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Abstract Principal component analysis (PCA) is a widely used technique for data
analysis and dimension reduction with numerous applications in science and engi-
neering. However, the standard PCA suffers from the fact that the principal com-
ponents (PCs) are usually linear combinations of all the original variables, and it is
thus often difficult to interpret the PCs. To alleviate this drawback, various sparse PCA
approaches were proposed in the literature (Cadima and Jolliffe in J Appl Stat 22:203–
214, 1995; d’Aspremont et al. in J Mach Learn Res 9:1269–1294, 2008; d’Aspremont
et al. SIAM Rev 49:434–448, 2007; Jolliffe in J Appl Stat 22:29–35, 1995; Journée
et al. in J Mach Learn Res 11:517–553, 2010; Jolliffe et al. in J Comput Graph Stat
12:531–547, 2003; Moghaddam et al. in Advances in neural information process-
ing systems 18:915–922, MIT Press, Cambridge, 2006; Shen and Huang in J Multivar
Anal 99(6):1015–1034, 2008; Zou et al. in J Comput Graph Stat 15(2):265–286, 2006).
Despite success in achieving sparsity, some important properties enjoyed by the stan-
dard PCA are lost in these methods such as uncorrelation of PCs and orthogonality
of loading vectors. Also, the total explained variance that they attempt to maximize
can be too optimistic. In this paper we propose a new formulation for sparse PCA,
aiming at finding sparse and nearly uncorrelated PCs with orthogonal loading vectors
while explaining as much of the total variance as possible. We also develop a novel
augmented Lagrangian method for solving a class of nonsmooth constrained optimi-
zation problems, which is well suited for our formulation of sparse PCA. We show

This work was supported in part by NSERC Discovery Grant.

Z. Lu (B) · Y. Zhang
Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
e-mail: zhaosong@sfu.ca

Y. Zhang
e-mail: yza30@sfu.ca

123



Z. Lu, Y. Zhang

that it converges to a feasible point, and moreover under some regularity assumptions,
it converges to a stationary point. Additionally, we propose two nonmonotone gradi-
ent methods for solving the augmented Lagrangian subproblems, and establish their
global and local convergence. Finally, we compare our sparse PCA approach with
several existing methods on synthetic (Zou et al. in J Comput Graph Stat 15(2):265–
286, 2006), Pitprops (Jeffers in Appl Stat 16:225–236, 1967), and gene expression
data (Chin et al in Cancer Cell 10:529C–541C, 2006), respectively. The computa-
tional results demonstrate that the sparse PCs produced by our approach substantially
outperform those by other methods in terms of total explained variance, correlation of
PCs, and orthogonality of loading vectors. Moreover, the experiments on random data
show that our method is capable of solving large-scale problems within a reasonable
amount of time.

Keywords Sparse PCA · Augmented Lagrangian method ·
Nonmonotone gradient methods · Nonsmooth minimization

Mathematics Subject Classification (2000) 62H20 · 62H25 · 62H30 · 90C30 ·
65K05

1 Introduction

Principal component analysis (PCA) is a popular tool for data processing and dimen-
sion reduction. It has been widely used in numerous applications in science and engi-
neering such as biology, chemistry, image processing, machine learning and so on.
For example, PCA has recently been applied to human face recognition, handwritten
zip code classification and gene expression data analysis (see [1,11–13]).

In essence, PCA aims at finding a few linear combinations of the original variables,
called principal components (PCs), which point in orthogonal directions capturing as
much of the variance of the variables as possible. It is well known that PCs can be found
via the eigenvalue decomposition of the covariance matrix �. However, � is typically
unknown in practice. Instead, the PCs can be approximately computed via the singu-
lar value decomposition (SVD) of the data matrix or the eigenvalue decomposition of
the sample covariance matrix. In detail, let ξ = (ξ (1), . . . , ξ (p)) be a p-dimensional
random vector, and X be an n × p data matrix, which records the n observations of
ξ . Without loss of generality, assume X is centered, that is, the column means of X
are all 0. Then the commonly used sample covariance matrix is �̂ = X T X/(n − 1).
Suppose the eigenvalue decomposition of �̂ is

�̂ = V DV T .

Then η = ξV gives the PCs, and the columns of V are the corresponding loading
vectors. It is worth noting that V can also be obtained by performing the SVD of X
(see, for example, [31]). Clearly, the columns of V are orthonormal vectors, and more-
over V T �̂V is diagonal. We thus immediately see that if �̂ = �, the corresponding
PCs are uncorrelated; otherwise, they can be correlated with each other (see Sect. 2
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for details). We now describe several important properties of the PCs obtained by the
standard PCA when � is well estimated by �̂ (see also [31]):

1. The PCs sequentially capture the maximum variance of the variables approxi-
mately, thus encouraging minimal information loss as much as possible;

2. The PCs are nearly uncorrelated, so the explained variance by different PCs has
small overlap;

3. The PCs point in orthogonal directions, that is, their loading vectors are orthog-
onal to each other.

In practice, typically the first few PCs are enough to represent the data, thus a great
dimensionality reduction is achieved. In spite of the popularity and success of PCA
due to these nice features, PCA has an obvious drawback, that is, PCs are usually
linear combinations of all p variables and the loadings are typically nonzero. This
makes it often difficult to interpret the PCs, especially when p is large. Indeed, in
many applications, the original variables have concrete physical meaning. For exam-
ple in biology, each variable might represent the expression level of a gene. In these
cases, the interpretation of PCs would be facilitated if they were composed only from
a small number of the original variables, namely, each PC involved a small number of
nonzero loadings. It is thus imperative to develop sparse PCA techniques for finding
the PCs with sparse loadings while enjoying the above three nice properties as much
as possible.

Sparse PCA has been an active research topic for more than a decade. The first class
of approaches are based on ad-hoc methods by post-processing the PCs obtained from
the standard PCA mentioned above. For example, Jolliffe [17] applied various rota-
tion techniques to the standard PCs for obtaining sparse loading vectors. Cadima and
Jolliffe [7] proposed a simple thresholding approach by artificially setting to zero the
standard PCs’ loadings with absolute values smaller than a threshold. In recent years,
optimization approaches have been proposed for finding sparse PCs. They usually for-
mulate sparse PCA into an optimization problem, aiming at achieving the sparsity of
loadings while maximizing the explained variance as much as possible. For instance,
Jolliffe et al. [19] proposed an interesting algorithm, called SCoTLASS, for finding
sparse orthogonal loading vectors by sequentially maximizing the approximate vari-
ance explained by each PC under the l1-norm penalty on loading vectors. Zou et al.
[31] formulated sparse PCA as a regression-type optimization problem and imposed a
combination of l1- and l2-norm penalties on the regression coefficients. d’Aspremont
et al. [10] proposed a method, called DSPCA, for finding sparse PCs by solving a
sequence of semidefinite program relaxations of sparse PCA. Shen and Huang [28]
recently developed an approach for computing sparse PCs by solving a sequence of
rank-one matrix approximation problems under several sparsity-inducing penalties.
Very recently, Journée et al. [18] formulated sparse PCA as nonconcave maximiza-
tion problems with l0- or l1-norm sparsity-inducing penalties. They showed that these
problems can be reduced into maximization of a convex function on a compact set,
and they also proposed a simple but computationally efficient gradient method for
finding a stationary point of the latter problems. Additionally, greedy methods were
investigated for sparse PCA by Moghaddam et al. [21] and d’Aspremont et al. [9].
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The PCs obtained by the above methods [7,9,10,17–19,21,28,31] are usually
sparse. However, the aforementioned nice properties of the standard PCs are lost
to some extent in these sparse PCs. Indeed, the likely correlation among the sparse
PCs are not considered in these methods. Therefore, their sparse PCs can be quite cor-
related with each other. Also, the total explained variance that these methods attempt
to maximize can be too optimistic as there may be some overlap among the individual
variances of sparse PCs. Finally, the loading vectors of the sparse PCs given by these
methods lack orthogonality except SCoTLASS [19].

In this paper we propose a new formulation for sparse PCA by taking into account
the three nice properties of the standard PCA, that is, maximal total explained vari-
ance, uncorrelation of PCs, and orthogonality of loading vectors. We also explore the
connection of this formulation with the standard PCA and show that it can be viewed
as a certain perturbation of the standard PCA. We further propose a novel augmented
Lagrangian method for solving a class of nonsmooth constrained optimization prob-
lems, which is well suited for our formulation of sparse PCA. This method differs
from the classical augmented Lagrangian method in that: i) the values of the aug-
mented Lagrangian functions at their approximate minimizers given by the method
are bounded from above; and ii) the magnitude of penalty parameters outgrows that
of Lagrangian multipliers (see Sect. 3.2 for details). We show that this method con-
verges to a feasible point, and moreover it converges to a first-order stationary point
under some regularity assumptions. (We should mention that the aforementioned two
novel properties of our augmented Lagrangian method are crucial in ensuring con-
vergence both theoretically and practically. In fact, we observed in our experiments
that when one or both of these properties are dropped, the resulting method (e.g., the
classical augmented Lagrangian method) almost always fails to converge to even a
feasible point as applied to our formulation of sparse PCA.) We also propose two
nonmonotone gradient methods for minimizing a class of nonsmooth functions over
a closed convex set, which can be suitably applied to the subproblems arising in our
augmented Lagrangian method. We further establish global convergence and, under a
local Lipschitzian error bounds assumption [29], local linear rate of convergence for
these gradient methods. Finally, we compare the sparse PCA approach proposed in this
paper with several existing methods [10,18,28,31] on synthetic [31], Pitprops [16],
and gene expression data [8], respectively. The computational results demonstrate that
the sparse PCs obtained by our approach substantially outperform those by the other
methods in terms of total explained variance, correlation of PCs, and orthogonality of
loading vectors. In addition, the experiments on random data show that our method is
capable of solving large-scale problems within very reasonable amount of time.

The rest of paper is organized as follows. In Sect. 2, we propose a new formula-
tion for sparse PCA and explore the connection of this formulation with the standard
PCA. In Sect. 3, we then develop a novel augmented Lagrangian method for a class of
nonsmooth constrained problems, and propose two nonmonotone gradient methods
for minimizing a class of nonsmooth functions over a closed convex set. In Sect. 4,
we discuss the applicability and implementation details of our augmented Lagrang-
ian method for sparse PCA. The sparse PCA approach proposed in this paper is then
compared with several existing methods on synthetic [31], Pitprops [16], and gene
expression data [8] in Sect. 5. Finally, we present some concluding remarks in Sect. 6.
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1.1 Notation

In this paper, all vector spaces are assumed to be finite dimensional. The symbols �n

and �n+ (resp., �n−) denote the n-dimensional Euclidean space and the nonnegative
(resp., nonpositive) orthant of �n , respectively, and �++ denotes the set of positive
real numbers. The space of all m × n matrices with real entries is denoted by �m×n .
The space of symmetric n × n matrices is denoted by Sn . Additionally, Dn denotes
the space of n × n diagonal matrices. For a real matrix X , we denote by |X | the
absolute value of X , that is, |X |i j = |Xi j | for all i j , and by sign(X) the sign of X
whose i j th entry equals the sign of Xi j for all i j . Also, the nonnegative part of X
is denoted by [X ]+ whose i j th entry is given by max{0, Xi j } for all i j . The rank
of X is denoted by rank(X). Further, the identity matrix and the all-ones matrix are
denoted by I and E , respectively, whose dimension should be clear from the context.
If X ∈ Sn is positive semidefinite, we write X � 0. For any X, Y ∈ Sn , we write
X � Y to mean Y − X � 0. Given matrices X and Y in �m×n , the standard inner
product is defined by X • Y := Tr(XY T ), where Tr(·) denotes the trace of a matrix,
and the component-wise product is denoted by X � Y , whose i j th entry is Xi j Yi j

for all i j . ‖ · ‖ denotes the Euclidean norm and its associated operator norm unless it
is explicitly stated otherwise. The minimal (resp., maximal) eigenvalue of an n × n
symmetric matrix X are denoted by λmin(X) (resp., λmax(X)), respectively, and λi (X)

denotes its i th largest eigenvalue for i = 1, . . . , n. Given a vector v ∈ �n, Diag(v)

or Diag(v1, . . . , vn) denotes a diagonal matrix whose i th diagonal element is vi for
i = 1, . . . , n. Given an n × n matrix X, ˜Diag(X) denotes a diagonal matrix whose
i th diagonal element is Xii for i = 1, . . . , n. Let U be a real vector space. Given a
closed convex set C ⊆ U , let dist(·, C) : U → �+ denote the distance function to C
measured in terms of ‖ · ‖, that is,

dist(u, C) := inf
ũ∈C
‖u − ũ‖ ∀u ∈ U . (1)

2 Formulation for sparse PCA

In this section we propose a new formulation for sparse PCA by taking into account
sparsity and orthogonality of loading vectors, and uncorrelation of PCs. We also
address the connection of our formulation with the standard PCA.

Let ξ = (ξ (1), . . . , ξ (p)) be a p-dimensional random vector with covariance
matrix �. Suppose X is an n × p data matrix, which records the n observations of ξ .
Without loss of generality, assume the column means of X are 0. Then the commonly
used sample covariance matrix of ξ is �̂ = X T X/(n − 1). For any r loading vectors
represented as V = [V1, . . . , Vr ] ∈ �p×r where 1 ≤ r ≤ p, the corresponding com-
ponents are given by η = (η(1), . . . , η(r)) = ξV , which are linear combinations of
ξ (1), . . . , ξ (p). Clearly, the covariance matrix of η is V T �V , and thus the components
η(i) and η( j) are uncorrelated if and only if the i j th entry of V T �V is zero. Also, the
total explained variance by the components η(i)’s equals, if they are uncorrelated, the
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sum of the individual variances of η(i)’s, that is,

r∑

i=1

V T
i �Vi = Tr(V T �V ).

Recall that our aim is to find a set of sparse and orthogonal loading vectors V so that
the corresponding components η(1), . . . , η(r) are uncorrelated and explain as much
variance of the original variables ξ (1), . . . , ξ (p) as possible. It appears that our goal
can be achieved by solving the following problem:

max
V∈�n×r

Tr(V T �V )− ρ • |V |
s.t. V T �V is diagonal,

V T V = I,

(2)

where ρ ∈ �p×r
+ is a tunning parameter for controlling the sparsity of V . However,

the covariance matrix � is typically unknown and can only be approximated by the
sample covariance matrix �̂. It looks plausible to modify (2) by simply replacing �

with �̂ at a glance. Nevertheless, such a modification would eliminate all optimal
solutions V ∗ of (2) from consideration since (V ∗)T �̂V ∗ is generally non-diagonal.
For this reason, given a sample covariance �̂, we consider the following formulation
for sparse PCA, which can be viewed as a modification of problem (2),

max
V∈�n×r

Tr(V T �̂V )− ρ • |V |
s.t. |V T

i �̂Vj | ≤ �i j ∀i 
= j,
V T V = I,

(3)

where �i j ≥ 0 (i 
= j) are the parameters for controlling the correlation of the
components corresponding to V . Clearly, �i j = � j i for all i 
= j .

