm 4 (A randomized nonmonotone enhanced PDCA with extrapolation).

0) Input x0 ∈ dom(F), 0 < c < L and 0 ≤ β <
√
c/L. Set x−1 = x0 and k ← 0.

1) Choose βk ∈ [0, β] arbitrarily. Set zk = xk + βk(x
k − xk−1).

2) Pick ik ∈ Aη(xk) uniformly at random. Compute

xk,ik = argmin
x∈<n

{
`ik(x; zk, xk) +

L

2
‖x− zk‖2

}
.

3) Set

xk+1 =

{
xk,ik , if F (xk,ik) + c

2‖x
k,ik − xk‖2 ≤ F (xk) + L

2 ‖x
k − zk‖2;

xk, otherwise.
(4.22)

4) Set k ← k + 1 and go to Step 1).

End.

Before studying the convergence of Algorithm 4, we introduce some notations as follows. After

k + 1 iterations, Algorithm 4 generates a random output (xk+1, F (xk+1)), which depends on the

observed realization of the random vector ξk = {i0, i1, . . . , ik}. For each scenario i ∈ Aη(xk), let xk,i

and x̂k+1,i denote respectively the corresponding xk,ik and xk+1 generated by the procedure detailed

in Steps 2) and 3) of Algorithm 4 with ik replaced by i. Define

M̂(xk) =

{
i ∈ Aη(xk)

∣∣∣∣ F (xk,i) +
c

2
‖xk,i − xk‖2 ≤ F (xk) +

L

2
‖xk − zk‖2

}
(4.23)

Let î be an arbitrary element in the set Argmax
i∈M̂(xk)

‖x̂k+1,i − xk‖. Define

d̂k = x̂k+1,̂i − xk, dk = xk+1 − xk. (4.24)

Notice that ‖d̂k‖ only depends on xk, but ‖dk‖ depends on both xk and the realization of ik.

Remark 3. (i) By the same arguments as those for deriving (4.7), one can show that

F (xk) ≥ F (xk,i) +
L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2, ∀i ∈ A(xk).

It then follows from this and c < L that A(xk) ⊆ M̂(xk) and hence M̂(xk) 6= ∅.

(ii) One can observe that if i ∈ Aη(xk) \ M̂(xk), then x̂k+1,i = xk. Otherwise, if i ∈ M̂(xk), by the

definition of M̂(xk) and x̂k+1,i, one can observe that x̂k+1,i = xk,i and F (xk,i)+c‖xk,i−xk‖2/2 ≤
F (xk) + L‖xk − zk‖2/2. Combining these two cases, one can see that

F (x̂k+1,i) +
c

2
‖x̂k+1,i − xk‖2 ≤ F (xk) +

L

2
‖xk − zk‖2, ∀i ∈ Aη(xk). (4.25)

20

Theorem 5. Let {xk} be generated by Algorithm 4, and let {dk} and {d̂k} be defined in (4.24).

Assume that F is continuous on L(x0; η). Then the following statements hold:

(i) {xk} ⊆ L(x0).

(ii) limk→∞ ‖dk‖ = 0 and limk→∞ F (xk) = F ∗ξ∞ for some F ∗ξ∞ ∈ <, where ξ∞ = {i0, i1, . . .}.

(iii) limk→∞Eξk [‖dk‖2] = 0 and limk→∞Eξk−1
[F (xk)] = Eξ∞ [F ∗ξ∞].

(iv) limk→∞ ‖d̂k‖ = 0 almost surely.

(v) Any accumulation point of {xk} is a D-stationary point of problem (1.1) almost surely.

Proof. (i) By (4.22), one can observe that

F (xk+1) +
c

2
‖xk+1 − xk‖2 ≤ F (xk) +

L

2
‖xk − zk‖2,

which along with (4.24), zk = xk + βk(x
k − xk−1), and βk ∈ [0, β] yields

F (xk+1) +
c

2
‖dk‖2 ≤ F (xk) +

Lβ2
k

2
‖xk − xk−1‖2 ≤ F (xk) +

Lβ2

2
‖dk−1‖2.