We next explore the connection of formulation (3) with the standard PCA. Before
proceeding, we first establish a technical lemma that will be used subsequently.

Lemma 2.1 Given any �̂ ∈ Sn and integer 1 ≤ r ≤ n, consider the problem

max{Tr(V T �̂V )| V T V = I, V ∈ �n×r }. (4)

The following statements hold:

(a) The optimal value of (4) is
∑r

i=1 λi (�̂);
(b) V ∗ is an optimal solution of (4) if and only if V ∗ = SU∗Q, where U∗ is an

n × r matrix whose columns consist of the orthonormal eigenvectors of �̂ cor-
responding to r largest eigenvalues of �̂, and S and Q are arbitrary n × n and
r × r orthogonal matrices with ST �̂S = �̂.

Proof The statement (a) holds due to equation (3.20) of Chapter 1 of [14]. We now
show statement (b) also holds. Let V ∗ = SU∗Q, where S, U∗ and Q are defined above.
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It is straightforward to verify that V ∗T V ∗ = I and Tr(V ∗T �̂V ∗) = ∑r
i=1 λi (�̂),

which together with statement (a) implies that V ∗ is an optimal solution of (4) and
hence, the “if” part of statement (b) holds. To prove the “only if” part, suppose that V ∗ is
an optimal solution of (4). We then observe that V ∗ is a critical point of the generalized
Rayleigh quotient Tr(V T �̂V ) over the Stiefel manifold {X ∈ �n×r : X T X = I }. It
follows from Theorem 3.17 of Chapter 1 of [14] that V ∗ = SU∗Q for some S, U∗
and Q that are defined above and hence the “only if” part of statement (b) holds. ��
We next address the relation between the eigenvectors of �̂ and the solutions of prob-
lem (3) when ρ = 0 and �i j = 0 for all i 
= j .

Theorem 2.2 Suppose for problem (3) that ρ = 0 and �i j = 0 for all i 
= j . Let f ∗
be the optimal value of (3). Then, f ∗ =∑r

i=1 λi (�̂), and V ∗ ∈ �n×r is an optimal
solution of (3) if and only if the columns of V ∗ consist of the orthonormal eigenvectors
of �̂ corresponding to r largest eigenvalues of �̂.

Proof We first show that f ∗ =∑r
i=1 λi (�̂). Indeed, let U be an n × r matrix whose

columns consist of the orthonormal eigenvectors of �̂ corresponding to r largest
eigenvalues of �̂. We then see that U is a feasible solution of (3) and Tr(U T �̂U ) =∑r

i=1 λi (�̂). It follows that f ∗ ≥∑r
i=1 λi (�̂). On the other hand, we observe that f ∗

is bounded above by the optimal value of problem (4), which together with Lemma
2.1(a) yields f ∗ ≤∑r

i=1 λi (�̂). Thus, f ∗ =∑r
i=1 λi (�̂) and U is an optimal solution

of (3), which implies that the “if” part of this theorem holds. We next show that the
“only if” part also holds. Suppose that V ∗ is an optimal solution of (3). Since problems
(3) and (4) share the same optimal value, V ∗ is also an optimal solution of (4). It then
follows from Lemma 2.1(b) that V ∗ = SU∗Q for some S ∈ �n×n and Q ∈ �r×r

satisfying ST S = I, ST �̂S = �̂, QT Q = I , and U∗ ∈ �n×r whose columns consist
of the orthonormal eigenvectors of �̂ corresponding to r largest eigenvalues of �̂.
Clearly, �̂U∗ = U∗� and U∗T �̂U∗ = �, where � is an r × r diagonal matrix
whose diagonal consists of r largest eigenvalues of �̂. Letting D = V ∗T �̂V ∗ and
using the above relations, we obtain that

D = V ∗T �̂V ∗ = QT U∗T (ST �̂S)U∗Q = QT (U∗T �̂U∗)Q = QT �Q, (5)

which together with the relation QT Q = I , implies that D is similar to the diagonal
matrix �. In addition, by the definition of V ∗, we know that D is an r × r diagonal
matrix. Thus, D and � share the same diagonal entries upon some permutations if
necessary. It then follows that the diagonal of D consists of r largest eigenvalues of �̂.
Since ST S = I and ST �̂S = �̂, we see that �̂S = S�̂. Using this equality along
with (5) and the relations V ∗ = SU∗Q, QT Q = I, �̂U∗ = U∗�, we have

�̂V ∗ = �̂SU∗Q = S�̂U∗Q = SU∗�Q = (SU∗Q)(QT �Q) = V ∗D.

It follows that the columns of V ∗ consist of the orthonormal eigenvectors of �̂ corre-
sponding to r largest eigenvalues of �̂, and hence the “only if” part of this theorem
holds. ��
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From the above theorem, we see that when ρ = 0 and �i j = 0 for all i 
= j , each solu-
tion of (3) consists of the orthonormal eigenvectors of �̂ corresponding to r largest
eigenvalues of �̂, which can be computed from the eigenvalue decomposition of �̂.
Therefore, the loading vectors obtained from (3) are the same as those given by the
standard PCA when applied to �̂. On the other hand, when ρ and �i j for all i 
= j
are small, the loading vectors found by (3) can be viewed as an approximation to the
ones provided by the standard PCA. We will propose suitable methods for solving (3)
in Sects. 3 and 4.

3 Augmented Lagrangian method for nonsmooth constrained nonlinear
programming

In this section we propose a novel augmented Lagrangian method for a class of non-
smooth constrained nonlinear programming problems, which is well suited for for-
mulation (3) of sparse PCA. In particular, we study first-order optimality conditions
in Sect. 3.1. In Sect. 3.2, we develop an augmented Lagrangian method and establish
its global convergence. In Sect. 3.3, we propose two nonmonotone gradient methods
for minimizing a class of nonsmooth functions over a closed convex set, which can
be suitably applied to the subproblems arising in our augmented Lagrangian method.
We also establish global and local convergence for these gradient methods.

3.1 First-order optimality conditions

In this subsection we introduce a class of nonsmooth constrained nonlinear program-
ming problems and study first-order optimality conditions for them.

Consider the nonlinear programming problem

min f (x)+ P(x)

s.t. gi (x) ≤ 0, i = 1, . . . , m,

hi (x) = 0, i = 1, . . . , p,

x ∈ X.

(6)

We assume that the functions f : �n → �, gi : �n → �, i = 1, . . . , m, and
hi : �n → �, i = 1, . . . , p, are continuously differentiable, and that the function
P : �n → � is convex but not necessarily smooth, and that the set X ⊆ �n is
closed and convex. For convenience of the subsequent presentation, we denote by 	

the feasible region of problem (6).
For the case where P is a smooth function, the first-order optimality conditions

for problem (6) have been well studied in literature (see, for example, Theorem 3.25
of [27]), but there is little study when P is a nonsmooth convex function. We next
aim to establish first-order optimality conditions for problem (6). Before proceeding,
we describe a general constraint qualification condition for (6), that is, Robinson’s
condition that was proposed in [24].
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Let x ∈ �n be a feasible point of problem (6). We denote the set of active inequality
constraints at x as

A(x) = {1 ≤ i ≤ m : gi (x) = 0}.

In addition, x is said to satisfy Robinson’s condition if

{[
g′(x)d − v

h′(x)d

]
: d ∈ TX (x), v ∈ �m, vi ≤ 0, i ∈ A(x)

}
= �m ×�p, (7)

where TX (x) is the tangent cone to X at x , and g′(x) and h′(x) denote the Jacobian of
the functions g = (g1, . . . , gm) and h = (h1, . . . , h p) at x , respectively. Other equiv-
alent expressions of Robinson’s condition can be found, for example, in [24,25,27].

The following result demonstrates that Robinson’s condition is indeed a constraint
qualification condition for problem (6), which is briefly mentioned in the proof of
Theorem 3.25 of [27]. For a detailed proof of it, see [20].

Proposition 3.1 Given a feasible point x ∈ �n of problem (6), let T	(x) be the tan-
gent cone to 	 at x and (T	(x))◦ its polar cone. If Robinson’s condition (7) holds
at x, then

T	(x) =
{

d ∈ TX (x) : dT∇gi (x) ≤ 0, i ∈ A(x),

dT∇hi (x) = 0, i = 1, . . . , p

}
,

(T	(x))◦ =
⎧
⎨

⎩
∑

i∈A(x)

λi∇gi (x)+
p∑

i=1

μi∇hi (x)+ NX (x) : λ ∈ �m+, μ ∈ �p

⎫
⎬

⎭ ,

(8)

where NX (x) is the normal cone to X at x.

We are now ready to establish first-order optimality conditions for problem (6).

Theorem 3.2 Let x∗ ∈ �n be a local minimizer of problem (6) and ∂ P(x∗) denote
the subdifferential of P at x∗. Assume that Robinson’s condition (7) is satisfied at x∗.
Then there exist Lagrange multipliers λ ∈ �m+ and μ ∈ �p such that

0 ∈ ∇ f (x∗)+ ∂ P(x∗)+
m∑

i=1

λi∇gi (x∗)+
p∑

i=1

μi∇hi (x∗)+ NX (x∗), (9)

and

λi gi (x∗) = 0, i = 1, . . . , m. (10)

Moreover, the set of Lagrange multipliers (λ, μ) ∈ �m+ × �p satisfying the above
conditions, denoted by �(x∗), is convex and compact.
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Proof We first show that

dT∇ f (x∗)+ P ′(x∗; d) ≥ 0 ∀d ∈ T	(x∗). (11)

Let d ∈ T	(x∗) be arbitrarily chosen. Then, there exist sequences {xk}∞k=1 ⊆ 	 and
{tk}∞k=1 ⊆ �++ such that tk ↓ 0 and

d = lim
k→∞

xk − x∗

tk
.

Thus, we have xk = x∗ + tkd + o(tk). Using this relation along with the fact that the
function f is differentiable and P is convex in �n , we can have

f (x∗ + tkd)− f (xk) = o(tk), P(x∗ + tkd)− P(xk) = o(tk), (12)

where the first equality follows from the Mean Value Theorem while the second one
comes from Theorem 10.4 of [26]. Clearly, xk → x∗. This together with the assump-
tion that x∗ is a local minimizer of (6), implies that

f (xk)+ P(xk) ≥ f (x∗)+ P(x∗) (13)

when k is sufficiently large. In view of (12) and (13), we obtain that

dT∇ f (x∗)+ P ′(x∗; d) = lim
k→∞

f (x∗+tkd)− f (x∗)
tk

+ lim
k→∞

P(x∗ + tkd)−P(x∗)
tk

,

= lim
k→∞

[
f (xk)+ P(xk)− f (x∗)− P(x∗)

tk
+ o(tk)

tk

]
,

= lim
k→∞

f (xk)+ P(xk)− f (x∗)− P(x∗)
tk

≥ 0,

and hence (11) holds.
For simplicity of notations, let T ◦	 = (T	(x∗))◦ and S = −∇ f (x∗)− ∂ P(x∗). We

next show that S ∩ T ◦	 
= ∅. Suppose for contradiction that S ∩ T ◦	 = ∅. This together
with the fact that S and T ◦	 are nonempty closed convex sets and S is bounded, implies
that there exists some d ∈ �n such that dT y ≤ 0 for any y ∈ T ◦	, and dT y ≥ 1 for
any y ∈ S. Clearly, we see that d ∈ (T ◦	)◦ = T	(x∗), and

1 ≤ inf
y∈S

dT y = inf
z∈∂ P(x∗)

dT (−∇ f (x∗)− z) = −dT∇ f (x∗)

− sup
z∈∂ P(x∗)

dT z = −dT∇ f (x∗)− P ′(x∗; d),

which contradicts (11). Hence, we have S ∩ T ◦	 
= ∅. Using this relation, (8), the
definitions of S and A(x∗), and letting λi = 0 for i /∈ A(x∗), we easily see that (9)
and (10) hold.
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In view of the fact that ∂ P(x∗) and NX (x∗) are closed and convex, and moreover
∂ P(x∗) is bounded, we know that ∂ P(x∗)+ NX (x∗) is closed and convex. Using this
result, it is straightforward to see that �(x∗) is closed and convex. We next show that
�(x∗) is bounded. Suppose for contradiction that �(x∗) is unbounded. Then, there
exists a sequence {(λk, μk)}∞k=1 ⊆ �(x∗) such that ‖(λk, μk)‖ → ∞, and

0 = ∇ f (x∗)+ zk +
m∑

i=1

λk
i ∇gi (x∗)+

p∑

i=1

μk
i ∇hi (x∗)+ vk (14)

for some {zk}∞k=1 ⊆ ∂ P(x∗) and {vk}∞k=1 ⊆ NX (x∗). Let (λ̄k, μ̄k) = (λk, μk)/

‖(λk, μk)‖.
By passing to a subsequence if necessary, we can assume that (λ̄k, μ̄k)→ (λ̄, μ̄).

We clearly see that ‖(λ̄, μ̄)‖ = 1, λ̄ ∈ �m+, and λ̄i = 0 for i /∈ A(x∗). Note that
∂ P(x∗) is bounded and NX (x∗) is a closed cone. In view of this fact, and upon divid-
ing both sides of (14) by ‖(λk, μk)‖ and taking limits on a subsequence if necessary,
we obtain that

0 =
m∑

i=1

λ̄i∇gi (x∗)+
p∑

i=1

μ̄i∇hi (x∗)+ v̄ (15)

for some v̄ ∈ NX (x∗). Since Robinson’s condition (7) is satisfied at x∗, there exist
d ∈ TX (x∗) and v ∈ �m such that vi ≤ 0 for i ∈ A(x∗), and

dT∇gi (x∗)− vi = −λ̄i ∀i ∈ A(x∗),
dT∇hi (x∗) = −μ̄i , i = 1, . . . , p.