It then follows that

c− Lβ2

2
‖dk‖2 ≤

(
F (xk) +

Lβ2

2
‖dk−1‖2

)
−
(
F (xk+1) +

Lβ2

2
‖dk‖2

)
, ∀k ≥ 0, (4.26)

which along with β ∈ [0,
√
c/L) implies that

{
F (xk) + Lβ2‖dk−1‖2/2

}
is non-increasing. By this and

d−1 = x0 − x−1 = 0, one has that

F (xk) ≤ F (xk) +
Lβ2

2
‖dk−1‖2 ≤ F (x0) +

Lβ2

2
‖d−1‖2 = F (x0), ∀k ≥ 0, (4.27)

and hence {xk} ⊆ L(x0).

(ii) Recall that
{
F (xk) + Lβ2‖dk−1‖2/2

}
is non-increasing and F is bounded below. Hence, there

exists some F ∗ξ∞ ∈ < such that

lim
k→∞

{
F (xk) +

Lβ2

2
‖dk−1‖2

}
= F ∗ξ∞ . (4.28)

Using this, (4.26), and β ∈ [0,
√
c/L), we have that limk→∞ ‖dk‖ = 0, which together with (4.28)

implies that limk→∞ F (xk) = F ∗ξ∞ .

(iii) It follows from (4.26) that

c− Lβ2

2
Eξk [‖dk‖2] ≤ Eξk−1

[
F (xk) +

Lβ2

2
‖dk−1‖2

]
−Eξk

[
F (xk+1) +

Lβ2

2
‖dk‖2

]
, ∀k ≥ 0. (4.29)

By this and β ∈ [0,
√
c/L), one can see that

{
Eξk−1

[
F (xk) + Lβ2‖dk−1‖2/2

]}
is non-increasing. Since

F is bounded below, there exists some F̂ ∗ ∈ < such that

lim
k→∞

Eξk−1

[
F (xk) +

Lβ2

2
‖dk−1‖2

]
= F̂ ∗. (4.30)

21

It then follows from this, (4.29), and β ∈ [0,
√
c/L) that limk→∞Eξk [‖dk‖2] = 0. By this and (4.30),

we obtain that

lim
k→∞

Eξk−1

[
F (xk)

]
= F̂ ∗. (4.31)

To prove limk→∞Eξk−1
[F (xk)] = Eξ∞ [F ∗ξ∞], it thus suffices to show F̂ ∗ = Eξ∞ [F ∗ξ∞]. Indeed, recall

from statement (i) that {xk} ⊆ L(x0). Hence, F (x0) ≥ F (xk) ≥ F ∗ for all k ≥ 0. It then follows that

|F (xk)| ≤ max{|F (x0)|, |F ∗|}, ∀k ≥ 0.

Using this and the dominated convergence theorem, we have

lim
k→∞

Eξ∞ [F (xk)] = Eξ∞

[
lim
k→∞

F (xk)

]
= Eξ∞ [F ∗ξ∞],

which along with limk→∞Eξk−1
[F (xk)] = limk→∞Eξ∞ [F (xk)] and (4.31) implies that F̂ ∗ = Eξ∞ [F ∗ξ∞].

(iv) Let pk = 1/|Aη(xk)|. Since Aη(xk) ⊆ I, we have pk ≥ 1/I. By (4.24), (4.25), zk =

xk + βk(x
k − xk−1) and βk ∈ [0, β], one has

F (x̂k+1,i) +
c

2
‖x̂k+1,i − xk‖2 ≤ F (xk) +

Lβ2
k

2
‖xk − xk−1‖2 ≤ F (xk) +

Lβ2

2
‖dk−1‖2, ∀i ∈ Aη(xk).

It then follows that

F (x̂k+1,i)+
Lβ2

2
‖x̂k+1,i−xk‖2 ≤ F (xk)+

Lβ2

2
‖dk−1‖2− c− Lβ

2

2
‖x̂k+1,i−xk‖2, ∀i ∈ Aη(xk). (4.32)

Recall from (4.24) that d̂k = x̂k+1,̂i − xk for some î ∈ Argmax
i∈M̂(xk)

‖x̂k+1,i − xk‖ ⊆ Aη(xk). By this,

β ∈ [0,
√
c/L), the update scheme on xk+1, (4.24) and (4.32), we obtain that

Eik

[
F (xk+1) +

Lβ2

2
‖dk‖2

∣∣∣ xk] =
∑

i∈Aη(xk)

pk

(
F (x̂k+1,i) +

Lβ2

2
‖x̂k+1,i − xk‖2

)

≤ (1− pk)
(
F (xk) +

Lβ2

2
‖dk−1‖2

)
+ pk

(
F (x̂k+1,̂i) +

Lβ2

2
‖x̂k+1,̂i − xk‖2

)
(4.33)

≤ (1− pk)
(
F (xk) +

Lβ2

2
‖dk−1‖2

)
+ pk

(
F (xk) +

Lβ2

2
‖dk−1‖2 − c− Lβ2

2
‖x̂k+1,̂i − xk‖2

)
(4.34)

≤ F (xk) +
Lβ2

2
‖dk−1‖2 − c− Lβ2

2I
‖d̂k‖2, (4.35)

where (4.33) and (4.34) follow from (4.32), and (4.35) is due to pk ≥ 1/I and (4.24). Subtracting F ∗

from both sides of (4.35), where F ∗ = minx F (x) > −∞, we obtain

Eik

[
F (xk+1)− F ∗ +

Lβ2

2
‖dk‖2

∣∣∣ xk] ≤ F (xk)− F ∗ +
Lβ2

2
‖dk−1‖2 − c− Lβ2

2I
‖d̂k‖2. (4.36)

By this and the fact that F (xk) ≥ F ∗ for all k, one can observe that {F (xk)− F ∗ + Lβ2‖dk−1‖2/2}
is a non-negative supermartingale. It then follows from (4.36), β ∈ [0,

√
c/L), and the Robbins-

Siegmund theorem [17, Theorem 1] that
∑∞

k=0 ‖d̂k‖2 < ∞ almost surely. Hence, we conclude that

limk→∞ ‖d̂k‖ = 0 almost surely.

22

(v) In view of statement (iv), it suffices to show that if limk→∞ ‖d̂k‖ = 0, any accumulation point

of {xk} is a D-stationary point of problem (1.1). To this end, we assume that limk→∞ ‖d̂k‖ = 0. Let

x∞ be an accumulation point of {xk} and K be a subsequence such that limK3k→∞ x
k = x∞. Suppose

for contradiction that x∞ is not a D-stationary point of (1.1). It then follows from Proposition 1 that

there exists some i ∈ A(x∞) such that

0 /∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞). (4.37)

By i ∈ A(x∞), limK3k→∞ x
k = x∞, and the continuity of ψi, it is not hard to see that i ∈ Aη(xk) for

all k ∈ K sufficiently large. Recall that xk,i denotes the corresponding xk,ik generated by Step 2) of

Algorithm 4 if ik is chosen to be i. It thus follows that

xk,i = argmin
x∈<n

{
`i(x; zk, xk) +

L

2
‖x− zk‖2

}
. (4.38)

By zk = xk +βk(x
k−xk−1), βk ∈ [0, β], and limk→∞ ‖xk−xk−1‖ = 0, one has limk→∞ ‖zk−xk‖ = 0.

This together with limK3k→∞ x
k = x∞ implies that limK3k→∞ z

k = x∞. Using this and (4.38), we

obtain from Corollary 1 that

lim
K3k→∞

xk,i = x∞,i, (4.39)

where

x∞,i = argmin
x∈<n

{
`i(x;x∞) +

L

2
‖x− x∞‖2

}
. (4.40)

By this, i ∈ A(x∞) and a similar argument as that for deriving (3.45), one has

F (x∞,i) ≤ F (x∞)− L

2
‖x∞,i − x∞‖2. (4.41)

Claim that i ∈ M̂(xk) for all k ∈ K sufficiently large. Indeed, suppose for contradiction that this

claim does not hold. Recall that i ∈ Aη(xk) for all k ∈ K sufficiently large. Then there exists a

subsequence K1 ⊂ K such that

i ∈ Aη(xk) but i /∈ M̂(xk) for all k ∈ K1. (4.42)