Using these relations, (15) and the fact that d ∈ TX (x∗), v̄ ∈ NX (x∗), λ̄ ∈ �m+, and
λ̄i = 0 for i /∈ A(x∗), we have

m∑

i=1

λ̄2
i +

p∑

i=1

μ̄2
i ≤ −

m∑

i=1

λ̄i d
T∇gi (x∗)−

p∑

i=1

μ̄i d
T∇hi (x∗),

= −dT

(
m∑

i=1

λ̄i∇gi (x∗)+
p∑

i=1

μ̄i∇hi (x∗)
)
= dT v̄ ≤ 0.

It yields (λ̄, μ̄) = (0, 0), which contradicts the identity ‖(λ̄, μ̄)‖ = 1. Thus, �(x∗) is
bounded. ��

3.2 Augmented Lagrangian method for (6)

For a convex program, it is known that under some mild assumptions, any accumula-
tion point of the sequence generated by the classical augmented Lagrangian method
is an optimal solution (e.g., see Section 6.4.3 of [27]). Nevertheless, when problem
(6) is a nonconvex program, especially when the function hi is not affine or gi is
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nonconvex, the classical augmented Lagrangian method may not even converge to a
feasible point, that is, any accumulation point of the sequence generated by the method
may violate some constraints of (6). We actually observed in our experiments that this
ill phenomenon almost always happens when the classical augmented Lagrangian
method is applied to formulation (3) of sparse PCA. To alleviate this drawback, we
propose a novel augmented Lagrangian method for problem (6) and establish its global
convergence in this subsection.

Throughout this subsection, we make the following assumption for problem (6).

Assumption 1 Problem (6) is feasible, and moreover at least a feasible solution,
denoted by x feas, is known.

It is well-known that for problem (6) the associated augmented Lagrangian function
L�(x, λ, μ) : �n ×�m ×�p → � is given by

L�(x, λ, μ) := w(x)+ P(x), (16)

where

w(x) := f (x)+ 1

2�
(‖[λ+ �g(x)]+‖2 − ‖λ‖2)+ μT h(x)+ �

2
‖h(x)‖2, (17)

and � > 0 is a penalty parameter (e.g., see [4,27]). Roughly speaking, an augmented
Lagrangian method, when applied to problem (6), solves a sequence of subproblems
in the form of

min
x∈X

L�(x, λ, μ)

while updating the Lagrangian multipliers (λ, μ) and the penalty parameter �.
Let x feas be a known feasible point of (6) (see Assumption 1). We now describe the

algorithm framework of a novel augmented Lagrangian method as follows.

Algorithm framework of augmented Lagrangian method:

Let {εk} be a positive sequence. Let λ0 ∈ �m+, μ0 ∈ �p, �0 > 0, τ > 0, σ >

1 be given. Choose an arbitrary initial point x0
init ∈ X and constant ϒ ≥

max{ f (x feas), L�0(x0
init, λ

0, μ0)}. Set k = 0.

(1) Find an approximate solution xk ∈ X for the subproblem

min
x∈X

L�k (x, λk, μk) (18)

such that

dist
(
−∇w(xk), ∂ P(xk)+ NX (xk)

)
≤ εk, L�k (xk, λk, μk) ≤ ϒ. (19)
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(2) Update Lagrange multipliers according to

λk+1 := [λk + �k g(xk)]+, μk+1 := μk + �kh(xk). (20)

(3) Set �k+1 := max
{
σ�k, ‖λk+1‖1+τ , ‖μk+1‖1+τ

}
.

(4) Set k ← k + 1 and go to step 1).

end

The above augmented Lagrangian method differs from the classical augmented
Lagrangian method in that: i) the values of the augmented Lagrangian functions at
their approximate minimizers given by the method are uniformly bounded from above
(see Step 1)); and ii) the magnitude of penalty parameters outgrows that of Lagrangian
multipliers (see Step 3)). These two novel properties are crucial in ensuring the conver-
gence of our augmented Lagrangian method both theoretically and practically. In fact,
we observed in our experiments that when one or both of these steps are replaced by
the counterparts of the classical augmented Lagrangian method, the resulting method
almost always fails to converge to even a feasible point as applied to formulation (3)
of sparse PCA.

To make the above augmented Lagrangian method complete, we need to address
how to find an approximate solution xk ∈ X for subproblem (18) satisfying (19) as
required in Step 1). We will leave this discussion to the end of this subsection. For
the time being, we establish the main convergence result regarding this method for
solving problem (6).

Theorem 3.3 Assume that εk → 0. Let {xk} be the sequence generated by the above
augmented Lagrangian method satisfying (19). Suppose that a subsequence {xk}k∈K

converges to x∗. Then, the following statements hold:

(a) x∗ is a feasible point of problem (6);
(b) Further, if Robinson’s condition (7) is satisfied at x∗, then the subsequence
{(λk+1, μk+1)}k∈K is bounded, and each accumulation point (λ∗, μ∗) of
{(λk+1, μk+1)}k∈K is a vector of Lagrange multipliers satisfying the first-order
optimality conditions (9)–(10) at x∗.

Proof In view of (16), (17) and the second relation in (19), we have

f (xk) + P(xk)+ 1

2�k
(‖[λk + �k g(xk)]+‖2 − ‖λk‖2)

+ (μk)T h(xk)+ �k

2
‖h(xk)‖2 ≤ ϒ ∀k.

It follows that

‖[λk/�k + g(xk)]+‖2 + ‖h(xk)‖2 ≤ 2[ϒ − f (xk)− g(xk)− (μk)T h(xk)]/�k

+ (‖λk‖/�k)
2.

Noticing that �0 > 0 τ > 0, and �k+1 = max
{
σ�k, ‖λk+1‖1+τ , ‖μk+1‖1+τ

}
for

k ≥ 0, we can observe that �k → ∞ and ‖(λk, μk)‖/�k → 0. We also know that
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{xk}k∈K → x∗, {g(xk)}k∈K → g(x∗) and {h(xk)}k∈K → h(x∗). Using these results,
and upon taking limits as k ∈ K → ∞ on both sides of the above inequality, we
obtain that

‖[g(x∗)]+‖2 + ‖h(x∗)‖2 ≤ 0,

which implies that g(x∗) ≤ 0 and h(x∗) = 0. We also know that x∗ ∈ X . It thus
follows that statement (a) holds.

We next show that statement (b) also holds. Using (18), (16), (17), (20), and the
first relation in (19), we have

‖∇ f (xk)+ (λk+1)T∇g(xk)+ (μk+1)T∇h(xk)+ zk + vk‖ ≤ εk (21)

for some zk ∈ ∂ P(xk) and vk ∈ NX (xk). Suppose for contradiction that the
subsequence {(λk+1, μk+1)}k∈K is unbounded. By passing to a subsequence if
necessary, we can assume that {(λk+1, μk+1)}k∈K → ∞. Let (λ̄k+1, μ̄k+1) =
(λk+1, μk+1)/‖(λk+1, μk+1)‖ and v̄k = vk/‖(λk+1, μk+1)‖. Recall that {xk}k∈K

→ x∗. It together with Theorem 6.2.7 of [15] implies that ∪k∈K ∂ P(xk) is bounded,
and so is {zk}k∈K . In addition, {g(xk)}k∈K → g(x∗) and {h(xk)}k∈K → h(x∗). Then,
we can observe from (21) that {v̄k}k∈K is bounded. Without loss of generality, assume
that {(λ̄k+1, μ̄k+1)}k∈K → (λ̄, μ̄) and {v̄k}k∈K → v̄ (otherwise, one can consider
their convergent subsequences). Clearly, ‖(λ̄, μ̄)‖ = 1. Dividing both sides of (21)
by ‖(λk+1, μk+1)‖ and taking limits as k ∈ k →∞, we obtain that

λ̄T∇g(x∗)+ μ̄T∇h(x∗)+ v̄ = 0. (22)

Further, using the identity λk+1 = [λk + �k g(xk)]+ and the fact that �k → ∞ and
‖λk‖/�k → 0, we observe that λk+1 ∈ �m+ and λk+1

i = 0 for i /∈ A(x∗) when k ∈ K
is sufficiently large, which imply that λ̄ ∈ �m+ and λ̄i = 0 for i /∈ A(x∗). Moreover, we
have v̄ ∈ NX (x∗) since NX (x∗) is a closed cone. Using these results, (22), Robinson’s
condition (7) at x∗, and a similar argument as that in the proof of Theorem 3.2, we can
obtain that (λ̄, μ̄) = (0, 0), which contradicts the identity ‖(λ̄, μ̄)‖ = 1. Therefore, the
subsequence {(λk+1, μk+1)}k∈K is bounded. Using this result together with (21) and
the fact {zk}k∈K is bounded, we immediately see that {vk}k∈K is bounded. Using semi-
continuity of ∂ P(·) and NX (·) (see Theorem 24.4 of [26] and Lemma 2.42 of [27]),
and the fact {xk}k∈K → x∗, we conclude that every accumulation point of {zk}k∈K

and {vk}k∈K belongs to ∂ P(x∗) and NX (x∗), respectively. Using these results and
(21), we further see that for every accumulation point (λ∗, μ∗) of {(λk+1, μk+1)}k∈K ,
there exists some z∗ ∈ ∂ P(x∗) and v∗ ∈ NX (x∗) such that

∇ f (x∗)+ (λ∗)T∇g(x∗)+ (μ∗)T∇h(x∗)+ z∗ + v∗ = 0.

Moreover, using the identity λk+1 = [λk + �k g(xk)]+ and the fact that �k →∞ and
‖λk‖/�k → 0, we easily see that λ∗ ∈ �m+ and λ∗i = 0 for i /∈ A(x∗). Thus, (λ∗, μ∗)
satisfies the first-order optimality conditions (9)–(10) at x∗. ��
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Before ending this subsection, we now briefly discuss how to find an approximate
solution xk ∈ X for subproblem (18) satisfying (19) as required in Step 1) of the
above augmented Lagrangian method. In particular, we are interested in applying the
nonmonotone gradient methods proposed in Sect. 3.3 to (18). As shown in Sect. 3.3
(see Theorems 3.9 and 3.13), these methods are able to find an approximate solution
xk ∈ X satisfying the first relation of (19). Moreover, if an initial point for these
methods is properly chosen, the obtained approximate solution xk also satisfies the
second relation of (19). For example, given k ≥ 0, let xk

init ∈ X denote the initial point
for solving the kth subproblem (18), and we define xk

init for k ≥ 1 as follows

xk
init =

{
x feas, if L�k (xk−1, λk, μk) > ϒ;
xk−1, otherwise,

where xk−1 is the approximate solution to the (k − 1)th subproblem (18) satisfying
(19) (with k replaced by k − 1). Recall from Assumption 1 that x feas is a feasible
solution of (6). Thus, g(x feas) ≤ 0, and h(x feas) = 0, which together with (16), (17)
and the definition of ϒ implies that

L�k (x feas, λk, μk) ≤ f (x feas) ≤ ϒ.

It follows from this inequality and the above choice of xk
init that L�k (xk

init, λ
k, μk) ≤ ϒ .

Additionally, the nonmonotone gradient methods proposed in Sect. 3.3 possess a nat-
ural property that the objective function values at all subsequent iterates are bounded
above by the one at the initial point. Therefore, we have

L�k (xk, λk, μk) ≤ L�k (xk
init, λ

k, μk) ≤ ϒ,

and so the second relation of (19) is satisfied at xk .

3.3 Nonmonotone gradient methods for nonsmooth minimization

In this subsection we propose two nonmonotone gradient methods for minimizing a
class of nonsmooth functions over a closed convex set, which can be suitably applied
to the subproblems arising in our augmented Lagrangian method detailed in Sect. 3.2.
We also establish global convergence and local linear rate of convergence for these
methods.

Throughout this subsection, we consider the following problem

min
x∈X
{F(x) := f (x)+ P(x)}, (23)

where f : �n → � is continuously differentiable, P : �n → � is convex but not
necessarily smooth, and X ⊆ �n is closed and convex.

In the literature [3,23,29,30], several gradient methods were proposed for solving
problem (23) or its special case. In particular, Tseng and Yun [29] studied a block
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coordinate descent method for (23). Under the assumption that the gradient of f is
Lipschitz continuous, Wright et al. [30] proposed a globally convergent nonmonotone
gradient method for (23). In addition, for the case where f is convex and its gradient
is Lipschitz continuous, Nesterov [23] and Beck and Teboulle [3] developed optimal
gradient methods for (23). In this subsection, we propose two nonmonotone gradi-
ent methods for (23). These two methods are closely related to the ones proposed in
[29,30], but they are not the same (see the remarks below for details). In addition,
these methods can be viewed as an extension of the well-known projected gradient
methods studied in [5] for smooth problems, but the methods proposed in [29,30]
cannot. Before proceeding, we introduce some notations and establish some technical
lemmas as follows that will be used subsequently.

We say that x ∈ �n is a stationary point of problem (23) if x ∈ X and

0 ∈ ∇ f (x)+ ∂ P(x)+ NX (x). (24)

Given a point x ∈ �n and H � 0, we denote by dH (x) the solution of the following
problem:

dH (x) := arg min
d

{
∇ f (x)T d + 1

2
dT Hd + P(x + d) : x + d ∈ X

}
. (25)

The following lemma provides an alternative characterization of stationarity that
will be used in our subsequent analysis.

Lemma 3.4 For any H � 0, x ∈ X is a stationary point of problem (23) if and only
if dH (x) = 0.

Proof We first observe that (25) is a convex problem, and moreover its objective func-
tion is strictly convex. The conclusion of this lemma immediately follows from this
observation and the first-order optimality condition of (25). ��

The next lemma shows that ‖dH (x)‖ changes not too fast with H . It will be used
to prove Theorems 3.10 and 3.14.

Lemma 3.5 For any x ∈ �n, H � 0, and H̃ � 0, let d = dH (x) and d̃ = dH̃ (x).
Then

‖d̃‖ ≤ 1+ λmax(Q)+√1− 2λmin(Q)+ λmax(Q)2

2λmin(H̃)
λmax(H)‖d‖, (26)

where Q = H−1/2 H̃ H−1/2.

Proof The conclusion immediately follows from Lemma 3.2 of [29] with
J = {1, . . . , n}, c = 1, and P(x) := P(x) + IX (x), where IX is the indicator
function of X . ��

The following lemma will be used to prove Theorems 3.10 and 3.14.
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Lemma 3.6 Given x ∈ �n and H � 0, let g = ∇ f (x) and �d = gT d+ P(x +d)−
P(x) for all d ∈ �n. Let σ ∈ (0, 1) be given. The following statements hold:

(a) If d = dH (x), then

−�d ≥ dT Hd ≥ λmin(H)‖d‖2.

(b) For any x̄ ∈ �n, α ∈ (0, 1], d = dH (x), and x ′ = x + αd, then

(g + Hd)T (x ′ − x̄)+ P(x ′)− P(x̄) ≤ (α − 1)(dT Hd +�d).

(c) If f satisfies

‖∇ f (y)− ∇ f (z)‖ ≤ L‖y − z‖ ∀y, z ∈ �n (27)

for some L > 0, then the descent condition

F(x + αd) ≤ F(x)+ σα�d

is satisfied for d = dH (x), provided 0 ≤ α ≤ min{1, 2(1− σ)λmin(H)/L}.
(d) If f satisfies (27), then the descent condition

F(x + d) ≤ F(x)+ σ�d

is satisfied for d = dH(θ)(x), where H(θ) = θ H, provided θ ≥ L/[2(1 −
σ)λmin(H)].

Proof The statements (a)-(c) follow from Theorem 4.1 (a) and Lemma 3.4 of [29]
with J = {1, . . . , n}, γ = 0, and λ = λmin(H). We now prove statement (d). Let-
ting α = 1, d = dH(θ)(x) and using statement (c), we easily see that when 2(1 −
σ)λmin(H(θ)) ≥ 1, F(x + d) ≤ F(x) + σ�d is satisfied, which together with the
definition of H(θ) implies statement (d) holds. ��

We now present the first nonmonotone gradient method for (23) as follows.

Nonmonotone gradient method I:

Choose parameters η > 1, 0 < σ < 1, 0 < θ < θ̄, 0 < λ ≤ λ̄, and integer M ≥ 0.
Set k = 0 and choose x0 ∈ X .

(1) Choose θ0
k ∈ [θ, θ̄ ] and λI � Hk � λ̄I .

(2) For j = 0, 1, . . .

(2a) Let θk = θ0
k η j . Solve (25) with x = xk and H = θk Hk to obtain dk =

dH (x).
(2b) If dk satisfies

F(xk + dk) ≤ max
[k−M]+≤i≤k

F(xi )+ σ�k, (28)
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go to step (3), where

�k := ∇ f (xk)T dk + P(xk + dk)− P(xk). (29)

(3) Set xk+1 = xk + dk and k ← k + 1.

end

Remark The above method is closely related to the one proposed in [30]. They differ
from each other only in that the distinct �k’s are used inequality (28). In particular, the
method [30] uses �k = −θk‖dk‖2/2. For global convergence, the method [30], how-
ever, requires a strong assumption that the gradient of f is Lipschitz continuous, which
is not needed for our method (see Theorem 3.9). In addition, our method can be viewed
as an extension of one projected gradient method (namely, SPG1) studied in [5] for
smooth problems, but their method cannot. Finally, local convergence is established
for our method under the assumption that the gradient of f is Lipschitz continuous
(see Theorem 3.10), but not studied for the methods in [30] and [5]. ��

We next prove global convergence of the nonmonotone gradient method I. Before
proceeding, we establish two technical lemmas below. The first lemma shows that if
xk ∈ X is a nonstationary point, there exists an θk > 0 in step 2a) so that (28) is
satisfied, and hence the above method is well defined.

Lemma 3.7 Suppose that Hk � 0 and xk ∈ X is a nonstationary point of problem
(23). Then, there exists θ̃ > 0 such that dk = dHk (θk )(xk), where Hk(θk) = θk Hk,
satisfies (28) whenever θk ≥ θ̃ .

Proof For simplicity of notation, let d(θ) = dHk (θ)(xk), where Hk(θ) = θ Hk for any
θ > 0. Since xk is a nonstationary point of problem (23), it follows from Lemma 3.4
that d(θ) 
= 0 for all θ > 0. By Theorem 23.1 of [26], we know that q(t) := 1

t [P(xk+
td(θ)/‖d(θ)‖) − P(xk)] is non-decreasing on (0,∞) and moreover, limt↓0 q(t) =
P ′(xk, d(θ)/‖d(θ)‖), which implies that q(t) ≥ P ′(xk, d(θ)/‖d(θ)‖) for all t > 0.
Thus, we have

P(xk + d(θ))− P(xk)

‖d(θ)‖ = q(‖d(θ)‖) ≥ P ′(xk, d(θ)/‖d(θ)‖).

Using this inequality and (25), we further obtain that for all θ > 0,

θ‖d(θ)‖ ≤ −2[∇ f (xk)T d(θ)+ P(xk + d(θ))− P(xk)]
λmin(Hk)‖d(θ)‖

≤ −2[∇ f (xk)T d(θ)/‖d(θ)‖ + P ′(xk, d(θ)/‖d(θ)‖)]
λmin(Hk)

= −2F ′(xk, d(θ)/‖d(θ)‖)
λmin(Hk)

. (30)
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Thus, we easily see that the set S̃ := {θ‖d(θ)‖ : θ > 0} is bounded. It implies that
‖d(θ)‖ → 0 as θ →∞. We claim that

lim inf
θ→∞ θ‖d(θ)‖ > 0. (31)

Suppose not. Then there exists a sequence {θ̄l} ↑ ∞ such that θ̄l‖d(θ̄l)‖ → 0 as
l → ∞. Invoking that d(θ̄l) is the optimal solution of (25) with x = xk, H = θ̄l Hk

and θ = θ̄l , we have

0 ∈ ∇ f (xk)+ θ̄l Hkd(θ̄l)+ ∂ P(xk + d(θ̄l))+ NX (xk + d(θ̄l)).

Upon taking limits on both sides as l → ∞, and using semicontinuity of ∂ P(·)
and NX (·) (see Theorem 24.4 of [26] and Lemma 2.42 of [27]), and the relations
‖d(θ̄l)‖ → 0 and θ̄l‖d(θ̄l)‖ → 0, we see that (24) holds at xk , which contradicts the
nonstationarity of xk . Hence, (31) holds. We observe that

θd(θ)T Hkd(θ) ≥ λmin(Hk)θ‖d(θ)‖2,

which together with (31) and Hk � 0, implies that

‖d(θ)‖ = O
(
θd(θ)T Hkd(θ)

)
as θ →∞. (32)

This relation together with Lemma 3.6(a) implies that as θ →∞,

‖d(θ)‖ = O
(
θd(θ)T Hkd(θ)

)
= O

(
P(xk)−∇ f (xk)T d(θ)− P(xk + d(θ))

)
.

(33)

Using this result and the relation ‖d(θ)‖ → 0 as θ →∞, we further have

F(xk + d(θ))− max
[k−M]+≤i≤k

F(xi )

≤ F(xk + d(θ))− F(xk)

= f (xk + d(θ))− f (xk)+ P(xk + d(θ))− P(xk)

= ∇ f (xk)T d(θ)+ P(xk + d(θ))− P(xk)+ o(‖d(θ)‖)
≤ σ [∇ f (xk)T d(θ)+ P(xk + d(θ))− P(xk)], (34)

provided θ is sufficiently large. It implies that the conclusion holds.

The following lemma shows that the search directions {dk} approach zero, and the
sequence of objective function values {F(xk)} also converges.

Lemma 3.8 Suppose that F is bounded below in X and uniformly continuous in the
the level set L = {x ∈ X : F(x) ≤ F(x0)}. Then, the sequence {xk} generated by
the nonmonotone gradient method I satisfies limk→∞ dk = 0. Moreover, the sequence
{F(xk)} converges.
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Proof We first observe that {xk} ⊆ L. Let l(k) be an integer such that [k − M]+ ≤
l(k) ≤ k and

F(xl(k)) = max{F(xi ) : [k − M]+ ≤ i ≤ k}

for all k ≥ 0. We clearly observe that F(xk+1) ≤ F(xl(k)) for all k ≥ 0, which
together with the definition of l(k) implies that the sequence {F(xl(k))} is monotoni-
cally nonincreasing. Further, since F is bounded below in X , we have

lim
k→∞ F(xl(k)) = F∗ (35)

for some F∗ ∈ �. We next prove by induction that the following limits hold for all
j ≥ 1:

lim
k→∞ dl(k)− j = 0, lim

k→∞ F(xl(k)− j ) = F∗. (36)

Using (28) and (29) with k replaced by l(k)− 1, we obtain that

F(xl(k)) ≤ F(xl(l(k)−1))+ σ�l(k)−1. (37)

Replacing k and θ by l(k)−1 and θl(k)−1 in (33), respectively, and using Hl(k)−1 � λI
and the definition of �l(k)−1 (see (29)), we have

�l(k)−1 ≤ −λθl(k)−1‖dl(k)−1‖2.

The above two inequalities yield that

F(xl(k)) ≤ F(xl(l(k)−1))− σλθl(k)−1‖dl(k)−1‖2, (38)

which together with (35) implies that limk→∞ θl(k)−1‖dl(k)−1‖2 = 0. Further, notic-
ing that θk ≥ θ for all k, we obtain that limk→∞ dl(k)−1 = 0. Using this result and
(35), we have

lim
k→∞ F(xl(k)−1) = lim

k→∞ F(xl(k) − dl(k)−1) = lim
k→∞ F(xl(k)) = F∗, (39)

where the second equality follows from uniform continuity of F in L. Therefore, (36)
holds for j = 1. We now need to show that if (36) holds for j , then it also holds for
j + 1. Using a similar argument as that leading to (38), we have

F(xl(k)− j ) ≤ F(xl(l(k)− j−1))− σλθl(k)− j−1‖dl(k)− j−1‖2,

which together with (35), the induction assumption limk→∞ F(xl(k)− j ) = F∗, and the
fact that θl(k)− j−1 ≥ θ for all k, yields limk→∞ dl(k)− j−1 = 0. Using this result, the
induction assumption limk→∞ F(xl(k)− j ) = F∗, and a similar argument as that lead-
ing to (39), we can show that limk→∞ F(xl(k)− j−1) = F∗. Hence, (36) holds for j+1.
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Finally, we will prove that limk→∞ dk = 0 and limk→∞ F(xk) = F∗. By
the definition of l(k), we see that for k ≥ M + 1, k − M − 1 = l(k) − j for
some 1 ≤ j ≤ M + 1, which together with the first limit in (36), implies that
limk→∞ dk = limk→∞ dk−M−1 = 0. Additionally, we observe that

xl(k) = xk−M−1 +
l̄k∑

j=1

dl(k)− j ∀k ≥ M + 1,

where l̄k = l(k)− (k−M − 1) ≤ M + 1. Using the above identity, (36), and uniform
continuity of F in L, we see that limk→∞ F(xk) = limk→∞ F(xk−M−1) = F∗. Thus,
the conclusion of this lemma holds. ��

We are now ready to show that the nonmonotone gradient method I is globally
convergent.

Theorem 3.9 Suppose that F is bounded below in X and uniformly continuous in the
level set L = {x ∈ X : F(x) ≤ F(x0)}. Then, any accumulation point of the sequence
{xk} generated by the nonmonotone gradient method I is a stationary point of (23).

Proof Suppose for contradiction that x∗ is an accumulation point of {xk} that is a
nonstationary point of (23). Let K be the subsequence such that {xk}k∈K → x∗. We
first claim that {θk}k∈K is bounded. Suppose not. Then there exists a subsequence of
{θk}k∈K that goes to∞. Without loss of generality, we assume that {θk}k∈K → ∞.
For simplicity of notations, let θ̄k = θk/η, dk(θ) = dHk (θ)(xk) for k ∈ K and θ > 0,
where Hk(θ) = θ Hk . Since {θk}k∈K →∞ and θ0

k ≤ θ̄ , there exists some index k̄ ≥ 0
such that θk > θ0

k for all k ∈ K with k ≥ k̄. By the particular choice of θk specified in
steps (2a) and (2b), we have

F(xk + dk(θ̄k)) > max
[k−M]+≤i≤k

F(xi )+ σ [∇ f (xk)T dk(θ̄k)

+P(xk + dk(θ̄k))− P(xk)], (40)

Using a similar argument as that leading to (30), we have

θ̄k‖dk(θ̄k)‖ ≤ −2F ′(xk, dk(θ̄k)/‖dk(θ̄k)‖)
λmin(Hk)

∀k ∈ K ,

which along with the relations Hk � λI and {xk}k∈K → x∗, implies that
{θ̄k‖dk(θ̄k)‖}k∈K is bounded. Since {θ̄k}k∈K →∞, we further have {‖dk(θ̄k)‖}k∈K →
0. We now claim that

lim inf
k∈K ,k→∞ θ̄k‖dk(θ̄k)‖ > 0. (41)

Suppose not. By passing to a subsequence if necessary, we can assume that
{θ̄k‖dk(θ̄k)‖}k∈K → 0. Invoking that dk(θ̄k) is the optimal solution of (25) with
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x = xk and H = θ̄k Hk , we have

0 ∈ ∇ f (xk)+ θ̄k Hkdk(θ̄k)+ ∂ P(xk + dk(θ̄k))+ NX (xk + dk(θ̄k)) ∀k ∈ K .

Upon taking limits on both sides as k ∈ K → ∞, and using semicontinuity of
∂ P(·) and NX (·) (see Theorem 24.4 of [26] and Lemma 2.42 of [27]), the relations
λI � Hk � λ̄I, {‖dk(θ̄k)‖}k∈K → 0, {θ̄k‖dk(θ̄k)‖}k∈K → 0 and {xk}k∈K → x∗, we
see that (24) holds at x∗, which contradicts nonstationarity of x∗. Thus, (41) holds.
Now, using (41), the relation Hk � λI , and a similar argument as for deriving (32),
we obtain that ‖dk(θ̄k)‖ = O

(
θ̄kdk(θ̄k)

T Hkdk(θ̄k)
)

as k ∈ K →∞. Using this result
and a similar argument as the one leading to (34), we have

F(xk + dk(θ̄k)) ≤ max
[k−M]+≤i≤k

F(xi )+ σ [∇ f (xk)T dk(θ̄k)

+P(xk + dk(θ̄k))− P(xk)],

provided that k ∈ K is sufficiently large. The above inequality evidently contradicts
(40). Thus, {θk}k∈K is bounded.

Finally, invoking that dk = dk(θk) is the optimal solution of (25) with x = xk,

H = θk Hk , we have

0 ∈ ∇ f (xk)+ θk Hkdk + ∂ P(xk + dk)+ NX (xk + dk) ∀k ∈ K . (42)

By Lemma 3.8, we have {dk}k∈K → 0. Upon taking limits on both sides of (42) as
k ∈ K → ∞, and using semicontinuity of ∂ P(·) and NX (·) (see Theorem 24.4 of
[26] and Lemma 2.42 of [27]), and the relations λI � Hk � λ̄I, {dk}k∈K → 0 and
{xk}k∈K → x∗, we see that (24) holds at x∗, which contradicts the nonstationarity
of x∗ that is assumed at the beginning of this proof. Therefore, the conclusion of this
theorem holds. ��

We next analyze the asymptotic convergence rate of the nonmonotone gradient
method I under the following assumption, which is the same as the one made in [29].
In what follows, we denote by X̄ the set of stationary points of problem (23).