This together with (4.23) implies that

F (xk,i) +
c

2
‖xk,i − xk‖2 > F (xk) +

L

2
‖xk − zk‖2, ∀k ∈ K1. (4.43)

By (4.38) and the similar arguments as those for deriving (4.7), one has

fs(x
k) + fn(xk)− ψi(xk) ≥ F (xk,i) +

L

2
‖xk,i − xk‖2 − L

2
‖xk − zk‖2. (4.44)

By this, (1.8), (4.27), i ∈ Aη(xk) for all k ∈ K1, zk = xk + βk(x
k − xk−1) and βk ∈ [0, β], we obtain

that for all k ∈ K1,

F (xk,i) +
L

2
‖xk,i − xk‖2 ≤ fs(xk) + fn(xk)− ψi(xk) +

L

2
‖xk − zk‖2 (4.45)

≤ F (xk) +
L

2
‖xk − zk‖2 + η = F (xk) +

Lβ2
k

2
‖dk−1‖2 + η (4.46)

≤ F (xk) +
Lβ2

2
‖dk−1‖2 + η ≤ F (x0) + η, (4.47)

23

where (4.45) is due to (4.44), (4.46) follows from (1.8), i ∈ Aη(xk), zk = xk + βk(x
k − xk−1) and

dk−1 = xk − xk−1, and (4.47) is due to βk ∈ [0, β] and (4.27). Hence, we have {xk,i}k∈K1 ⊆ L(x0; η).

Recall from above that limk→∞ ‖xk − zk‖ = 0, {xk} ⊆ L(x0; η), limK3k→∞ x
k = x∞, and K1 ⊂ K.

By these, (4.39), the assumption that F is continuous on L(x0; η), and taking limit on both sides of

(4.43) as K1 3 k →∞, we obtain that

F (x∞,i) +
c

2
‖x∞,i − x∞‖2 ≥ F (x∞). (4.48)

It then follows from (4.41), (4.48), and c < L that x∞,i = x∞. Combining this with (4.40) and using

the first-order optimality condition of (4.40), one has

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞),

which contradicts (4.37). Hence, the above claim holds as desired, that is, i ∈ M̂(xk) for all k ∈ K
sufficiently large.

Since i ∈ M̂(xk) for all k ∈ K sufficiently large, it follows from Remark 3(ii) that x̂k+1,i = xk,i for

all k ∈ K sufficiently large. Moreover, by (4.24) and (4.23), we have that ‖x̂k+1,i − xk‖ ≤ ‖d̂k‖ when

k ∈ K is sufficiently large. These together with (4.39), limk→∞ ‖d̂k‖ = 0 and limK3k→∞ x
k = x∞

imply that x∞,i = x∞. Using this and the first-order optimality condition of (4.40), we have

0 ∈ ∇fs(x∞) + ∂fn(x∞)−∇ψi(x∞),

which contradicts (4.37). Therefore, if limk→∞ ‖d̂k‖ = 0, any accumulation point of {xk} is a D-

stationary point of (1.1). This together with statement (iv) leads to the conclusion in (v). tu

5 Numerical results

In this section we conduct some preliminary numerical experiments to test the performance of our

proposed algorithms, namely, Algorithms 1–4. From theoretical point of view, our algorithms are

generally weaker than a closely related algorithm EPDCA [13, Algorithm 2] but stronger than another

related algorithm PDCAe [20] in terms of solution quality (see Section 1 for the discussion). We will

compare these algorithms numerically below. All the algorithms are coded in Matlab and all the

computations are performed on a Dell desktop with a 3.40-GHz Intel Core i7-3770 processor and

16 GB of RAM.

In our experiments, the parameters of the aforementioned algorithms are set as follows. For

Algorithms 1 and 2, we set η = 0.01, ρ = 2, c = 10−4, α = 10−8, α = 108, and N = 5. Also, we

choose α0,0 = 1 and update αk,0 by the formula (3.3). For Algorithms 3 and 4, we set η = 0.01 and

c = τ2L, where τ = 0.99 and L is the Lipschitz constant of ∇fs. Moreover, we choose {βk} by a

similar strategy as that in [14, 20]. In particular, we set βk = τ(θk−1 − 1)/θk, where