Assumption 2 (a) X̄ 
= ∅ and, for any ζ ≥ minx∈X F(x), there exists � > 0 and
ε > 0 such that

dist(x, X̄) ≤ �‖dI (x)‖ whenever F(x) ≤ ζ, ‖dI (x)‖ ≤ ε.

(b) There exists δ > 0 such that

‖x − y‖ ≥ δ whenever x ∈ X̄ , y ∈ X̄ , F(x) 
= F(y).

We are ready to establish local linear rate of convergence for the nonmonotone
gradient method I described above. The proof of the following theorem is inspired
by the work of Tseng and Yun [29], who analyzed a similar local convergence for a
coordinate gradient descent method for a class of nonsmooth minimization problems.
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Theorem 3.10 Let l(k) be an integer in [[k − M]+, k] such that F(xl(k)) =
max{F(xi ) : [k − M]+ ≤ i ≤ k} for all k ≥ 0. Suppose that Assumption 2 holds, f
satisfies (27), and F is bounded below in X and uniformly continuous in the level set
L = {x ∈ X : F(x) ≤ F(x0)}. Then, the sequence {xk} generated by the nonmono-
tone gradient method I satisfies

F(xl(k))− F∗ ≤ c(F(xl(l(k))−1) − F∗),

provided k is sufficiently large, where F∗ = limk→∞ F(xk) (see Lemma 3.8), and c
is some constant in (0, 1).

Proof Invoking θ0
k ≤ θ̄ and the specific choice of θk , we see from Lemma 3.6(d) that

θ̂ := supk θk < ∞. Let Hk(θ) = θ Hk . Then, it follows from λI � Hk � λ̄I and
θk ≥ θ that (θ · λ)I � Hk(θk) � θ̂ λ̄I . Using this relation, Lemma 3.5, Hk � λI , and
dk = dHk (θk )(xk), we obtain that

‖dI (xk)‖ = O
(
‖dk‖

)
, (43)

which together with Lemma 3.8 implies {dI (xk)} → 0. Thus, for any ε > 0, there
exists some index k̄ such that dI (xl(k)−1) ≤ ε for all k ≥ k̄. In addition, we clearly
observe that F(xl(k)−1) ≤ F(x0). Then, by Assumption 2(a) and (43), there exists
some index k′ such that

‖xl(k)−1 − x̄ l(k)−1‖ ≤ c1‖dl(k)−1‖ ∀k ≥ k′ (44)

for some c1 > 0 and x̄ l(k)−1 ∈ X̄ . Note that

‖xl(k+1)−1 − xl(k)−1‖ ≤
l(k+1)−2∑

i=l(k)−1

‖di‖ ≤
[k−1]+∑

i=[k−M−1]+
‖di‖,

which together with {dk} → 0, implies that ‖xl(k+1)−1 − xl(k)−1‖ → 0. Using this
result, (44), and Lemma 3.8, we obtain

‖x̄ l(k+1)−1 − x̄ l(k)−1‖ ≤ ‖xl(k+1)−1 − x̄ l(k+1)−1‖
+‖xl(k)−1 − x̄ l(k)−1‖ + ‖xl(k+1)−1 − x̄ l(k)−1‖
≤ c1‖dl(k+1)−1‖+c1‖dl(k)−1‖+‖xl(k+1)−1− x̄ l(k)−1‖ → 0.

It follows from this relation and Assumption 2(b) that there exists an index k̂ ≥ k′ and
v ∈ � such that

F(x̄ l(k)−1) = v ∀k ≥ k̂. (45)

Then, by Lemma 5.1 of [29], we see that

F∗ = lim
k→∞ F(xk) = lim inf

k→∞ F(xl(k)−1) ≥ v. (46)
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Further, using the definition of F , (27), (45), Lemma 3.6(b), and Hk(θk) � θ̂ λ̄I , we
have for k ≥ k̂,

F(xl(k))− v = f (xl(k))+ P(xl(k))− f (x̄ l(k)−1)− P(x̄ l(k)−1)

= ∇ f (x̃ k)T (xl(k) − x̄ l(k)−1)+ P(xl(k))− P(x̄ l(k)−1)

= (∇ f (x̃ k)−∇ f (xl(k)−1)T (xl(k) − x̄ l(k)−1)

−(Hl(k)−1(θl(k)−1)d
l(k)−1)T (xl(k) − x̄ l(k)−1)

+
[
(∇ f (xl(k)−1)+ Hl(k)−1(θl(k)−1)d

l(k)−1)T (xl(k) − x̄ l(k)−1)

+P(xl(k))− P(x̄ l(k)−1)
]

≤ L‖x̃ k − xl(k)−1‖‖xl(k) − x̄ l(k)−1‖ + θ̂ λ̄‖dl(k)−1‖‖xl(k) − x̄ l(k)−1‖,
(47)

where x̃ k is some point lying on the segment joining xl(k) with x̄ l(k)−1. It follows from
(44) that, for k ≥ k̂,

‖x̃ k − xl(k)−1‖ ≤ ‖xl(k) − xl(k)−1‖ + ‖xl(k)−1 − x̄ l(k)−1‖ = (1+ c1)‖dl(k)−1‖.

Similarly, ‖xl(k) − x̄ l(k)−1‖ ≤ (1+ c1)‖dl(k)−1‖ for k ≥ k̂. Using these inequalities,
Lemma 3.6(a), Hk(θk) � (θ · λ)I , and (47), we see that for k ≥ k̂,

F(xl(k))− v ≤ −c2�l(k)−1

for some constant c2 > 0. This inequality together with (37) gives

F(xl(k))− v ≤ c3

(
F(xl(l(k)−1))− F(xl(k))

)
∀k ≥ k̂, (48)

where c3 = c2/σ . Using limk→∞ F(xl(k)) = F∗, and upon taking limits on both sides
of (48), we see that F∗ ≤ v, which together with (46) implies that v = F∗. Using this
result and upon rearranging terms of (48), we have

F(xl(k))− F∗ ≤ c(F(xl(l(k))−1) − F∗) ∀k ≥ k̂,

where c = c3/(1+ c3). ��
We next present the second nonmonotone gradient method for (23) as follows.

Nonmonotone gradient method II:

Choose parameters 0 < η < 1, 0 < σ < 1, 0 < α < ᾱ, 0 < λ ≤ λ̄, and integer
M ≥ 0. Set k = 0 and choose x0 ∈ X .

(1) Choose λI � Hk � λ̄I .
(2) Solve (25) with x = xk and H = Hk to obtain dk = dH (x), and compute �k

according to (29).
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(3) Choose α0
k ∈ [α, ᾱ]. Find the smallest integer j ≥ 0 such that αk = α0

k η j satisfies

xk + αkdk ∈ X, F(xk + αkdk) ≤ max
[k−M]+≤i≤k

F(xi )+ σαk�k, (49)

where �k is defined in (29).
(4) Set xk+1 = xk + αkdk and k ← k + 1.

end

Remark The above method is closely related to the one proposed in [29]. In particular,
when the entire coordinate block, that is, J = {1, . . . , n}, is chosen for the method
[29], it becomes a special case of our method with M = 0, which is actually a gradient
descent method. Given that our method is generally a nonmonotone method when
M ≥ 1, most proofs of global and local convergence for the method [29] do not hold
for our method. In addition, our method can be viewed as an extension of one projected
gradient method (namely, SPG2) studied in [5] for smooth problems, but the method
[29] generally cannot. ��

We next prove global convergence of the nonmonotone gradient method II. Before
proceeding, we establish two technical lemmas below. The first lemma shows that if
xk ∈ X is a nonstationary point, there exists an αk > 0 in step (3) so that (49) is
satisfied, and hence the above method is well defined.

Lemma 3.11 Suppose that Hk � 0 and xk ∈ X is a nonstationary point of prob-
lem (23). Then, there exists α̃ > 0 such that dk = dHk (xk) satisfies (49) whenever
0 < αk ≤ α̃.

Proof In view of Lemma 2.1 of [29] with J = {1, . . . , n}, c = 1, x = xk , and
H = Hk , we have

F(xk + αdk) ≤ F(xk)+ α�k + o(α)

≤ max
[k−M]+≤i≤k

F(xi )+ α�k + o(α) ∀α ∈ (0, 1],

where �k is defined in (29). Using the assumption of this lemma, we see from Lemma
3.4 that dk 
= 0, which together with Hk � 0 and Lemma 3.6(a) implies �k < 0.
The conclusion of this lemma immediately follows from this relation and the above
inequality. ��

The following lemma shows that the scaled search directions {αkdk} approach zero,
and the sequence of objective function values {F(xk)} also converges.

Lemma 3.12 Suppose that F is bounded below in X and uniformly continuous in the
level set L = {x ∈ X : F(x) ≤ F(x0)}. Then, the sequence {xk} generated by the
nonmonotone gradient method II satisfies limk→∞ αkdk = 0. Moreover, the sequence
{F(xk)} converges.
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Proof Let l(k) be defined in the proof of Lemma 3.8. We first observe that {xk} ⊆ L.
Using (29), the definition of dk , and Hk � λI , we have

�k = ∇ f (xk)T dk + P(xk + dk)− P(xk) ≤ −1

2
(dk)T Hkdk ≤ −1

2
λ‖dk‖2, (50)

which together with the relation αk ≤ α0
k ≤ ᾱ, implies that

α2
k‖dk‖2 ≤ −2ᾱαk�k/λ. (51)

By a similar argument as that leading to (35), we see that {xk} satisfies (35) for some F∗.
We next show by induction that the following limits hold for all j ≥ 1:

lim
k→∞αl(k)− j d

l(k)− j = 0, lim
k→∞ F(xl(k)− j ) = F∗. (52)

Indeed, using (49) with k replaced by l(k)− 1, we obtain that

F(xl(k)) ≤ F(xl(l(k)−1))+ σαl(k)−1�l(k)−1.

It together with (35) immediately yields limk→∞ αl(k)−1�l(k)−1 = 0. Using this result
and (51), we see that the first identity of (52) holds for j = 1. Further, in view of
this identity, (35), and uniform continuity of F in L, we can easily see that the second
identity of (52) also holds j = 1. We now need to show that if (52) holds for j , then
it also holds for j + 1. First, it follows from (49) that

F(xl(k)− j ) ≤ F(xl(l(k)− j−1))+ σαl(k)− j−1�l(k)− j−1,

which together with (35) and the induction assumption that limk→∞ F(xl(k)− j ) =
F∗, yields limk→∞ αl(k)− j−1�l(k)− j−1 = 0. Using this result and (51), we have
limk→∞ αl(k)− j−1dl(k)− j−1 = 0. In view of this identity, uniform continuity of F in
L and the induction assumption limk→∞ F(xl(k)− j ) = F∗, we can easily show that
limk→∞ F(xl(k)− j−1) = F∗. Hence, (52) holds for j + 1. The conclusion of this
lemma then follows from (52) and a similar argument as that in the proof of Lemma
3.8. ��

We are now ready to show that the nonmonotone gradient method II is globally
convergent.

Theorem 3.13 Suppose that F is bounded below in X and uniformly continuous in
the level set L = {x ∈ X : F(x) ≤ F(x0)}. Then, any accumulation point of the
sequence {xk} generated by the nonmonotone gradient method II is a stationary point
of (23).

Proof Suppose for contradiction that x∗ is an accumulation point of {xk} that is a
nonstationary point of (23). Let K be the subsequence such that {xk}k∈K → x∗. We
first claim that lim infk∈K ,k→∞ ‖dk‖ > 0. Suppose not. By passing to a subsequence
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if necessary, we can assume that {‖dk‖}k∈K → 0. Invoking that dk is the optimal
solution of (25) with x = xk and H = Hk , we have

0 ∈ ∇ f (xk)+ Hkdk + ∂ P(xk + dk)+ NX (xk + dk) ∀k ∈ K .

Upon taking limits on both sides as k ∈ K → ∞, and using semicontinuity of
∂ P(·) and NX (·) (see Theorem 24.4 of [26] and Lemma 2.42 of [27]) the relations
λI � Hk � λ̄I, {‖dk‖}k∈K → 0 and {xk}k∈K → x∗, we see that (24) holds at x∗,
which contradicts the nonstationarity of x∗. Thus, lim infk∈K ,k→∞ ‖dk‖ > 0 holds.
Further, using a similar argument as that leading to (30), we have

‖dk‖ ≤ −2F ′(xk, dk/‖dk‖)
λmin(Hk)

∀k ∈ K ,

which together with {xk}k∈K → x∗, Hk � λI and lim infk∈K ,k→∞ ‖dk‖ > 0, implies
that {dk}k∈K is bounded. Further, using (50), we see that lim supk∈K ,k→∞�k < 0.
Now, it follows from Lemma 3.12 and the relation lim infk∈K ,k→∞ ‖dk‖ > 0 that
{αk}k∈K → 0. Since α0

k ≥ α > 0, there exists some index k̄ ≥ 0 such that αk < α0
k

and αk < η for all k ∈ K with k ≥ k̄. Let ᾱk = αk/η. Then, {ᾱk}k∈K → 0 and
0 < ᾱk ≤ 1 for all k ∈ K . By the stepsize rule used in step (3), we have, for all k ∈ K
with k ≥ k̄,

F(xk + ᾱkdk) > max
[k−M]+≤i≤k

F(xi )+ σ ᾱk�k, (53)

On the other hand, in view of the definition of F , (29), the boundedness of {dk}k∈K , the
relation lim supk∈K ,k→∞�k < 0, and the monotonicity of (P(xk+αdk)−P(xk))/α,
we obtain that, for sufficiently large k ∈ K ,

F(xk + ᾱkdk) = f (xk + ᾱkdk)+ P(xk + ᾱkdk)

= f (xk + ᾱkdk)− f (xk)+ P(xk + ᾱkdk)− P(xk)+ F(xk)

= ᾱk∇ f (xk)T dk + o(ᾱk‖dk‖)+ P(xk + ᾱkdk)− P(xk)+ F(xk)

≤ ᾱk∇ f (xk)T dk+o(ᾱk)+ᾱk[P(xk+dk)−P(xk)]+ max
[k−M]+≤i≤k

F(xi )

= max
[k−M]+≤i≤k

F(xi )+ ᾱk�k + o(ᾱk)

< max
[k−M]+≤i≤k

F(xi )+ σ ᾱk�k,

which clearly contradicts (53). Therefore, the conclusion of this theorem holds. ��
We next establish local linear rate of convergence for the nonmonotone gradient

method II described above. The proof of the following theorem is inspired by the work
of Tseng and Yun [29].

Theorem 3.14 Let l(k) be an integer in [[k − M]+, k] such that F(xl(k)) =
max{F(xi ) : [k − M]+ ≤ i ≤ k} for all k ≥ 0. Suppose that Assumption 2 holds,
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ᾱ ≤ 1, f satisfies (27), and F is bounded below in X and uniformly continuous in
the level set L = {x ∈ X : F(x) ≤ F(x0)}. Then, the sequence {xk} generated by the
nonmonotone gradient method II satisfies

F(xl(k))− F∗ ≤ c(F(xl(l(k))−1) − F∗)

provided k is sufficiently large, where F∗ = limk→∞ F(xk) (see Lemma 3.12), and c
is some constant in (0, 1).

Proof Since αk is chosen by the stepsize rule used in step (3) with α0
k ≥ α > 0,

we see from Lemma 3.6(c) that infk αk > 0. It together with Lemma 3.12 implies
that {dk} → 0. Further, using Lemma 3.5 and the fact that dk = dHk (xk) and λI �
Hk � λ̄I , we obtain that ‖dI (xk)‖ = �(‖dk‖), and hence {dI (xk)} → 0. Then, by a
similar argument as that in the proof of Theorem 3.10, there exist c1 > 0, v ∈ �, and
x̄ l(k)−1 ∈ X̄ such that

‖xl(k)−1 − x̄ l(k)−1‖ ≤ c1‖dl(k)−1‖, F(x̄ l(k)−1) = v ∀k ≥ k̂,

where k̂ is some index. Then, by Lemma 5.1 of [29], we see that (46) holds for {xk},
and the above F∗ and v. Further, using the definition of F , (27), Lemma 3.6(b), and
λI � Hk � λ̄I , we have, for k ≥ k̂,

F(xl(k))− v = f (xl(k))+ P(xl(k))− f (x̄ l(k)−1)− P(x̄ l(k)−1)

= ∇ f (x̃ k)T (xl(k) − x̄ l(k)−1)+ P(xl(k))− P(x̄ l(k)−1)

= (∇ f (x̃ k)−∇ f (xl(k)−1)T (xl(k)− x̄ l(k)−1)

−(Hl(k)−1dl(k)−1)T (xl(k) − x̄ l(k)−1)

+
[
(∇ f (xl(k)−1)+ Hl(k)−1dl(k)−1)T (xl(k) − x̄ l(k)−1)

+P(xl(k))− P(x̄ l(k)−1)
]

≤ L‖x̃ k − xl(k)−1‖‖xl(k) − x̄ l(k)−1‖ + λ̄‖dl(k)−1‖‖xl(k) − x̄ l(k)−1‖
+(αl(k)−1 − 1)

[
(dl(k)−1)T Hl(k)−1dl(k)−1 +�l(k)−1

]
, (54)

where x̃ k is some point lying on the segment joining xl(k) with x̄ l(k)−1. It follows from
(44) and αk ≤ 1 that, for k ≥ k̂,

‖x̃ k − xl(k)−1‖ ≤ ‖xl(k) − xl(k)−1‖ + ‖xl(k)−1 − x̄ l(k)−1‖ ≤ (1+ c1)‖dl(k)−1‖.

Similarly, ‖xl(k) − x̄ l(k)−1‖ ≤ (1+ c1)‖dl(k)−1‖ for k ≥ k̂. Using these inequalities,
Lemma 3.6(a), Hk � λI, αk ≤ 1, and (54), we see that, for k ≥ k̂,

F(xl(k))− v ≤ −c2�l(k)−1

for some constant c2 > 0. The remaining proof follows similarly as that of
Theorem 3.10. ��
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4 Augmented Lagrangian method for sparse PCA

In this section we discuss the applicability and implementation details of the aug-
mented Lagrangian method proposed in Sect. 3 for solving sparse PCA (3).

4.1 Applicability of augmented Lagrangian method for (3)

We first observe that problem (3) can be reformulated as

min
V∈�n×r

−Tr(V T �̂V )+ ρ • |V |
s.t. V T

i �̂Vj ≤ �i j ∀i 
= j,
−V T

i �̂Vj ≤ �i j ∀i 
= j,
V T V = I.

(55)

Clearly, problem (55) has the same form as (6). From Sect. 3.2, we know that the
sufficient conditions for convergence of our augmented Lagrangian method include:
i) a feasible point is explicitly given; and ii) Robinson’s condition (7) holds at an accu-
mulation point. It is easy to observe that any V ∈ �n×r consisting of r orthonormal
eigenvectors of �̂ is a feasible point of (55), and thus the first condition is trivially
satisfied. Given that the accumulation points are not known beforehand, it is hard
to check the second condition directly. Instead, we may check Robinson’s condition
at all feasible points of (55). However, due to complication of the constraints, we
are only able to verify Robinson’s condition at a set of feasible points below. Before
proceeding, we establish a technical lemma as follows that will be used subsequently.

Lemma 4.1 Let V ∈ �n×r be a feasible solution of (55). Given any W1, W2 ∈ Sr ,
the system of

δV T �̂V + V T �̂ δV + δD = W1, (56)

δV T V + V T δV = W2 (57)

has at least one solution (δV , δD) ∈ �n×r × Dr if one of the following conditions
holds:

(a) V T �̂V is diagonal and V T
i �̂Vi 
= V T

j �̂Vj for all i 
= j ;

(b) V T �̂(I − V V T )�̂V is nonsingular.

Proof Note that the columns of V consist of r orthonormal eigenvectors. Therefore,
there exist V̄ ∈ �n×(n−r) such that [V V̄ ] ∈ �n×n is an orthogonal matrix. It fol-
lows that for any δV ∈ �n×r , there exists δP ∈ �r×r and δ P̄ ∈ �(n−r)×r such that
δV = V δP + V̄ δ P̄ . Performing such a change of variable for δV , and using the fact
that the matrix [V V̄ ] is orthogonal, we can show that the system of (56) and (57) is
equivalent to

δPT G + GδP + δ P̄
T

Ḡ + ḠT δ P̄ + δD = W1, (58)

δPT + δP = W2, (59)
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where G = V T �̂V and Ḡ = V̄ T �̂V . The remaining proof of this lemma reduces
to show that the system of (58) and (59) has at least a solution (δP, δ P̄, δD) ∈
�r×r ×�(n−r)×r ×Dr if one of conditions (a) or (b) holds.

First, we assume that condition (a) holds. Then, G is a diagonal matrix and Gii 
=
G j j for all i 
= j . It follows that there exists a unique δP∗ ∈ �n×r satisfying δPii =
(W2)i i/2 for all i and

δPi j G j j + GiiδPi j = (W1)i j ∀i 
= j,
δPi j + δP ji = (W2)i j ∀i 
= j.

Now, let δ P̄
∗ = 0 and δD∗ = ˜Diag(W1 − GW2). It is easy to verify that

(δP∗, δ P̄
∗
, δD∗) is a solution of the system of (58) and (59).

We next assume that condition (b) holds. Given any δ P̄ ∈ �(n−r)×r , there exist
δY ∈ �(n−r)×r and δZ ∈ �r×r such that ḠT δY = 0 and δ P̄ = δY+ḠδZ . Performing
such a change of variable for δ P̄ , we see that (58) can be rewritten as

δPT G + GδP + δZ T ḠT Ḡ + ḠT ḠδZ + δD = W1. (60)

Thus, it suffices to show that the system of (59) and (60) has at least a solution
(δP, δZ , δD) ∈ �r×r × �r×r × Dr . Using the definition of Ḡ and the fact that the
matrix [V V̄ ] is orthogonal, we see that

ḠT Ḡ = V T �̂V̄ V̄ T �̂V = V T �̂(I − V V T )�̂V,

which together with condition (b) implies that ḠT Ḡ is nonsingular. Now, let

δP∗ = W2/2, δZ∗ = (ḠT Ḡ)−1(2W1 −W2G − GW2)/4, δD∗ = 0.

It is easy to verify that (δP∗, δZ∗, δD∗) is a solution of the system of (60) and (59).
Therefore, the conclusion holds. ��

We are now ready to show that Robinson’s condition (7) holds at a set of feasible
points of (55).

Proposition 4.2 Let V ∈ �n×r be a feasible solution of (55). The Robinson’s condi-
tion (7) holds at V if one of the following conditions hold:

(a) �i j = 0 and V T
i �̂Vi 
= V T

j �̂Vj for all i 
= j ;
(b) There is at least one active and one inactive inequality constraint of (55) at V ,

and V T �̂(I − V V T )�̂V is nonsingular;
(c) All inequality constraints of (55) are inactive at V .

Proof We first suppose that condition (a) holds. Then, it immediately implies that
V T �̂V is diagonal, and hence the condition (a) of Lemma 4.1 holds. In addition, we
observe that all constraints of (55) become equality ones. Using these facts and Lemma
4.1, we see that Robinson’s condition (7) holds at V . Next, we assume that condition
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(b) holds. It implies that condition (b) of Lemma 4.1 holds. The conclusion then fol-
lows directly from Lemma 4.1. Finally, suppose condition (c) holds. Then, Robinson’s
condition (7) holds at V if and only if (57) has at least a solution δV ∈ �n×r for any
W2 ∈ Sr . Noting that V T V = I , we easily see that δV = V W2/2 is a solution of
(57), and thus Robinson’s condition (7) holds at V . ��

From Proposition 4.2, we see that Robinson’s condition (7) indeed holds at a set
of feasible points of (55). Though we are not able to show that it holds at all feasi-
ble points of (55), we observe in our implementation that the accumulation points of
our augmented Lagrangian method generally satisfy one of the conditions described
in Proposition 4.2, and so Robinson’s condition usually holds at the accumulation
points. Moreover, we have never seen that our augmented Lagrangian method failed
to converge for an instance in our implementation so far.

4.2 Implementation details of augmented Lagrangian method for (55)

In this section, we show how our augmented Lagrangian method proposed in Sect. 3.2
can be applied to solve problem (55) (or, equivalently, (3)). In particular, we will
discuss the implementation details of outer and inner iterations of this method.

We first discuss how to efficiently evaluate the function and gradient involved in
our augmented Lagrangian method for problem (55). Suppose that � > 0 is a penalty
parameter, and {λ+i j }i 
= j and {λ−i j }i 
= j are the Lagrangian multipliers for the inequal-
ity constraints of (55), respectively, and μ ∈ Sr is the Lagrangian multipliers for the
equality constraints of (55). For convenience of presentation, let � ∈ Sr be the matrix
whose i j th entry equals the parameter �i j of (55) for all i 
= j and diagonal entries
are 0. Similarly, let λ+ (resp., λ−) be an r × r symmetric matrix whose i j th entry is
λ+i j (resp., λ−i j ) for all i 
= j and diagonal entries are 0. We now define λ ∈ �2r×r by
stacking λ+ over λ−. Using these notations, we observe that the associated Lagrangian
function for problem (55) can be rewritten as

L�(V, λ, μ) = w(V )+ ρ • |V |, (61)

where

w(V ) = −Tr(V T �̂V )+ 1

2�

⎛

⎝
∥∥∥∥∥

[(
λ+
λ−
)
+ �

(
S −�

−S −�

)]+∥∥∥∥∥

2

F

−
∥∥∥∥

(
λ+
λ−
)∥∥∥∥

2

F

⎞

⎠

+μ • R + �

2
‖R‖2F ,

and

S = V T �̂V −˜Diag(V T �̂V ), R = V T V − I. (62)
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It is not hard to verify that the gradient of w(V ) can be computed according to

∇w(V ) = 2
(
−�̂V

(
I − [λ+ + �S − ��]+ + [λ− − �S − ��]+)+ V (μ+ �R)

)
.

Clearly, the main effort for the above function and gradient evaluations lies in comput-
ing V T �̂V and �̂V . When �̂ ∈ S p is explicitly given, the computational complexity
for evaluating these two quantities is O(p2r). In practice, we are, however, typically
given the data matrix X ∈ �n×p. Assuming the column means of X are 0, the sample
covariance matrix �̂ can be obtained from �̂ = X T X/(n − 1). Nevertheless, when
p � n, we observe that it is not efficient to compute and store �̂. Also, it is much
cheaper to compute V T �̂V and �̂V by using �̂ implicitly rather than explicitly.
Indeed, we can first evaluate X V , and then compute V T �̂V and �̂V according to

V T �̂V = (X V )T (X V )/(n − 1), �̂V = X T (X V )/(n − 1).

Then, the resulting overall computational complexity is O(npr), which is clearly much
superior to the one by using �̂ explicitly, that is, O(p2r).

We now address initialization and termination criterion for our augmented
Lagrangian method. In particular, we choose initial point V 0

init and feasible point V feas

to be the loading vectors of the r standard PCs, that is, the orthonormal eigenvectors
corresponding to r largest eigenvalues of �̂. In addition, we set initial penalty parame-
ter and Lagrangian multipliers to be 1, and set the parameters τ = 0.2 and σ = 10. We
terminate our method once the constraint violation and the relative difference between
the augmented Lagrangian function and the regular objective function are sufficiently
small, that is,

max
i 
= j
[|V T

i �̂Vj | −�i j ]+ ≤ εI , max
i, j
|Ri j | ≤ εE ,

|L�(V, λ, μ)− f (V )|
max (| f (V )|, 1)

≤ εO ,

(63)

where f (V ) = −Tr(V T �̂V )+ρ • |V |, R is defined in (62), and εI , εE , εO are some
prescribed accuracy parameters corresponding to inequality constraints, equality con-
straints and objective function, respectively.