θ−1 = θ0 = 1, θk+1 =
1 +

√
1 + 4θ2

k

2
,

and reset θk−1 = θk = 1 when k = 200, 400, 600, · · · or 〈zk − xk+1, xk+1 − xk〉 > 0. It is not hard to

verify that supk βk <
√
c/L, and hence such {βk} satisfies the conditions stated in Algorithms 3 and

24

4. For the algorithms EPDCA [13] and PDCAe [20], we use almost the same {βk} as above except

τ = 0.5 and τ = 1, respectively.4 In addition, we set η = 0.01 for EPDCA.

We compare the performance of the above algorithms for solving the problem

min
x∈<n

{
1

2
‖Ax− b‖2 + λ

(
‖x‖1 −

K∑
i=1

∣∣x[i]

∣∣)} (5.1)

for some 0 ≤ K < n, A ∈ <n×n, b ∈ <n, and λ > 0, where x[i] denotes the i-th largest component of x

in magnitude. Problem (5.1) has wide applications in sparse learning (e.g., see [8, 2]). It is not hard

to observe that (5.1) is a special case of problem (1.1) with fs(x) = ‖Ax− b‖2/2, fn(x) = λ‖x‖1, and

g(x) = λ
∑K

i=1

∣∣x[i]

∣∣. Therefore, the above algorithms can be suitably applied to problem (5.1).

Given positive integers n, K and a positive number λ, we generate a matrix A, a vector b, and

a critical but not a D-stationary point x̃ of (5.1) as follows. In particular, we first generate a vector

ṽ ∈ <K with entries randomly chosen from the standard normal distribution, and obtain a vector

v ∈ <K by reordering the entries of ṽ such that |v1| ≥ |v2| ≥ . . . ≥ |vK |. A vector x̃ ∈ <n is then

generated by letting x̃i = vi + sign(vi) for i = 1, . . . ,K, x̃K+1 = x̃K+2 = vK + sign(vK), and x̃i = 0

for i = K + 3, . . . , n, where

sign(a) =

{
1, if a ≥ 0,

−1, if a < 0,
∀a ∈ <.

It then follows that |x̃1| ≥ |x̃2| ≥ · · · ≥ |x̃K | = |x̃K+1| = |x̃K+2| > |x̃K+3| = · · · = |x̃n| = 0 and

hence g(x) is not differentiable at x̃. We next generate a vector d̃ ∈ <n with entries randomly chosen

from the uniform distribution on [−
√
λ,
√
λ], and obtain a vector d ∈ <n by reordering the entries

of d̃ such that d1 ≥ d2 ≥ · · · ≥ dn. We then obtain the matrix A by letting A = Diag(d) + 0.01Ã,

where Diag(d) is the diagonal matrix with the elements of d on the diagonal and the entries of Ã are

randomly chosen from the uniform distribution on [−1/n, 1/n]. Finally, we compute the vector b by

solving the linear equation

AT b = ATAx̃+ w1 − w2

for some w1 ∈ ∂fn(x̃) and w2 ∈ ∂g(x̃). For such A and b, it is not hard to verify that x̃ is a critical

but not a D-stationary point of problem (5.1).

In our experiments, we choose (n,K, λ) = (500j, 150j, 5j) for j = 1, 2, . . . , 10. For each triple

(n,K, λ), we first generate an instance of problem (5.1) and a critical but not D-stationary point x̃ of

it as described above. We then perform 20 runs of all the above algorithms. In each run, we choose

randomly the same initial point x0 = x̃ + 0.01ξ for all the algorithms, where the entries of ξ ∈ <n

are randomly chosen from the uniform distribution on [−1, 1], and terminate all the algorithms once∣∣f(xk)− f(xk−1)
∣∣ ≤ 10−8.