We next discuss how to apply the nonmonotone gradient methods proposed in
Sect. 3.3 for the augmented Lagrangian subproblems, which are in the form of

min
V

L�(V, λ, μ), (64)

where the function L�(·, λ, μ) is defined in (61). Given that the implementation details
of those nonmonotone gradient methods are similar, we only focus on the first one,
that is, the nonmonotone gradient method I. First, the initial point for this method
can be chosen according to the scheme described at the end of Sect. 3.2. In addition,
given the kth iterate V k , we choose Hk = β−1

k I according to the scheme proposed
by Barzilai and Borwein [2], which was also used by Birgin et al. [5] for studying a
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class of projected gradient methods. Indeed, let 0 < βmin < βmax be given. Initially,
choose an arbitrary β0 ∈ [βmin, βmax]. Then, βk is updated as follows:

βk+1 =
{

βmax, if bk ≤ 0;
max{βmin, min{βmax, ak/bk}}, otherwise,

where ak = ‖V k − V k−1‖2F and bk = (V k − V k−1) • (∇w(V k)− ∇w(V k−1)). The
search direction dk is then computed by solving subproblem (25) with H = θk Hk for
some θk > 0, which in the context of (18) and (61) becomes

dk := arg min
d

{
∇w(V k) • d + 1

2θkβk
‖d‖2F + ρ • |V k + d|

}
. (65)

It is not hard to verify that the optimal solution of problem (65) has a closed-form
expression, which is given by

dk = sign(C)� [|C | − θkβkρ]+ − V k,

where C = V k−θkβk∇w(V k). In addition, we see from Lemma 3.4 that the following
termination criterion is suitable for this method when applied to (64):

maxi j |dI (V k)|i j

max(|L�(V k, λ, μ)|, 1)
≤ ε,

where dI (V k) is the solution of (65) with θkβk = 1, and ε is a prescribed accuracy
parameter. In our numerical implementation, we setβ0 = 1/ maxi j |dI (V 0)|i j , βmax =
1015, βmin = 10−15 and ε = 10−4.

Finally, it shall be mentioned that for the sake of practical performance, the numeri-
cal implementation of our augmented Lagrangian method is slightly different from the
one described in Sect. 3.2. In particular, we follow a similar scheme as discussed on
pp. 405 of [4] to adjust penalty parameter and Lagrangian multipliers. Indeed, they are
updated separately rather than simultaneously. Roughly speaking, given γ ∈ (0, 1),
we adjust penalty parameter only when the constraint violation is not decreased by a
factor γ over the previous minimization. Similarly, we update Lagrangian multipli-
ers only when the constraint violation is decreased by a factor γ over the previous
minimization. We choose γ = 0.25 in our implementation as recommended in [4].

5 Numerical results

In this section, we conduct numerical experiments for the augmented Lagrangian
method detailed in Sects. 3.2 and 4.2 for formulation (55) (or, equivalently, (3)) of
sparse PCA on synthetic, random, Pitprops, and gene expression data. In particular,
we compare the results of our approach with several existing sparse PCA methods in
terms of total explained variance, correlation of PCs, and orthogonality of loading vec-
tors, which include the generalized power methods (Journée et al. [18]), the DSPCA
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Table 1 Sparse PCA methods
used for our comparison GPowerl1 Single-unit sparse PCA via l1-penalty

GPowerl0 Single-unit sparse PCA via l0-penalty
GPowerl1,m Block sparse PCA via l1-penalty
GPowerl0,m Block sparse PCA via l0-penalty
DSPCA DSPCA algorithm
SPCA SPCA algorithm
rSVD sPCA-rSVD algorithm with soft thresholding
ALSPCA Augmented Lagrangian algorithm

algorithm (d’Aspremont et al. [10]), the SPCA algorithm (Zou et al. [31]), and the
sPCA-rSVD algorithm (Shen and Huang [28]). We list all the methods used in this sec-
tion in Table 1. Specifically, the methods with the prefix ‘GPower’ are the generalized
power methods studied in [18], and the method ALSPCA is the augmented Lagrang-
ian method proposed in this paper. In addition, the codes of the GPower methods and
ALSPCA are written in MATLAB. All computations in this section are performed
on a Lenovo PC with an AMD Phenom(tm) IIX4 900e 2.40 GHz processor and 4 GB
memory.

As discussed in Sect. 2, the PCs obtained from the standard PCA based on sample
covariance matrix �̂ ∈ �n×p are nearly uncorrelated when the sample size is suffi-
ciently large, and the total explained variance by the first r PCs approximately equals
the sum of the individual variances of PCs, that is, Tr(V T �̂V ), where V ∈ �p×r

consists of the loading vectors of these PCs. However, the PCs found by sparse PCA
methods may be correlated with each other, and thus the quantity Tr(V T �̂V ) can over-
estimate much the total explained variance by these PCs due to the overlap among
their individual variances. In response to such an overlap, two adjusted total explained
variances were proposed in [31,28]. It is not hard to observe that they can be viewed
as the total explained variance of a set of transformed variables from the estimated
sparse PCs. Given that these transformed variables can distinguish dramatically from
those sparse PCs, their total explained variances may also differ much from each other.
To alleviate this drawback while taking into account the possible correlations among
PCs, we naturally introduce the following adjusted total explained variance for sparse
PCs:

AdjVarV = Tr(V T �̂V )−
√∑

i 
= j

(V T
i �̂Vj )2.

It is not hard to show that AdjVar ≥ 0 for any V ∈ �p×r provided �̂ � 0. Clearly,
when the PCs are uncorrelated, it becomes the usual total explained variance, that
is, Tr(V T �̂V ). We can also define the cumulative percentage of adjusted variance
(CPAV) for the first r sparse PCs as the quotient of the adjusted total explained
variance of these PCs and the total explained variance by all standard PCs, that is,
AdjVarV/Tr(�̂).

Finally, we shall stress that the main purpose of this section is to compare the quality
of the sparse PCs found by those methods listed in Table 1 in terms of orthogonal-
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ity, uncorrelation and total explained variance. Therefore, we will not compare the
speed of these methods. Nevertheless, it shall be mentioned that our method, that is,
ALSPCA, is a first-order method and capable of solving large-scale problems within a
reasonable amount of time as demonstrated in our experiments presented in Sect. 5.4.

5.1 Synthetic data

In this subsection we use the synthetic data introduced by Zou et al. [31] to test the
effectiveness of our approach ALSPCA for finding sparse PCs.

The synthetic example [31] considers three hidden factors:

V1 ∼ N (0, 290), V2 ∼ N (0, 300), V3 = −0.3V1 + 0.925V2 + ε, ε ∼ N (0, 1),

where V1, V2 and ε are independent. Then the 10 observable variables are generated
as follows:

Xi = V1 + ε1
i , ε1

i ∼ N (0, 1), i = 1, 2, 3, 4,

Xi = V2 + ε2
i , ε2

i ∼ N (0, 1), i = 5, 6, 7, 8,

Xi = V3 + ε3
i , ε3

i ∼ N (0, 1), i = 9, 10,

where ε
j
i are independent for j = 1, 2, 3 and i = 1, . . . , 10. We will use the actual

covariance matrix of (X1, . . . , X10) to find the standard and sparse PCs, respectively.
We first observe that V1 and V2 are independent, but V3 is a linear combination of

V1 and V2. Moreover, the variances of these three underlying factors V1, V2 and V3
are 290, 300, and 283.8, respectively. Thus V2 is slightly more important than V1, and
they both are more important than V3. In addition, the first two standard PCs together
explain 99.72% of the total variance (see Table 2). These observations suggest that: i)
the first two sparse PCs may be sufficient to explain most of the variance; and ii) the
first sparse PC recovers the most important factor V2 using (X5, X6, X7, X8), and the
second sparse PC recovers the second important factor V1 using (X1, X2, X3, X4).

Table 2 Loadings of the first
two PCs by standard PCA and
ALSPCA

Synthetic data

Variable PCA ALSPCA

PC1 PC2 PC1 PC2

X1 0.1158 0.4785 0 0.5000
X2 0.1158 0.4785 0 0.5000
X3 0.1158 0.4785 0 0.5000
X4 0.1158 0.4785 0 0.5000
X5 −0.3955 0.1449 −0.5000 0
X6 −0.3955 0.1449 −0.5000 0
X7 −0.3955 0.1449 −0.5000 0
X8 −0.3955 0.1449 −0.5000 0
X9 −0.4005 −0.0095 0 0
X10 −0.4005 −0.0095 0 0
CPAV (%) 99.72 80.46
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Table 3 Loadings of the first six PCs by standard PCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam 0.4038 0.2178 0.2073 0.0912 0.0826 0.1198
Length 0.4055 0.1861 0.2350 0.1027 0.1128 0.1629
Moist 0.1244 0.5406 −0.1415 −0.0784 −0.3498 −0.2759
Testsg 0.1732 0.4556 −0.3524 −0.0548 −0.3558 −0.0540
Ovensg 0.0572 −0.1701 −0.4812 −0.0491 −0.1761 0.6256
Ringtop 0.2844 −0.0142 −0.4753 0.0635 0.3158 0.0523
Ringbut 0.3998 −0.1897 −0.2531 0.0650 0.2151 0.0026
Bowmax 0.2936 −0.1892 0.2431 −0.2856 −0.1853 −0.0551
Bowdist 0.3566 0.0171 0.2076 −0.0967 0.1061 0.0342
Whorls 0.3789 −0.2485 0.1188 0.2050 −0.1564 −0.1731
Clear −0.0111 0.2053 0.0704 −0.8036 0.3430 0.1753
Knots −0.1151 0.3432 −0.0920 0.3008 0.6003 −0.1698
Diaknot −0.1125 0.3085 0.3261 0.3034 −0.0799 0.6263

Pitprops data

Given that (X5, X6, X7, X8) and (X1, X2, X3, X4) are independent, these sparse PCs
would be uncorrelated and orthogonal each other.

In our test, we set r = 2,�i j = 0 for all i 
= j , and ρ = 4 for formulation (55)
of sparse PCA. In addition, we choose (63) as the termination criterion for ALSPCA
with εI = εO = 0.1 and εE = 10−3. The results of standard PCA and ALSPCA for
this example are presented in Table 2. The loadings of standard and sparse PCs are
given in columns two and three, respectively, and their CPAVs are given in the last
row. We clearly see that our sparse PCs are consistent with the ones predicted above.
Interestingly, they are identical with the ones obtained by SPCA and DSPCA reported
in [10,31]. For general data, however, these methods may perform quite differently
(see Sect. 5.2).

5.2 Pitprops data

In this subsection we test the performance of our approach ALSPCA for finding sparse
PCs on the Pitprops data introduced by Jeffers [16]. We also compare the results with
several existing methods [10,18,28,31].

The Pitprops data [16] has 180 observations and 13 measured variables. It is a clas-
sic example that illustrates the difficulty of interpreting PCs. Recently, several sparse
PCA methods [10,19,28,31] have been applied to this data set for finding six sparse
PCs by using the actual covariance matrix. For ease of comparison, we present the
standard PCs, and the sparse PCs by some of those methods in Tables 3, 4, 5, and
6, respectively. We shall mention that two groups of sparse PCs were found in [10]
by DSPCA with the parameter k1 = 5 or 6, and they have similar sparsity and total
explained variance (see [10] for details). Thus we only present the latter one (i.e., the
one with k1 = 6) in Table 6. Also, we applied the GPower methods [18] to this data
set for finding the PCs with the sparsity given by the largest one of those found in
[10,28,31], and observed that the best result was given by GPowerl0 . Thus we only
report the sparse PCs obtained by GPowerl0 in Table 7. In addition, we present spar-
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Table 4 Loadings of the first six PCs by SPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.477 0 0 0 0 0
Length −0.476 0 0 0 0 0
Moist 0 0.785 0 0 0 0
Testsg 0 0.620 0 0 0 0
Ovensg 0.177 0 0.640 0 0 0
Ringtop 0 0 0.589 0 0 0
Ringbut −0.250 0 0.492 0 0 0
Bowmax −0.344 −0.021 0 0 0 0
Bowdist −0.416 0 0 0 0 0
Whorls −0.400 0 0 0 0 0
Clear 0 0 0 −1 0 0
Knots 0 0.013 0 0 −1 0
Diaknot 0 0 −0.015 0 0 1

Pitprops data

Table 5 Loadings of the first six PCs by rSVD

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.449 0 0 −0.114 0 0
Length −0.460 0 0 −0.102 0 0
Moist 0 −0.707 0 0 0 0
Testsg 0 −0.707 0 0 0 0
Ovensg 0 0 0.550 0 0 −0.744
Ringtop −0.199 0 0.546 −0.176 0 0
Ringbut −0.399 0 0.366 0 0 0
Bowmax −0.279 0 0 0.422 0 0
Bowdist −0.380 0 0 0.283 0 0
Whorls −0.407 0 0 0 0.231 0
Clear 0 0 0 −0.785 −0.973 0
Knots 0 0 0 −0.265 0 0.161
Diaknot 0 0 −0.515 0 0 −0.648

Pitprops data

sity, CPAV, non-orthogonality and correlation of the PCs obtained by the standard
PCA and sparse PCA methods [10,18,28,31] in columns two to five of Table 11,
respectively. In particular, the second and fifth columns of this table respectively give
sparsity (measured by the number of zero loadings) and CPAV. The third column
reports non-orthogonality, which is measured by the maximum absolute difference
between 90◦ and the angles formed by all pairs of loading vectors. Clearly, the smaller
value in this column implies the better orthogonality. The fourth column presents the
maximum correlation of PCs. Though the PCs given by these sparse PCA methods
all have nice sparsity, we observe from Table 11 that they are highly correlated and
moreover, almost all of them are far from orthogonal except the ones given by SPCA
[31]. To improve the quality of sparse PCs, we next apply our approach ALSPCA,
and compare the results with these methods. For all tests below, we choose (63) as the
termination criterion for ALSPCA with εO = 0.1 and εI = εE = 10−3.
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Table 6 Loadings of the first six PCs by DSPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.4907 0 0 0 0 0
Length −0.5067 0 0 0 0 0
Moist 0 0.7071 0 0 0 0
Testsg 0 0.7071 0 0 0 0
Ovensg 0 0 0 0 −1.0000 0
Ringtop −0.0670 0 −0.8731 0 0 0
Ringbut −0.3566 0 −0.4841 0 0 0
Bowmax −0.2335 0 0 0 0 0
Bowdist −0.3861 0 0 0 0 0
Whorls −0.4089 0 0 0 0 0
Clear 0 0 0 0 0 1.0000
Knots 0 0 0 1.0000 0 0
Diaknot 0 0 0.0569 0 0 0

Pitprops data

Table 7 Loadings of the first six PCs by GPowerl0

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam −0.4182 0 0 0 0 0
Length −0.4205 0 0 0 0 0
Moist 0 −0.7472 0 0 0 0
Testsg −0.1713 −0.6646 0 0 0 0
Ovensg 0 0 0 0 −0.7877 0
Ringtop −0.2843 0 0 0 −0.6160 0
Ringbut −0.4039 0 0 0 0 0
Bowmax −0.3002 0 0 0 0 0
Bowdist −0.3677 0 0 0 0 0
Whorls −0.3868 0 0 0 0 0
Clear 0 0 0 0 0 1.0000
Knots 0 0 0 1.0000 0 0
Diaknot 0 0 1.0000 0 0 0

Pitprops data

In the first experiment, we aim to find six nearlry uncorrelated and orthogonal
sparse PCs by ALSPCA while explaining most of variance. In particular, we set r =
6,�i j = 0.07 for all i 
= j and ρ = 0.8 for formulation (55) of sparse PCA. The
resulting sparse PCs are presented in Table 8, and their sparsity, CPAV, non-orthogo-
nality and correlation are reported in row seven of Table 11. We easily observe that our
method ALSPCA overall outperforms the other sparse PCA methods substantially in
all aspects except sparsity. Naturally, we can improve the sparsity by increasing the
values of ρ, yet the total explained variance may be sacrificed as demonstrated in our
next experiment.