The computational results averaged over each group of 20 runs with the same (n,K, λ) are pre-

sented in Table 1, which consists of two subtables. In detail, the parameters n, K and λ are listed

in the first three columns, respectively. For each triple (n,K, λ), the objective value of problem (5.1)

4As observed in our experiments, EPDCA appears to perform best with τ = 0.5 among the five choices 0, 0.25, 0.5, 0.75

and 1.

25

Table 1: Computational results for solving problem (5.1)

Parameter Objective Value

n K λ EPDCA Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 PDCAe

500 150 5 0.80 0.80 0.81 0.80 0.81 18.44

1000 300 10 1.23 1.23 1.23 1.23 1.23 24.52

1500 450 15 2.09 2.09 2.11 2.09 2.10 19.57

2000 600 20 2.85 2.85 2.87 2.85 2.86 11.98

2500 750 25 3.66 3.63 3.68 3.66 3.67 37.47

3000 900 30 4.73 4.71 4.75 4.73 4.73 29.76

3500 1050 35 5.45 5.44 5.48 5.45 5.49 34.95

4000 1200 40 6.33 6.29 6.36 6.33 6.34 22.84

4500 1350 45 7.21 7.16 7.21 7.21 7.23 16.43

5000 1500 50 7.95 7.90 7.97 7.95 7.94 18.28

(a) Results for objective value

Parameter CPU Time (in seconds)

n K λ EPDCA Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 PDCAe

500 150 5 1.47 0.03 0.03 0.08 0.07 0.05

1000 300 10 5.20 0.12 0.11 0.26 0.22 0.21

1500 450 15 21.28 0.50 0.44 1.09 0.88 1.06

2000 600 20 44.19 1.08 1.02 2.84 2.27 2.24

2500 750 25 65.34 1.66 1.38 3.72 3.00 3.19

3000 900 30 81.97 1.86 1.85 5.49 4.46 4.56

3500 1050 35 111.37 2.74 2.52 7.66 6.26 5.99

4000 1200 40 141.57 3.42 3.08 9.59 7.77 7.52

4500 1350 45 180.69 4.39 3.98 11.01 8.95 10.59

5000 1500 50 225.51 5.56 5.26 15.19 12.44 12.11

(b) Results for CPU time

and the CPU time for these algorithms averaged over 20 runs are given in Tables 1a and 1b, respec-

tively. One can observe that the objective values found by the proposed methods (Algorithms 1–4)

are comparable to those by EPDCA but much lower than those by PDCAe, which is not surprising as

the proposed methods and EPDCA generally converges to a stronger stationary point than PDCAe.

In terms of CPU time, the proposed methods and PDCAe substantially outperform EPDCA. Note

that EPDCA generally converges to a stronger stationary point than Algorithms 1–4 and PDCAe.

It is therefore reasonable that EPDCA has slower convergence than the other methods. In addi-

tion, the line-search type of algorithms (Algorithms 1 and 2) outperform slightly the extrapolation

type of algorithms (Algorithms 3 and 4) and PDCAe. Finally, we observe that the randomized algo-

rithms (Algorithms 2 and 4) outperform slightly their deterministic counterparts (Algorithms 1 and

3), respectively.

26

6 Concluding remarks

In this paper we considered a class of structured nonsmooth DC minimization described in (1.1) and

(1.2). The existing methods [15, 20, 13] for this problem usually have weak convergence guarantee or

exhibit slow convergence. Due to this, we proposed two nonmonotone enhanced proximal DC algo-

rithms for solving this problem. For possible acceleration, one of our algorithms uses a nonmonotone

line search scheme in which the involved Lipschitz constant is adaptively approximated by some local

curvature information of the associated smooth function, and the other one employs an extrapolation

scheme. We proved that every accumulation point of the solution sequence generated by them is a

D-stationary point of the problem. These methods may, however, become inefficient when the num-

ber of convex smooth functions involved in the second convex component of the objective function is

large. To remedy this issue, we proposed randomized counterparts for them and showed that every

accumulation point of the generated solution sequence is a D-stationary point of the problem almost

surely.

We also conducted preliminary numerical experiments to compare the performance of the pro-

posed methods with two closely related algorithms EPDCA and PDCAe. The computational results

demonstrated that the proposed methods are comparable to EPDCA but substantially outperform

PDCAe in terms of solution quality, and moreover, they are comparable to PDCAe but much faster

than EPDCA in terms of speed. Therefore, it is worthy of further numerical study on the practical

performance of these methods.

References

[1] A. Alvarado, G. Scutari, and J.-S. Pang, A new decomposition method for multiuser DC-

programming and its applications, IEEE Trans. on Signal Process., 62 (2014), pp. 2984–2998.

[2] M. Ahn, J.-S. Pang, and J. Xin, Difference-of-convex learning: directional stationarity, opti-

mality, and sparsity, SIAM J. Optim., 27 (2017), pp. 1637–1665.

[3] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.,

8 (1988), pp. 141–148.

[4] E. Candès and J. Romberg, `1-magic: Recovery of sparse signals via convex program-

ming, User’s guide, Applied & Computational Mathematics, California Institute of Technology,

Pasadena, CA 91125, USA, October 2005. Available at www.l1-magic.org.

[5] K. L. Chung, A Course in Probability Theory, Academic Press, 2001.

[6] J. Fan and R. Li, Variable selection via nonconcave penalized likelihood and its oracle properties,

J. Amer. Statist. Assoc., 96 (2001), pp. 1348–1360.

[7] P. Gong, C. Zhang, Z. Lu, J. Huang, and J. Ye, A general iterative shrinkage and thresh-

olding algorithm for non-convex regularized optimization problems, in Proceedings of the 30th

International Conference on Machine Learning (ICML), 2013, pp. 37–45.

27

[8] J.-y. Gotoh, A. Takeda, and K. Tono, DC formulations and algorithms for sparse optimiza-

tion problems, Math. Program., 169 (2018), pp. 141–176.

[9] R. Horst and N. V. Thoai, DC programming: overview, J. Optim. Theory Appl., 103 (1999),

pp. 1–43.

[10] K. Koh, S.-J. Kim, and S. Boyd, An interior-point method for large-scale `1-regularized logistic

regression, J. Mach. Learn. Res., 8 (2017), pp. 1519–1555.

[11] H. A. Le Thi and T. Pham Dinh, DC programming and DCA: thirty years of developments,

Math. Program., 169 (2018), pp. 5–68.

[12] Z. Lu and L. Xiao, A randomized nonmonotone block proximal gradient method for a class of

structured nonlinear programming, SIAM J. Numer. Anal., 55 (2017), pp. 2930–2955.

[13] Z. Lu, Z. Zhou and Z. Sun, Enhanced proximal DC algorithms with extrapolation for a class

of structured nonsmooth DC minimization, Math. Program., (2018), https://doi.org/10.1007/

s10107-018-1318-9.

[14] B. O’donoghue and E. Candès, Adaptive restart for accelerated gradient schemes, Found.

Comput. Math., 15 (2015), pp. 715–732.

[15] J.-S. Pang, M. Razaviyayn, and A. Alvarado, Computing B-stationary points of nonsmooth

DC programs, Math. Oper. Res., 42 (2016), pp. 95–118.

[16] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.

[17] H. Robbins and D. Siegmund, A convergence theorem for non negative almost supermartin-

gales and some appliations, Optimizing Methods in Statistics, (1971), pp. 233–257.

[18] M. Sanjabi, M. Razaviyayn, and Z.-Q. Luo, Optimal joint base station assignment and

beamforming for heterogeneous networks., IEEE Trans. on Signal Process., 62 (2014), pp. 1950–

1961.

[19] K. Tono, A. Takeda, and J. Gotoh, Efficient DC algorithm for constrained sparse optimiza-

tion, arXiv preprint arXiv:1701.08498, 2017.

[20] B. Wen, X. Chen, and T. K. Pong, A proximal difference-of-convex algorithm with extrapo-

lation, Comput. Optim. Appl., 69 (2018), pp. 297–324.

[21] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, Sparse reconstruction by separable

approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479–2493.

[22] C.-H. Zhang, Nearly unbiased variable selection under minimax concave penalty, Ann. Statist.,

38 (2010), pp. 894–942.

28