We now attempt to find six PCs with similar correlation and orthogonality but higher
sparsity than those given in the above experiment. For this purpose, we set �i j = 0.07
for all i 
= j and choose ρ = 2.1 for problem (55) in this experiment. The resulting
sparse PCs are presented in Table 9, and their CPAV, non-orthogonality and correlation
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Table 8 Loadings of the first six PCs by ALSPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam 0.4394 0 0 0 0 0
Length 0.4617 0 0 0 0 0
Moist 0.0419 0.4611 −0.1644 0.0688 −0.3127 0
Testsg 0.1058 0.7902 0 0 0 0
Ovensg 0.0058 0 0 0 0 0
Ringtop 0.1302 0 0.2094 0 0 0.9999
Ringbut 0.3477 0 0.0515 0 0.3240 0
Bowmax 0.2256 −0.3566 0 0 0 0
Bowdist 0.4063 0 0 0 0 0
Whorls 0.4606 0 0 0 0 −0.0125
Clear 0 0.0369 0 −0.9973 0 0
Knots −0.1115 0.1614 −0.0762 0.0239 0.8929 0
Diaknot −0.0487 0.0918 0.9595 0.0137 0 0

Pitprops data: Test I

Table 9 Loadings of the first six PCs by ALSPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam 1.0000 0 0 0 0 0
Length 0 −0.2916 −0.1421 0 0 −0.0599
Moist 0 0.9565 −0.0433 0 0 −0.0183
Testsg 0 0 0 0.0786 −0.1330 0
Ovensg 0 0 −0.9683 0 0 0
Ringtop 0 0 0 0 0 0
Ringbut 0 0 0.1949 0 0.2369 0
Bowmax 0 0 0 0 0 0
Bowdist 0 0 0 0 0 0
Whorls 0 0 0 0 0 0
Clear 0 0 0 −0.9969 0 0
Knots 0 0 −0.0480 0.0109 0.9624 0
Diaknot 0 0 −0.0093 0 0 0.9980

Pitprops data: Test II

of these PCs are given in row eight of Table 11. Compared to the PCs found in the
above experiment, the ones obtained in this experiment are much more sparse while
retaining almost same correlation and orthogonality. However, their CPAV goes down
dramatically. Combining the results of these two experiments, we deduce that for the
Pitprops data, it seems not possible to extract six highly sparse (e.g., around 60 zero
loadings), nearly orthogonal and uncorrelated PCs while explaining most of variance
as they may not exist. The following experiment further sustains such a deduction.

Finally we are interested in exploring how the correlation controlling parameters
�i j (i 
= j) affect the performance of the sparse PCs. In particular, we set �i j = 0.5
for all i 
= j and choose ρ = 0.7 for problem (55). The resulting sparse PCs are
presented in Table 10, and their CPAV, non-orthogonality and correlation of these PCs
are given in the last row of Table 11. We see that these PCs are highly sparse, orthog-
onal, and explain good amount of variance. However, they are quite correlated each
other, which is actually not surprising since �i j (i 
= j) are not small. Despite such a
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Table 10 Loadings of the first six PCs by ALSPCA

Variable PC1 PC2 PC3 PC4 PC5 PC6

Topdiam 0.4051 0 0 0 0 0
Length 0.4248 0 0 0 0 0
Moist 0 0.7262 0 0 0 0
Testsg 0.0018 0.6875 0 0 0 0
Ovensg 0 0 −1.0000 0 0 0
Ringtop 0.1856 0 0 0 0 0
Ringbut 0.4123 0 0 0 0 0
Bowmax 0.3278 0 0 0 0 0
Bowdist 0.3830 0 0 0 0 0
Whorls 0.4437 −0.0028 0 0 0 0
Clear 0 0 0 −1.0000 0 0
Knots 0 0 0 0 1.0000 0
Diaknot 0 0 0 0 0 1.0000

Pitprops data: Test III

Table 11 Comparison of SPCA, rSVD, DSPCA, GPowerl0 and ALSPCA

Method Sparsity Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 87.00
SPCA 60 0.86 0.395 66.21
rSVD 53 14.76 0.459 67.04
DSPCA 63 13.63 0.573 60.97
GPowerl0 63 10.09 0.353 64.15
ALSPCA-1 46 0.03 0.082 69.55
ALSPCA-2 60 0.03 0.084 39.42
ALSPCA-3 63 0.00 0.222 65.97

Pitprops data

drawback, these sparse PCs still overall outperform those obtained by SPCA, rSVD,
DSPCA and GPowerl1 .

From the above experiments, we may conclude that for the Pitprops data, there do
not exist six highly sparse, nearly orthogonal and uncorrelated PCs while explaining
most of variance. Therefore, the most acceptable sparse PCs seem to be the ones given
in Table 8.

5.3 Gene expression data

In this subsection we test the performance of our approach ALSPCA for finding sparse
PCs on the gene expression data. We also compare the results with the GPower meth-
ods [18], which are superior to the other existing methods [10,28,31] as demonstrated
in [18].

The data set used in this subsection is the publicly available gene expression data
from http://www.icbp.lbl.gov/breastcancer/, and described in Chin et al. [8], consisting
of 19672 gene expression measurements on 89 samples (that is, p = 19672, n = 89).
We aim to extract r number of PCs with around 80% zeros by ALSPCA and GPow-
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Table 12 Performance on the gene expression data for r = 5

Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 34.77
GPowerl1 80.14 7.56 0.348 22.17
GPowerl0 79.70 5.47 0.223 22.79
GPowerl1,m 79.64 7.39 0.274 22.68
GPowerl0,m 80.36 12.47 0.452 22.23
ALSPCA 80.43 0.07 0.010 20.56

Table 13 Performance on the gene expression data for r = 10

Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 46.16
GPowerl1 80.11 4.93 0.387 31.16
GPowerl0 79.84 4.62 0.375 31.45
GPowerl1,m 79.95 6.31 0.332 31.80
GPowerl0,m 80.36 6.45 0.326 31.59
ALSPCA 80.51 0.01 0.017 29.85

Table 14 Performance on the gene expression data for r = 15

Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 53.27
GPowerl1 79.56 4.73 0.253 38.29
GPowerl0 79.84 4.02 0.284 38.32
GPowerl1,m 79.39 5.94 0.347 38.31
GPowerl0,m 79.99 5.18 0.307 38.19
ALSPCA 80.16 0.01 0.014 33.92

er methods [18] for r = 5, 10, 15, 20, 25, respectively. For all tests below, we set
�i j = 0.1 for all i 
= j for problem (55) and choose (63) as the termination criterion
for ALSPCA with εE = 0.1 and εO = 0.1.

The sparsity, CPAV, non-orthogonality and correlation of the PCs obtained by the
standard PCA, ALSPCA and GPower methods are presented in columns two to five of
Tables 12, 13, 14, 15 and 16 for r = 5, 10, 15, 20, 25, respectively. In particular, the
second and fifth columns of these tables respectively give sparsity (that is, the percent-
age of zeros in loadings) and CPAV. The third column reports non-orthogonality, which
is measured by the maximum absolute difference between 90◦ and the angles formed
by all pairs of loading vectors. Evidently, the smaller value in this column implies the
better orthogonality. The fourth column presents the maximum correlation of PCs. It
is clear that the standard PCs are completely dense. We also observe that the sparse
PCs given by our method are almost uncorrelated and their loading vectors are nearly
orthogonal, which are consistently much superior to the GPower methods. Though the
CPAV for GPower methods is better than our method, the CPAV for GPower methods
may not be a close measurement of the actual total explained variance as their sparse
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Table 15 Performance on the gene expression data for r = 20

Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 59.60
GPowerl1 79.51 4.37 0.280 43.30
GPowerl0 80.16 4.52 0.245 43.12
GPowerl1,m 79.61 4.48 0.317 42.98
GPowerl0,m 80.40 4.18 0.255 43.25
ALSPCA 80.66 0.11 0.037 39.59

Table 16 Performance on the gene expression data for r = 25

Method Sparsity (%) Non-orthogonality Correlation CPAV (%)

PCA 0 0 0 64.67
GPowerl1 79.48 3.60 0.237 47.74
GPowerl0 79.94 3.05 0.296 47.76
GPowerl1,m 79.49 5.05 0.275 47.85
GPowerl0,m 80.39 5.00 0.237 47.45
ALSPCA 80.68 0.02 0.021 43.66

PCs are highly correlated. But for our method, the sparse PCs are almost uncorrelated
and thus the CPAV can measure well their actual total explained variance.

5.4 Random data

In this subsection we conduct experiments on a set of randomly generated data to test
how the size of data matrix X , the sparsity controlling parameter ρ, and the number
of components r affect the computational speed of our ALSPCA method.

First, we randomly generate 100 centered data matrices X with size n × p that is
specified in the tables below. For all tests, we set �i j = 0.1 for all i 
= j for prob-
lem (55) and choose (63) as the termination criterion for ALSPCA with εE = 0.1
and εO = 0.1. In the first test, we aim to extract five sparse PCs by ALSPCA with
ρ = 0.001, 0.01, 0.1, 1, respectively. In the second test, we aim to extract 5 to 25 PCs
with a fixed ρ = 0.1 by ALSPCA. In the third test, we fix the sparsity (that is, percent-
age of zeros) of the PC loadings to 80% and find r number of sparse PCs by ALSPCA
with r = 5, 10, 15, 20, 25, respectively. The average CPU times (in seconds) of ALS-
PCA over the above 100 instances are reported in Tables 17, 18 and 19. We observe
that ALSPCA is capable of solving all problems within a reasonable amount of time.
It seems that the CPU time grows linearly as the problem size, sparsity controlling
parameter ρ, and number of components r increase.

6 Concluding remarks

In this paper we proposed a new formulation of sparse PCA for finding sparse and
nearly uncorrelated principal components (PCs) with orthogonal loading vectors while
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Table 17 Average CPU time of ALSPCA on random data for r = 5

n × p ρ = 0.001 ρ = 0.01 ρ = 0.1 ρ = 1

50× 500 0.4 0.8 1.2 4.9
100× 1000 1.2 1.5 2.4 9.5
250× 2500 3.7 4.4 13.3 38.8
500× 5000 8.8 13.4 15.6 65.6
750× 7500 13.6 24.0 33.2 96.3

Table 18 Average CPU time of ALSPCA on random data for ρ = 0.1

n × p r = 5 r = 10 r = 15 r = 20 r = 25

50× 500 1.2 12.8 24.0 37.6 48.8
100× 1000 2.4 16.9 28.7 40.8 144.0
250× 2500 13.4 64.2 94.8 125.1 373.6
500× 5000 16.5 85.5 141.9 186.6 553.1
750× 7500 38.1 96.6 217.6 328.6 798.2

Table 19 Average CPU time of ALSPCA on random data for 80% sparsity

n × p r = 5 r = 10 r = 15 r = 20 r = 25

50× 500 11.5 26.5 33.6 43.0 49.7
100× 1000 15.2 29.3 57.8 83.7 102.7
250× 2500 20.7 39.5 79.7 98.0 120.0
500× 5000 41.5 60.3 91.4 143.1 197.0
750× 7500 55.3 90.4 141.7 208.3 255.1

explaining as much of the total variance as possible. We also developed a novel glob-
ally convergent augmented Lagrangian method for solving a class of nonsmooth con-
strained optimization problems, which is well suited for our formulation of sparse
PCA. Additionally, we proposed two nonmonotone gradient methods for solving the
augmented Lagrangian subproblems, and established their global and local conver-
gence. Finally, we compared our sparse PCA approach with several existing methods
on synthetic and real data, respectively. The computational results demonstrate that
the sparse PCs produced by our approach substantially outperform those by other
methods in terms of total explained variance, correlation of PCs, and orthogonality of
loading vectors.

As observed in our experiments, formulation (3) is very effective in finding the
desired sparse PCs. However, there remains a natural theoretical question for it. Given
a set of random variables, suppose there exist sparse and uncorrelated PCs with orthog-
onal loading vectors while explaining most of variance of the variables. In other words,
their actual covariance matrix � has few dominant eigenvalues and the associated
orthonormal eigenvectors are sparse. Since � is typically unknown and only approx-
imated by a sample covariance matrix �̂, one natural question is whether or not there
exist some suitable parameters ρ and �i j (i 
= j) so that (3) is able to recover those
sparse PCs almost surely as the sample size becomes sufficiently large.
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In Sect. 4 we showed that Robinson’s condition (7) holds at a set of feasible points
of (55). We also observed from our experiments that the accumulation points of our
augmented Lagrangian method lie in this set when applied to (55), and thus it con-
verges. However, it remains open whether or not Robinson’s condition holds at all
feasible points of (55).

In addition, Burer and Monteiro [6] recently applied the classical augmented
Lagrangian method to a nonconvex nonlinear program (NLP) reformulation of semi-
definite programs (SDP) via low-rank factorization, and they obtained some nice
computational results especially for the SDP relaxations of several hard combina-
torial optimization problems. However, the classical augmented Lagrangian method
generally cannot guarantee the convergence to a feasible point when applied to a non-
convex NLP. Due to this and [22], their approach [6] at least theoretically may not
converge to a feasible point of the primal SDP. Given that the augmented Lagrangian
method proposed in this paper converges globally under some mild assumptions, it
would be interesting to apply it to the NLP reformulation of SDP and compare the
performance with the approach studied in [6].

Finally, the MATLAB codes of our approach for solving the sparse PCA formula-
tion (55) (or, equivalently, (3)) are available online at www.math.sfu.ca/~zhaosong.
As a future research, we will further improve their performance by conducting more
extensive computational experiments and exploring more practical applications.
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